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 2 

Significance statement 1 

 2 

 3 

Light imposes a direct, rapid and potentially multi-faceted effect that leads to 4 

unique protein dynamics to the main flux-limiting steps of the MEP pathway, a key 5 

route essential for plants. Through differential direct transcriptional interaction, the 6 

key-master integrators of light signals HY5 and PIFs, target the main flux-limiting 7 

steps of the pathway. Our work illustrates how light signals can impose contrasting 8 

dynamics over a key pathway whose products multi-branch downstream to all 9 

chloroplastic isoprenoids. 10 

  11 



 3 

Summary 1 

The plastidial methylerythritol phosphate (MEP) pathway is an essential route for 2 

plants as the source of precursors for all plastidial isoprenoids, many of which are 3 

of medical and biotechnological importance. The MEP-pathway is highly sensitive 4 

to environmental cues as many of these compounds are linked to photosynthesis 5 

and growth and light is one of the main regulatory factors. However, the 6 

mechanisms coordinating the MEP-pathway with light cues are not fully 7 

understood. 8 

Here we demonstrate that by a differential direct transcriptional modulation via the 9 

key master integrators of light signal transduction HY5 and PIFs that target the 10 

genes that encode the rate-controlling DXS1, DXR and HDR enzymes, light 11 

imposes a direct, rapid and potentially multi-faceted response that leads to unique 12 

protein dynamics of this pathway resulting in up to 10-fold difference in the protein 13 

levels. For DXS1, PIF1/HY5 act as a direct activation/suppression module. In 14 

contrast, DXR accumulation in response to light results from HY5 induction with 15 

minor contribution of de-repression by PIF1. Finally, HDR transcription increases in 16 

the light exclusively by suppression of the PIFs repression. This is an example of 17 

how light signaling components can differentially multi-target the initial steps of a 18 

pathway whose products branch downstream to all chloroplastic isoprenoids. 19 

These findings demonstrate the diversity and flexibility of light signaling 20 

components that optimize key biochemical pathways essential for plant growth. 21 

 22 
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 4 

Introduction 1 

 2 

Isoprenoids constitute a family of natural products synthesized in all 3 

organisms with diverse function (Chappell, 1995). Isoprenoids are essential for 4 

plant development, participating in several key processes such as photosynthesis, 5 

respiration and general plant growth (Bouvier et al., 2005). All isoprenoids are 6 

produced from the condensation of two universal five-carbon precursors, 7 

isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). 8 

Condensation of these basic units gives rise to isoprenoid diversity. 9 

 10 

Plants synthesize IPP and DMAPP by two non-related pathways present in 11 

different compartments. The cytoplasmic mevalonic pathway uses acetyl-CoA via 12 

mevalonic acid for the synthesis of IPP and DMAPP, and the methyl-D-erythritol 4-13 

phosphate (MEP) pathway takes place in plastids (Croteau et al., 2000, Hemmerlin 14 

et al., 2012, Rodriguez-Concepcion and Boronat, 2015). The MEP pathway uses 15 

pyruvate and D-glyceraldehyde 3-phosphate (GAP) for IPP and DMAPP synthesis 16 

through the activity of seven consecutive enzymes (Phillips et al., 2008). The first 17 

step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-phosphate 18 

synthase (DXS) that produces 1-deoxy-D-xylulose 5-phosphate (DXP). DXP is 19 

rearranged into MEP by the action of the 1-deoxy-D-xylulose 5-phosphate 20 

reductoisomerase (DXR), this is the first committed step of the pathway. 21 

Subsequently MEP is converted to 1-hydroxy-2-methyl-2-(E)-butenyl 4-22 

diphosphate (HMBPP) by four additional enzymatic steps and in the final step 23 

HMBPP is converted into a mixture of IPP and DMAPP via the HMBPP reductase 24 

(HDR) enzyme (Eisenreich et al., 2004).  25 

 26 

The MEP pathway is present in eubacteria, plastids and the apicoplast of 27 

apicomplexan but is absent in other eukaryotes, including humans (Lange et al., 28 

2000). Thus, the MEP pathway is considered an attractive target for development 29 

of new antibacterial and antiparasitic drugs, and herbicides (Rodríguez-30 

Concepción, 2004, Rohdich et al., 2005). In plants the MEP pathway is responsible 31 
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for the production of essential compounds, such as the precursors of 1 

photosynthetic pigments (carotenoids and the side chain of chlorophyll), 2 

tocopherols and plastoquinones, hormones including gibberellins, abscisic acid 3 

and strigolactone and a variety of monoterpenes, diterpenes and some 4 

sesquiterpenes (Bouvier et al., 2005, Umehara et al., 2008). Recent studies have 5 

reported that the MEP pathway is also essential for the production of stress-6 

specific retrograde signaling molecules (de Souza et al., 2017). Thus, in plants the 7 

MEP pathway is essential for plant development and also is an important target for 8 

biotechnological manipulation. 9 

 10 

 The enzymes in the MEP pathway are subject to modulation at different 11 

levels, according to the developmental status of the plant and the fluctuating 12 

environmental conditions (Guevara-García et al., 2005, Rodriguez-Concepcion, 13 

2006, Cordoba et al., 2009, Banerjee and Sharkey, 2014). This multi-level dynamic 14 

is critical to ensure the supply of IPP and DMAPP precursors with the demand of 15 

downstream pathways, many of which are dependent of diurnal and light 16 

conditions, such as the biosynthesis of chlorophylls and carotenoids (Ruiz-Sola 17 

and Rodriguez-Concepcion, 2012). In plants, the plastid-localized enzymes of the 18 

MEP pathway come from nuclear-encoded genes. Experimental evidence has 19 

demonstrated that the transcript levels of all genes in the pathway are induced 20 

during plant development (Guevara-García et al., 2005, Meier et al., 2011), during 21 

tomato fruit ripening (Lois et al., 2000) and in response to hormones (Oudin et al., 22 

2007). Also, biotic interactions (Walter et al., 2000), circadian clock (Cordoba et al., 23 

2009, Vranova et al., 2013) and light modulate the MEP transcripts levels in 24 

several plant species (Hsieh and Goodman, 2005, Cordoba et al., 2009). 25 

Furthermore, post-transcriptional regulation of DXS, one of the rate-limiting steps 26 

of the pathway, leads to changes in its protein accumulation and enzymatic activity 27 

(Guevara-García et al., 2005, Wright et al., 2014).  28 

 29 

Light constitutes one of the most critical environmental signals for plant 30 

development. From the emergence of the germinating seedling, light changes the 31 
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developmental program from skotomorphogenesis to photomorphogenesis (Chen 1 

et al., 2004). Upon light exposure etioplasts rapidly differentiate into chloroplasts 2 

upregulating many genes involved in photosynthesis and other plastid biosynthetic 3 

pathways (Jiao et al., 2007). Complex photoreceptor systems allow plants to adjust 4 

diverse processes in response to variable light conditions (Franklin and Quail, 5 

