
Structural Learning of Activities from Sparse
Datasets

Fahd Albinali1, Nigel Davies1,2, and Adrian Friday1

1 University of Arizona, Tucson AZ 85704, USA,
albinali@cs.arizona.edu

2 Lancaster University, Lancaster LA1 1WB UK,
{nigel,adrian}@comp.lancs.ac.uk

Abstract. A major challenge in pervasive computing is to learn activ-
ity patterns, such as bathing and cleaning from sensor data. Typical
sensor deployments generate sparse datasets with thousands of sensor
readings and a few instances of activities. The imbalance between the
number of features (i.e. sensors) and the classification targets (i.e. ac-
tivities) complicates the learning process. In this paper, we propose a
novel framework for discovering relationships between sensor signals and
observed human activities from sparse datasets. The framework builds
on the use of Bayesian networks for modeling activities by representing
statistical dependencies between sensors. We optimize learning Bayesian
networks of activities in 3 ways. Firstly, we perform multicollinearity
analysis to focus on orthogonal sensor data with minimal redundancy.
Secondly, we propose Efron’s bootstrapping to generate large training
sets that capture important features of an activity. Finally, we find the
best Bayesian network that explains our data using a heuristic search
that is insensitive to the exact ordering between variables. We evaluate
our proposed approach using a publicly available data set gathered from
MIT’s PlaceLab. The inferred networks correctly identify activities for
85% of the time.

1 Introduction

A central theme in pervasive computing is the need to build systems that use
low-level sensor data to identify the Activities of Daily Living (ADLs) (such
as cleaning or bathing). Recently, there has been significant progress in this
area including (a) deploying real systems that extract information from a va-
riety of sensors [1], (b) developing and extending machine learning approaches
that model activities including Bayesian [2], Markov [3], Neural [4], and rule-
induction [5] classifiers and (c) studying specific domains to identify relevant
context information which in turn can be used to support activity recognition
[6].

The vision of developing systems that recognize ADLs has been driven by nu-
merous compelling applications. For example, in the medical field, professionals
believe that changes in the activities of daily living such as eating, showering etc.

are important in the detection of emerging medical conditions and that moni-
toring the daily activities of people can reduce the number of low risk cases that
come into hospitals – thereby reducing the financial burden on health systems
and allowing more focus on patients at higher risk [6].

A major challenge in learning ADL patterns is the lack of large training sets
that reflect accurate aspects of an activity. For instance, existing deployments
such as the PlaceLab generate thousands of sensor readings along with only tens
of instances of activities. Such sparse data cannot be used to learn a complete
model of an activity. However, such sets contain important information that
may reflect sensor patterns during activities. The goal is therefore to separate
important sensor signals from noisy ones and to identify true relationships from
spurious ones.

In this paper, we propose a novel framework for discovering relationships
between sensor signals and observed human activities from sparse datasets. The
framework builds on the use of Bayesian networks for modeling activities by
representing statistical dependencies between sensors. We extend earlier efforts
in three fundamental ways. Firstly, we perform multicollinearity analysis to fo-
cus on orthogonal features of our data (i.e. features with minimal redundancy).
The goal here is to eliminate aspects of the data that do not contribute addi-
tional information. Secondly, we propose Efron’s bootstrapping to generate large
training sets that capture important features of each activity. Bootstrapping is
a non-parametric technique that resamples with replacement from the original
data. The underlying intuition is that bootstrap runs will emphasize consistent
features in our original data thereby facilitating learning. Finally, we find the
best Bayesian network that explains our data using a heuristic search that is
insensitive to the exact ordering between variables. We specifically eliminate the
bias due to the ordering between consecutive variables. We evaluate our proposed
approach using a publicly available data set gathered from MIT’s PlaceLab. The
inferred networks correctly identify activities for 85% of our validation set.

2 Background

Most work on recognizing activities has centered on using statistical methods
to build relationships between observed sensor data and ADLs. For example,
the MARC home project [7] used mixture models and hierarchical clustering
to detect breakfast and dinner preparation activities in the kitchen. Both ac-
tivities were detected with high accuracy. Näıve Bayesian classifiers were used
by researchers at MIT [1] to detect ADLs in home settings using environmen-
tal state-change sensors. For 13 ADLs, the percentage of time that an activity
was correctly detected peaked at 31%. The Guide project [8] used unsupervised
methods (that do not require activity labeling) to detect activities using RFID
tags placed on objects. This method relied on "large quantities of reliable sensed
data about activities"and achieved good recognition accuracy . More recently,
Proactive Activity Toolkit (PROACT) [2] used dynamic Bayesian networks and
RFID tags to build ADL models. Subjects were given task sheets for 14 differ-

ent activities that were performed using a glove equipped with an RFID reader.
When the reader failed to capture a particular touch, subjects were asked to
retouch objects. PROACT successfully inferred that an activity occurred 88%
of the time. Finally, Doctor et al. [5] used fuzzy rule induction and genetic pro-
gramming to construct rule sets for activities from sensor data. This approach
examined 10 different activities and produced 306 rules to predict ADLs.

