1	Discovery and characterization of a novel picorna-like RNA
2	virus in the cotton bollworm Helicoverpa armigera
3	
4	Xianming Yang ^{1¶} , Pengjun Xu ^{2¶} , He Yuan ¹ , Robert I. Graham ³ , Kenneth
5	Wilson ⁴ and Kongming Wu ^{1*}
6	
7	
8	¹ State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key
9	Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute
10	of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China;
11 12	² Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao,
12 13	P.R. China;
13 14	T.R. China,
15	³ Crop and Environment Sciences, Harper Adams University, Edgmond, Shropshire,
16	UK;
17	
18	⁴ Lancaster Environment Centre, Lancaster University, Lancaster, UK
19	
20	
21	¹ These authors equally contributed to this paper.
22	
23	
24	
25	*Corresponding author:
26	Mailing address: State Key Laboratory for Biology of Plant Diseases and Insect Pests,
27	Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing
28	100193, P.R. China; Phone: +86-10-82105551; Fax: +86-10-62896114; E-mail:
29	<u>kmwu@ippcaas.cn</u> .
30 31	
1	

32 Abstract

33	We characterize a novel picorna-like virus, named Helicoverpa armigera Nora virus
34	(HaNV), with a genome length of 11,200 nts, the sequence of which was isolated
35	from the lepidopteran host cotton bollworm Helicoverpa armigera, using RNA-Seq.
36	Phylogenetic analysis, using the putative amino acid sequence of the conserved
37	RNA-dependent RNA polymerase (RdRp) domain, indicated that HaNV clustered
38	with Spodoptera exigua Nora virus, Drosophila Nora virus and Nasonia vitripennis
39	virus-3 with a high bootstrap value (100%), which might indicate a new viral family
40	within the order Picornavirales. HaNV was efficiently horizontally transmitted
41	between hosts via contaminated food, and transmission was found to be
42	dose-dependent (up to 100% efficiency with 10 ⁹ viral copy number/µl). HaNV was
43	also found to be transmitted vertically from parent to offspring, mainly through
44	transovum transmission (virus contamination on the surface of the eggs), but having a
45	lower transmission efficiency (around 43%). Infection distribution within the host was
46	also investigated, with HaNV mainly found in only the gut of both adult moths and
47	larvae (>90%). Moreover, our results showed that HaNV appears not to be an overtly
48	pathogenic virus to its host.
49	

50 Keywords: *Helicoverpa armigera*; cotton bollworm; picorna-like viruses;

2

51 transmission strategy; covert virus

53 1. Introduction

54	The cotton bollworm, Helicoverpa armigera (Hübner), is a key pest of multiple crops
55	throughout the world. In China, resistance to synthetic pyrethroids and
56	organophosphate insecticides in the field has caused considerable outbreaks of cotton
57	bollworm since the early 1990s (Wu and Guo, 2005). In the late 1990s, the
58	introduction of Bt-cotton successfully suppressed the cotton bollworm populations in
59	the field (Wu et al., 2008). However, extensive cultivation of Bt-cotton might impose
60	the risk of Bt-resistance evolving in field populations of <i>H. armigera</i> , and alternative
61	control strategies are needed (Jin et al., 2015). In 1993, the baculovirus H. armigera
62	nucleopolyhedrovirus (HaNPV) was authorized as a commercial biopesticide and has
63	since become the most abundantly produced viral insecticide in China (Sun 2015).
64	But, like other baculovirus products in the world, the application of HaNPV as a
65	biopesticide has not yet reached its full potential. It is becoming more apparent that
66	the susceptibility of host insects to baculoviruses might be impacted by the
67	interactions between virus-host or microbe-virus interactions: for example, the
68	endocytoplasmic bacterium Wolbachia increases the susceptibility of the African
69	armyworm, Spodoptera exempta, to its endemic baculovirus, Spodoptera exempta
70	nucleopolyhedrovirus (SpexNPV) (Graham et al., 2012); whereas the densovirus
71	HaDV-2 in <i>H. armigera</i> appears to allow its host to grow faster and potentially escape
72	infection by the baculovirus HaNPV (Xu et al., 2014). Hence, virus-host and
73	virus-microbe interactions might be more complex than originally thought.
74	The recent advent of next generation sequencing technology has facilitated the

