
Network-aware Web Browsing on Heterogeneous Mobile
Systems

ABSTRACT
Web browsing is an important application domain. However, it
imposes a significant burden on battery-powered mobile devices.
While heterogeneous multi-cores offer the potential for energy-
efficient mobile web browsing, existing web browsers fail to exploit
the heterogeneous hardware because they are not tuned for typical
networking environments and web workloads, and there are few
existing efforts that try to lower the energy consumption of web
browsing for heterogeneous mobile platforms.

Our work introduces a better way to optimize web browsing
on heterogeneous mobile devices. We achieve this by developing
a machine learning based approach to predict which of the CPU
cores to use and the operating frequencies of CPU and GPU. We do
so by first learning, offline, a set of predictive models for a range
of networking environments. We then choose a learnt model at
runtime to predict the optimal processor configuration. The pre-
diction is based on the web content, the network status and the
optimization goal. We evaluate our approach by applying it to the
open-source Chromium browser and testing it on two represen-
tative heterogeneous mobile multi-cores platforms. We apply our
approach to the top 1000 popular websites across seven typical
networking environments. Our approach achieves over 80% of best
available performance. We obtain, on average, over 17% (up to 63%),
31% (up to 88%), and 30% (up to 91%) improvement respectively for
load time, energy consumption and the energy delay product, when
compared to two state-of-the-art mobile web browsing schedulers.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Computingmethodologies→ Parallel computing methodologies;

KEYWORDS
Mobile web browsing, Energy optimization, Heterogenous multi-
cores

ACM Reference Format:
. 2018. Network-aware Web Browsing on Heterogeneous Mobile Systems. In
Proceedings of CoNEXT (CoNEXT ’18). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’18, Heraklion, Greece, 2018
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Web is a major information portal on mobile devices [28]. However,
web browsing is poorly optimized and continues to consume a
significant portion of battery power on mobile devices [15, 17, 46].
Heterogeneous multi-cores, such as the ARM big.LITTLE architec-
ture [1], offer a new way for energy-efficient mobile computing.
Moreover, today’s mobile devices are also equipped with powerful
GPUs. Thus, hardware acceleration of web browsing using mo-
bile GPUs alongside the central processing unit is beginning to be
possible.

These platforms integrate multiple processor cores on the same
system, where each processor is tuned for a certain class of work-
loads tomeet a variety of user requirements. However, it is currently
challenging to unlock the potential of heterogeneous multi-cores,
because doing so requires the web browsers to know e.g., which
processor core to use and at what frequency the core should operate.

Current mobile web browsers rely on the operating system to
exploit the heterogeneous cores. Since the operating system has
little knowledge of the web workload and how does the network
affect web rendering, the decision made by the operating system is
often sub-optimal. This leads to poor energy efficiency [54], drain-
ing the battery faster than necessary and irritating mobile users. In
this work, we ask the research question: “What advantages can a
scheduler take when it knows the web workload and the impact of
the networking environment?". In answer, we develop new tech-
niques to exploit knowledge of the computing environment and
web workloads to make better use of the underlying hardware.

In this work, we are interested at choosing the best processor
(CPU and GPU) configuration for a given web workload under a spe-
cific networking environment. We focus on processor scheduling
because processors are the major energy consumer on mobile de-
vices and their power consumption has continuously increased on
recent processor generations [23]. Rather than letting the operating
system make all the scheduling decisions by passively observing
the system’s load, our work enables the browser to actively par-
ticipate in decision making. Specifically, we want the browser to
decide which heterogeneous CPU core and the optimal CPU and
GPU frequencies to use to run the rendering engine and painting
process. We show that a good decision must be based on the web
content, the optimization goal, and how the network affects the
rendering process.

Instead of developing a hand-crafted approach that requires ex-
pert insight into a specific computing and networking environment,
we wish to develop an automatic technique that can be portable
across environments and hardware platforms. We achieve this by
employingmachine learning to automatically build predictors based
on empirical observations gathered from a set of training web pages.
The trained models are then used at runtime by the web browser to
predict the optimal processor configuration for any unseenwebpage.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CoNEXT ’18, Heraklion, Greece, 2018

web
content

Parsing
Style

Resolution

Render

Layout
Painting

Style Rules

Training
webpages

Profiling

runs

Feature

extraction

optimal proc. config.

feature values

L
earn

in
g

A
lg

o
rith

m

Predictive Model
Feature

extraction

optimal proc. config.

webpage

feature values

L
earn

in
g

A
lg

o
rith

m

Predictor
Training
webpages

Profiling

runs

features values

Browser Extension

processor config.

Network Monitor

delay&bandwidth

scheduling

web contents

Predictive
Model

<html>
...

</html>

a b

Web Server

Web

Server
Screen

DOM

Tree

Render

Tree

Fetching

Rendering Engine

Graphic

Data

Painting Process

Figure 1: The processing procedure of Chromium.

Such an approach avoids the pitfalls of using a hard-wired heuris-
tics that require human modification every time the computing
environment or hardware changes.

We have implemented our techniques in the open-sourcedGoogle
Chromiumweb browser.We evaluate our approach by applying it to
the top 1,000 popular websites ranked by alexa.com [4], including
Facebook, Amazon, CNN, etc. We test our techniques under seven
typical cellular and WiFi network settings. We compare our ap-
proach against two state-of-art web browser schedulers [40, 55] on
two distinct heterogeneous mobile platforms: Odroid XU3 and Jet-
son TX2. We consider three metrics: load time, energy consumption
and the energy delay product (see Section 2.3). Experimental results
show that our approach consistently outperforms state-of-the arts
across evaluation metrics and platforms.

The key contribution of this paper is a novel machine learning
based web rendering scheduler that can leverage knowledge of
the network and webpages to optimize mobile web browsing. Our
results show that significant energy efficiency for heterogeneous
mobile web browsing can be achieved if the scheduler is aware of the
networking environment and the webworkload. Our techniques are
generally applicable, as they are useful for not only web browsers
but also a large number of mobile apps that are underpinned by
web rendering techniques [16].

2 BACKGROUND AND MOTIVATION
2.1 Web Processing
Our prototype system1 is built upon Chromium [6], an open source
version of the popular Google Chrome web browser.

Figure 1 illustrates how Chromium handles a webpage. The web
contents, e.g., HTML pages, CSS styles, Javascripts and multimedia
contents, are fetched by a network process. The downloaded content
is processed by the rendering engine process. The rendering results
are passed to the painting process to generate visualization data in
the GPU buffer to display to the user. This pipeline of rendering and
screen painting is called content painting. To render the web content,
the rendering engine constructs a Document Object Model (DOM)
tree where each node of the tree represents an individual HTML
tag like <body> or <p>. CSS style rules that describe how the web
contents should be presented are also parsed by the rendering
engine to build the style rules. After parsing, styling information
and the DOM tree are combined to build a render tree which is then
used to compute the layout of each visible element. To paint the
web content, the painting process reads the rendered graphic data
and outputs the rendered contents at the pixel level to the screen.

1Code is available at: [url redacted for double-blind review].

Table 1: The best-performing existing governor

Load time Energy EDP
CPU GPU CPU GPU CPU GPU

Regular 3G Perf. Default powersave Static powersave Booster
Regular 4G Perf. Default conservative Static Inter. Booster
WiFi Inter. Default ondemand Booster Inter. Booster

2.2 Problem Scope
Our work focuses on scheduling the time-consuming rendering and
painting processes on heterogeneous mobile multi-cores. The goal
is to develop a portable approach to automatically determine, for a
given webpage in a networking environment, the optimal processor
configuration. A processor configuration consists of three param-
eters: (1) which heterogeneous CPU to use to run the rendering
process, (2) what are the clock frequencies for the heterogeneous
CPUs, and (3) the GPU frequency for running the painting process.

2.3 Motivation
Consider a scenario for browsing four BBC news pages, starting from
the home page of news.bbc.co.uk. In the example, we assume that
the user is an average reader who reads 280 words per minute [30]
and would click to the next page after finishing reading the current
one. Our evaluation device in this experiment is Odroid XU3 (see
Section 5.1), an ARM big.LITTLE mobile platform with a Cortex-
A15 (big) and a Cortex-A7 (little) CPUs, and a Mali-T628 GPU.

Networking Environments. We consider three typical network-
ing environments (see Section 4.1 for more details): Regular 3G,
Regular 4G and WiFi. To ensure reproducible results, web requests
and responses are deterministically replayed by the client and a web
server respectively. The web server simulates the download speed
and latency of a network setting, and we record and determinis-
tically replay the user interaction trace for each testing scenario.
More details of our experimental setup can be found at Section 5.1.

Oracle Performance.We schedule the Chromium rendering en-
gine (i.e., CrRendererMain) to run on either the big or the little
CPU core under different clock frequencies. We also run the GPU
painting process (i.e., Chrome_InProcGpuThread) under different
GPU frequencies. We record the best processor configuration per
test case per optimization target. We refer this best-found configu-
ration as the oracle because it is the best performance we can get
via processor frequency scaling and task mapping.

Scheduling Strategies. For rendering, we use the interactive
CPU frequency governor as the baseline, which is the default fre-
quency governor on many mobile devices [43]. We use the An-
droid’s default settings of interactive, i.e., it samples the CPU
load every 80 ms, and raises the frequency if the CPU utilization is
above 85%; after that, it waits for at least 20 ms before re-sampling
the CPU to decide whether to lower or raise the frequency. We
also compare to other four Linux-based CPU frequency governors:
performance, conservative, ondemand and powersave. The GPU
frequency is controlled by a GPU-architecture-dependent frequency
governor [22]. Here we consider all the three mainstream GPU fre-
quency governors available on Odroid XU3: Default, Static and

Network-aware Web Browsing on Heterogeneous Mobile Systems CoNEXT ’18, Heraklion, Greece, 2018

Booster; and we use Default as the baseline GPU frequency gover-
nor. We call the best-performing CPU and GPU frequency governor
the best-performing existing governor thereafter.