2010). The phytochrome photoreceptors fine-tune plant photomorphogenesis in 6 

response to Red and Far Red light. Mechanistically, light-activated nuclear-7 

phytochromes bind directly to members of the bHLH family of phytochrome-8 

interacting factors (PIFs), promoting their degradation. PIFs act as important 9 

repressors of photomorphogenic development in the dark and key signal 10 

integrators (Leivar and Quail, 2011, Leivar and Monte, 2014). In addition, active 11 

phytochromes prevent the degradation of activators of photomorphogenesis such 12 

as ELONGATED HYPOCOTHYL 5 (HY5) and its close homolog HYH. These bZIP 13 

transcription factors participate in the up-regulation of a variety of genes in 14 

response to light and display antagonistic functions to the PIFs in the expression of 15 

diverse genes (Tepperman et al., 2001). 16 

  17 

Given the strategic role that light has over isoprenoid production in the 18 

present study we investigate the mechanisms coordinating the MEP-pathway with 19 

light cues. We examined the role of light signaling components PIFs, HY5 and 20 

HYH in modulating the expression and imposing a differential and specific dynamic 21 

on DXS1, DXR and HDR genes encoding for flux-controlling enzymes of the MEP 22 

pathway (Estévez et al., 2001, Mahmoud and Croteau, 2001, Botella-Pavía et al., 23 

2004, Carretero-Paulet et al., 2006). Transcript analyses and ChIP assays 24 

confirmed that HY5 and PIFs are direct regulators of the light-modulated 25 

expression of these genes. We show that the function of these factors in tuning the 26 

MEP-pathway gene expression extends to different developmental stages 27 

potentially diversifying the synthesis of multiple compounds of isoprenoid origin, 28 

essential for plant growth and development at different stages of the plant life 29 

cycle. Furthermore, we demonstrate using protein accumulation studies that the 30 

transcriptional regulation mediated by PIF and HY5 impacts the accumulation of 31 
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DXS1 and HDR enzymes but not DXR. This analysis exemplifies the diverse 1 

mechanistic dynamics that the same master light regulators can impose to tune up 2 

essential metabolic pathways in response to light. 3 

 4 

Results 5 

 6 

Cis-acting elements in the DXS promoter are responsible for the regulation of 7 

the DXS1 gene. 8 

Previous studies have shown that in developing seedlings, transcripts of the 9 

MEP pathway genes accumulate upon light exposure (Botella-Pavía et al., 2004, 10 

Hsieh and Goodman, 2005, Cordoba et al., 2009). To analyze if the light induction 11 

response is mediated at the transcriptional level, 3 day-old etiolated transgenic 12 

lines containing 1510 bp upstream from the DXS1 gene ATG fused with the GUS 13 

gene (Estévez et al., 2000) were exposed to light. GUS activity is detected in the 14 

cotyledons of dark grown seedlings (Figure 1a). However, after 6 h of light 15 

exposure this staining expands to the hypocotyl (Figure 1d). Quantitative 16 

determination of GUS activity confirmed an approximately 2-fold increase after light 17 

exposure in comparison to dark control seedlings (Figure 1g). This result confirms 18 

that in response to light, DXS1 transcript levels are transcriptionally up-regulated 19 

and also demonstrates that the cis-acting elements important for this response are 20 

present within the 1.5 Kb upstream regulatory region of this gene.   21 

 22 

To further delimit the region involved in the light response two additional 23 

transgenic lines containing 750 (Figure b and e) and 670 bp (Figure c and f) 24 

upstream from the DXS1 ATG of were generated, and their expression in response 25 

to light was analyzed. We observed that the GUS expression in these lines is 26 

induced upon light exposure at similar levels to the 1.5 Kb original fragment (Figure 27 

1g). These results support that the elements responsible for light response in the 28 

DXS1 gene localize within the 670 bp region upstream from the ATG (360 from the 29 

transcription initiation site).  30 

 31 
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HY5 and HYH positively regulate transcription of MEP-pathway limiting DXS1 1 

and DXR genes, but not of HDR. 2 

The transcription factor HY5 plays a pivotal role as a positive regulator of 3 

photomorphogenesis and greening responses through direct binding to the 4 

promoters of diverse light-activated genes (Lee et al., 2007, Zhang et al., 2011). To 5 

determine whether HY5 contributes to the light induction of the DXS1 gene, its 6 

transcript level was analyzed after illumination of dark-adapted wild-type and hy5 7 

mutant seedlings; since a clear accumulation by light for MEP genes was observed 8 

under these conditions (Cordoba et al., 2009). Seedlings were grown for 3 days 9 

under 16 h light: 8h dark photoperiod and then transferred to darkness for 3 10 

additional days (dark-adapted treatment) prior to illumination for 6 h. Northern blot 11 

analysis shows that the transcript of DXS1 is significantly lower in the light hy5 12 

mutant compared to the Col-0 wild-type counterpart (Figure 2a). In the hy5hyh 13 

double mutant we observed further reduction of the DXS1 transcript supporting the 14 

notion that while minor, HYH also plays a positive role in the expression of DXS1 in 15 

response to light. 16 

 17 

In addition to DXS, two other enzymes, DXR and HDR, limit the flux through 18 

the MEP-pathway (Mahmoud and Croteau, 2001, Botella-Pavía et al., 2004, 19 

Carretero-Paulet et al., 2006, Kim et al., 2009). We also analyzed the light 20 

responsiveness of DXR and HDR transcripts in the hy5 and hy5hyh mutants. As 21 

shown in Figure 2b the transcript of DXR accumulates upon light illumination in the 22 

Col-0 wild-type plants. This induction is substantially lower in the hy5 mutant, 23 

demonstrating that HY5 also acts positively on the expression of the DXR gene in 24 

the light. Relative to hy5, the hy5hyh double mutant has no additive effect on the 25 

level of DXR transcript abundance, supporting the lack of involvement of HYH in 26 

the light induced up-regulation of this gene. In contrast, the transcript accumulation 27 

in response to light for HDR is marginal in the wild-type (Figure 2a, b) with no clear 28 

role of HY5 and HYH (Figure 2c).  29 

 30 
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To further substantiate these results quantitative RT-PCR (qRT-PCR) on the 1 

same RNAs samples was performed, confirming the positive role of HY5 on the 2 

induction by light of DXS1 and DXR transcripts (Figure 2d, e) but not on HDR. 3 

qRT-PCR data further corroborated that HYH does not appear to play a major role 4 

in the modulation by light of these genes. As monochromatic red light maximizes 5 

the light response we analyzed the expression of these genes in the dark-adapted 6 

seedlings illuminated with red light (Figure S1). This analysis corroborates an 7 

increase of the HDR transcript by light and that HY5 does not play a major role in 8 

this response. Red-light experiments also demonstrated that in the absence of 9 

these bZIP transcription factors there is still some light responsiveness, supporting 10 

the notion that additional unknown factors participate in this response.  11 

 12 

PIFs are negative regulators of DXS1, DXR and HDR genes 13 

For diverse light responses, PIF transcription factors act antagonistically to 14 