75	discovery of many novel viruses, especially covert viruses displaying no obvious
76	pathological or beneficial effects to their hosts. These recent discoveries include
77	various viruses belonging to the order Picornavirales (picorna-like viruses) (Ho and
78	Tzanetakis, 2014; Webster et al., 2015). Insect picorna-like viruses possess a
79	positive-sense, single-stranded RNA genome which replicates in the host-cell
80	cytoplasm, and which is translated into one or two polyproteins cleaved into
81	individual structural and non-structural proteins (Habayeb et al., 2009; Le Gall et al.,
82	2008). Most picorna-like viruses known to colonize insect hosts belong to the families
83	Dicistroviridae or Iflaviridae (Le Gall et al., 2008; Moore and Tinsley 1982;
84	Carrillo-Tripp et al. 2015), and their pathogenicity can vary broadly from lethal to
85	persistent commensal infections (Oliveira et al., 2010). For example, Drosophila C
86	virus and slow bee paralysis virus are pathogenic to D. melanogaster and honey bees
87	Apis mellifera, respectively (de Miranda et al., 2010; Ferreira et al., 2014); whereas
88	examples of persistent commensal infections include Nasonia vitripennis virus-1 and
89	Spodoptera exigua iflavirus-1 in the hosts N. vitripennis and S. exigua, respectively
90	(Jakubowska et al., 2014; Oliveira et al., 2010). In addition, Drosophila Nora virus
91	can establish infections in laboratory strains that persist for several years without
92	seemingly causing any obvious pathological effects (Habayeb et al., 2006; Habayeb et
93	al., 2009). Knowledge of the interactions between recently discovered viruses and
94	their hosts should generate fresh perspectives on insect-host biology and pest
95	management.

96	In this study, we characterize a new picorna-like virus in <i>H. armigera</i> , named
97	Helicoverpa armigera Nora virus (HaNV), using RNA-Seq technology and laboratory
98	bioassays. HaNV was found to show highest identities with Spodoptera exigua Nora
99	virus (SeNV) (79% nucleotide identity and 90% amino acid identity). Together with
100	Drosophila Nora virus and N. vitripennis virus-3, we propose that these viruses might
101	form a new viral family in the order <i>Picornavirales</i> .
102	

103 2. Materials and Methods

104 **2.1 Colony maintenance**

- 105 Cotton bollworm (*H. armigera*) originally collected in Langfang (Hebei province,
- 106 China) in 2005 (LF2005) were reared using artificial diet (Liang et al. 1999) at 25 \pm
- 107 1 °C with a 14:10, light:dark photoperiod. Adult moths were provided with 10% sugar
- and 2% vitamin complex.

109 2.2 RNA-Seq and virus detection

- 110 Briefly, RNA was isolated from first instar larvae, fifth instar larvae and adults using
- 111 TRIzol (Invitrogen). Poly(A) mRNA was isolated from total RNA using Oligo (dT)
- 112 magnetic beads and was broken into short fragments (about 200bp). The mRNA
- 113 samples were used to construct the cDNA library, and the mRNA-Seq assay was
- 114 performed by Novogene (Beijing, China). The libraries were sequenced using
- 115 HiSeq2000 (Illumina) in paired-end mode, creating reads with a length of 101 bp
- 116 (HiSeq2000, accession number: GSE86914). Adaptor sequences and low-quality
- 117 reads were trimmed and clean reads were used for de novo assembly using Trinity

- 118 (Grabherr et al., 2011). Assembled contigs were annotated using BLASTx to align
- 119 with the NR database. As a result of the RNA-Seq process, we found an assembled
- 120 contig showing high identity with SeNV. This contig sequence was confirmed by
- sequencing eight overlapping amplicons covering the full genome. All primers used in
- 122 this study are listed in Table 1. The ORFs were identified using ORF Finder
- 123 (https://www.ncbi.nlm.nih.gov/gorf/gorf.html). Neighbor-joining trees with
- 124 Poisson-corrected distances for the amino acid sequences of RdRp were constructed
- using MEGA 6.0 software (Tamura et al., 2013). The conserved RdRp domains were
- 126 predicted using NCBI Conserved Domain Search
- 127 (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
- 128 **2.3. Electron microscopy**
- 129 Adult moths from the P-strain (HaNV-infected strain, see 2.5) were collected. Then
- 130 the virus particles were isolated and purified using the Sucrose Density Gradient
- 131 Centrifugation method 1 (La Fauce et al (2007). Each 1 ml centrifuged materials was
- 132 collected from top to bottom of the 50 ml centrifuge tube. Then, collected materials
- 133 were checked by RT-PCR using the HaNV-specific primers NoraPF/NoraPR (Table
- 134 1). Purified materials that were HaNV-positive were concentrated and used for the
- electron microscope analysis. Purified particles were negatively stained with 2%
- 136 sodium phosphotungstate at pH 6.8 and observed with a transmission electron
- 137 microscope.
- 138 2.4 Uninfected colony construction and PCR protocols
- 139 An N-strain (Non-infected) laboratory culture of *H. armigera*, uninfected with known

- 140 viruses Helicoverpa armigera densovirus-2 (HaDV2), Helicoverpa armigera iflavirus
- 141 (HaIV), HaNPV, HaNV and known bacterium Wolbachia, was established as
- described previously (Xu et al., 2014; Yuan et al., 2017; Zhou et al. 1998).
- 143 NoraPF/NoraPR primers were used to check the HaNV-infection status of the
- 144 N-strain laboratory culture. The PCR program for the HaNV detection was: 30 s at 94
- 145 °C, 30 s at 53 °C, and 30 s at 72 °C for 35 cycles.

