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SeDaTiVe: SDN-enabled Deep Learning
Architecture for Network Traffic Control in
Vehicular Cyber-Physical Systems

Abstract—The rapid growth in the transportation sector has led to the emergence of smart vehicles which are equipped with information
and communication technologies (ICT). These modern smart vehicles are connected to the Internet to have various services such as
road condition information, infotainment, and energy management. This kind of scenario can be viewed as vehicular cyber-physical
system (VCPS) where the vehicles are at physical layer and services are at cyber layer. However, network traffic management is
the biggest issue in the modern VCPS scenario as the mismanagement of the network resources can degrade the quality of service
(QoS) for the end users. To deal with this issue, we propose a software defined network (SDN)-enabled approach, named SeDaTiVe,
which used deep learning architecture to control the incoming traffic in the network in VCPS environment. The advantage of using
deep learning in network traffic control is that it learns the hidden patterns in the data packets and creates an optimal route based on
the learned features. Moreover, a virtual controller based scheme for flow management using SDN in VCPS is designed for effective
resource utilization for providing QoS. The simulation scenario comprising of 1000 vehicles seeking various services in the network is
considered to generate the dataset using SUMO. The data obtained from the simulation study is evaluated using NS-2 which proves
that the proposed scheme effectively handles the real-time incoming requests in VCPS. The results also depict the improvement in
performance on various evaluation metrics like delay, throughput, packet delivery ratio, and network load by using the proposed scheme

over the traditional SDN and TCP/IP protocol suite.

Index Terms—Traffic control, deep learning, software-defined network, vehicular cyber-physical system.

1 INTRODUCTION

‘ x J 1TH the evolution of smart communication infrastructure

and technologies, a paradigm shift has been witnessed
towards provision of enhanced quality of experience (QoE) to
the end users. Moreover, an exponential increase in the usage
of smart devices has led to the popularity of one of the most
powerful technologies of the modern era that is called as Internet
of Things (IoT) [1], [2]. Using the IoT ecosystem, end users can
control various smart devices across the globe during movement
in their smart vehicles. With the advent of communication-enabled
vehicles, users can access various services on-the-go as per their
needs from anywhere which leads to the popularity of vehicular
cyber-physical systems (VCPS). In VCPS, on the physical plane,
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smart vehicles act as the smart objects which can perform the
task of computing (for example, algorithm execution) and sensing
(data collection) along with interaction with different smart objects
such as sensors, vehicles, or access points [3]. In the cyber
plane, the underlying network provides various services (such as
infotainment, itinerary management, etc.) to the end users.

However, despite their advantages, VCPS have to face various
challenges which need to be tackled by designing new solutions.
For example, network selection for data offloading while consid-
ering the high vehicular/user mobility is a difficult task. Secondly,
smooth hand-off with respect to high mobility of the vehicles
is also challenging. Security and privacy of the data gathered
from different sensors is another concern. Among other issues,
data analytics and forecasting to take adaptive routing decisions
are the major concerns. These issues have escalated due to the
existence of enormous intelligent devices and data generated from
them. The data generated from these devices is heterogeneous in
nature, which need an appropriate data analytical scheme to make
intelligent decisions with respect to network traffic control so as
to provide better QoE to the end users. Moreover, the exponential
growth in the rate at which the traffic is injected in recent years has
increased the overall burden on the network which degrades any
designed solution. This is evident from Fig. 1, which shows the
growth in the overall global traffic and the mobile to mobile traffic
[4]. So, to cater these ever increasing traffic requests, an efficient
traffic control strategy is required, which increases the network’s
quality of service (QoS) and user’s QoE.