HY5 and HYH (Chen et al., 2013). To test whether PIFs play an opposing role to 15 

HY5 in the light-mediated accumulation of the MEP pathway genes, the transcript 16 

level of the DXS1, DXR and HDR were analyzed by northern blots in pif1, pif3, pif4 17 

and pif5 mutants compared to Col-0 wild-type seedlings, using dark-adapted 18 

treated seedlings (Leivar et al., 2008). We observed that the transcript levels of the 19 

DXS1 (Figure 3a), DXR (Figure 3b) and HDR (Figure 3c) genes are elevated in 20 

several of the pif single mutants in the dark and in the light, supporting a function of 21 

these transcription factors as transcriptional repressors of the expression of these 22 

rate-limiting MEP pathway genes.  23 

 24 

To further analyze the contribution of the different PIFs we performed qRT-25 

PCR on the same samples illuminated with white light (Figure S2) or with 26 

monochromatic red light to maximize response (Figure 3). In the case of DXS1, 27 

increased transcript accumulation is observed in the pif1 and pif3 mutants with a 28 

more moderate increment in pif5, supporting the repressing function of these 29 

factors (Figure 3d and S2a). For DXR, transcript levels are higher in the dark and 30 

in light-exposed pif1, pif3 and pif5 mutants demonstrating that these three PIFs 31 
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contribute to the low accumulation level of this gene in wild-type plants (Figure 3e). 1 

Finally, PIF1 appears to have the most significant effect on repressing HDR 2 

transcript levels, with some contribution of PIF3 (Figure 3f). Collectively our data 3 

demonstrate that the PIF factors in a partially redundant form are required to 4 

maintain low expression levels of three key genes of the MEP pathway. 5 

 6 

The functional redundancy of PIFs in regulating DXS1, DXR and HDR 7 

genes is further illustrated with the quadruple pifQ mutant lacking PIF1, PIF3, PIF4 8 

and PIF5 (Leivar et al., 2009). Because pifQ could suffer from photoxidative 9 

damage caused by the overaccumulation of photochlorophyllide in the dark (Chen 10 

et al., 2013), pifQ analysis was done in 3 day-old seedlings grown in(the reported?) 11 

photoperiod and dark-adapted for 36 h before exposure to 6 h of red light. We 12 

corroborated that in the pifQ mutant the expression level of DXS1 (Figure 3g), DXR 13 

(Figure 3h) and HDR (Figure 3i) genes are significantly elevated in the dark and 14 

after light exposure compared to wild-type seedlings. Over all, our data 15 

demonstrates that PIFs are important negative regulators of the three rate-limiting 16 

MEP pathway genes.  17 

 18 

HY5 and PIFs regulators modulate the expression of DXS, DXR and HDR 19 

genes during de-etiolation 20 

It is known that PIFs display differential expression during distinct 21 

developmental responses (Jeong and Choi, 2013). One of the physiologically 22 

relevant responses to light is de-etiolation. Previous data demonstrated that during 23 

de-etiolation PIF1 represses PSY gene expression that plays a limiting role in 24 

carotenoid biosynthesis, but under the conditions used (1 h of induction) no 25 

regulation by PIF1 was detected for DXS1 (Toledo-Ortiz et al., 2010). Based on our 26 

observations that light induces DXS, DXR and HDR expression at later time points, 27 

we re-evaluated the contribution of PIFs and analyzed the role of HY5 by qRT-PCR 28 

in 3 day-old etiolated seedlings exposed to red light for 6 h. Similar to the dark-29 

adapted seedlings, the transcription factor HY5 was shown to act as an activator of 30 

the DXS1 and DXR genes expression (Figure 4a and b). After light exposure the 31 
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level of the DXS1 and DXR transcripts is lower in hy5 compared to the wild-type. 1 

There was no significant change in the HDR expression level in hy5 (Figure 4c), 2 

indicating that, at this stage,HY5 does not play a major role in the light response of 3 

this gene .  4 

 5 

On the other hand, removal of the PIFs results in a significant increase in 6 

the transcript levels of the DXS1, DXR and HDR genes at this developmental stage 7 

compared to the wild-type seedlings (Figure 4). This result supports and extends 8 

the partially redundant, repressive role of PIFs in down-regulating the expression of 9 

the DXS1, DXR and HDR genes during de-etiolation. Similar to the dark-adapted 10 

seedlings PIF1, PIF3 and PIF5 contribute most significantly to the regulation of 11 

these genes and we did not observe any major changes in the relative role of the 12 

individual PIFs at this developmental stage. In accordance the pifQ mutant 13 

accumulates at higher transcript levels than the three genes in the dark and in the 14 

light. 15 

 16 

PIF1 and HY5 interact with the promoters of the MEP pathway genes in vivo 17 

To investigate if the changes in the gene expression result from a direct 18 

interaction of the PIFs and HY5 transcription factors with the promoters of the 19 

DXS1, DXR and HDR genes, we conducted chromatin immunoprecipitation (ChIP) 20 

experiments. We selected as a model PIF1, considering that this factor plays a 21 

major role in the regulation of the three MEP genes. ChIPs were carried out using 22 

seedlings that express PIF1 fused to a myc-tag in a pif1 background (TAP-PIF1) 23 

(Moon et al., 2008) or HY5 with an HA-tag in hy5 background (HA-HY5) (Lee et al., 24 

2007). Lines with a TAP-GFP or HA-GUS in a wild-type background were included 25 

as negative controls for nonspecific binding of DNA to the tags used. Transgenic 26 

HA-HY5 and TAP-PIF1 are mild-overexpressors, with similar protein expression 27 

levels to endogenous HY5 and PIF1 and complement the mutant phenotypes in a 28 

wide range of tested-light responses (Lee et al., 2007, Moon et al., 2008). 29 

 30 

Commented [HG1]: Wasn’t sure about this when looking 
at the plots.  Certainly for DXS1 and DXR in the light this is 
true and also  for DXS1 in the dark but pif1 looks to be 
greater than pifQ in DXR and for HDR pif3 in the dark and 
pif1 in the light.   I could be missing something though.  
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 To address if there is any difference in the interaction of these factors 1 

depending on the developmental stage, the ChIP was conducted in dark-adapted 2 

seedlings and etiolated seedlings, both exposed to 6 h of red light using myc or HA 3 

antibodies. qRT-PCRs were done using specific primers for selected promoter 4 

regions of each gene (Table S1, Figures S3, S5 and S6).  5 

 6 

PIFs transcription factors bind to variants of the E boxes (CANNTG), 7 

including the G-box (CACGTG) and the PBE-box (CACATG/CATGTG), or to 8 

hexameric sequences G-box coupling elements (GCEs) containing the core 9 

“ACGT” elements (Toledo-Ortiz et al., 2003, Zhang et al., 2013, Kim et al., 2016). 10 