EvaluationMetrics. In this work, we consider three lower is better
metrics: load time, energy consumption and energy delay product
(EDP) – calculated as energy × load runtime – a commonly used
metric for quantifying the balance between energy consumption
and load time [7, 21].

Motivation Results. Table 1 lists the best-performing existing
governor for rendering and painting, and Figure 2 summarizes the
performance of each strategy for each optimization metric. While
interactive gives the best EDP compared to other existing gover-
nors in a Regular 4G and a WiFi environments, it fails to deliver the
best-available performance for load time and energy consumption.
For painting, Default gives the best load time, Static saves the
most energy, and Booster delivers the best EDP– the best GPU gov-
ernor varies depending which metric to be optimized. Furthermore,
there is significant room for improvement for the best-performing
combination of CPU and GPU governors when compared to the
oracle. On average, the oracle outperforms the best-performing
existing-governor combination by 144.6%, 73.1%, and 85.4% respec-
tively for load time, energy consumption and EDP across networking
environments. Table 2 presents the optimal configuration found by
exhaustively trying all possible processor configurations. The core
used for running the rendering process is highlighted using a color
box, where each color code represents a specific CPU frequency.
As can be seen from the table, the optimal processor configuration
varies across web pages, networking environments and evaluation
metrics – no single configuration consistently delivers the best-
available performance.

Lessons Learned. This example shows that the current main-
stream CPU frequency governors are ill-suited for mobile web
browsing and the best processor configuration depends on the
network and the optimization goal. There is a need for a better
scheduler that can adapt to the webpage workload, the networking
environment and the optimization goal. In the remainder of this
paper, we describe such an approach based on machine learning.

3 OVERVIEW OF OUR APPROACH
As illustrated in Figure 3, our approach consists of two components:
(i) a network monitor running as an operating system service and
(ii) a web browser extension. The network monitor measures the
end to end delay and network bandwidths when downloading the
webpage. The web browser extension determines the best processor
configuration depending on the network environment and the web
contents. We let the operating system to schedule other browser
threads such as the input/output processes.

At the heart of our web browser extension is a set of off-line
learned predictive models, each targets a specific networking en-
vironment and a user specified optimization goal. The network
status reported by the network monitor is used to choose a pre-
dictor. After training, the learnt models can then be used for any
unseenwebpage. The predictor takes in a set of numerical values, or
features values, which describes the essential characteristics of the
webpage. It predicts what processor configuration to use to run the

rendering and painting processes on the the heterogeneous multi-
core platform. The set of features used to describe the webpage is
extracted from the web contents. This is detailed in Section 4.3.

We stress that while this work is evaluated on Chromium, the
proposed techniques are generally applicable and can be used for
other web browsers and mobile apps that rely on web rendering
techniques.

4 PREDICTIVE MODELING
Our models for processor configuration prediction are a set of Sup-
port Vector Machines (SVMs) [48]. We use the Radial basis kernel
because it can model both linear and non-linear classification prob-
lems. We use the same methodology to learn all predictors for
the target networking environments and optimization goals (i.e.,
load time, energy consumption, and EDP) for the target hardware
platform. We have also explored several alternative classification
techniques – this is discussed in Section 6.3.6.

Building and using a predictive model follows the well-known
4-step process for supervised learning: (1) modeling the problem
domain, (2) generating training data (3) learning a predictive model
and (4) using the predictor. These steps are described as follows.

4.1 Network Monitoring and Characterization
The communication network has a significant impact on the web
rendering and painting strategy. Intuitively, if a user has access to
a fast network, he/she would typically expect quick response time
for webpage rendering; on the other hand, if the network is slow,
operating the processor at a high frequency would be unnecessarily
because the content downloading would dominate the turnaround
time and in this scenario the bottleneck is the I/O not the CPU.

Table 3 lists the networking environments considered in this
work. The settings and categorizations are based on the measure-
ments given by an independent study [3]. Figure 4 shows the web-
page rendering time with respect to the download time under each
networking environment when using the interactive governor.
The download time dominates the end to end turnaround time for a
2G and a Regular 3G environments; and by contrast, the rendering
time accounts for most of the turnaround time for a Good 4G and a
WiFi environments when the delay is small.

In this work, we learn a predictor per optimization goal for each
of the seven networking environments. Our framework allows new
predictors to be added to target different environments and no
retraining is required for existing predictors. Because the process of
model training and data collection can be performed automatically,
our approach can be easily ported to a new hardware platform or
networking environment.

To determine which network environment the user is currently
in, we develop a lightweight network monitor to measure the net-
work bandwidths and delay between the web server and the device.
The network monitor utilizes the communication link statistics
that are readily available on commodity smartphones. Measured
data are averaged over the measurement window, i.e., between the
browser establishes the connection and making a prediction. The
measurements are then used to map the user’s networking environ-
ment to one of the pre-defined settings in Table 3, by finding which
of the settings is closest to the measured values. The closeness or

CoNEXT ’18, Heraklion, Greece, 2018

R e g u l a r 3 G R e g u l a r 4 G W i F i0
4
8

1 2
1 6
2 0 O r a c l e

 b e s t - p e r f o r m i n g e x i s t i n g (C P U + G P U)
 I n t e r . (C P U) + D e f a u l t (G P U)

Lo
ad

Tim
e(s

)

(a) Load time

R e g u l a r 3 G R e g u l a r 4 G W i F i05
1 01 52 02 53 03 5 O r a c l e

 b e s t - p e r f o r m i n g e x i s t i n g (C P U + G P U)
 I n t e r . (C P U) + D e f a u l t (G P U)

En
erg

y(J
)

(b) Energy consumption

R e g u l a r 3 G R e g u l a r 4 G W i F i0
3 0
6 0
9 0

1 2 0
1 5 0
1 8 0 O r a c l e

 b e s t - p e r f o r m i n g e x i s t i n g (C P U + G P U)
 I n t e r . (C P U) + D e f a u l t (G P U)

ED
P(J

*s)

(c) EDP

Figure 2: The total load time (a), energy consumption (b) and energy delay product (EDP) (c) when a userwas browsing four news
pages from news.bbc.co.uk. We show the results for oracle, the best-performing existing CPU and GPU frequency governors,
and interactive (CPU) + Default (GPU) in three typical networking environments. There is significant room for improvement.

Table 2: Optimal configurations for BBC pages. The color box highlights which CPU the rendering process should run on while
each color code represents a specific CPU frequency.

Regular 3G Regular 4G WiFi
A15 (GHz) A7 (GHz) GPU (GHz) A15 (GHz) A7 (GHz) GPU (GHz) A15 (GHz) A7 (GHz) GPU (GHz)

Load time 1.7 0.4 0.543 1.8 0.4 0.600 1.8 0.4 0.600
Energy 0.4 0.8 0.400 0.4 0.8 0.400 0.8 0.4 0.543Landing page
EDP 0.8 0.4 0.420 0.8 0.4 0.420 0.8 0.8 0.543

news page 1
Load time 1.6 0.4 0.543 1.6 0.4 0.600 1.7 0.4 0.600
Energy consumption 0.8 0.4 0.420 0.8 0.4 0.420 0.8 0.4 0.420
EDP 0.8 0.4 0.420 0.8 0.8 0.420 0.8 0.8 0.420

Load time 1.8 0.4 0.600 1.8 0.4 0.600 1.8 0.4 0.600
Energy consumption 0.8 0.4 0.420 0.8 0.8 0.420 1.2 0.4 0.543sub-page 2
EDP 0.8 0.8 0.420 1.2 0.8 0.543 1.2 0.8 0.543

news page 3
Load time 1.6 0.4 0.543 1.7 0.4 0.600 1.8 0.4 0.600
Energy consumption 0.4 0.4 0.350 0.4 0.8 0.400 0.8 0.8 0.420
EDP 0.4 0.4 0.350 0.4 0.8 0.400 0.8 0.4 0.420

features values

Browser Extension

processor config.

Network Monitor
delay&bandwidth

scheduling
web contents

Predictive Model<html> ...</html>

a b

Figure 3: Overview of our approach. The network moni-
tor evaluates the network bandwidth and delay to choose
a model to predict the oprimL processor configuration.

Table 3: Networking environment settings

Uplink bandwidth Downlink bandwidth Delay

Regular 2G 50kbps 100kbps 1000ms
Good 2G 150kbps 250kbps 300ms
Regular 3G 300kbps 550kbps 500ms
Good 3G 1.5Mbps 5.0Mbps 100ms
Regular 4G 1.0Mbps 2.0Mbps 80ms
Good 4G 8.0Mbps 15.0Mbps 50ms
WiFi 15Mbps 30Mbps 5ms

��
	���	���
��������

��������

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

 R e n d e r i n g E n g i n e (C P U) a n d G P U P a i n t i n g D o w n l o a d

Figure 4:Webpage rendering and painting timew.r.t. content
download time when using the interactive (CPU) and the
Default (GPU) governors on Odriod Xu3.

distance, d , is calculated using the following formula:

d = α |dbm − db | + β |ubm − ub | + γ |dm − d | (1)

where dbm , ubm , and dm are the measured downlink bandwidth,
upload bandwidth and delay respectively, db, ub, and d are the
downlink bandwidth, upload bandwidth and delay of a network
category, and α , β , γ are weights. The weights are automatically
learned from the training data, with an averaged value of 0.3, 0.1
and 0.6 respectively for α , β , and γ .

