Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

Aspinall, M.D. and Jones, A.R. (2018) Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development. EPJ Web of Conferences, 170. ISSN 2100-014X

Full text not available from this repository.

Abstract

Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photomultiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

Item Type:
Journal Article
Journal or Publication Title:
EPJ Web of Conferences
ID Code:
129359
Deposited By:
Deposited On:
05 Dec 2018 16:26
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Jan 2020 11:41