The G-box, together with diverse GCE related motifs, such as the Z box 11 

(ATACTGTGT), CA (GACGTA) and CG hybrids (GACGTG), have also been 12 

identified as the interaction site of HY5 (Lee et al., 2007, Toledo-Ortiz et al., 2010, 13 

Zhang et al., 2011). The analysis of the 1.5 kb DXS1 promoter sequence using 14 

SOGO New PLACE software, showed no-presence of canonical G boxes. 15 

However, several E-box related elements, including a PBE-box (CACATG), a CG 16 

hybrid box (GACGTG), and a GCE element were found (Figure S3). Four specific 17 

oligonucleotide pairs were used to amplify the DNA enriched from the precipitated 18 

Protein-DNA complexes from the TAP-PIF1 and HA-HY5 transgenic lines 19 

maintained in the dark or exposed to 6 h red light. The qPCR using the 20 

oligonucleotide pairs 1 and 2 (Figure S3) showed no significant recovery in 21 

comparison to the negative TAP-GFP and HA-GUS controls, indicating no binding 22 

of PIF1 or HY5 to these promoter fragments. In contrast, enriched DNA sequences 23 

were amplified from the TAP-PIF1 and HA-HY5 immunoprecipitated fractions with 24 

the oligonucleotide pair P3 (F3/R3) (Figure S3). PIF1 binding was significant in the 25 

extracts from dark grown seedlings and a minor enrichment was seen in the light 26 

extracts (Figure 5a). For the HA-HY5 immunoprecipitate we only observed specific 27 

amplification in light-exposed seedlings (Figure 5b). For the P4 (F4/R4) primers 28 

pair (Figure S3) a minor amplification was detected from both the TAP-PIF1 and 29 

HA-HY5 extracts in comparison to the controls, indicating a very weak, and 30 

probably not-significant (just slightly above the in-specific GUS-HA background) 31 
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binding of both factors to this fragment (Figure 5c, d). The fragment that showed 1 

preferential binding to PIF1 and HY5 contains a PBE box, a GCE element and CG 2 

hybrid box in close proximity to each other (Figure S3). For PIF1, the PBE box 3 

(CACATG) is the most likely candidate binding-element and the GCE element 4 

(ACGT) for HY5. Very similar results were obtained from the ChIP experiments in 5 

de-etiolated seedlings demonstrating that the same sites are involved in the PIF1 6 

and HY5 binding in these two light developmental stages (Figure S4).  7 

 8 

We also analyzed the promoter sequences of DXR and HDR genes for 9 

potential PIF1 and HY5 binding sites. Within 1300 pb of the upstream sequence of 10 

DXR several G box-related sequences were found (Figure S5). Three pairs of 11 

primers covering the different elements from the DXR promoter were used in ChIP 12 

experiments (Table S1 and Figure S5). As shown in Fig. 5f the only significant 13 

enrichment detected was for HA-HY5 in the light with the primer pair 1 (F1 and R1) 14 

containing two GCE box-related sequences. These data demonstrate that DXR is 15 

directly upregulated by HY5. In contrast, binding of TAP-PIF1 in the dark was 16 

minor, although within statistical significance with the two primer pairs and close 17 

with the primer pair 3 (p 0.055) (Figure 5e, g and i). In these fragments, several 18 

putative G-box and E-box related sequences are present (Fig. S5). However, 19 

considering that the binding of PIF1 to the three sites is so close to the negative 20 

control in both photoperiodic and de-etiolation experiments (Figure S4e, g, i), this 21 

result probably indicates a non-preferential interaction of PIF1 with the promoter of 22 

DXR. 23 

 24 

Finally, the HDR gene promoter includes 902 bp with only one PBE box and 25 

a GCE/ACE motif (Figure S6). Two pairs of primers were designed to cover the 26 

potential PIF1/HY5 binding sites and used to amplify the immunoprecipitates from 27 

the ChIPs (Table S1). In contrast to the DXS1 and DXR genes, no enrichment was 28 

detected with HA-HY5 (Figure 5l), demonstrating that HY5 does not bind to the 29 

upstream sequences of the HDR gene. For TAP-PIF1 significant binding was 30 

observed in dark samples with the primer pair P2 that includes a PBE-box (Figure 31 
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5k). ChIPs results in de-etiolated seedlings (Figure S4k and l) tightly correlate with 1 

those of the photoperiodic-dark-adapted seedlings (Figure 5k, l). In conclusion, 2 

these data support the notion that modulation by light of HDR transcript levels 3 

results from its de-repression from the dark activity of PIF1/PIF3 and not from 4 

activation in light by HY5. Whether there is another light regulated activation factor, 5 

remains to be investigated. Over all, our ChIP studies likely reflect light imposed 6 

changes in the PIFs/HY5 regulators dynamic behavior and differential promoter-7 

binding capacity in response to the light environment.  8 

 9 

Impact of transcriptional imposed regulation over light modulated levels of 10 

MEP proteins  11 

The MEP-pathway provides with the intermediaries for the production of 12 

multiple compounds essential for photomorphogenic development, including 13 

multiple hormones (GA, Cytokinin, ABA, Strigolactones) and photopigments 14 

(carotenoids and chlorophylls). 15 

A previous study demonstrated that carotenoids and chlorophylls 16 

accumulate upon light exposure and this accumulation is affected in the pifQ and 17 

hy5 mutants (Toledo-Ortiz et al., 2014). Since the synthesis of these metabolites 18 

depends directly on the MEP pathway, the transcriptional regulation of the MEP-19 

transcripts by light can impact the accumulation of the final pathway products. To 20 

evaluate the importance that light imposed transcriptional regulation of the DXS1, 21 