Network-aware Web Browsing on Heterogeneous Mobile Systems CoNEXT ’18, Heraklion, Greece, 2018

<HTML><HTML>

<HTML>

features values

Browser Extension

processor config.

Network Monitor

delay&bandwidth

scheduling

web contents

Predictive
Model

<html>
...

</html>

a b

Feature
extraction

optimal proc. config.

webpage
feature values

Learn
in

g
A

lgo
rith

m

Predictor
Training

webpages

Profiling
runs

<html>
...

</html>

<html>
...

</html>

<HTML>
<HTML>

Profiling runs

Profiling runs
Optimal proc. config.

Learning
Algorithm

SVM

<A15-0.2GHz, A7-0.2GHz>

<A15-0.4GHz, A7-0.2GHz>

<A15-2.0GHz, A7-1.4GHz>

Support Vector Machine

Webpage features
Predictor

Output

Profiling runs

Optimal proc. config.

<A15-0.4GHz, A7-0.4GHz, GPU-0.355GHz>

<A15-0.8GHz, A7-0.4GHz, GPU-0.42GHz>

<A15-2.0GHz, A7-1.4GHz,GPU-0.6GHz>

Support Vector Machine

Extract features

Predictors

Output

<HTML>
Training

webpages
<HTML><HTML><HTML><HTML>

0.2GHz-1.2GHz
 ⁞
 ⁞
1.2GHz-2.0GHz

Least Energy:
Optimal Load Time:
Best EDP:

0.2GHz-1.2GHz
 ⁞
 ⁞
1.2GHz-2.0GHz

⁞

⁞

<A15-0.4GHz, A7-0.4GHz>

<A15-2.0GHz, A7-1.7GHz>

<A15-0.8GHz, A7-0.4GHz>

#DOM:1021
Depth of Tree: 11

#:201

⁞⁞

⁞

⁞

#DOM:1021
Depth of Tree: 11

#:201

⁞⁞

Least Energy:

Optimal Load Time:

Best EDP:

<A15-0.4GHz, A7-0.4GHz,GPU-0.355GHz>

<A15-2.0GHz, A7-0.4GHz, GPU-0.6GHz>

<A15-0.8GHz, A7-0.4GHz,GPU-0.6GHz>

Figure 5: Learning predictive models using training data col-
lected from a target network environment.

4.2 Training the Predictor
Figure 5 depicts the process of using training webpages to build a
SVM classifier for an optimization target under a networking envi-
ronment. Training involves finding the best processor configuration
and extracting feature values for each training webpage, and learn
a model from the training data.

Generate Training Data. In this work, we used around 900 web-
pages to train a SVM predictor; we then evaluate the learnt model
on the other 100 unseen webpages. These training webpages are
selected from the landing page of the top 1000 hottest websites
ranked by www.alexa.com (see Section 5.2). We use Netem [24], a
Linux-based network enumerator, to emulate various networking
environments to generate the training data (see also Section 5.1).
We exhaustively execute the rendering engine and painting process
under different processor settings and record the optimal configura-
tion for each optimization goal and each networking environment.
We then assign each optimal configuration a unique label. For each
webpage, we also extract values of a set of selected features and
store the values in a fixed vector (see Section 4.3).

Building TheModel. The feature values together with the labeled
processor configuration are supplied to a supervised learning al-
gorithm [29]. The learning algorithm tries to find a correlation
from the feature values to the optimal configuration and produces
a SVM model per networking environment per optimization goal.
Because we target three optimization metrics and seven network-
ing environments, we have constructed 21 SVM models in total for
a given platform. An alternative is to have a single model for all
optimization metrics and networking environments. However, this
strategy requires retraining the model when targeting a new metric
or environment and thus incurs extra training overheads.

Training Cost. The training time of our approach is dominated
by generating the training data. In this work, it takes less than a
week to collect all the training data. In comparison processing the

HTML

web contents

Parsing

DOM tree
& style rules

feature
values

Predictor

processor config.

Scheduling

CSS

1

3

Network

Profiling delay
&bandwidth

2

features values

Predictvie

model
processor config.

Network Monitor

delay&bandwidth

web

contents

delay&bandwidth
DOM
tree

scheduling

web server

web contents

Parsing

PC1
(47%)

PC2
(11.4%)

PC3
(7.2%)

PC4
(5.8%) PC5

(4.4%)

PCs 6-8
(9.1%)

PCs 9-18
(9.7%)

Rest
PCs -5%

(a) Principal components
w e b p

a g e
 s i z

e

D O M n o d
e

d e p
t h o

f t r e
e

A t t r . s
t y l e

T a g . l
i n k

T a g . s
c r i p

t

T a g . i
m g0 %

1 0 %

2 0 %

3 0 %

%
of

co
ntr

i. t
o v

ari
an

ce

(b) Top 7 most important features

Figure 6: The percentage of principal components (PCs) to
the overall feature variance (a), and contributions of the
seven most important raw features in the PCA space (b).

raw data, and building the models took a negligible amount of time,
less than an hour for learning all individual models on a PC. Since
training is only performed once at the factory, it is a one-off cost.

4.3 Web Features
One of the key aspects in building a successful predictor is finding
the right features to characterize the input workload. In this work,
we consider a set of features extracted from the web contents. These
features are collected by our feature extraction pass. To gather the
feature values, the feature extractor first obtains a reference for each
DOM element by traversing the DOM tree and then uses the Chromium
API, document.getElementsByID, to collect node information.

We started from 214 raw features, including the number of DOM
nodes, HTML tags and attributes of different types, and the depth
of the DOM tree, etc. All these features can be collected at the parsing
time from the browser. The types of the raw features are given in
Table 4. Some of these features are selected based on our intuition
what may be important for our problem, while others are chosen
based on prior work [9, 36, 40]. It is important to note that the
collected feature values are encoded to a vector of real values. One
of the advantages of our web features is that the feature values are
obtained at the very beginning of the loading process, which gives
enough time for runtime optimization.

Feature Reduction. The time spent in making a prediction is negli-
gible in comparison to the overhead of feature extraction, therefore
by reducing our feature count we can decrease the overhead of our
predictive models. Moreover, by reducing the number of features
we are also improving the generalization ability of our models, i.e.,
reducing the likelihood of over-fitting on our training data. Feature
reduction is automatically performed through applying Principal
Component Analysis (PCA) [18] to the raw feature space. PCA trans-
forms the original inputs into a set of principal components (PCs)
that are linear combinations of the inputs. After applying PCA to the
214 raw features, we choose the top 18 principal components (PCs)
which account for around 95% of the variance of the original feature
space. We record the PCA transformation matrix and use it to trans-
form the raw features of the new webpage to PCs during runtime
deployment. Figure 6a illustrates how much feature variance that
each component accounts for. This figure shows that predictions
can accurately draw upon a subset of aggregated feature values.

CoNEXT ’18, Heraklion, Greece, 2018

Table 4: Raw web feature categories

DOM Tree #DOM nodes depth of tree
#each HTML tag #each HTML attr.

Other size of the webpage (Kilobytes)

Run-time

scheduler

Extension

Feature

normalization

SVM

predictor
Network

Monitor

web

contents Feature

extraction
Web

Server

Figure 7: Runtime deployment. The network monitor re-
ports the network status. A model is chosen based on the
network and optimization goal to predict the processor con-
figuration, which is then passed to the runtime scheduler.

Feature Normalization. Before passing our features to a machine
learning model we need to scale each of the features to a common
range (between 0 and 1) in order to prevent the range of any single
feature being a factor in its importance. Scaling features does not
affect the distribution or variance of their values. To scale the fea-
tures of a new webpage during deployment we record the minimum
and maximum values of each feature in the training dataset, and
use these to scale the corresponding features.

Feature Analysis. To understand the usefulness of each raw fea-
ture, we apply the Varimax rotation [33] to the PCA space. This
technique quantifies the contribution of each feature to each PC.
Figure 6b shows the top 7 dominant features based on their contri-
butions to the PCs. Features like the webpage size and the number
of DOM nodes are most important, because they strongly correlate
with the download time and the complexity of the webpage. Other
features like the depth of the DOM tree, and the numbers of different
attributes and tags, are also useful, because they determine how
the webpage should be presented and how do they correlate to
the rendering cost. The advantage of our feature selection process
is that it automatically determines what features are useful when
targeting a new hardware platform where the relative cost of page
rendering and the importance of features may change.

4.4 Runtime Deployment
Once we have built the predictive models described above, we can
use them for any new, unseenwebpage. Figure 7 illustrates the steps
of runtime prediction and task scheduling. The network monitor
reports the network bandwidths and delay, which are used to deter-
mine the runtime status. The web browser then selects a predictor
to use based on the network status and the optimization goal. Dur-
ing the parsing stage, which takes less than 1% of the total rendering
time [34], the feature extractor firstly extracts and normalizes the
feature values. Next, the selected predictive model predicts the opti-
mal processor frequency based on the feature values. The prediction
is then passed to the runtime scheduler to perform task scheduling
and hardware configuration. The overhead of network monitoring,
extracting features, prediction and configuring frequency is small.
It is less than 7% of the turnaround time (see also Section 6.3.3),
which is included in all our experimental results.

Table 5: None-zero feature values for Google search (p1), the
result page (p2) and the target website (p3).