Many researchers have focused on the different aspects related
to VCPS and traffic control in recent years. For instance, Wan
et al. [5] designed an architecture to integrate the VCPS and the
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Fig. 1: Growth in (a) Global Internet traffic over the years (b) Internet traffic by regions (c) Yearwise mobile to mobile traffic [4].

mobile cloud to provide various vehicular traffic related services
to the users. Similar architecture has also been presented in [6]
which integrates ground vehicles and cloud computing paradigm.
However, to provide the services in such environments in an
efficient way, the network resources should be utilized in such
a way that the overall time to access the service is minimum. To
enhance QoS, Aujla et al. [7] proposed an offloading scheme using
Stackelberg game in vehicular environment. To control the traffic
in VCPS, Wang et al. [8] proposed a network traffic offloading
strategy in VCPS to reduce the data traffic so as to improve the
QoS in the network and reduce the packet loss ratio. The authors
formulated a multiple-objective problem to increase the QoS in
the network and used mixed integer programming for solving it
to reach a global solution. However, the authors did not consider
the type of services requested by the vehicles in order to assign
a request priority. Moreover, finding the global solution may take
more time to converge, which can increase the overall delay in
providing services to the end users. To overcome all these issues,
deep learning framework has been used along with SDN-enabled
architecture in this paper to provide efficient services in VCPS
environment.

1.1 Contributions

The major contributions of the proposed scheme are given below.

1) A SDN-enabled communication architecture is proposed
for forwarding the incoming requests from vehicles to the
cloud controller and vice-versa.

2) A virtual controller based scheme for flow management
using SDN in VCPS is designed for effective resource
utilization and to improve the QoS.

3) A deep learning-based traffic control mechanism is de-
signed to find an optimal route of each data packet in the
VCPS network.

2 SDN-ENABLED COMMUNICATION ARCHITEC-
TURE IN VCPS

VCPS is a modern system, which enables various physical objects
(like sensors and actuators in the mobile vehicles) to interact with
one another by providing various services such as computation,
communication, and control [9]. The VCPS architecture generally
comprises of two planes, namely (a) physical plane (where the data

is generated), and (b) cyber plane (where the data is processed).
The physical plane in VCPS consists of hardware infrastructure
such as-sensors, smart vehicles, routers, and switches; while
the cyber plane is the control part of the system. The VCPS
communication architecture has manifold benefits. For example, it
helps in building an intelligent transportation system where traffic
engineering can be performed by monitoring the movement of
vehicles on a road. Although VCPS allows smooth execution of
distributed resources between various smart vehicles, there still
persists some major challenges in VCPS. These challenges are
mobility of vehicles, delay incurred for accessing the network
services, and efficient network resource utilization.

In order to handle these challenges, an SDN-enabled controller
is used in the proposed communication architecture of VCPS. This
controller uses a virtualized control scheme to manage the network
resources efficiently in dynamically changing environment. Figure
2 shows an SDN-enabled communication architecture in VCPS.
SDN provides a flexible and centralized software service for the
global network monitoring and control. In SDN architecture, the
data plane is separated from the control plane, which reduces
the computational overhead from the forwarding devices. Various
layers of the SDN-enabled VCPS architecture as described below.

1. Data Plane: The communication amongst the vehicles at the
data plane occurs using various communication protocols (as
depicted in Table 1) [10]. Each smart vehicle has an on-board unit
(OBU) for sending and receiving the data and is connected with
the static control module called as road side unit (RSU). RSU is an
intelligent control device, which collects the requests of vehicles in
its coverage range. These requests are managed with respect to the
network topology, mobility pattern of vehicles, and co-ordination
of interference management of inter-RSUs. Therefore, each RSU
manages a cluster of a local cloud in VCPS. This local vehicular
cloud plays the role of both the cloud server (to the vehicles)
and the cloud client (to the global controller). Generally, the data
plane is the physical infrastructure layer comprising of OpenFlow
(OF)-switches, which are deployed to perform packet forwarding.
A centralized controller software is present at the control plane
which is decoupled from the physical infrastructure layer. All the
network policies and flow rules are implemented at the controller.
The controller executes the flow rules in the form of flow tables
on the forwarding devices. If the flow rule matches, then the
packet is forwarded to the next OF-switch, until it reaches the
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Fig. 2: Generalized communication architecture in VCPS.