DXR and HDR transcripts has over the pathway, the levels of the corresponding 22 

proteins were analyzed in wild-type, pifs and hy5 mutants. Total protein extracts 23 

from dark-adapted seedlings during 3 d (Wt, pif1, pif3, pif5 and hy5) or 36 h (pifQ) 24 

were obtained and the level of the DXS1, DXR and HDR proteins compared to 25 

dark controls.  26 

 27 

We found that the transcriptional regulation mediated by the HY5/PIF1 28 

module results in significant changes in the DXS1 enzyme level. Compared to the 29 

wild-type, the hy5 mutant has lower accumulation of DXS1 protein whereas pif 30 

single mutants and pifQ contain up to >10 times higher protein content than wild-31 
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type in the dark (Figure 6B). It is worth noticing that although the DXS1 level in the 1 

light is higher in the pifQ mutant, it does not maintain the same difference observed 2 

in the dark (Figure 6b). We hypothesize that this might be the result of post-3 

transciptional regulation that keeps this protein within certain levels (Flores-Perez 4 

et al., 2008).  This response correlates well with the transcript trends observed in 5 

pifs. The accumulation of DXS resembles the model of de-repression by PIFs in 6 

the dark /activation by HY5 in the light. 7 

 8 

We also observed accumulation of HDR protein in pif3 and pifQ with a 9 

contributed additive effect of primarily PIF3 and PIF1. We did not detect protein 10 

differences in hy5 vs wild-type. The role of PIFs in de-repressing from the dark 11 

leads to high protein levels in the light, but no further light-induced upregulation 12 

was detected at the time point assessed. 13 

 14 

No major differences were detected in the level of DXR protein in the 15 

different mutants analyzed (Figure 6), in agreement with the more moderate 16 

transcript differences observed for the pifs and hy5. 17 

 18 

Discussion 19 

 20 

The MEP pathway is a key biosynthetic route responsible for the synthesis 21 

of essential compounds and signals that modulate developmental and stress 22 

responses (Bouvier et al., 2005, Umehara et al., 2008, Hemmerlin et al., 2012, 23 

Walley et al., 2015, Benn et al., 2016). Also, several of the MEP pathway products 24 

have importance for human health and nutrition. Addressing how such a central 25 

metabolic pathway is modulated by external and internal cues has big implications 26 

for future efforts to regulate its outputs including many compounds of 27 

biotechnological or pharmaceutical interest 28 

 29 

Light is one of the most relevant signals that affect plant metabolism, 30 

including the production of essential photopigments, growth regulators and stress 31 
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hormones derived from the MEP-pathway (von Lintig et al., 1997, Rodríguez-1 

Concepción et al., 2004). Previous work on photopigment production demonstrated 2 

that light-responsive transcriptional factors HY5 and PIF1 control central carotenoid 3 

and chlorophyll biosynthetic genes (Huq et al., 2004, Toledo-Ortiz et al., 2010). In 4 

the case of phytoene synthase PIF1 and HY5 act as a module that antagonistically 5 

balance the expression of this key carotenogenic gene (Toledo-Ortiz et al., 2014). 6 

Our data demonstrate that via the same master-modulators, an additional higher-7 

order layer arises via the light-induced tune up of the MEP-pathway for the 8 

coordinated production of the precursors used for multiple compounds involved in 9 

photomorphogenesis. Such is the case of carotenoids and the phytol side chain of 10 

the chlorophylls.   11 

 12 

The gene products of the MEP pathway accumulate upon light-exposure 13 

(Botella-Pavía et al., 2004, Hsieh and Goodman, 2005, Cordoba et al., 2009), 14 

however the molecular mechanisms for this upregulation and its impact on the 15 

pathway are still not fully understood. The coordinated tuning by light of the MEP 16 

pathway genes leads to the possibility that common mechanisms regulate the 17 

expression of these genes in response to light. Here we show that the master 18 

regulators of light signals transduction HY5 and PIFs directly interact with the up-19 

steam elements of the flux-controlling DXS1, DXR and HDR genes (Estévez et al., 20 

2001, Botella-Pavía et al., 2004, Carretero-Paulet et al., 2006) and fine-tune their 21 

expression levels in response to light. This regulation involves the interplay and 22 

differential contribution of each factor for each gene, leading to unique 23 

transcriptional dynamics (Figure 7) that lead to changes in protein accumulation. 24 

Considering the flux-controlling capacity of DXS, DXR and HDR (Estévez et al., 25 

2001, Botella-Pavía et al., 2004, Enfissi et al., 2005, Carretero-Paulet et al., 2006, 26 

Banerjee et al., 2013, Ghirardo et al., 2014), the dynamics observed could 27 

importantly modify the flux through the pathway in response to the prevailing light 28 

environment.  29 

Our findings on the role of PIFs contrast to previous reports that concluded 30 

that DXS1 expression was not regulated by PIF1 (Toledo-Ortiz et al., 2010). This 31 
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discrepancy probably results from differences in the quantification of transcript 1 

levels through a lower-sensitivity microarray analysis compared to qRT-PCR and 2 

the kinetics of light induction at earlier or later time points, as all these genes 3 

present light/dark oscillatory patterns (Cordoba et al., 2009). In the case of PIF5, 4 

using overexpressing PIF5 cell lines it was concluded that this factor was the main 5 

positive regulator of all the MEP pathway genes without major participation for 6 

PIF1 or PIF3 (Mannen et al., 2014). However, in our study we did not observe 7 

major differences of PIF1, PIF3 and PIF5 contribution as negative regulators of the 8 

MEP pathway genes during de-etiolation and dark-adaptation. It is possible that 9 

these differences result from a dominant negative effect of PIF5-over-expression. 10 

Also, we cannot exclude that PIF5 activity could change in other developmental or 11 

environmental conditions as a result of interaction with other elements (Mannen et 12 

al., 2014). 13 

 Our studies demonstrate that the same key master integrators of light signal 14 

signals have the capacity to coordinate the core of the MEP pathway and its 15 

multiple outputs through particular mechanisms for each gene (Figure 7). DXS1 16 

expression is repressed in the dark by the direct binding of PIF1, probably through 17 

the PBE box (CACATG), whereas HY5 induces the expression of this gene in the 18 

light through direct binding to the nearby GCE element (ACGT). Despite the use of 19 

mild-over-expressors of PIF1 or HY5 for ChIP assays, the plant material likely 20 

resembles the behavior of the endogenous proteins, as these transgenic lines 21 

express comparable protein levels to the endogenous proteins, complement the 22 

pif1 and hy5 mutant phenotypes and maintain the dark/light dynamics imposed on 23 

these proteins by phytochromes and COP1, among others. Since PIFs/HY5 24 

targeted cis-acting elements are located very close to one another, it is likely that 25 

the binding of one regulator results in allosteric interference of binding the second 26 

regulator, resulting in an antagonistic mechanism. This regulation resembles the 27 

one described for the phytoene synthase (PSY) gene (Toledo-Ortiz et al., 2010, 28 

Toledo-Ortiz et al., 2014).  29 

 30 
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In contrast, the accumulation of HDR in the light results exclusively from the 1 

degradation of the PIF repressors upon light exposure, without contribution from 2 

HY5. PIF1 directly interacts with cis-elements in the regulatory region of HDR 3 

(Figure 7). The strongest candidate as binding-element is a PBE motif present 156 4 

bp upstream of the ATG.  5 

 6 

Finally, the expression of DXR accumulates in the light as a consequence of the 7 

direct interaction of HY5 to elements located around 1.2 Kb upstream of the ATG 8 

of this gene (Figure 7). In contrast, PIF1 has a weak interaction in more than one 9 

region of the HDR promoter (Figure 7). The weak interaction observed with PIF1 10 

could reflect that its binding capacity might depend on other PIFs. In agreement 11 

with this possibility our analyses demonstrate that in addition to PIF1, PIF3 and 12 