Feature Raw value Normalized value
p1 p2 p3 p1 p2 p3

#DOM nodes 397 1292 4798 0.049 0.163 0.611
depth of tree 21 13 23 0.750 0.416 0.833

#img 3 5 169 0.004 0.007 0.256
#li 19 76 799 0.011 0.046 0.490

#link 2 8 3 0.026 0.106 0.04
#script 13 79 54 0.099 0.603 0.412
#href 46 155 2044 0.022 0.075 0.99
#src 3 21 84 0.006 0.043 0.167

#content 2 23 11 0.039 0.450 0.215

As the DOM tree is constructed incrementally by the parser, it
can change throughout the duration of rendering. To make sure
that our approach can adapt to the change of available information,
re-prediction and rescheduling will be triggered if the DOM tree is
significantly different from the one used for the last prediction.
The difference is calculated by counting the number of DOM nodes
between the previous and the current DOM trees. If the difference
is greater than 30%, we will make a new prediction using feature
values extracted from the current DOM tree. We have observed that
our initial prediction often remains unchanged, so rescheduling
and reconfiguration rarely happened in our experiments.

4.5 Example
To demonstrate how our approach works, we now consider a sce-
nario where a user conducts a search on Google to look for an
online service. There are three webpages to be rendered in this
process: the Google search page, the search result page, and the
target website, which are denoted as p1, p2 and p3 respectively.
Here we assume the user uses a Regular 3G network and wants to
retrieve the information with minimum energy usage by informing
the system via e.g., choosing the battery saver mode on Android.

For this example, an energy-tuned predictor for a Regular 3G
network is chosen. The feature extractor extracts the raw feature
values from the DOM tree after the browser starts parsing the web
content. The feature values will be normalized and projected into
the PCA space as described in Section 4.3. Table 5 lists some of
the non-zero raw feature values for the three webpages, before
and after normalization. These processed feature values will be
fed into the selected SVM model. The model outputs a label (<A15
- 0.4, 0.4, GPU - 0.35> for Google search), indicating the optimal
configuration is to run the rendering process on the big core and
the clock frequency of the little and big cores should be set to 400
MHz, and the painting proocess on the GPU with 350 MHz. This
prediction is indeed the ideal processor configuration. Finally, the
processor configuration is communicated to the runtime scheduler
to configure the hardware platform. For the other two webpages,
our model also gives the optimal configuration, <A15 - 0.8, 0.8,
GPU - 0.42>.

Network-aware Web Browsing on Heterogeneous Mobile Systems CoNEXT ’18, Heraklion, Greece, 2018

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0

0.8

1.6

2.4

3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q

. (
G

H
z)

Time (second)

 big(Inter.)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3

C
P

U
 F

re
qu

en
cy

(G
H

z)

Time(second)

 big(Interactive)
 LITTLE(Interactive)
 big(predictive model)

0.25J

3.17J 16.57J

2.74J

27.59J

3.01J

p1 p2 p3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
qu

e
n

cy
(G

H
z)

Time(second)

 big(Inter.)

0.25J (1.8s)

3.17J
(0.78s)

16.57J (3.39s)

2.74J (3.6s)

27.59J (3.9s)

3.01J (4.5s)

p2 p3p1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

 big(predictive model)

C
P

U
 F

re
q

u
e

n
cy

(G
H

z)

Time(second)

 big and LITTLE(Powersave)

0.25J
7.10J

2.74J

11.7J

3.01J

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0

0.3

0.6

0.9

1.2

1.5

C
P

U
 F

re
qu

en
cy

(G
H

z)

Time(second)

 big and LITTLE(Powersave)
 big(predictive model)

p1

p2 p3

0.25J
7.10J

2.74J

11.7J

3.01J

p2 p3

1.28J

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

 big(predictive model)

C
P

U
 F

re
q

u
e

n
cy

(G
H

z)

Time(second)

 big and LITTLE(Powersave)

p1

0.25J (1.2s)
7.10J (16.3s)

2.74J (4.3s)

11.7J (25.1s)

3.01J (5.2s)
p2 p3

1.28J(3.3s)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time(second)

 big and LITTLE(Powersave)p1

0.25J (1.2s)
7.10J (16.3s)

2.74J (4.3s)

11.7J (25.1s)

3.01J (5.2s)
p2 p3

1.28J (3.3s)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0

0.8

1.6

2.4

3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q

. (
G

H
z)

Time(second)

 big(Inter.)

0.25J (1.8s)

3.17J
(0.78s)

16.57J (3.39s)

2.74J (3.6s)

27.59J (3.9s)

3.01J (4.5s)

p1 p2 p3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time (second)

 big and LITTLE(Powersave)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time (second)

 big and LITTLE(Powersave)

0.25J (1.2s)
7.10J (16.3s)

2.74J (4.3s)

11.7J (25.1s)

3.01J (5.2s)
p2 p3

1.28J (3.3s)

p1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time (seconds)

 big and LITTLE(Powersave)

(a) Compare with the powersave governor

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q.

 (
G

H
z)

Time (second)

 big(Inter.)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q

. (
G

H
z)

Time (second)

 big(Inter.)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0

0.8

1.6

2.4

3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q.

 (
G

H
z)

Time (second)

 big(Inter.)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3

C
P

U
 F

re
qu

en
cy

(G
H

z)

Time(second)

 big(Interactive)
 LITTLE(Interactive)
 big(predictive model)

0.25J

3.17J 16.57J

2.74J

27.59J

3.01J

p1 p2 p3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q

ue
n

cy
(G

H
z)

Time(second)

 big(Inter.)

0.25J (1.8s)

3.17J
(0.78s)

16.57J (3.39s)

2.74J (3.6s)

27.59J (3.9s)

3.01J (4.5s)

p2 p3p1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

 big(predictive model)

C
P

U
 F

re
q

ue
n

cy
(G

H
z)

Time(second)

 big and LITTLE(Powersave)

0.25J
7.10J

2.74J

11.7J

3.01J

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0

0.3

0.6

0.9

1.2

1.5

C
P

U
 F

re
qu

e
nc

y(
G

H
z)

Time(second)

 big and LITTLE(Powersave)
 big(predictive model)

p1

p2 p3

0.25J
7.10J

2.74J

11.7J

3.01J

p2 p3

1.28J

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

 big(predictive model)

C
P

U
 F

re
q

u
e

n
cy

(G
H

z)

Time(second)

 big and LITTLE(Powersave)

p1

0.25J (1.2s)
7.10J (16.3s)

2.74J (4.3s)

11.7J (25.1s)

3.01J (5.2s)
p2 p3

1.28J(3.3s)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time(second)

 big and LITTLE(Powersave)p1

0.25J (1.2s)
7.10J (16.3s)

2.74J (4.3s)

11.7J (25.1s)

3.01J (5.2s)
p2 p3

1.28J (3.3s)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.0

0.8

1.6

2.4

3.2

 LITTLE(Inter.) big(Predictive model)

C
P

U
 F

re
q

. (
G

H
z)

Time(second)

 big(Inter.)

0.25J (1.8s)

3.17J 16.57J (3.39s)

2.74J (3.6s)

27.59J (3.9s)

3.01J (4.5s)

p1 p2 p3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time (second)

 big and LITTLE(Powersave)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0.0
0.3
0.6
0.9
1.2
1.5

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time (second)

 big and LITTLE(Powersave)

0.25J (1.2s)
7.10J (16.3s)

2.74J (4.3s)

11.7J (25.1s)

3.01J (5.2s)
p2 p3

1.28J (3.3s)

p1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
P

U
 F

re
q.

 (
G

H
z)

 big(Predictive model)

Time (seconds)

 big and LITTLE(Powersave)

(0.78s)

0.25J (1.8s)

3.17J 16.57J (3.39s)

2.74J (3.6s)

27.59J (3.9s)

3.01J (4.5s)

p1 p2 p3

(b) Compare with the interactive governor

Figure 8: The selected processor and CPU frequencies when rendering Google search (p1), the search result page (p2), and the
target website (p3). We compare our approach against powersave (a) and interactive (b) in a regular 3G environment.

Table 6: Hardware platforms

Odroid Xu3 Jetson TX2

big CPU 32bit quad-core Cortex-A15 @ 2GHz 64bit quad-core Cortex-A57 @ 2.0 GHz
LITTLE CPU 32bit quad-core Cortex-A7 @ 1.4GHz 64bit dual-core Denver2 @ 2 GHz
GPU 8-core Mali-T628 @ 600MHz 256-core NVIDIA Pascal @ 1.3GHz

Figure 8a compares the powersave CPU frequency governor
with our approach. This strategy runs all cores at the lowest fre-
quency, 200MHz, aiming to minimize the system’s power consump-
tion. However, running the processors at this frequency prolongs
the page load time, which leads to over 1.59x (up to 4.12x) more
energy consumption than our approach.

In contrast to the fixed strategy used by powersave, the widely
used interactive governor dynamically adjusts the processor fre-
quency according to the user activities. From Figure 8b, we see that
interactive raises the big core frequency as soon as the browser
starts fetching p1. After that all cores stay on the highest frequency
until a few seconds after the third webpage has been completely
rendered. While interactive can choose CPU frequencies from
the entire spectrum, it mostly focuses on the highest and the low-
est frequencies. By contrast, our approach dynamically adjusts the
processor frequency according to the web content and browsing
activities. It chooses to operate the processors at 400MHz for the
relatively simplep1 page that has the smallest number of DOM nodes,
and then raises the frequency up to 800MHz for the next two more
complex pages. As a result, our approach reduces the energy con-
sumption by 87% at the cost of 22% slower when compared with
interactive. Considering the goal is to minimize the energy con-
sumption, our approach outperforms interactive on this task.