146 2.5 HaNV transmission and host tissue distribution

- 147 A HaNV-infected line (called P-strain) of *H. armigera* was also established by orally
- 148 inoculating newly hatched N-strain larvae with HaNV-infected filtered liquid from
- 149 LF2005, at 10^9 copy number/µl, which was found to yield a 100% infection rate.
- 150 Briefly, individual adults were homogenized in liquid nitrogen. Part of the
- 151 homogenate was subsequently used to extract DNA and RNA, which was used for
- 152 cDNA synthesis. PCR was then undertaken to detect the presence of HaDV-2,
- 153 HaNPV and Wolbachia using DNA template and HaNV and HaIV using cDNA
- template, respectively. Subsequently, the remaining homogenate of HaNV-positive
- and HaDV-2, HaNPV, Wolbachia and HaIV-negative individuals was used to prepare
- a filtered liquid, containing an unpurified form of virus. Briefly, this method involved
- transferring the homogenate to 1 ml PBS buffer (0.01M, pH 7.4). The homogenate
- 158 was centrifuged at 6500×g for 15 min at 4°C, and the liquid supernatant subsequently
- 159 filtered with Sartorius Minisart ® 0.2µm PES (Invitrogen, Grand Island, USA). The
- 160 homogenates of individuals uninfected with HaDV2, HaIV, HaNV, HaNV and
- 161 known bacteria *Wolbachia* were filtered using the same method. Quantification of the

viruses was performed using the absolute qPCR method described below. Primers
PF/PR was used to generate a standard curve and NoraF/NoraR/Nora-probe was used
to quantify HaNV virus copy. All the HaNV-infected filtered liquids were stored at
-80°C.

To examine virus replication within the host at different developmental stages, 166 larvae 24 h to 240 h post-infection (1st-5th instar), pupae and newly eclosed adults 167 were sampled. HaNV copy numbers was quantified by an absolute quantification 168 qPCR methodology using a standard curve (Wong and Medrano, 2005). To ensure 169 reproducibility, each sample was carried out in three biological replicates and in three 170 technical replicates. 171 Individuals from both N-strain and P-strain were used to determine the 172 transmission modes of HaNV. To examine the possibility of horizontal transmission 173 through the ingestion of contaminated foodplants (a possibility in the field 174 populations), a diet contamination assay was performed. Infected individuals from the 175 P-strain were reared from 48-hour old larvae in diet cells until the start of the 4th instar 176 and then immediately removed from the rearing cell. Non-infected $1^{st} - 5^{th}$ instar 177 N-strain larvae were then placed in the vacated cells and reared to the pupal stage. 178 Newly-eclosed moths were subsequently collected and HaNV-infection status was 179 probed using PCR (as described above). For the quantification of the virus titer in the 180 feces, the infected 4th instar larvae (about 10 days old) were subsequently placed into 181

 $\downarrow +/ \circ$ -, $\downarrow -/ \circ$ + and $\downarrow +/ \circ$ + pairs were crossed and RNA from 5th instar offspring

a single diet cell for 6 hours and feces were collected. For vertical transmission, $Q - 1/\sqrt[3]{-1}$,

182

184 larvae used to probe for HaNV.

185	Tissue dissection for HaNV-infected individuals of cotton bollworm (both larval
186	and adult stages) was performed as in Yang et al. (2017). RNA was extracted from
187	body tissues (gut, malpighian tubules, fat body, haemolymph, muscle, brain or
188	reproductive organs) and the copy numbers of HaNV were quantified by qPCR. To
189	account for individual variation, we first calculated the copy numbers per milligram
190	of tissue and then summed all the copy numbers from different tissues from the same
191	individual and the percentage of each tissue was statistically analyzed (larvae: n = 15;
192	adult males: $n = 9$; adult females: $n = 9$).
193	HaNV infection was quantified in <i>H. armigera</i> eggs, primarily to distinguish
194	between transovarial and transovum infection routes. Eggs from HaNV-infected
195	P-strain breeding pairs were submerged in 1% sodium hypochlorite for 10 minutes.
196	They were then filtered through a damp cloth, thoroughly rinsed, and allowed to dry.
197	Three groups of hypochlorite-treated eggs ($n = 100$ eggs per group) were tested
198	against non-treated eggs (control) and HaNV infections tested by qPCR.
199	2.6 Effects of HaNV infection on the survival of <i>H. armigera</i>
200	To test the impact of HaNV infection on the survival of its host, neonate N-strain
201	larvae were first orally-inoculated with either filtered-liquid containing HaNV, or