PIF5 also affect the expression level of the DXS1, DXR and HDR genes. 13 

Differential affinity of various PIFs for the promoters of MEP-pathway genes could 14 

result in modified kinetics of light-responsiveness and modulation by other 15 

environmental cues such as photoperiodism and the circadian clock. 16 

 17 

Other studies have demonstrated high affinity of PIF1 and HY5 for G-box elements 18 

in vitro and in vivo (Toledo-Ortiz et al., 2003, Huq et al., 2004, Oh et al., 2009, 19 

Zhang et al., 2013). None of the MEP pathway genes analyzed contain canonical 20 

G-boxes and our data support that for MEP-genes, the PBE box (CACATG) and 21 

the GCE element (ACGT) are the strongest candidates to bind PIF1 for HY5 22 

respectively. This differs and extends from the signal integration module 23 

established by G-boxes in the case of photopigment related genes. Our analysis 24 

from the DXS1::GUS transgenic lines carrying different promoter regions of the 25 

DXS1 also supports our ChIP data, positioning the important cis-acting elements 26 

within 300 bp from the transcription initiation site. It is worth to mention that with the 27 

DXS1::GUS transgenic constructs although we observed the same response trend, 28 

only a 2-fold increase between dark and light conditions was detected with high 29 

GUS activity in the dark. This is in contrast to the low DXS1 transcript levels found 30 

in the dark and its increase in response to light detected in our quantification 31 
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analyzes. This apparent discrepancy probably results from the accumulation of the 1 

GUS protein in the dark in the transgenic lines, as the stability of this protein is 2 

known to extend for more than 3 days (Kavita and Burma, 2008). Thus, in the case 3 

of DXS1, GUS is a good marker to identify regulatory cis acting elements but not 4 

for quantitative analyzes of its expression. 5 

 6 

 Hence together, our results indicate that the transcriptional regulation of 7 

MEP-pathway genes by PIFs-HY5 results in a unique dynamic behavior for each 8 

gene, providing additional flexibility to integrate inputs perceived by these master 9 

regulators, such as time keeping or temperature signals. Interestingly, the HY5 and 10 

PIF binding motives in DXS1 gene localize proximal to a potential CCA1 binding 11 

site (AAAATCT). CCA1 encodes a MYB-related protein that binds to Lhcb1*3 and 12 

that participates in the phytochrome regulation of this gene (Wang et al., 1997). 13 

This factor is  also an important component of circadian regulation in coordination 14 

of HY5 (Nagel et al., 2015). Since DXS1, as well as other genes of the MEP 15 

pathway are regulated by the circadian clock (Cordoba et al., 2009), it is possible 16 

that the enhanced regulatory dynamic imposed by a PIF/HY5 co-acting module 17 

would also bring unique capacity for the light and circadian regulation of DXS1 via 18 

interaction with circadian components such as CCA1.  19 

 20 

Importantly, we provide evidence that the differences in the transcript de-21 

repression/activation by light mediated by PIFs/HY5 reflects on changes at the 22 

protein level leading to unique protein dynamics. DXS1 follows a good 23 

correspondence with the transcriptional fluctuations including low protein level in 24 

the dark and accumulation in the light in a HY5/PIFs dependent manner, resulting 25 

in a significant difference in protein levels. These rapid changes in the protein 26 

accumulation in response to light supports the possibility of a rapid turnover for this 27 

protein and are consistent to its central role as a major flux controller of the 28 

pathway in diverse environmental and developmental conditions (Estévez et al., 29 

2001, Enfissi et al., 2005, Banerjee et al., 2013, Ghirardo et al., 2014, Wright et al., 30 

2014). However, we observed some discrepancies between the levels of the 31 
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transcript and their corresponding protein such as in the pifQ mutant, where only a 1 

1.5-fold increase after light exposure is detected. This result probably reflects post-2 

translational regulatory events over the DXS1 that adjust the level of this protein in 3 

response to the product demand, as has been previously reported (Pulido et al., 4 

2013, Pokhilko et al., 2015, Pulido et al., 2016). Thus, while transcription regulation 5 

of DXS1 plays an important role in control the levels of this enzyme post-6 

translational regulatory events also act as an additional layer of regulation that 7 

feedbacks metabolic requirements and impact upon the overall accumulation of 8 

this protein. 9 

On the other hand, HDR protein levels also reflect on the transcriptional regulation 10 

mediated by light, following a different dynamic that results from the de-repression 11 

of transcript levels in the dark with no further changes associated with the light. 12 

The accumulation of HDR in response to light might be important to fulfill the 13 

synthesis requirement of photopigments in coordination to DXS1. This result is 14 

consistent with the co-limiting role previously observed for HDR during carotenoid 15 

synthesis in dark/light transition and during fruit ripening (Botella-Pavía et al., 2004, 16 

Kim et al., 2009). This type or regulation could be particularly important in 17 

conditions where different levels of PIFs accumulate, such as photoperiodic 18 

conditions, and at the same time could limit the acute responses to the light signal. 19 

Finally, changes in the DXR protein accumulation in response to light was reflected 20 

in constant protein levels in the light within the time frame analyzed. This result is 21 

intriguing and it may reflect on particularities of the half-life of this protein or post-22 

transcriptional events that control protein abundance. Future analyses in this 23 

respect are important to address these possibilities.  24 

 25 

Overall, our data support a model where a differential contribution of the 26 

master light regulators PIFs and HY5 to light-modulated transcriptional effects 27 

reflects in protein changes in MEP-pathway flux-controlling enzymes DXS1 and 28 

HDR. The significance of this differential regulation may impact on multiple 29 

downstream pathways such as chlorophyll and carotenoid biosynthesis as well as 30 

hormone and secondary metabolite synthesis, maintaining a very sensitive 31 
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responsiveness to the prevailing external conditions. Our studies exemplify how 1 

differential multi-targeting of the initial steps of a pathway whose products multi-2 

branch downstream could impose a fine and unique modulation of all chloroplastic 3 

isoprenoids. 4 

 5 

Methods 6 

 7 

Plant Material and Growth Conditions. 8 

The Arabidopsis thaliana lines used in this work are in Columbia (Col-0) 9 

background. Seeds from pif1-2, pif3-3, pif4-2, pif5-2, and pifQ were kindly provided 10 

by P. Quail (University of California Berkeley). Seeds were grown on 1X Murashige 11 

and Skoog (MS) media with Gamborg vitamins (Phytotechology Laboratories, 12 

Shawnee Mission, KS) supplemented with 1% (w/v) sucrose and 0.8% (w/v) 13 

phytoagar and stratified at 4oC for 4 days. For the light gene expression analysis 14 

two treatments were used. For the dark-adapted treatment, seedlings were grown 15 

for 3 days in a 16 h light: 8h dark photoperiod at 120 µmol m2 sec-1, followed by 3 16 

day dark adaptation for the hy5, hy5hy5 and pif single mutants or 36 h for the pifQ. 17 