5 EXPERIMENTAL SETUP
5.1 Hardware and Software Platform

Evaluation Platform. To demonstrate the portability, we evalu-
ate our approach on two distinct mobile platforms, Odriod XU3
Jetson TX2. Table 6 gives detailed information of both platforms.
We chose these platforms as they are a representative big.LITTLE
embedded architecture and has on-board energy sensors for power
measurement. Both systems run Ubuntu 16.04 with the big.LITTLE
enabled scheduler. We used the on board energy sensors and ex-
ternal power monitor to measure the energy of the entire system.

These sensors have been checked against external power measure-
ment instruments and proven to be accurate in prior work [27].
We implemented our approach in Google Chromium (version 64.0)
which is compiled using the gcc compiler (version 7.2).

Networking Environments. To ensure that our results are re-
producible, we use a Linux server to record and replay the server
responses through the Web Page Replay tool [2]. Our mobile test
board and the web server communicate through WiFi, but we use
Netem [24] to control the network delay and server bandwidth to
simulate the seven networking environments defined in Table 3.
We add 30% of variances (which follow a normal distribution) to the
bandwidths, delay and packet loss to simulate a dynamic network
environment. Note that we ensure that the network variances are
the same during the replay of a test page. We also measure the
difference of power between the WiFi and the cellular interfaces,
and use this to calibrate the energy consumption in cellular environ-
ments. Finally, unless stated otherwise, we disabled the browser’s
cache to provide a fair comparison across different methods (see
also Section 6.2).

Workloads. We used the landing page of the top 1,000 hottest
websites from www.alexa.com. We include both the mobile and
the desktop versions of the websites, because many mobile users
still prefer the desktop-version for their richer content and experi-
ence [13]. Figure 9 shows the CDF of the number of DOM nodes, web
content sizes and load time when using the interactive governor
in aWiFi environment. The DOM node and webpage sizes range from
small (4 DOM nodes and 40 KB) to large (over 8,000 DOM nodes and
6 MB), and the load time is between 0.13 second and 15.4 seconds,
suggesting that our test data cover a diverse set of web contents.

5.2 Evaluation Methodology

Model Evaluation.We use 10-fold cross-validation to evaluate our
machine learning models. Specifically, we partition the webpages
into 10 sets where each set contains 100 webpages. We retain one
set as the validation data for testing our model, and the remaining
9 sets are used as training data to train the model. We repeat this
process 10 times (folds), with each of the 10 sets used exactly once
as the validation data. We then report the geometric mean accuracy
achieved across the 10 validation sets. This is a standard evaluation
methodology, providing an estimate of the generalization ability of
a machine-learning model in predicting unseen data.

CoNEXT ’18, Heraklion, Greece, 2018

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 CD
F

n o d e s
(a) #DOM nodes

0 2 0 0 0 4 0 0 0 6 0 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

k i l o b y t e s

CD
F

(b) Web page size

0 5 0 0 0 1 0 0 0 0 1 5 0 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

CD
F

m s
(c) Load time (ms)

Figure 9: The CDF of #DOM nodes (a), webpage size (b), and load time when using interactive in a WiFi network (c).

Existing FrequencyGovernors.We compare our approach against
existing CPU and GPU frequency governors. Specifically, we con-
sider five widely used CPU governors: interactive, powersave,
performance, conservative, and ondemand. For GPUs, we con-
sider three purpose-built governors for the ARM Mali GPU (Odroid
Xu3): Default, Static and Booster, and three others for theNVIDIA
Pascal GPU (Jetson TX2): nvhost_podgov, simple_ondemand and
userspace. We use interactive as the baseline CPU governor,
and Default and nvhost_podgov as the baseline GPU governor
on Odroid Xu3 and Jetson TX2, respectively.

Competitive Approaches. We compare our approach with two
state-of-the arts: a web-aware scheduling mechanism (termed as
WS) [55] and a machine learning based web browser scheduling
scheme (termed as S-ML) [40]. WS uses a regression model to esti-
mate webpage load time and energy consumption under different
processor configurations. The model is then used as a cost function
to find the best configuration by enumerating all possible configu-
rations. S-ML also develops a machine learning classifier to predict
the optimal processor configuration, but it assumes that all the
webpages have been pre-downloaded and ignores the impact of the
dynamic network environments. We train WS and S-ML using the
same training dataset as the one we used to train our models in a
WiFi environment (which is the networking environment used by
both methods for collecting training data)

Performance Report.We report the geometric mean of each eval-
uation metric across evaluation scenarios. The geometric mean is
a widely used performance metric. Compared to the arithmetic
mean, it can better minimize the impact of performance outliers
– which could make the results look better than they are [19]. To
collect run-time and energy consumption, we run each model on
each input repeatedly until the 95% confidence bound per model per
input is smaller than 5%. For load time, we instrumented Chromium
to measure the wall clock time between the Navigation Start
and the Load Event End events. We excluded the time spent on
browser bootstrap and shut down. To measure the energy consump-
tion, we developed a lightweight runtime to take readings from the
on-board energy sensors at a frequency of 100 samples per second.
We then matched the energy readings against the time stamps of
webpage rendering to calculate the energy consumption.

6 EXPERIMENTAL RESULTS
Highlights of our evaluation are as follows:

• Our approach consistently outperforms the existing Linux-
based governors across networking environments, optimiza-
tion goals, and hardware platforms. See Section 6.1;

• Our approach gives better and more stable performance com-
pared to state-of-the-art web-aware schedulers (Section 6.2);

• We thoroughly evaluate our approach and provide detailed
analysis on its working mechanisms (Section 6.3).

6.1 Overall Results
The box-plot in Figure 10 depicts the improvements of our approach
over the best-performing Linux-based CPU and GPU governor. The
min-max bars show the range of improvements achieved across
webpages.

Load Time. Figure 10a and Figure 10d show the improvement of
load time on Odroid XU3 and Jetson TX2, respectively. For this
metric, the performance governor is the best-performing Linux
governor for most of the test cases. Our approach delivers signifi-
cantly better performance in slow networking environments like a
2G or a 3G network on both of two platforms, offering at least 11%
quicker turnaround time. A slow network prolongs the webpage
download time; and as a result, running the CPU and GPU at the
highest frequency is not beneficial as the CPU sits idle for most of
the time waiting for I/O, and the GPU waits to paint the rendered
graphic data from CPU. Such a strategy would trigger frequent
CPU [5] or GPU throttling [39], i.e. the hardware thermal manager
would drop the clock frequency from 2GHz to 1.5GHz (or a lower
frequency) to prevent the chip from overheating. Our approach
learns from empirical observations that it is better to run the CPU
and GPU at a slightly lower frequency, e.g., 1.8 GHz instead of 2
GHz, so that the CPU can operate on, on average, a higher fre-
quency over the rendering period because of the less frequent CPU
throttling. There is less improvement in a fast network like a WiFi
environment. In such an environment, the download speed is no
longer a bottleneck and running the CPU at a high frequency is
often beneficial. Nonetheless, our approach outperforms the best-
performing Linux governor by 1.20x on average (up to 1.87x) across
network environments and never gives worse performance.

Energy Consumption. Figure 10b and Figure 10e compare our
approach against other frequency governors in scenarios where low
battery consumption is the first priority. In this case, powersave
is the best-performing Linux governor in 2G and a Regular 3G
environments, while conservative and ondemand are the best-
performing Linux policies in a faster environment (Good 3G on-
wards). On average, our approach outperforms the best-performing

Network-aware Web Browsing on Heterogeneous Mobile Systems CoNEXT ’18, Heraklion, Greece, 2018

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0

�	
��

���
�

��
��

�
	

��
��

� (x
)

(a) Load Time XU3

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i
0

2 0
4 0
6 0
8 0

1 0 0

��
�

�
�
�

��
��

�	
� (

%)

(b) Energy Consumption XU3

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i
2 0

4 0

6 0

8 0

1 0 0

��
��

��
�

��
�

	 (
%)

�

(c) EDP XU3

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i
1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

�	
��

���
�

��
��

�
	

��
��

� (x
)

(d) Load Time TX2

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i
0

2 0
4 0
6 0
8 0

��
�

�
�
�

��
��

�	
� (

%)

(e) Energy Consumption TX2

R . 2 G G . 2 G R . 3 G G . 3 G R . 4 G G . 4 G W i F i
0

2 0
4 0
6 0
8 0

1 0 0

��
��

��
�

��
�

	 (
%)

�

(f) EDP TX2

Figure 10: Improvement achieved by our approach over the best-performing Linux CPU governor for load time, energy re-
duction and EDP on Odroid XU3 and Jetson TX2. The min-max bars show the range of performance improvement across web-
pages. Our approach consistently outperforms the best-performing Linux-based governors across networking environments,
optimization goals and hardware platforms.

Linux governor by using less than 31% to 55% (up to 88%) energy
consumption across networking environments. It is worth men-
tioning that our approach never consumes more energy compared
to other Linux governors, because it correctly selects the optimal
(or near optimal) frequency and the best core to run the rendering
process.

EDP. Figure 10c shows the results for EDP, a metric for quantifying
the trade-off between energy and response time. A low EDP value
means that energy consumption is reduced at the cost of little
impact on the response time. Our approach successfully cuts down
the EDP across networking environments. We observe significant
improvement is available in a 3G and a Regular 4G environments,
where our approach gives over 60% and 30% reduction on EDP
for Odroid XU3 and Jetson TX2, respectively. Our approach also
reduces the EDP by over 30% in other networking environments.
Once again, our approach outperforms the best-performing Linux
governor for all the test cases on EDP.