202 filtered-liquid from non-infected individuals (control). One hundred N-strain neonates

- 203 were placed in each treatment Petri-dish for 2 days to ensure that larvae ingested the
- treated diet. They were then transferred to a 24-well plate (one individual per well:
- diameter = 1.5 cm; height = 2 cm) until the 5th larval instar; larvae were then

206	individually reared in glass tubes until eclosion (diameter = 2 cm ; height = 7.5 cm).
207	The larval mortality, pupation and eclosion rate was recorded. Fifth-instar larvae were
208	randomly selected to estimate the infection rate of HaNV during the experiment. Our
209	results showed that the larvae were successfully infected by HaNV using the above
210	protocol. This bioassay was replicated twice. Individuals dying within 24 hours of the
211	experimental set up were considered handling deaths, and excluded from the analysis.
212	
213 214	3. Results and Discussion
215	3.1 Molecular characterization of HaNV
216	Using RNA-Seq, a novel virus sequence, named Helicoverpa armigera Nora virus
217	(HaNV), was isolated from the cotton bollworm, comprising a whole genome
218	sequence of 11,200 nts in length, excluding the poly (A) tail (Genbank No.
219	MK033133). Analysis of the genomic structure indicated that HaNV contained five
220	deduced open reading frames (ORFs) (Fig 1A). ORF1 and ORF3 showed highest
221	identities with ORF1 and ORF3 of SeNV (75% and 68% amino acid (aa) identity,
222	respectively). ORF2 was the largest open reading frame, encoding a putative protein
223	of 1857 aa, containing a conserved picornavirus-like helicase-protease-replicase
224	(H-P-Rep) cassette together with conserved domains of RNA-dependent RNA
225	polymerase (RdRp), RNA helicase and protease. ORF4 and ORF5 encoded putative
226	structural proteins with homology to Drosophila Nora virus capsid protein 4 (VP4)
227	and showed highest identities to ORF4 and ORF5 of SeNV (95% and 91% aa identity,
228	respectively). Like the SeNV genome, ORFs 2-5 of HaNV appear to overlap with
229	each other (Fig 1A). Phylogenetic analysis based on the putative amino acid

230	sequences of the conserved RdRp domain indicated that HaNV clustered with SeNV,
231	Drosophila Nora virus and N. vitripennis virus-3 (Fig 1B) with a high bootstrap value
232	(100%) for that grouping, suggesting a possible unclassified virus family within the
233	order Picornavirales (Jakubowska et al. 2014).
234	Electron microscopy showed that HaNV particles had an isometric appearance,
235	with a diameter of approximately 30 nm (Fig 2).
236	3.2 HaNV transmission strategies
237	Viruses show great diversity in their transmission strategies and efficiencies (Chen et
238	al., 2006; Zhou et al., 2005). For example, HaDV2 could be efficiently vertically
239	transmitted (around 100%) and horizontally transmitted via contaminated food (Xu et
240	al., 2014); whereas the picorna virus Drosophila Nora virus, HaIV and baculovirus
241	pathogen HaNPV can be efficiently horizontally transmitted by ingestion of
242	virus-contaminated food (Fuxa, 2004; Habayeb et al., 2009; Yuan et al., 2017). For
243	HaNV, the N-strain larvae were allowed to develop through to pupation and
244	newly-eclosed adults were tested for the presence of HaNV. All adults were found to
245	be positive for HaNV (100% infection; Table 2), suggesting a possible food-borne or
246	oral-fecal transmission pathway.
247	The quantity of viral RNA in the feces produced by a single 4 th -instar larva
248	during six hours was approximately 1.5×10^8 viral genome copies. The HaNV
249	infection rate of 5 th -instar larvae was positively correlated with the magnitude of the
250	challenge dose, with 100% infection rate at a dose of 10^9 copy number/µl (Table 3),

~

 $\ \ \,$ suggesting an efficient horizontal transmission strategy. Hence, the HaNV virus can

252	be horizontally-transmitted by ingestion of virus-contaminated food. HaNV copy
253	number increased over time in the larval stage of <i>H. armigera</i> , peaking in the last
254	instar before pupation. There were lower viral loads in pupal and adult stages of the
255	host (Fig 3).