TABLE 1: Communication protocols used in VCPS.

Communication Techniques Protocols used Frequency range Data rate Distance covered
Bluetooth IEEE 802.15.1 2.4 GHz Upto 3 Mbps upto 10 m
Zigbee IEEE 802.15.4 868 MHz, 915 MHz | 20-250 Kbps at 2.4 GHz | 30-50 m
and 2.4 GHz
Vehicle to vehicle | UWB IEEE 802.15.4a 3.1-10.6 GHz 53.3-480 Mbps 10-100 m
(V2V)
60 GHz Millimeter | IEEE 802.15.3c 57-64 GHz >1 Gbps upto 10 m
Wave
DSRC/WAVE IEEE 802.11p 5.850-5.925 GHz 3-27 Mbps upto 1 km
DSA IEEE 802.11af 476-494 MHz 1 Mbps upto 1 km
WAVE IEEE 802.11p 5.850-5.925 GHz 3-27 Mbps upto 1 km
Vehicle to infras- | Wi-Fi IEEE 802.11 a/b/g | 2.4-5GHz 1-54 Mbps upto 100 m
tructure (V2I)
WIMAX IEEE 802.16 1.25 - 20 MHz 30 Mbps - 1Gbps upto 50 km
Cellular (LTE/LTE-A) - 20 - 100 MHz 300 Mbps - 3 Gbps upto 30 km

UWB: Ultra wide band, DSRC: Dedicated short-range communication, WAVE: Wireless access in vehicular environment, DSA: Dynamic spectrum access,
WiMAX: Worldwide interoperability for microwave access, LTE (-A): Long term evolution (Advanced),

destination. But, if a mismatch occurs, then the OF-switch forward
the flow rule to the controller. Now, the controller builds a new
flow rule, which is installed and updated on the OF-switch in
order to forward the concerned packet.

2. Control Plane: At the control plane, the SDN Controller
manages the control flows such as-perflow, perpacket, to perform
efficient routing and flow scheduling. At the root node of the
hierarchy, a global SDN controller resides, which is connected
directly with the virtual controllers through core network and OF
protocol. Using the network hypervisor softwares, these logically
isolated virtual controllers are created on the top of a physical
controller and each virtual controller is deployed in multiple

domains in order to control multiple OF-switches. The virtual
controllers performs two major tasks at the control plane. The first
task of the virtual controllers is to create logically isolated virtual
OF-switches on the top of the physical switches in each domain.
The virtualization technique helps to achieve maximum utilization
of network resources. Another task of the virtual controllers is
to manage inter-domain routing of network nodes. The inter-
domain routing helps to improve the network performance in
terms of reduced latency and high throughput efficiency. In the
proposed scheme, to automatically plan the optimal route for the
data packets to reach the destination, a deep learning technique
is used for routing decisions. For example, consider a scenario



of routing between inter-domains of network nodes as illustrated
in Fig. 2. Suppose, domain 1 and domain 2 have six openflow
switches each. Using link 1, source node (say S1) has requested
a service from the destination node (say S12). From S1 to S12,
the link path can be reached via three communication links. Now,
initially, the request from S1 is floated in the network where the
SDN control logic uses deep learning to find out the optimal path
from S1 to S12.

3 VIRTUALIZED CONTROL SCHEME FOR FLOW
MANAGEMENT IN SDN

In VCPS environment, the network resource sharing among mul-
tiple vehicles running various applications in parallel can lead to a
reduction in the operational expenses. However, this may end up
in various challenges such as, network traffic congestion and high
latency [11]. Therefore, to handle these challenges in VCPS, an
SDN-based control scheme based on virtualization is designed for
traffic flow management. In this scheme, three types of data flows
are considered for evaluation [12]. The first type is the active data
flow, wherein flows matched successfully are included. The active
data flows are served with highest priority. The second type is the
waiting/queued data flows in which the flows with lower priority
are considered. Such data flows are processed only after the active
data flows are served. The third type is the suspended data flow,
wherein the flow rule mismatch entries are included. Such cases
are temporarily suspended and the notification of the mismatched
entry is send to the controller for further action.