Light treatment was done using 6 h with (100 µmol m2 sec-1) cool white (Philips  18 

F25T8/TL841) or (40 µmol m2 sec-1) of red (Phillips LED module HF Deep Red 19 

177354) lights.  For de-etiolation experiments seedlings were exposed to 3 h of 20 

white light, transferred to darkness for 3 days and exposed to 6 h of red light (40 21 

µmol m2 sec-1). Control seedlings were maintained in darkness. Growth 22 

temperature was maintained between 21- 22C in all cases. 23 

 24 

Expression analysis 25 

Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA, USA) 26 

according to the protocol provided by the manufacturer. For northern-blot analysis, 27 

5 µg of total RNA was fractionated and transferred onto a Hybond-N+ nylon 28 

membrane (GE, Buckinghamshire, UK). Hybridizations and washes were 29 

performed under stringent conditions. Probes were 32P-radiolabeled using the 30 

Megaprime DNA labeling system (GE, Buckinghamshire, UK). All probes were 31 
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obtained by PCR amplification as previously reported (Guevara-García et al., 1 

2005). For qRT-PCR experiments seedlings were harvested in the dark for the 2 

dark samples and RNA extraction conducted using the RNeasy Plant Mini Kit 3 

(Qiagen) or TRIzol. Complementary DNA (cDNA) was obtained from DNase-4 

treated RNA with M-MLV Reverse Transcriptase kit (Invitrogen, Carlsbad, CA). The 5 

qRT-PCR experiments were performed using FastStart DNA MasterPLUS SYBR 6 

Green I (Roche) on an Agilent Technologies Stratagene MX3005P or a Light 7 

Cycler 480 Roche. Analyses were done with three independent experiments and 8 

technical duplicates were included in each case (n=2). The reference gene used in 9 

the qPCR analyses is ACT7 since the expression of this reference gene has been 10 

shown to not have major fluctuations in the conditions analyzed.  11 

 12 

DXS1 promoter analysis. 13 

From the transcriptional DXS1::GUS clone (Estévez et al., 2000), two 14 

additional clones were generated containing 750 bp and 660 bp deletions from the 15 

ATG of DXS1. The fragments were subcloned into the pBin19 binary vector and 16 

used to generate transgenic lines through Agrobacterium tumefaciens-mediated 17 

transformation into the Col-0 ecotype (Clough and Bent, 1998). At least three 18 

independent homozygous lines were selected for each construct and analyzed.  19 

 20 

GUS histochemical and fluorimetric analyses 21 

Three day-old etiolated seedlings exposed to light or dark for 6 h were 22 

stained using the GUS histochemical assay (Jefferson et al., 1987). Plants were 23 

clarified as reported (Malamy and Benfey, 1997) and visualized using a 24 

stereoscopic microscope (Nikon SMZ1500). For the fluorometric analysis the 25 

seedlings were homogenized in GUS extraction buffer (50 mM NaHPO4, pH 7.0; 10 26 

mM Na2EDTA; 1% Triton X-100; 0.1% N-lauroyl sarcosine and 10 mM -27 

mercaptoetanol). The enzymatic reaction was done using 5 µl of the extracts. 28 

Fluorometric quantification was done with TKO 100 fluorimeter (Hoeffer).  Specific 29 

activity was determined as nmol of methyl-umbelliferone per µg protein-1 per min-1. 30 

 31 
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Protein gel blot analysis 1 

Total protein was obtained from seedlings and 20 µg of the samples was 2 

separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The proteins 3 

were transferred onto nitrocellulose membrane (Amersham Protan Premium 0.45 4 

µm NC GE Healthcare Life Science). To verify equal loading, a parallel gel was run 5 

and stained with Coomasie blue.  Immunodetection was performed as previously 6 

reported (Guevara-García et al., 2005). Detection was done using the Luminata 7 

Crescendo Western HRP Substrate (Millipore, USA). Bands from three 8 

independent experiments were quantified by densitometric analysis using ImageJ 9 

software (Schneider et al., 2012). 10 

 11 

Chromatin Immunoprecipitation assays 12 

ChIP assays were conducted following the protocol reported previously 13 

(Moon et al., 2008) except that in our assays, 2 week old- seedlings were used. 14 

Plants were grown as described in (Toledo-Ortiz et al., 2014), and dark adapted for 15 

72h before light treatments and sample collection. Samples were collected for dark 16 

time points (0h, before lights on at the end of dark adaptation) or after 6 h 17 

illumination with red light (40 µmol m-2 s-1). Plant material used (35S::HA-HY5 in 18 

hy5-215  and 35S::TAP-PIF1 in pif1-2) was previously described (Lee et al., 2007, 19 

Moon et al., 2008) and kindly provided by the Deng Lab (Yale) and Huq Lab (UT 20 

Austin).  Both lines are mild-over expressors that complement the mutant 21 

phenotypes and show comparative levels and light responses to native PIF1 and 22 

HY5. . qRT-PCR was conducted on a Roche 480 Light cyler according to standard 23 

protocol by the manufacturer. The oligonucleotides sequences used to amplify 24 

upstream promoter regions of individual genes are shown in Table S1. Upstream 25 

sequences of the DXS1, DXR and HDR genes were analyzed for possible light 26 

responsive elements using SOGO New PLACE software 27 

(https://sogo.dna.affrc.go.jp/cgibin/sogo.cgi?sid=&lang=en&pj=640&action=page&p28 

age=newplace) and are shown in Figures S2, S3 and S4 (Higo et al., 1999). 29 

 30 

 31 

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004416#pgen.1004416.s010
https://sogo.dna.affrc.go.jp/cgibin/sogo.cgi?sid=&lang=en&pj=640&action=page&page=newplace
https://sogo.dna.affrc.go.jp/cgibin/sogo.cgi?sid=&lang=en&pj=640&action=page&page=newplace
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 30 

Figure Legends 1 

  2 

Figure 1. Transcriptional regulation of DXS1 by light. Histochemical expression 3 

of 3 day-old transgenic representative lines grown in the dark (a-c) or exposed to 6 4 

h of light (d-f) expressing the GUS marker from 1510 bp (a and d), 753 bp (b and e) 5 

and 660 bp (c and f) upstream sequences from the ATG of DXS1. (g) GUS specific 6 

activities from the dark (dark gray) or exposed to light (gray) transgenic lines. The 7 

induction level is reported relative to the mean of the specific activity (nmol of 8 

methyl-umbelliferone per µg of protein-1 min-1) of the corresponding dark sample. 9 

Each bar is the mean of three independent experiments and error bars represent 10 