256	The infection rate of the offspring from infected parents was around 43%, but
257	almost no HaNV was detected when only one parent was infected (Table 2). This
258	suggests that vertical transmission is most efficient only when both parents are
259	infected. However, the virus titer in each sex and replicate were not determined and
260	might contribute to the difference between crosses. The low transmission efficiency of
261	the HaNV virus observed in this study is similar to other picorna-like viruses, e.g.
262	Iflavirus in cotton bollworm (HaIV, around 28%) (Yuan et al., 2017) and Drosophila
263	Nora virus (around ##%) (Habayeb et al., 2009). In addition, the HaNV titre of
264	sodium hypochlorite-treated eggs was significantly lower than for non-treated eggs (t
265	= 2.840, df = 4, $P = 0.047$; Fig 4), suggesting that the vertical transmission is mainly
266	due to transovum transmission (i.e. virus contamination on the surface of eggs) and
267	not transovarial (within-egg) transmission, which is similar to HaIV (Yuan et al.,
268	2017). This is, however, different from the transovarial-transmitted densovirus
269	HaDV2 in cotton bollworm, which can be efficiently vertical transmitted (Xu et al.,
270	2014).
271	3.3 Within-host distribution of HaNV infection

272 In both life-stages, HaNV viral load was significantly higher in the intestinal tract

than in other tissues (malpighian tubules, fat body, haemolymph, muscle, brain or

274	reproductive organs) (larvae: F = 7.75, df = 5,29, P < 0.001; female adults: F =
275	1095.70, df = 5,17, P < 0.001; male adults: F = 5057.20, df = 5,17, P < 0.001; Fig 5).
276	The high HaNV abundance in the intestinal tract of both adult males and females
277	(>90%), which could explain the observed low vertical-transmission efficiency of
278	HaNV. Aggregation of infection within the intestinal tract is similar to the
279	distributions observed for other picorna-like viruses, such as the Drosophila Nora
280	virus (Habayeb et al., 2009) and a picorna-like virus in Pectinophora gossypiella
281	(Monsarrat et al., 1995). However, it is a different distribution pattern to that of SeNV,
282	which showed homogenous distribution in midgut, fat body and hemolymph
283	(Jakubowska et al., 2014), and that of Iflavirus HaIV and densovirus HaDV2 in cotton
284	bollworm, both mainly distributed in the fat body (Yuan et al., 2017).
285	With the advance in technology, more insect picorna-like viruses are likely to be
285 286	With the advance in technology, more insect picorna-like viruses are likely to be detected in other species, which will be useful in unveiling the complicated
286	detected in other species, which will be useful in unveiling the complicated
286 287	detected in other species, which will be useful in unveiling the complicated interaction between viruses and their hosts, as well as among viruses within the same
286 287 288	detected in other species, which will be useful in unveiling the complicated interaction between viruses and their hosts, as well as among viruses within the same hosts. Firstly, many novel pathogenic viruses could be used directly to control pests,
286 287 288 289	detected in other species, which will be useful in unveiling the complicated interaction between viruses and their hosts, as well as among viruses within the same hosts. Firstly, many novel pathogenic viruses could be used directly to control pests, as has been seen with baculoviruses. Secondly, although nonpathogenic viruses may
286 287 288 289 290	detected in other species, which will be useful in unveiling the complicated interaction between viruses and their hosts, as well as among viruses within the same hosts. Firstly, many novel pathogenic viruses could be used directly to control pests, as has been seen with baculoviruses. Secondly, although nonpathogenic viruses may not directly impact host mortality, the interactions between them and other virus
286 287 288 289 290 291	detected in other species, which will be useful in unveiling the complicated interaction between viruses and their hosts, as well as among viruses within the same hosts. Firstly, many novel pathogenic viruses could be used directly to control pests, as has been seen with baculoviruses. Secondly, although nonpathogenic viruses may not directly impact host mortality, the interactions between them and other virus species residing in their host should be studied further as multiple-species interactions
286 287 288 289 290 291 292	detected in other species, which will be useful in unveiling the complicated interaction between viruses and their hosts, as well as among viruses within the same hosts. Firstly, many novel pathogenic viruses could be used directly to control pests, as has been seen with baculoviruses. Secondly, although nonpathogenic viruses may not directly impact host mortality, the interactions between them and other virus species residing in their host should be studied further as multiple-species interactions might occur, e.g. <i>Iflavirus</i> was shown to reduce baculovirus <i>Spodoptera exigua</i>

296	HaNPV (Xu et al., 2014). As HaNV was found in seemingly healthy individuals of
297	cotton bollworm (showing no pathology), HaNV appears not to be an overtly
298	pathogenic virus and might have a mild or non-pathogenic effect on its host. This
299	hypothesis was confirmed by our results that the larval mortality, pupation and
300	eclosion rates of HaNV-positive insects did not differ significantly from
301	HaNV-negative individuals (Table 4). As vertical transmission of HaNV (from parents
302	to offspring) was inefficient, and larvae probably have little chance to ingest high
303	titers of virus from contaminated food plants, a low prevalence of HaNV in the field
304	could be expected and should be studied in the field populations. Conversely, the
305	virus HaDV2 (which was found to protect its host from the baculovirus; Xu et al.,
306	2014) was found to be highly efficient at vertical transmission and to have high
307	frequency in the field (around 80%; Xu et al., 2014). However, the frequency of
308	HaNV in field populations and its effect on other co-infected bacteria or viruses
309	remained unexplored and need to be studied further in the future.
310	
311	4. Conclusions
312	A new picorna-like virus in <i>H. armigera</i> named HaNV has been characterised, with a
313	genome of 11,200 nts in length containing the complete coding regions. Phylogenetic

314 analysis clustered HaNV with SeNV, Drosophila Nora virus and N. vitripennis

315 virus-3, which might indicate a new viral family in the order Picornavirales. HaNV

316 can be efficiently horizontally transmitted following a typical dose-dependent

317 response, and vertically transmitted but with low efficiency.