In this scheme, a single physical OFcontroller (pOFC) is
deployed in the network. Now, multiple virtual OF controllers
(vOFCs) are created over pOFC to distribute the network re-
sources in the geographical area. Each vOFC is connected to
a group of smart vehicles forming an exclusive cluster or local
vehicular cloud. Each cluster is isolated from other clusters and
vOFC performs its functionalities as pOFC does. This approach
is used to divide the network resources effectively in different
clusters to improve the network resource utilization. The appli-
cations running at each vehicle are served locally, closer to their
location in each cluster thereby reducing latency. Similarly, the
dedicated and isolated resource sharing among all the clusters
lead to reduction in the network congestion. Hence, each cluster
in independent to implement its own flow controls to run various
vehicular applications over a single pOFC concurrently. Whenever
required, the vOFC located in each cluster can communicate with
each other through the pOFC.

Using the above discussed approach, all the forwarding devices
located in each cluster use an OF protocol to schedule their traffic
flows. In the proposed architecture, the flow table management of
each isolated cluster is managed by the vOFC. For this purpose,
each vOFC defines control decisions and network policies to
manage the flow entries (FEs) in the flow tables (FTs) of each
OF-switch. Each OF-switch comprises of multiple FTs stored in
its memory and connected with each other via a pipeline. The flow
table entries consists of three parameters namely; prefix, action,
and statistics. The prefix is the matching rule field which contains
a list of tuples. The matching rule contains the tuples such as-
ingress port, and the packet source and destination addresses. The
action parameter specifies; the action be forward to the specific
port, forward to the controller, drop the packet, or forward normal
to the next FT. The third parameter is the statistics, which consists
of a counter and a timeout field. The counter field maintains the
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record of the number of packet matched or mismatched and the
timeout field record the expiry time of a packet for a fixed amount
of time or a period of inactivity. Based on these three parameters,
the FTs are regularly updated at the vVOFC and OF-switches.

However, updating the flow rules forwarding information gen-
erates the network overhead at the control plane. Moreover, the
reconciliation of flow rules by controller in the case of mismatch
and suspended entries lead to additional network overhead at
the controller. The centralized pOFC having a global database
maintains the data consistency by receiving the updated flow rules
from the vOFC. The vOFC performs the task of data replication
as multiple copies is quite helpful in failure recovery. In VCPS,
instead of VOFCs if a single controller is being used to take
efficient routing decisions regarding managing different F7Ts then
the complexities may arise. The overall complexity for managing
the different FTs in this case comes out to be O(n.k), where k
is the number of pOF-switches present in the network controlled
by a single controller and n be the maximum capacity of number
of FEs handled by each pOF-switch. The major complexity is
related with mapping of billions of flow rules between the pOF-
switch and the vOF-switch. The mapping of the flow rules at the
various switches is explained with the help of example.

Example: An OF-switch OF'S; (j =1, 2, .. . ,n) consists of
FEj, (k=1,2,...,m)in the FT;. These FEs in each FT is
managed by vOFC using OF protocol. The pOF-switches contain
all the pFEs in their FTs and vOF-switches consist of all the
vFEs. The vOFC creates a virtual flow entry (vFE) corresponding
to each physical flow entry (pFE). The entire flow mapping is
performed using vFEs, but actually data travels on the basis of
pFEs corresponding to each vFE. For flow scheduling, each FT
must contain a matching fields MF}; (an ingress switch port
number and the header value) and an action field (AF). An MF
is a field which is used to match the incoming traffic packet with
the FE in the FT of a particular switch. Similarly, AF is the field
which consists of the corresponding action whenever a successful
matching happens. Now, a vF’ E;?k is created for cluster a having
a virtual matching field (v M F7}). In the similar way, pF'EY) for
cluster a consists of physical matching fields (pM F ;lk). Similarly,
a virtual header is created as vH; and a physical header is termed
as pH;. In order to provide isolation to each cluster, the value of
header or MF is uniquely assigned. For example, let us consider
two clusters a and b, then the vM F' ;lk and vMF jl-’k created for
pMF, and pMF, ka are different if a # b. In the same way,
this condition of inequality (a # b) exists for pH{ and pHY?.
Using this approach, Fig. 3 shows the flow of a data packet from
source end host (F'H,,.) located in the local vehicular cloud to
the destination end host (E' H 4;) located in another local vehicular
cloud through various OF-switches. The mapping of virtual SDN
layer and physical SDN layer is also shown in the Fig. 3. The flow
of steps involved in the transmission process of a packet shown in
Fig. 3 is elaborated as below.