±SD. The numbers above the bars indicate the P values according to a Student´s t 11 

test. 12 

 13 

Figure 2. Expression analysis of the DXS1, DXR and HDR genes in hy5 and 14 

hy5hyh mutants. Representative northern blots of DXS1 (a), DXR (b) and HDR 15 

(c), each lane contains 5 µg of RNA from 3 day-old dark-adapted seedlings 16 

maintained in the dark (D) or exposed to light for 6 h (L) from wild-type (Wt), hy5 17 

and hy5hyh mutants and hybridized with probes for the DXS1 (a), DXR (b) and 18 

HDR (c) genes. The 28S rRNA is shown as loading control. The membrane is 19 

representative of three independent biological experiments. qRT-PCR analysis of 20 

DXS1 (d), DXR (e) and HDR (f) transcript levels from Col-0, hy5 and hy5hyh dark-21 

adapted seedlings maintain in the dark (gray column) or exposed to 6 h of light 22 

(white column). Expression is normalized to the Col-0 dark samples and adjusted 23 

to Actin 7 (ACT7). Bars are means ±SE of triplicate biological experiments (each 24 

with n=2 technical replicas). The numbers bars indicate P values p<0.05 and the * 25 

marks statistical difference (p<0.05 ) between the light samples from the hy5 and 26 

hy5hyh mutants compared to the induction in the Wt according to a Student´s t 27 

test.  28 

 29 

Figure 3.  Expression analysis of the DXS1, DXR and HDR genes in the pif 30 

single mutants. Representative RNA blots of DXS1 (a), DXR (b) and HDR (c) 31 



 31 

from 3 day-old dark-adapted wild-type Col0 (Wt), pif1, pif3, pif4 and pif5 maintained 1 

in darkness (D) or exposed to 6 h light (L). The 28S rRNA is shown as a loading 2 

control (28S). Membranes are representative of three independent biological 3 

experiments. Analysis by qRT-PCR of DXS1 (d,g), DXR (e,h) and HDR (f,i) 4 

transcripts from Col-0, pif1, pif3, pif4 and pif5 (d-f) dark-adapted for 3 days (gray 5 

column) or 36 h for pifQ (g-i) and exposed 6 h of red light (white column). 6 

Expression is reported relative to the dark Col-0 sample and adjusted relative to 7 

Actin 7 (ACT7). Bars are means ±SE of triplicate biological experiments (each with 8 

n=2 technical replicas). The letter above the bars indicate P values p<0.05 9 

between dark (a) or light (b) of Wt compared to the mutants (Student´s t test). 10 

 11 

Figure 4.  Expression analysis of the DXS1, DXR and HDR genes in the hy5, 12 

pif single mutants and pifQ during de-etiolation. qRT-PCR analysis of DXS1 13 

(a), DXR (b) and HDR (c) genes from etiolated seedlings of Col-0, hy5, pif1, pif3, 14 

pif4, pif5 and pifQ maintained in the dark (gray columns) or exposed to 6 h of red 15 

light (white columns) relative to the Col-0 dark samples and adjusted relative to 16 

Actin 7 (ACT7). Bars are means ±SE of triplicate biological experiments (each with 17 

n=2 technical replicas). The letter above the bars indicate values (p<0.05) 18 

decrease (a and b) or increase (c and d) between the dark (a and c) or light (b and 19 

d) values between the Col0 and the mutants (Student´s t test). 20 

 21 

Figure 5.  Chromatin immunoprecitation assays for 35S::TAP-PIF1 and 22 

35S::HA-HY5 in dark-adapted seedlings. Diagrams of the upstream regions of 23 

DXS1, DXR and HDR genes. Primers used for the analyses (arrows) and the 24 

potential PIFs (black) and HY5 (gray) binding elements (rectangles). ChIP of three 25 

days dark-adapted TAP-PIF and HA-HY5 transgenic seedlings (Lee et al., 2007, 26 

Moon et al., 2008) maintained in the dark (grey zone) or exposed to 6h red-light 27 

(clear zone). ChIP was conducted using specific antibodies against MYC for  PIF1 28 

the HA for HY5. 35S::GFP-TAP or 35S::GUS-HA lines were used as controls for 29 

unespecific binding. The ChIP/qPCR was done using specific primer pairs (F, 30 

forward primer and R, reverse primer) covering the regions containing putative 31 



 32 

binding elements. ChIP-enriched DNA regions of the TAP-PIF DXS1 (a and c), 1 

DXR (e,g and i) and HDR (k) or for HA-HY5 DXS1 (b and d) DXR (f,h and j) and 2 

HDR (l) samples. The bars are the mean ± SE of triplicate independent 3 

experiments (each with technical duplicates n=2). The asterisk indicate the values 4 

with significance (p<0.05) between the negative control according to a Student´s t 5 

test. 6 

 7 

Figure 6. Protein accumulation of the DXS1, DXR and HDR in mutants of the 8 

HY5 and PIFs. (a) Immunoblots with 20 µg of protein extracts from seedlings dark-9 

adapted for 3 days (Col-0, hy5, pif1, pif3, pif4 and pif5) or 36 h (pifQ) and 10 

maintained in the dark (D) or exposed to 6 h light (L) using specific antibodies for 11 

DXS1, DXR or HDR proteins. A Coomassie blue–stained gel (Coo) is shown as a 12 

loading control. A representative gel from three independent biological experiments 13 

is shown. (b) Densitometric analyses of the DXS1, DXR and HDR protein levels 14 

from Col-0, hy5, pif1, pif3, pif5 and pifQ immunoblots from the dark (grey bars) or 15 

exposed to 6 h light (white bars) samples. The expression level is reported relative 16 

to the Col-0 light samples and adjusted to the corresponding loading control. The 17 

bars correspond to the average of three independent biological experiments ± SD 18 

of biological triplicates.  19 

 20 

Figure 7. Model of the differential light regulation of DXS1, DXR and HDR 21 

gene expression to modulate the MEP pathway. Light via phytochrome (Pfr) 22 

results in the degradation of PIFs and in the accumulation of the HY5.  For the 23 

DXS1, Pfr accumulation inhibits the direct repression of PIF1 (solid arrow), PIF3 24 

and PIF5 (dashed arrows) and the activation of HY5 (solid arrow). For DXR, Pfr 25 

impairs the weak repression of PIF1 in multiple sites (solid arrows), PIF3 and PIF5 26 

(dashed arrows). Light via HY5 activate DXR (solid line). Finally, Pfr accumulation 27 

induces HDR expression through the degradation of the PIFs. The dashed arrows 28 

mean that a direct interaction was not experimentally demonstrated. The thickness 29 

of the arrows reflects the RNA levels and the enrichment detected in the ChIP 30 
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analyses. The orange arrow reflects the dynamic of the light activation observed for 1 

each gene. 2 
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