319 Acknowledgements

- 320 This work was supported by Science Fund for Creative Research Groups of the
- 321 National Science Foundation of China (No. 31621064) and the Key S&T project of
- 322 China National Tobacco Corporation (110201601022(LS-02)) and. K.W. was
- supported by a Biotechnology and Biological Sciences Research Council UK-China
- 324 Partnering Award (ref: BB/L026821/1).

References

327 328 329 330 331	Carballo, A., Murillo, R., Jakubowska, A., Herrero, S., Williams, T., Caballero, P., 2017. Co-infection with iflaviruses influences the insecticidal properties of <i>Spodoptera exigua</i> multiple nucleopolyhedrovirus occlusion bodies: implications for the production and biosecurity of baculovirus insecticides. PLoS ONE, 12(5), e0177301.		
332 333	Chen, Y., Evans, J., Feldlaufer, M., 2006. Horizontal and vertical transmission of viruses in the honey bee, <i>Apis mellifera</i> . J. Invertebr. Pathol. 92, 152–159.	F	ormatted: German (Germany)
334 335	Carrillo-Tripp, J., Bonning, B. C., Miller, W. A., 2015. Challenges associated with research on RNA viruses of insects. Curr. Opin. Insect Sci. 8, 62-68.		
336 337 338 339	de Miranda, J. R., Dainat, B., Locke, B., Cordoni, G., Berthoud, H., Gauthier, L., Neumann, P., Budge, G.E., Ball, B.V., Stoltz, D.B., 2010. Genetic characterization of slow bee paralysis virus of the honeybee (<i>Apis mellifera</i> L.). J. Gen. Virol. 91, 2524-2530.		
340 341 342	Ferreira, A. G., Naylor, H., Esteves, S. S., Pais, I. S., Martins, N. E., Teixeira, L., 2014. The Toll-dorsal pathway is required for resistance to viral oral infection in <i>Drosophila</i> . PLoS Pathog. 10, e1004507.	F	ormatted: French (France)
343 344	Fuxa, J.R., 2004. Ecology of insect nucleopolyhedroviruses. Agr. Ecosyst. Environ. 103, 27-43.		
345 346 347 348	Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652.		
349 350 351	Graham, R.I., Grzywacz, D., Mushobozi, W.L., Wilson, K., 2012. Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol. Lett. 15: 993-1000.		
352 353 354	Habayeb, M. S., Cantera, R., Casanova, G., Ekstrom, J. O., Albright, S., Hultmark, D., 2009. The <i>Drosophila</i> Nora virus is an enteric virus, transmitted via feces. J. Invertebr. Pathol. 101, 29-33.		
355 356	Habayeb, M. S., Ekengren, S. K., Hultmark, D., 2006. Nora virus, a persistent virus in <i>Drosophila</i> , defines a new picorna-like virus family. J. Gen. Virol. 87, 3045-3051		
357 358	Ho, T., Tzanetakis, I. E., 2014. Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 471, 54-60.	F	ormatted: Italian (Italy)
359 360 361 362	Jakubowska, A.K., D'Angiolo, M., Gonzalez-Martinez, R.M., Millan-Leiva, A., Carballo, A., Murillo, R., Caballero, P., Herrero, S., 2014. Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran <i>Spodoptera exigua</i> . J. Invertebr. Pathol. 121: 56-63.	F	ormatted: Spanish (Spain)
363	Jakubowska, A.K., Murillo, R., Carballo, A., Williams, T., van Lent, J.W.M.,		