Many factors contribute to the difficulty in recognizing ADLs including: first,
ADLs may vary in their frequency of occurrence from once a week to a number of
times per day (e.g. washing clothes vs. going to the bathroom). The infrequency
of many ADLs prevents the collection of sufficiently large data sets with balanced
ADL entries. This in turn complicates the task of learning ADL patterns.

Second, human action is not always purposeful [9] and therefore observable
action (that is captured by sensors) may not correlate to particular activities.
This increases noise in ADL data sets and makes them difficult to analyze.

Third, many ADLs consist of logical sequences of sub-activities (e.g. cooking
includes chopping, frying, serving etc.) and typically involve the firing of com-
plex combinations of sensors. However, many ADL recognition methods do not
explore different structural dependencies between sensors that in turn reduces
model accuracy.

In the remainder of this paper, we present three techniques to address the
above challenges. Section 3 discusses our approach to generating small feature
vectors with minimal redundancy from raw sensor data. Section 4 describes
bootstrapping as a method to generate large activity samples that emphasize
important aspects of each activity. We then discuss how to learn Bayesian net-
works and present a heuristic search approach in section 5. Section 6 outlines our
algorithm. Section 7 evaluates our approach. Finally, we conclude and discuss
future work in section 8.

3 Feature Encoding and Selection

Proximity to objects has been the most critical aspect in modeling activities.
Activations of proximity sensors are typically encoded to incorporate tempo-
ral information such as quantitative relationships (e.g. stove sensor fired during
cooking) or qualitative relationships (e.g. the shower sensor fired after the bath-
room light sensor). Intille et al. shows that low-order temporal relationships be-
tween sensor activations are sufficient for recognizing ADLs using näıve Bayesian
classifiers [10].

We use a similar approach to encode our data. First, we discretized sen-
sor readings based on fixed thresholds. A possible criticism of discretization is
that it penalizes sensors whose range of variation is small: because with a fixed
threshold, we would not capture small changes. This turned out to be not critical
because most of our sensor readings can be interpreted in a discrete manner. For
instance, although current sensors measure continuous current flows, we easily
distinguished 2 levels of current flow that indicate that a device is either on or off.
Second, we encode consecutive sensor readings into a single feature vector where

F (Si, Sj) = 1 implies that sensor Si fired before sensor Sj and F (Si, Sj) = 0
implies that sensor Si did not fire before sensor Sj .

In a setup of N sensors, we have NxN features that can be included in our
model and therefore reducing the number of features is critical. We use 2 ap-
proaches to reduce the number of features for an activity. First, we only consider
the features that fire in our training data during the activity. Second, we perform
a multicollinearity analysis on the remaining features to discard those that are
linearly correlated.

Multicollinearity analysis describes a statistical method to determine if columns
of a matrix behave in a correlated manner. Specifically, we apply eigen decompo-
sition on the correlation matrix of our features to determine linearly dependent
features. This splits the data into orthogonal eigen vectors where associated eigen
values reflect the magnitude of each vector. Ideally, all eigen values should be
large reflecting that all orthogonal vectors are important and that there is mini-
mal redundancy. The presence of small eigen values points to multicollinearities
in the data (i.e redundancy).

Based on the eigen values, we choose the set of features with minimal redun-
dancy (i.e. the most linearly uncorrelated). The intuition is that features that
change together do not contribute any additional information to the learning
process, instead they complicate the search for a solution and therefore such
features should be eliminated. By applying this concept, we reduced our feature
set without losing critical information.

4 Bootstrapping for Model Induction

Unlike typical applications of learning from data, sensor data from pervasive en-
vironments pose unique challenges. Firstly, pervasive environments are equipped
with hundreds of sensors that are sampled at high rates. This generates large
feature sets with many readings that can easily suppress the true signal of an
activity. Secondly, there is a clear imbalance between the frequencies of activities
and the amount of sensor readings that pervasive setups generate. Such sparse
data cannot be used to learn a complete model of an activity and can easily
skew model parameters to extreme values.