6.2 Compare to Competitive Approaches
The violin plot in Figure 11 compares our approach against two
state-of-the-arts, S-ML and WS, across networking environments and
webpages on Odroid XU3 and Jetson TX2, respectively. The baseline
is the best-performing Linux CPU and GPU governor found for each
webpage. The width of each violin corresponds to the proportions
of webpages with a certain improvement. The white dot denotes
the median value, while the thick black line shows where 50% of
the data lies.

On average, all approaches improve the baseline and the highest
improvement is given by our approach. This confirms our hypothe-
sis that knowing the characteristics of the web content can improve
scheduling decisions. If we look at the bottom of each violin, we see
that WS and S-ML can lead to poor performance in some cases. For
example, WS gives worse performance for 40% of the webpages, with
up to 30% slowdown for load time, 25% more energy and 30% worse
for EDP on Odroid XU3. S-ML delivers better performance when
compared with WS, due to the more advanced modeling technique
that it employs. However, S-ML also gives worse performance for
18% and 17% of the webpages for loadtime and energy respectively,
and can consume up to 20% more energy than the baseline. The
unstable performance of WS and S-ML is because they are unaware
of the network status, and thus lead to poor performance in certain
environments. By contrast, our approach never gives worse per-
formance across networking environments and webpages. Finally,
consider now the improvement distribution. There are more data
points at the top of the diagram under our scheme. This means
our approach delivers faster load time and greater reduction on
energy and EDP when compared with WS and S-ML. Overall, our
approach outperforms the competitive approaches on two repre-
sentative mobile platforms, Odroid XU3 and Jetson TX2, with an
average improvement of 27.2% and 14.4% for load time, reduces
the total energy consumption by 55.9% and 23.7% and improves
the 56.4%, 38.1% for EDP, and our approach never delivers worse
performance when compared with the baseline. We also evaluate
the performance of our techniques when web caching is enabled.
The results show that our approach still outperforms the other two
methods with similar improvements. The results show that our

CoNEXT ’18, Heraklion, Greece, 2018

Our approach S-ML WS
0.6

0.8

1

1.2

1.4

1.6

1.8

Lo
ad

 ti
m

e
im

pr
ov

em
en

t (
x)

(a) Load Time on Odroid XU3

Our approach S-ML WS

-20

10

40

70

100

E
ne

rg
y

re
du

ct
io

n
(%

)

(b) Energy Consumption on Odroid XU3

Our approach S-ML WS
-40

-20

0

20

40

60

80

100

E
D

P
 r

ed
uc

tio
n

(%
)

(c) EDP on Odroid XU3

Our approach S-ML WS
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Lo
ad

 ti
m

e
im

pr
ov

em
en

t (
x)

(d) Load Time on Jetson TX2

Our approach S-ML WS
-40

-20

0

20

40

60

E
ne

rg
y

re
du

ct
io

n
(%

)

(e) Energy Consumption on Jetson TX2

Our approach S-ML WS
-20

0

20

40

60

80

E
D

P
 r

ed
uc

tio
n

(%
)

(f) EDP on Jetson TX2

Figure 11: Violin plots showing the distribution for our approach, S-ML and WS in different network environments for three
evaluation metrics on Odroid XU3 and Jetson TX2. The baseline is the best-performing Linux-based CPU and GPU governor.
The thick line shows where 50% of the data lies. The white dot is the position of the median. Our approach delivers the best
and most stable performance across testing scenarios.

approach has a better performance on Odroid XU3 than Jetson TX2
across all metrics, because of the performance of the big.LITTLE
cores on Jetson TX2, A57 (big) and Denver 2 (little), has less differ-
ences than the processors’ on Odroid XU3, for example, the Denver
2 and A57 have the similar frequency domain (as Table 6 shows),
and the predicted model can not take full advantage of the low
power property on little cores.

In contrast to other two adaptice approaches, our machine learn-
ing approach is more stable. On average, we achieve by 17%, 31% and
30% improvement respectively for load time, energy consumption
and EDP across all networks, metrics and platforms.

6.3 Model Analysis
6.3.1 Optimal configurations. Figure 12 shows the distribu-

tion of optimal processor configurations found through exhaustive
search on Odroid XU3 and Jetson TX2. Here, we use the notation
<CPU render core - bigfreq, littlefreq, GPU-freq> to denote a
processor configuration, where the core that the rendering process
runs on is placed at the beginning, and the painting frequency is
located at the last. For example, <A15 - 1.6, 0.4, GPU-1.1> means
that the rendering process running on the A15 core (big core) at
1.6GHz and the A7 core (little core) runs at 400MHz, and the paint-
ing process running on the GPU at 1.1GHz.

As can be seen from Figure 12a and Figure 12d, when optimizing
for load time, the rendering engine should run on the big core (A15,
A57) to provide high performance to Odroid XU3 and Jetson TX2.

However, the optimal frequency varies across networking environ-
ments and we see the change of distribution in frequencies when
moving from a slow network to a fast one. For instance, on Odroid
XU3, while it is unprofitable to run the A15 core at 1.9GHz and GPU
at 0.6GHz in a slow network, it is the desired frequency for 68% of
the webpages in a WiFi environment. When optimizing for energy
consumption (Figure 12b and Figure 12e) and EDP (Figure 12c and
Figure 12f), it can be beneficial to run the rendering process on
the energy-tuned core (A7, D2). For example, in a 2G environment,
running the rendering process on the A7 core with a frequency
of 400MHz or 800MHz benefits up to 46% of webpages, although
the distribution changes across networks and optimization metrics.
If we compare the distributions across networks and metrics, we
find that the best core for running the rendering process and the
frequency varies across networking environments, webpages and
optimization goals. The results reinforce our claim that the sched-
uling policy must be aware of the networking environment, web
contents and the optimization target.

6.3.2 Feature Importance. Section 4.3 has shown the contribu-
tions of each feature to each PC. Now we consider the importance
of specific features for prediction accuracy under each network-
ing environment. Figure 13 shows a Hinton diagram illustrates
some of the most important features that have an impact on the
energy consumption models. Here the larger the box, the more
significantly a particular feature contributes to the prediction ac-
curacy. The x-axis denotes the features and the y-axis denotes the

Network-aware Web Browsing on Heterogeneous Mobile Systems CoNEXT ’18, Heraklion, Greece, 2018

<A15-1.6,0.4

 GPU-0.355>

<A15-1.7,0.4

 GPU-0.42>
<A15-1.8,0.4

 GPU-0.6>
<A15-1.9,0.4

 GPU-0.6>

R.2G

G.2G

R.3G

G.3G

R.4G

G.4G

WiFi 0 9 23 68

0 27 26 47

13 28 30 29

0 26 39 35

20 37 43 0

18 35 47 0

21 40 39 0 15

30

45

60

75

90

(a) Load Time on Odroid Xu3

<A7-0.4,0.4

 GPU-0.355>
<A7-0.4,0.8

 GPU-0.4>
<A15-0.8,0.4

 GPU-0.42>
<A15-0.8,0.8

 GPU-0.42>
<A15-1.2,0.4

 GPU-0.543>

R.2G

G.2G

R.3G

G.3G

R.4G

G.4G

WiFi 0 0 19 53 28

0 0 32 46 22

0 28 38 20 14

0 4 46 33 17

17 32 37 14 0

34 41 20 5 0

46 64 0 0 0 15

30

45

60

75

90

(b) Energy Consumption on Odroid Xu3

<A5-0.4,0.4

 GPU-0.355>
<A7-0.4,0.8

 GPU-0.4>
<A15-0.8,0.4

 GPU-0.42>
<A15-0.8,0.8

 GPU-0.42>
<A15-1.2,0.8

 GPU-0.543>

R.2G

G.2G

R.3G

G.3G

R.4G

G.4G

WiFi 0 0 10 37 53

0 0 22 35 43

0 13 58 16 13

0 0 40 29 31

6 18 43 33 0

24 31 31 14 0

44 40 16 0 0
0

20

40

60

80

100

Pe
rc

en
ta

ge
 %

(c) EDP on Odroid Xu3

<A57-1.7,0.4

 GPU-0.7>
<A57-1.8,0.4

 GPU-0.9>
<A57-1.8,0.4

 GPU-1.1>
<A57-1.9,0.4

 GPU-1.1>
<A57-2.0,0.4

 GPU-1.3>

R.2G

G.2G

R.3G

G.3G

R.4G

G.4G

WiFi 0 0 8 21 71

0 0 6 25 69

0 13 23 21 43

0 4 22 19 55

17 42 37 4 0

54 41 5 0 0

71 29 0 0 0 15

30

45

60

75

90

(d) Load Time on Jetson TX2

<D2-0.8,0.4

 GPU-0.42>
<D2-1.2,0.4

 GPU-0.72>

<A57-0.8,0.8

 GPU-0.72>
<A57-1.2,0.8

 GPU-0.82>
<A57-1.6,0.8

 GPU-1.23>

R.2G

G.2G

R.3G

G.3G

R.4G

G.4G

WiFi 0 2 40 43 15

0 12 32 56 0

0 35 23 33 9

0 11 36 53 0

17 32 37 4 0

34 41 20 5 0

46 64 0 0 0 15

30

45

60

75

90

(e) Energy Consumption on Jetson TX2

<D2-0.8,0.4

 GPU-0.7>
<D2-1.2,0.8

 GPU-0.7>
<A57-1.2,0.4

 GPU-0.9>
<A57-1.4,0.8

 GPU-1.1>
<A57-1.6,0.8

 GPU-1.3>

R.2G

G.2G

R.3G

G.3G

R.4G

G.4G

WiFi 2 21 34 33 10

11 22 38 21 8

12 36 21 27 4

19 40 31 10 0

29 38 24 11 0

38 47 15 0 0

44 43 13 0 0
0

20

40

60

80

100

Pe
rc

en
ta

ge
 %

(f) EDP on Jetson TX2

Figure 12: The distributions of optimal process configurations for load time, energy consumption and EDP on Odroid XU3 and
Jetson TX2. The distribution of optimal configuration changes across environments, showing the need of an adaptive scheme.

models for the seven networking environments. The importance is
calculated through the information gain ratio. It can be observed
that HTML tags and attributes (e.g. webpage size, #DOM nodes ,
DOM tree depth) and style rules are important when determining
the processor configurations for all networking environments. We
can also see such features play an more important role for 2G and
regular 3G than others. Other features are extremely important for
some networks (such as the number HTML tags of <Tag.script>
and <Tag.li> are important for WiFi, 4G and good 3G,) but less
important for others. This diagram illustrates the need for a distinct
model for each optimization goal and how important it is to have
an automatic technique to construct such models.