- Caballero. P., Herrero, S., 2016. Iflavirus increases its infectivity and physical
 stability in association with baculovirus. Peerj. 4: e1687.
- Jin, L., Zhang, H.N., Lu, Y.H., Yang, Y.H., W, K.M., Tabashnik, B.E., Wu, Y.D., 2015.
 Large-scale test of the natural refuge strategy for delaying insect resistance to
 transgenic Bt crops. Nat. Biotechnol. 33, 169-174.
- La Fauce, K.A., Elliman, J., Owens, L., 2007. Molecular characterisation of
 hepatopancreatic parvovirus (PmergDNV) from Australian *Penaeus merguiensis*.
 Virology 362, 397–403.
- Le Gall, O., Christian, P., Fauquet, C.M., King, A.M., Knowles, N.J., Nakashima N,
 Stanway, G., Gorbalenya, A.E., 2008. Picornavirales, a proposed order of
 positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion
 architecture. Arch. Virol. 153, 715-727.
- Liang, G.M., Tan, W.J., Guo, Y.Y. An improvement in the technique of artificial
- rearing cotton bollworm. Plant Protec. 25, 15-17 (1999).
- Monsarrat, A., AbolEla, S., Abdel-Hamid I, Fediere G, Kuhl G, Husseini, M.E.,
 Ginnotti, J., 1995. A new RNA picorna-like virus in the cotton pink bollworm *Pectinophora gossypiella* (Lep: Gelechiidae) in Egypt. Entomophaga. 40, 47-54.
- Moore, N.F., Tinsley, T.W., 1982. The small RNA-viruses of insects. Arch. Virol. 72,
 229-245.
- Oliveira, D. C., Hunter, W. B., Ng, J., Desjardins, C. A., Dang, P. M., Werren, J. H.,
 2010. Data mining cDNAs reveals three new single stranded RNA viruses in *Nasonia* (Hymenoptera: Pteromalidae). Insect Mol. Biol. 19 Suppl 1, 99-107.
- Sun, X.L., 2015. History and current status of development and use of viral
 insecticides in China. Viruses-Basel. 7, 306-319.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6:
 molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30,
 2725-2729.
- Webster, C. L. Waldron, F.M., Robertson, S., Crowson, D., Ferrari, G., Quintana, J.F.,
 Brouqui, J.M., Bayne, E.H., Longdon, B., Buck, A.H., Lazzaro, B.P., Akorli, J.,
 Haddrill, P.R., Obbard, D.J, 2015. The discovery, distribution, and evolution of
 viruses associated with *Drosophila melanogaster*. PLoS Biol. 13, e1002210.
- Wong, M.L., Medrano, J.F., 2005. Real-time PCR for mRNA quantitation.
 Biotechniques. 39: 75-85.
- Wu, K.M., Guo, Y.Y., 2005. The evolution of cotton pest management practices in
 China. Annu. Rev. Entomol. 50, 31-52.
- Wu, K.M., Lu, Y.H., Feng, H.Q., Jiang, Y.Y., Zhao, J.Z., 2008. Suppression of cotton
 bollworm in multiple crops in China in areas with Bt toxin-containing cotton.
 Science. 321, 1676-1678.

Formatted: Italian (Italy)

402 403 404	Xu, P.J., Liu, Y.Q., Graham, R.I., Wilson, K., Wu, K.M., 2014. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog. 10, e1004490.	
405 406	Xu, P.J., Feuda, R., Lu, B., Xiao, H.J., Graham, R.I., Wu, K.M., 2016. Functional opsin retrogene in nocturnal moth. Mob. DNA. 7, 18.	
407 408 409 410	Yang, X.M., Xu, P.J., Graham, R.I., Yuan, H., Wu, K.M., 2017, Protocols for investigating the host-tissue distribution, transmission-mode, and effect on the host fitness of a densovirus in the cotton bollworm. J. Vis. Exp. 122. doi: 10.3791/55534.	
411 412 413	 Yuan, H., Xu, P.J., Yang, X.M., Graham, R.I., Wilson, K., Wu, K.M., 2017. Characterization of a novel member of genus <i>Iflavirus</i> in <i>Helicoverpa armigera</i>. J. Invertebr. Pathol. 144, 65–73. 	
414	Zhou, W. G., Rousset, F., O'Neill, S., 1998. Phylogeny and PCR-based classification	Formatted: French (France)
415	of Wolbachia strains using wsp gene sequences. P. Roy. Soc. B-Biol. Sci. 265,	
416	509-515.	
417	Zhou, M., Sun, X., Vlak, J.M., Hu, Z., van der Werf, W., 2005. Horizontal and vertical	Formatted: German (Germany)
418	transmission of wild-type and recombinant Helicoverpa armigera	
419	single-nucleocapsid nucleopolyhedrovirus. J. Invertebr. Pathol. 89, 165–175.	