To overcome the above challenges, we propose the use of Efron’s non-parametric
bootstrapping for data generation and subsequently model induction. The idea
behind bootstrapping is that if an activity sample is a good approximation of
the true activity, a sampling distribution can be estimated by generating a large
number of new samples (called pseudo samples) by randomly sampling with
replacement from the original data set. Therefore, if sensor S fires consistently
within a particular activity A, then we should be able to detect that in our boot-
strap runs. If only a small fraction of our bootstrap samples reflect the presence
of S in A then probably S is unrelated to A.

We bootstrap both training and validation samples of our features for all
activities. Using the generated data, we invoke the search algorithm to learn a

Stove
Sensor

Kitchen

Light

Motion
Sensor

Cooking

{0, 1} {0, 1} {0, 1}

{0, 1}

P(Cooking| Stove, Light,
Motion}

Features

),...,,(
21 n

XXX

Activity

Pattern

Fig. 1. Mathematical Structure of a Bayesian Network

Bayesian network for each activity. We then validate our results with respect to
the bootstrap runs of our validation samples.

5 Learning Bayesian Networks

We summarize learning of Bayesian networks from data. For a more detailed
exposition, we refer the reader to [11].

Consider a finite set of independent discrete random variables X = X1, ..., Xn

where each variable Xi may take on values from a finite set. A Bayesian network
is a Directed Acyclic Graph (DAG) that describes relationships of probabilistic
dependency between the above variables. More formally, a Bayesian network BN
is a pair < G, Θ >. G is a DAG whose nodes represent the random variables
in X and whose edges represent probabilistic dependencies between the vari-
ables. Θ represents the parameters of the Bayesian network including estimates
of the prior distributions for root nodes and estimates of the conditional distri-
butions for each edge. Therefore, a learned Bayesian network defines a unique
joint probability distribution over X given by:

PBN (X1, ..., Xn) =
n∏

i=1

PBN (Xi|parents(Xi))

Figure 1 shows the mathematical structure of a node in a Bayesian Network.
Given some training data D = d1, ..., dm where di represent an assignment to

the discrete random variables in our model, the problem of learning a Bayesian
network involves two components: a scoring metric and a search procedure. The
scoring metric measures the goodness-of-fit of the learned network to the training
data D. This metric has to possess 3 properties. First, structure equivalence that
means that for any two networks with identical structures, the score must be
the same. Second, the score should be decomposable which means it can assess

the exact gain or loss due to adding, removing or changing the direction of an
edge in a network. Finally, the score should have a closed form. The second
component of the learning algorithm is a search procedure for the network with
the highest score which is known to be NP-hard [12] . Instead, heuristic searches
are typically used such as hill-climbing to find approximate solutions.

It is important to emphasize that the network structures that are discovered
are sensitive to the search algorithm. For instance, hill-climbing techniques will
often produce a set of networks that are very similar in structure as the algorithm
converges to a solution. This is a serious limitation since we run the risk of over-
restricting our search for dependencies among variables. Next, we describe a
novel technique that performs a polynomially bounded search of networks that
have fundamentally different structures.

6 Efficient Structural Learning of Activities

A basic method for learning a Bayesian network uses K2 hill-climbing [13] where
arcs from a fixed ordering of variables (i.e. nodes) are added to each node to
maximize the probability that the network is correct, given the data using Bayes
formula:

P (N |D) = P (N)P (D|N)
P (D)

The probability of the data D, given our network, N, assumes a Dirichlet
prior which is given by Cooper and Herskovits [13].

A major limitation of the above approach is sensitivity to the order of intro-
ducing arcs into the model. For instance, the impact of an important dependency
between two variables can be suppressed by less critical dependencies because
they were explored earlier in the list of variables. It should be noted that perform-
ing an exhaustive search for all possible networks is infeasible because searching
for an optimal network is NP-hard.

Instead, we circumvent the limitation imposed by ordering by using a greedy
search algorithm that is insensitive to ordering between consecutive nodes. Our
algorithm examines the networks that are generated by the dihedral groups of
our features. A dihedral group of n features is a set of permutations that include
n rotations and n reflections of the features. Figure 2, shows the dihedral groups
for 3 features. The intuition behind using these permutations is that rotations
allow each sensor to be entered at least once as the first element in the learner
thereby having the highest impact. Reflections switch the ordering of every 2
consecutive features thus eliminating the bias due to consecutive node ordering.
More importantly, for n features we have 2n dihedral permutations which sets a
polynomial upper bound on the number of networks to explore.