6.3.3 Breakdown of Overhead. Figure 14 shows the overhead
of our approach (which is already included in our experimental
results). Our approach introduces little overhead to the end to end
turnaround time and energy consumption, less than 7% and 5%
respectively. The majority of the time and energy are spent on
network monitoring for measuring the network delay and band-
widths. The overhead incurred by the browser extension and the
runtime scheduler, which includes task migration, feature extrac-
tion, making prediction and setting processor frequencies, is less
than 0.8%, with task migration (around 10ms) accounts for most of
the overhead. As can be seen from the better aforementioned results,
the overhead of our approach can be amortized by the improved
performance.

6.3.4 Oracle performance. Figure 15 compares our approach
with the oracle predictor, showing how close our approach is
to the theoretically perfect solution. Our approach achieves 82%,

web
pa

ge
.siz

e

#DOM no
de

s

DOM tre
e d

ep
th

Attr.
sty

le

Ta
g.l

ink

Ta
g.s

cri
pt

Ta
g.i

mg
Ta

g.l
i

Attr.
bg

col
or

Attr.
cel

lsp
aci

ng

Ta
g.t

ab
le

Attr.
con

ten
t

WiFi

G.4G

R.4G

G.3G

R.3G

G.2G

R.2G

Figure 13: A Hinton diagram shows the importance of the
selected web feature to the prediction accuracy under differ-
ent networks. The larger the box, the more likely a feature
affects the prediction accuracy of the respective model.

92% and 90% of the oracle performance for load time, energy
consumption, and EDP respectively. Overall, the performance of our
approach is not far from the oracle.

6.3.5 Prediction accuracy. Our approach gives correct predic-
tions for 85.1%, 90.1% and 91.2% of the webpages for load time,
energy consumption and EDP respectively. For those webpages that
our approach does not give the best configuration, the resultant
performance is not far from the optimal. We believe the accuracy
of our approach can be improved by using more training examples,
which in turn also permits to use a richer set of features.

CoNEXT ’18, Heraklion, Greece, 2018

L o a d T i m e E n e r g y
C o n s u m p t i o n

01
23
45
67
89

1 0 N e t w o r k M o n i t o r
 E x t e n s i o n + S c h e d u l e r

Ov

erh
ea

d (
%)

Figure 14: Breakdown of runtime overhead. Our approach
incurs little runtime overhead.

L o a d T i m e E n e r g y

E D P

0
2 0
4 0
6 0
8 0

1 0 0

Pe
rf.

to
ora

cle
 (%

)

Figure 15: Performance of our approach w.r.t. oracle. Our
approach delivers over 80% of the oracle performance

L o a d T i m e E n e r g y E D P0
2 0
4 0
6 0
8 0

1 0 0 K N N M L P S V M
 N B L R A N N

Pe
rf.

to
ora

cle
 (%

)

Figure 16: The performance w.r.t oracle achieved by our SVM
based approach and other classification techniques.

6.3.6 Alternative modeling techniques. Figure 16 shows the per-
formance achieved by our approach and five widely used classi-
fication techniques with respect to the oracle performance. The
alternative classifiers are: Multi-layer Perceptron (MLP), K-Nearest
Neighbours (KNN), Artificial Neural Networks (ANN), Logistic Regres-
sion (LR), and Naïve Bayes (NB). Each of the alternative modeling
techniques were trained and evaluated by using the same method
and training data as our model. Our approach outperforms all other
alternative techniques for every optimization metric. It is worth
noting that the performance of these competitive modeling tech-
niques may improve if there are more training examples to support
the use of a larger set of features. However, we found that SVMs
perform well on the training data we have.

7 RELATEDWORK
Our work builds upon the following techniques, while qualitatively
differing from each.

Web Browsing Optimization. Numerous techniques have been
proposed to optimize web browsing, through e.g. prefetching [49]
and caching [37] web contents, scheduling network requests [38],
or re-constructing the browser workflow [32, 53] or the TCP pro-
tocol [51]. Most of the prior work target homogeneous systems
and do not optimize across networking environments. The work
presented by Zhu et al. [55] and prior work [40] were among the
first attempts to optimize web browsing on heterogeneous mobile
systems. Both approaches use statistical learning to estimate the
optimal configuration for a given web page. However, they do not
consider the impact of the networking environment, thus miss mas-
sive optimization opportunities. Bui et al. [14] proposed several
web page rendering techniques to reduce energy consumption for
mobile web browsing. Their approach uses analytical models to
determine which processor core (big or little) to use to run the
rendering process. The drawback of using an analytical model is
that the model needs to be manually re-tuned for each individual
platform to achieve the best performance. Our approach avoids the
pitfall by developing an approach to automatically learn how to
best schedule rendering process. As this work focuses on rendering
process mapping, other optimization techniques proposed in [14],
such as dynamic buffering, are complementary to our work.

Task Scheduling. There is an extensive body of work on task
scheduling on homogeneous and heterogeneous multi-core systems
[10, 20, 35, 44, 52]. Most of the prior work in the area use heuristics
or analytical models to determine which processor to use to run
an application task, by exploiting the code or runtime information
of the program. Our approach targets a different domain by using
the web workload characteristics to optimize mobile web browsing
across networking environments and optimization objectives.
Energy Optimization. Techniques have been proposed to opti-
mize web browsing via application-level optimization, including
aggregating data traffic [12, 26, 47] or requests [11, 31], and parallel
downloading [8, 25]. Our approach targets a lower level, by exploit-
ing the heterogeneous hardware architecture to perform energy
optimization. There is also an intensive body of research on web
workload characterization [9, 15, 17]. The insights found from these
studies can help us to better extract useful web features.

Predictive Modeling. Recent studies have shown that machine
learning based techniques are effective in predicting power con-
sumption [42], estimatingmobile traffic [41], parallelismmapping [45],
and processor resource allocation [50]. No work so far in the area
has used machine learning to predict the optimal processor config-
uration for mobile web browsing by exploiting the knowledge of
the communication network. This work is the first to do so.

8 CONCLUSION
This paper has presented an automatic approach to optimize web
rendering on heterogeneous mobile platforms, providing signifi-
cant improvement over existing web-content-aware schedulers. We
show that it is crucial to exploit the knowledge of the communica-
tion network and the web contents to make effective scheduling

Network-aware Web Browsing on Heterogeneous Mobile Systems CoNEXT ’18, Heraklion, Greece, 2018

decisions. We address the problem by using machine learning to
develop predictive models to predict which processor core with
what frequency to use to run the web rendering process and the
optimal GPU frequency for running the painting process. As a de-
parture from prior work, our approach consider of the network
status, web workloads and the optimization goals. Our techniques
are implemented as an extension in the Chromiumweb browser and
evaluated on two representative heterogeneous mobile multi-cores
mobile platforms using the top 1,000 hottest websites. Experimental
results show that our approach achieves over 80% of the oracle
performance, and consistently outperforms the state-of-the-arts
for load time, energy consumption and EDP across the evaluation
platforms. We expect our portable approach to benefit many appli-
cations that rely on web rendering techniques across a wide range
of mobile platforms.

REFERENCES
[1] [n. d.]. big.LITTLE Technology. http://www.arm.com/products/processors/

technologies/biglittleprocessing. ([n. d.]).
[2] 2015. Web page Replay. http://www.github.com/chromium/web-page-replay.

(2015).
[3] 2016. State of Mobile Networks: UK. https://opensignal.com/reports/. (2016).
[4] 2017. Alexa. http://www.alexa.com/topsites. (2017).
[5] 2017. Intel powerclamp driver. https://www.kernel.org/doc/Documentation/

thermal. (2017).
[6] 2018. Chrome. https://www.google.com/chrome/. (2018).
[7] Mohamed M Sabry Aly et al. 2015. Energy-efficient abundant-data computing:

The N3XT 1,000 x. IEEE Computer (2015).
[8] Behnaz Arzani, Alexander Gurney, Shuotian Cheng, Roch Guerin, and Boon Thau

Loo. 2014. Impact of Path Characteristics and Scheduling Policies on MPTCP
Performance. In International Conference on Advanced Information NETWORKING
and Applications Workshops. 743–748.

[9] Alemnew Sheferaw Asrese, Pasi Sarolahti, Magnus Boye, and Jorg Ott. 2016.
WePR: A Tool for Automated Web Performance Measurement. In Globecom
Workshops (GC Wkshps), 2016 IEEE. IEEE, 1–6.