Code	ode Primer Name Primer sequence (5'-3')		Instruction	
1	NRV-14	CTGAAGCACTGCACCTAAG		
1	NRV-1279	GGATACTTGGCAATAGGAC		
2	NRV-731	CGTTTGTGAGTCATCTGCC		
Z	NRV-1568	TTTGGTTCAGTTGCCCAC		
3	NRV-1386	TCTTCATTGATACACTGGACCC		
3	NRV-4219	ACCTTACCCTCATAGGAGCG		
4	NRV-3950	CACCATTTACCGCACTTTAC		
4	NRV-6522	GTCAACAACCCAAGACCTAATC	Amplification of	
-	NRV-5309	ACAGTGAAGGATGGGTCTC	the HaNV genome	
5	NRV-7299	TGGTATCAAGCAACCGAG		
6	NRV-7021	GGGAGGGAATACTATGAATCG		
6	NRV-8582	TGGCATCTAACTCGGGTG		
7	NRV1-7615	AACAACAGCAGATACGGC		
/	NRV1-10207	CCAACACTTTAGCGAGTC		
0	NRV-9026	AAGAAACCTGATTCATATGC		
8	NRV-11200	TTCACAAAACGTTTTCAAG		
9	NoraPF	TGGACCTGAAATTGGCACAT	Detection of HaN	
9	NoraPR	CATGTCGAAGAGATAGCTCA	Detection of Halv	
10	PF	ATATGCAGGTAAAACAAAG	HaNV standard	
10	PR	CAAAACGTTTTCAAGAATAT	curve assay	
	NoraF	GCTTGATGCGAATTCTGATGAC	Omentification of	
11	NoraR	GGTTATCTCCCCAACATGTTTCA	Quantification of	
	Nora-probe	AAGAAGCTCCTGCTTTAGGCCCCGA	HaNV	

426	Table 2 Transmission efficiency of HaNV virus. "+" = infected individuals, "-" =
427	non-infected individuals.

Transmission mode	Individuals	Transmission Efficiency
Horizontal ^a	1st	100% (n = 24)
	2nd	100% (n = 24)
	3rd	100% (n = 24)
	4th	100% (n = 24)
	5th	100% (n = 24)
	Negative control	0% (n = 24)
Vertical	₽+/♂+	43.1% (n = 44)
	₽+/♂-	3.5% (n = 64)
	♀-/♂+	0% (n = 48)
	♀- /ð-	0% (n = 24)

428 ^a Individuals at 1st-5th instars transferred to the contaminated artificial diet previously hosted

429 infected individuals.

430

431 432

....

433	Table 3 Detection of HaNV infecting newly-hatched larvae dosed at a range of
434	concentrations.

Virus concentration	Number testing	Number testing	Infection rate
(copy number/µL)	positive	negative	(%)
109	24	0	100.0%
108	8	7	53.3%
107	2	10	16.7%
106	1	11	8.3%
10 ⁵	1	11	8.3%

435 Infected individuals = "+ve", uninfected individuals = "-ve".

436

437

438

439 **Table 4** Influence of HaNV on selected life-history traits of cotton bollworm.

Index	HaNV+ (%)	HaNV- (%)	n†	χ^2	P value	
Larval mortality	$2.8(\pm 0.8)$	$1.9(\pm 0.6)$	28	0.320	0.572	
Pupation rate	94.7 (±1.2)	95.6 (± 1.3)	28	0.416	0.519	
Eclosion rate	91.9 (±1.5)	89.2 (± 2.0)	28	1.645	0.200	
						_

HaNV+ = HaNV-infected; HaNV- = non-infected individuals; Larval mortality = proportion of
larvae dying before pupation; pupation rate = proportion of surviving larvae that successfully

442 pupated; pupae deformity rate = proportion of pupae that were deformed; eclosion rate =

proportion of pupae deformity rate \uparrow proportion of pupae that were deformed, cerosion rate proportion of pupae that successfully eclosed; adult deformity rate = proportion of adults that were deformed. \dagger n = number of batches of 24 larvae

448	Fig 1. Characterization of t	he HaNV virus. (a)) The genomic s	tructure of HaNV.
-----	------------------------------	-----------------------------	-----------------	-------------------

449 ORF=open reading frame, RdRp = RNA-dependent RNA polymerase, Structural

450 proteins: VP4A, VP4B and VP4C. (b) Tree based analysis based on the putative

451 conservered RdRp amino acids of HaNV and 32 other picorna-like viruses.

452 Neighbor-joining tree with 1000 replications was constructed using MEGA 6.

453 Bootstrap values (1000 pseudoreplicates) are indicated on the nodes.

- 457 Fig 2. Electron microscopy of purified virus particles. Arrows point to virus particle.

Fig 3. HaNV copy numbers at different stages. The line connects the average values

- 461 for each time point and standard deviation values were shown. Three batches of 3
- 462 individuals were shown for each time point.
- 463

Fig 4. Viral load of HaNV in cotton bollworm eggs. Absolute quantification of HaNV
copy number per eggs washed or non-washed in 1% sodium hypochlorite (3 groups of

467 100 eggs). Means \pm SE. * = P < 0.05.

471Fig 5. Tissue distribution of HaNV in cotton bollworms of larvae, adult females and472adult males. Within each figure, significant differences ascribed using Tukey post-hoc473tests are shown using different letters. Percentage (%) = the ratio of HaNV in different474tissues (per mg), as described in Methods (Means \pm SE. Larvae: n = 15; adult males: n

- 475 = 9; adult females: n = 9).
- 476