For each permutation, we use K2 hill-climbing [13] to learn the best network
structure from independent bootstrap samples. We then choose the network with
the highest score as the best classifier for an activity. Details of the algorithm
are given in figure 3.

321
FFF

312
FFF

213
FFF

132
FFF

231
FFF

123
FFF

Reflection

Reflection

Reflection

Rotation

Rotation

Fig. 2. Dihedral Permutations of 3 Features

Input:

A set of m activities

For each activity i, a set of in sensor readings during the activity

An upper bound k on the number of parents for each node

Algorithm:

iFM is a feature matrix for ia where nullFM i =

tF is an mm nn × feature vector at time t, nullFt =

For each second t in activity ia : maa →1

Construct tF for ia such that 1),(=jiFt if issensor fired before jssensor at time t

iFM =append(iFM , tF) // includes only sensors that fired

For each activity ia : maa →1

iC =CorrelationMatrix(iFM)

Perform Eigen Decomposition on iC

Eliminate Features that correlate with small eigen values from iFM

iT = Generatre training set for ia by resampling k instances with replacement

iV = Generatre validation set for ia by resampling 'k instances with replacement

Generate the dihedral permutations iP of the features in iFM

For each permutation ijp in iP

Use K2 hill-climbing to learn network ijB from iT

Compute the priors and conditional probabilities for ijB

Evaluate the network against the training set iT

Store the network that scores best on the training set in iBN

Randomly shuffle all validation sets

Run all learned networks in parallel against the validation sets

Pick the class that has the highest probability

Output:

The classification accuracy for each activity in our validation set.

Fig. 3. Structural Learning Algorithm

7 Evaluation

We wanted to evaluate our approach using data sets from realistic settings where
users perform everyday activities in environments that resemble their homes.
Users should be able to multi-task their activities, determine their sequence
and pace, interact with other people and engage in complex behaviors without
interruptions. More importantly, we wanted to minimize the bias in our data sets
that may result from imposing specific activities on users or installing sensors in
ways that improve recognition of specific activities.

We found one publicly available dataset that fit our criteria from MIT’s
PlaceLab [14]: a live-in laboratory in Cambridge, MA. The PlaceLab data was
recorded on March 2005 for 4 consecutive hours where a researcher performed a
set of common household activities. The researcher determined the type of ac-
tivities, their sequence, their pace and whether they overlap. As the researcher
conducted the activities, data was sampled from approximately 300 sensors such
as current flow sensors and switch sensors. 9 infrared cameras and 9 color cam-
eras were used to record activities throughout the space. Subsequently, trained
annotators used the video feeds to annotate the sensor data with appropriate
activity labels. This approach has at least two advantages: (1) users are not
required to annotate their own activities and therefore have a more realistic
experience in the space. (2) With video records, annotators can easily label ac-
tivities at different granularity (e.g. a user is chopping vegetables and cooking).
More information about the data set and its format can be found in [14].

7.1 Methodology

In our analysis, we looked at 24 different activities. 21 activities had at least 2
samples and therefore we were able to run independent bootstraps for training
and validation data. 3 activities had 1 sample that we used for bootstrapping
both our training and validation data.

We considered data from 286 sensors including: switch sensors that detect on
and off events such as doors being opened or closed, light sensors that measure
the degree of illumination in different areas, gas sensors that measure amount
of gas flow to the water heater and stove burners, current sensors that detect
current flows in 43 different circuits, water sensors that measure the amount of
water flow for different faucets and toilets and MITes sensors that measure the
movement of different objects.

The raw sensor data is initially preprocessed to obtain feature vectors of
the form described in section 3. These feature vectors reflect sensor activity
during every second of an activity. Multicollinearity analysis is then performed
on the discrete features to eliminate linearly dependent features. The number
of features is selected such that at least 90% of the variability in the data is
maintained with an upper bound of 25 features per activity for computational
reasons. This resulted in an average of 15 features per activity.

Using 2 sets of independent samples for each activity, we applied non-parametric
bootstraps to generate 100 instances for training and 20 instances for validation

per activity. The training samples are given to our search algorithm that finds
the best Bayesian network that explains our data. The search procedure uses K2
hill-climbing with restarts that examine the dihedral groups of our features. For
24 activities, the search algorithm generated 24 Bayesian networks.