[10] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2011. StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice and Experience
23, 2 (2011), 187–198.

[11] Suzan Bayhan et al. 2017. Improving Cellular Capacity with White Space Of-
floading. In WiOpt ’17.

[12] Suzan Bayhan, Gopika Premsankar, Mario Di Francesco, and Jussi Kangasharju.
2016. Mobile Content Offloading in Database-Assisted White Space Networks. In
International Conference on Cognitive Radio Oriented Wireless Networks. Springer,
129–141.

[13] Joshua Bixby. 2011. The relationship between faster mobile sites and business
kpis: Case studies from the mobile frontier. (2011).

[14] Duc Hoang Bui, Yunxin Liu, Hyosu Kim, Insik Shin, and Feng Zhao. 2015. Rethink-
ing energy-performance trade-off in mobile web page loading. In Proceedings of
the 21st Annual International Conference on Mobile Computing and Networking.
ACM, 14–26.

[15] Yi Cao, Javad Nejati, Muhammad Wajahat, Aruna Balasubramanian, and Anshul
Gandhi. 2017. Deconstructing the Energy Consumption of the Mobile Page Load.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 1, 1
(2017), 6.

[16] Andre Charland and Brian Leroux. 2011. Mobile application development: web
vs. native. Commun. ACM 54, 5 (2011), 49–53.

[17] Salvatore D’Ambrosio et al. 2016. Energy consumption and privacy in mobile
Web browsing: Individual issues and connected solutions. Sustainable Computing:
Informatics and Systems (2016).

[18] George H Dunteman. 1989. Principal components analysis. Number 69.
[19] Wolfgang Ertel. 1994. On the definition of speedup. In International Conference

on Parallel Architectures and Languages Europe.
[20] Stijn Eyerman and Lieven Eeckhout. 2010. Probabilistic job symbiosis modeling

for SMT processor scheduling. ACM Sigplan Notices 45, 3 (2010).
[21] Ricardo Gonzalez et al. 1997. Supply and threshold voltage scaling for low power

CMOS. IEEE Journal of Solid-State Circuits (1997).
[22] Android Modders Guide. 2017. CPU Governors, Hotplug drivers and GPU gover-

nors,. https://androidmodguide.blogspot.com/p/blog-page.html. (2017).
[23] Matthew Halpern et al. 2016. Mobile cpu’s rise to power: Quantifying the impact

of generational mobile cpu design trends on performance, energy, and user

satisfaction. In HPCA.
[24] Stephen Hemminger et al. 2005. Network emulation with NetEm. In Linux conf

au. 18–23.
[25] Mohammad A Hoque, Sasu Tarkoma, and Tuikku Anttila. 2015. Poster: Extremely

Parallel Resource Pre-Fetching for Energy Optimized Mobile Web Browsing. In
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 236–238.

[26] Wenjie Hu and Guohong Cao. 2014. Energy optimization through traffic ag-
gregation in wireless networks. In IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 916–924.

[27] Connor Imes and Henry Hoffmann. 2016. Bard: A unified framework for manag-
ing soft timing and power constraints. In Embedded Computer Systems: Architec-
tures, Modeling and Simulation (SAMOS), 2016 International Conference on. IEEE,
31–38.

[28] Smart Insights. 2016. Mobile Marketing Statistics compilation.
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/. (2016).

[29] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. 2007. Supervised machine
learning: A review of classification techniques. (2007).

[30] Cody Kwok, Oren Etzioni, and Daniel SWeld. 2001. Scaling question answering to
the web. ACM Transactions on Information Systems (TOIS) 19, 3 (2001), 242–262.

[31] Ding Li, Yingjun Lyu, Jiaping Gui, and William GJ Halfond. 2016. Automated
energy optimization of http requests for mobile applications. In IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 249–260.

[32] Haohui Mai et al. 2012. A case for parallelizing web pages. In 4th USENIX
Workshop on Hot Topics in Parallelism.

[33] Bryan FJ Manly and Jorge A Navarro Alberto. 2016. Multivariate statistical
methods: a primer. CRC Press.

[34] Leo AMeyerovich and Rastislav Bodik. 2010. Fast and parallel webpage layout. In
Proceedings of the 19th international conference onWorld wide web. ACM, 711–720.

[35] Prasant Mohapatra, ByungJun Ahn, and Jian-Feng Shi. 1996. On-line real-time
task scheduling on partitionable multiprocessors. In Parallel and Distributed
Processing, 1996., Eighth IEEE Symposium on. IEEE, 350–357.

[36] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile
browser performance. In Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
1305–1315.

[37] Feng Qian, Kee Shen Quah, Junxian Huang, Jeffrey Erman, Alexandre Gerber,
Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. Web caching on
smartphones: ideal vs. reality. In Proceedings of the 10th international conference
on Mobile systems, applications, and services. ACM, 127–140.

[38] Feng Qian, Subhabrata Sen, and Oliver Spatscheck. 2014. Characterizing resource
usage for mobile web browsing. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 218–231.

[39] Siddharth Rai andMainak Chaudhuri. 2017. Improving CPU Performance through
Dynamic GPU Access Throttling in CPU-GPU Heterogeneous Processors. In
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE
International. IEEE, 18–29.

[40] Jie Ren, Ling Gao, Hai Wang, and Zheng Wang. [n. d.]. Optimise web browsing
on heterogeneous mobile platforms: a machine learning based approach. In IEEE
International Conference on Computer Communications (INFOCOM), 2017.

[41] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
2016. Recon: Revealing and controlling pii leaks in mobile network traffic. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services. ACM, 361–374.

[42] Vicent Sanz Marco, Zheng Wang, and Barry Francis Porter. 2017. Real-time
power cycling in video on demand data centres using online Bayesian prediction.
In 37th IEEE International Conference on Distributed Computing Systems (ICDCS).

[43] Wonik Seo, Daegil Im, Jeongim Choi, and Jaehyuk Huh. 2015. Big or Little: A
Study of Mobile Interactive Applications on an Asymmetric Multi-core Platform.
In IEEE International Symposium on Workload Characterization. 1–11.

[44] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013.
Mapping on multi/many-core systems: survey of current and emerging trends.
In Proceedings of the 50th Annual Design Automation Conference. ACM, 1.

[45] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. 2017. Adaptive optimization
for OpenCL programs on embedded heterogeneous systems. (2017).

[46] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh, and
Jatinder Pal Singh. 2012. Who killed my battery?: analyzing mobile browser
energy consumption. In Proceedings of the 21st international conference on World
Wide Web. ACM, 41–50.

[47] Lorenzo Valerio, F Ben Abdesslemy, A Lindgreny, Raffaele Bruno, Andrea Pas-
sarella, and Markus Luoto. 2015. Offloading cellular traffic with opportunistic
networks: a feasibility study. In Ad Hoc Networking Workshop (MED-HOC-NET),
2015 14th Annual Mediterranean. IEEE, 1–8.

[48] Vladimir Naumovich Vapnik and Vlamimir Vapnik. 1998. Statistical learning
theory. Vol. 1.

[49] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2012. How far
can client-only solutions go for mobile browser speed?. In Proceedings of the 21st

http://www.arm.com/products/processors/technologies/biglittleprocessing
http://www.arm.com/products/processors/technologies/biglittleprocessing
http://www.github.com/chromium/web-page-replay
https://opensignal.com/reports/
http://www.alexa.com/topsites
https://www.kernel.org/doc/Documentation/thermal
https://www.kernel.org/doc/Documentation/thermal
https://www.google.com/chrome/
https://androidmodguide.blogspot.com/p/blog-page.html
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/

CoNEXT ’18, Heraklion, Greece, 2018

international conference on World Wide Web. ACM, 31–40.
[50] Yuan Wen, Zheng Wang, and Michael FP O’Boyle. 2014. Smart multi-task sched-

uling for OpenCL programs on CPU/GPU heterogeneous platforms. In High
Performance Computing (HiPC), 2014 21st International Conference on. IEEE, 1–10.

[51] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web
Loading Using Cellular Link Information. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys
’17).

[52] Yumin Zhang, Xiaobo Sharon Hu, and Danny Z Chen. 2002. Task scheduling
and voltage selection for energy minimization. In Proceedings of the 39th annual
Design Automation Conference. ACM, 183–188.

[53] Bo Zhao, Wenjie Hu, Qiang Zheng, and Guohong Cao. 2015. Energy-aware web
browsing on smartphones. IEEE Transactions on Parallel and Distributed Systems
26, 3 (2015), 761–774.

[54] Yuhao Zhu, MatthewHalpern, and Vijay Janapa Reddi. 2015. Event-based schedul-
ing for energy-efficient qos (eqos) inmobile web applications. InHigh Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE,
137–149.

[55] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-performance and energy-efficient
mobile web browsing on big/little systems. In High Performance Computer Archi-
tecture (HPCA2013), 2013 IEEE 19th International Symposium on. IEEE, 13–24.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Web Processing
	2.2 Problem Scope
	2.3 Motivation

	3 Overview of our approach
	4 Predictive Modeling
	4.1 Network Monitoring and Characterization
	4.2 Training the Predictor
	4.3 Web Features
	4.4 Runtime Deployment
	4.5 Example

	5 Experimental Setup
	5.1 Hardware and Software Platform
	5.2 Evaluation Methodology

	6 Experimental Results
	6.1 Overall Results
	6.2 Compare to Competitive Approaches
	6.3 Model Analysis

	7 Related Work
	8 Conclusion
	References