Table 1. Percentage of time activity detected

Activity Examples Features BNT BNT-1FT BNT-5FT BNT-RS RG

Cleaning a surface 7 15 88% 85% 28% 88% 4%

Cleaning 3 13 88% 69% 31% 82% 4%

Dishwashing 3 12 85% 69% 15% 38% 4%

Disposing Garbage 3 6 83% 52% 17% 67% 4%

Drinking 7 22 92% 84% 56% 20% 4%

Drying Dishes 3 19 88% 83% 38% 13% 4%

Eating a meal 3 23 94% 91% 43% 94% 4%

Handwashing Dishes 13 24 94% 90% 52% 75% 4%

Laundry 2 17 89% 78% 76% 97% 4%

Listening to music 1 22 92% 88% 58% 89% 4%

Making the bed 4 8 67% 57% 22% 78% 4%

Meal preparation 6 16 91% 85% 45% 91% 4%

Measuring 3 11 90% 80% 10% 90% 4%

Mixing and Stirring 9 17 92% 92% 50% 29% 4%

Mopping 4 25 93% 85% 81% 19% 4%

Preparing Food 2 9 75% 58% 8% 67% 4%

Preparing Meal 3 18 67% 71% 38% 95% 4%

Putting away laundry 1 14 87% 80% 27% 33% 4%

Retrieving ingredients 10 11 83% 74% 18% 92% 4%

Sweeping 3 7 71% 57% 29% 71% 4%

Using a computer 10 21 96% 88% 46% 95% 4%

Using a phone 6 3 68% 67% 33% 67% 4%

Washing Ingredients 1 18 90% 86% 50% 90% 4%

Watching Movies 3 5 80% 60% 24% 80% 4%

Mean 4.5 15 85% 76% 37% 70% 4%

7.2 Accuracy Analysis

To assess the accuracy of our approach, we randomly shuffled the activities in
our validation set. Each activity had 20 instances for a total of 480 activities.
We gave the feature sequences of each activity (without segmenting between
activities) to our inference software that assessed the 24 Bayesian networks in
parallel. A history of 10 seconds is used in setting the nodes of the Bayesian
networks.

The inference software returns the most likely activity (for each second) based
on a stringent criteria where a valid classification should have a probability that

is at least double the probabilities of other classifiers. Therefore a classification
with probability 0.9 and 0.6 from BN1 and BN2 is inadmissible.

Table 1 shows the results for 24 ADLs in the column labeled BNT. Our
networks correctly inferred that an activity occurred 85% of the time. This is
significantly better than the random guess case (shown in table 1 in the RG
column) which would yield an average of 4% in terms of classification accuracy.
Our best performance was 96% for 'using a computer' which simply involved
features of sensors located in the office area. This activity had a unique spatial
locality that did not overlap with other activities. The worst performance was
for 'preparing a meal' and 'making the bed'. The former activity significantly
overlapped with 'preparing food' with respect to the underlying features. The
latter activity generated a small number of sensor activations and was detected
towards the end of the activity.

7.3 Robustness Analysis

We performed a number of tests to analyze the robustness of our procedure.
We examined one particularly interesting hypothesis, namely whether accuracy
increases as the number of features in our model increases. In classification prob-
lems, adding irrelevant features can degrade performance. We performed a re-
gression fit between accuracy and the number of features followed by a hypothesis
test. We found strong evidence that an increase in the number of features leads to
improved accuracy (p < 0.0001). This result comes at no surprise, since we care-
fully selected orthogonal features to include in our model using multicollinearity
analysis.

We also tested the robustness of our analysis to the addition of linearly de-
pendent features. For each activity, we randomly selected 1 and 5 features with
collinearity to the original feature set. We then added those features to our train-
ing and validation data and retrained our models. Table 1 shows the results of
adding 1 and 5 features in the columns BNT-1FT and BNT-5FT respectively.
As expected, the average classification accuracy dropped from 85% to 76% with
1 added feature and to 37% with 5 added features. 'Preparing Meal' was an ex-
ception where accuracy slightly increased by adding 1 feature. In this particular
instance, we randomly picked the second least correlated feature to add. This
feature still explained part of the variability in our data and therefore led to
a slight improvement. However, the results clearly validate our methodology in
selecting important features to include in our learning procedure.

Finally, we wanted to test our search procedure (that uses the dihedral per-
mutations) against standard K2 hill-climbing with random restarts where the
order by which arcs are added to a particular node from other nodes is random.
The results of the randomized algorithm are shown in table 1 in the column
labeled BNT-RS. Our approach outperformed the randomized algorithm by an
average of 15% across all activities. However, this result is not consistent for
all activities. In several instances, the randomized algorithm arrived at a better
solution such as 'Preparing Meal' . This came at a cost where accuracy dropped
for another overlapping activity namely 'preparing food' . More interestingly, the

randomized algorithm gave identical results to our algorithm for many activities
which may suggest that order between consecutive features is not critical for
those activities. However, we emphasize that both algorithms start with iden-
tical and orthogonal features which demonstrates the importance of our initial
selection criteria and may explain why both algorithms arrived at similar con-
clusions.

8 Conclusion

This paper proposes a novel methodology for modeling activities from sparse
datasets. Our work addresses a fundamental problem that arises in practical de-
ployments: the imbalance between the number of activities and the number of
sensor readings. Whereas previous efforts attempt to learn directly from sparse
data, we focus on overcoming the sparsity of the available data. Initially, multi-
collinearity analysis eliminates redundant information in our data. Efron’s boot-
strapping is then used to generate training and validation sets from independent
samples. Finally, we find the best Bayesian network that explains our data using
a heuristic search that is insensitive to the exact ordering between consecutive
variables. Our networks achieve an average accuracy of 85% and perform more
consistently than hill-climbing with random restarts across 24 different activities.

It is important to note that our approach does not necessarily learn a com-
plete model of an activity. However, without our proposed optimizations it would
be difficult or perhaps impossible to learn patterns from sparse data. Moreover,
many statistical assumptions will fail because of the lack of sufficiently large
data sets. Instead, our approach emphasizes consistent aspects of the data and
tries to search for a consistent feature profile of an activity.

Our plans for future work include exploring the causality relationships be-
tween the nodes in our Bayesian networks. A Bayesian network captures the
probabilistic dependencies between a set of variables. This may or may not re-
flect causal relationships between the variables involved. We are interested in
identifying pairs of nodes that have a causal relationship between them to at-
tach meaning to our networks and to engage users in more intimate interactions.
For example, users may be able to ask why the system incorrectly classified an
activity and then attempt to correct system behavior by inducing some bias.

References

1. Tapia, E., Intille, S., Larson, K.: Activity recognition in the home setting using
simple and ubiquitous sensors. LNCS Springer-Verlag 3001 (2004)

2. Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H.,
Hahnel, D.: Inferring activities from interactions with objects. IEEE Pervasive
Computing 3(4) (2004) 50–57

3. Oliver, N., Horvitz, E., Garg, A.: Layered representations for recognizing office
activity. The Fourth IEEE International Conference on Multimodal Interaction
(2002) 3–8

4. Mozer, M.C.: The neural network house: An environment that adapts to its in-
habitants. AAAI Spring Symposium (1998) 110–114

5. Doctor, F., Hagras, H., Callaghan, V.: An intelligent fuzzy agent approach for
realising ambient intelligence in intelligent inhabited environments. IEEE Trans.
On Systems, Man and Cybernetics 35(1) (2005) 55–65

6. Dalal, S., Alwan, M., Seifrafi, R., Kell, S., Brown, D.: A rule-based approach to
the analysis of elders activity data: Detection of health and possible emergency
conditions. AAAI Fall 2005 Symposium (2005)

7. Barger, T., Alwan, M., Kell, S., Turner, B., Wood, S., Naidu, A.: Objective remote
assessment of activities of daily living: Analysis of meal preparaion patterns. Poster
Presentation (2002) Medical Automation Research Center, University of Virginia
Health System.

8. Philipose, M., Fishkin, K., Fox, D., Kautz, H., Patterson, D., Perkowitz, M.G.:
Towards understanding daily life via auto-identification and statistical analysis.
UbiHealth Workshop. UbiComp (2003)

9. Mises, L.: Human Action: A Treatise on Economics. Fox & Wilkes (1966)
10. Intille, S., Larson, K., Tapia, E., Beaudin, J., Kaushik, J.: Using a live-in laboratory

for ubiquitous computing research. LNCS Springer-Verlag (2006)
11. Pearl, J.: Graphical models, causality and intervention (1993)
12. Chickering, D.: Learning bayesian networks is np-complete (1995)
13. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic

networks from data. Machine Learning 09(4) (1992) 309–347
14. Intille, S.S., Larson, K., Beaudin, J.S., Nawyn, J., Tapia, E.M., Kaushik, P.: A liv-

ing laboratory for the design and evaluation of ubiquitous computing technologies.
In: CHI ’05: CHI ’05 extended abstracts on Human factors in computing systems,
New York, NY, USA, ACM Press (2005) 1941–1944