1) Create FEs in FTs: The vOFC creates all the FEs for each
OF-switch (S;) located in each cluster/local cloud.

2) Create vFEs: All the vFEs at S; in each cluster are created
by the vOFC using OF protocol.

3) Store all FEs in FT: A flow table controller stores all the
FEs created at each switch in different clusters.

4) Receive ad inspect the incoming packet (p): An incoming
packet p is received at input port (/) and inspected for the
MF and header value. Then, it is guided through the flow
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Fig. 3: Network traffic flow management using virtual SDN layer in VCPS.

process starting from F Hg,.. and ending up at F H ;4
through subsequent OF-switches (57 to S,).

Matching process: When p arrives at S7, then its vFE is
matched. If a vFE exists for p, then the corresponding
PFE is set at S to obtain pF Ej.

Match priority: Sometimes, there can be a case where
multiple vFEs are matched. For such a case, a wild-
card match is performed on the basis of priority. For this
purpose, the priority field (PF) in the FT is used to select
the FE. A FE corresponding to the higher priority is opted
and the corresponding action in the AF is performed.
Once the pFEs are set, then it is checked whether the
switch is edge port or not. If the concerned switch is an
edge port, then p is sent out; otherwise, it is passed to
the subsequent switch where vFE is again searched and
matched until the entire flow path is completed.

Once the FE for p matches, then the corresponding action
in AF is performed on p. This may end up in modifying
the header values or updating a switch port.

Now, p is sent from EH,,. with a header value (Hy).
Once p is received at S; with Hy, then it is forwarded
to Sy by updating its header value to H;, such that
Hy # Hi. In this way, the header value and switch ID
is incremented by / for each subsequent switch until p
arrives at B H gq;.

Sometimes there may exist a case when a FE does not
match with the MF at FT, then the cluster ID and switch
ID are sent to the pOFC. After receiving the information
about mismatch and the corresponding details, pOFC
creates new FE and stores it F'T for the concerned switch.
In the above discussed manner, the MF is searched and
matched for Sy to S, in order to send p to F H j4;.
Once all the FEs are matched along the flow path, then p
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is sent out through F H ;.
In the proposed scheme, the traffic flow management is
handled using virtual controller in VCPS is implemented.
But still, network overload

4 DEEP LEARNING FOR TRAFFIC CONTROL

With the advances in technology, the deep learning is paving its
way to solve all the complex problems of modern era. These
problems range from automatic image classification to intrusion
detection [13], [14]. In this paper, the application of deep learning
for automatic traffic control in VCPS is described. For this
purpose, the convolution neural network (CNN) model of the deep
learning is used to learn the hidden patterns in the incoming data
requests to assign an optimal route to the data packets.

The basic system architecture of the CNN model for traffic
control and route assignment is as shown in Fig. 4 This model
consists of layers viz. input, hidden, and output layers. The hidden
layers comprise of convolution and pooling layers to give a final
fully-connected layer as an output. So, the first step in the CNN
model is to provide an input to the model. As the traffic data
is labeled and structured, it can easily be converted into the two
dimensional vector data where the rows depict various parameters
of the traffic data and columns depict values of these parameters.
This two dimensional vector forms an input layer of the CNN
model. After creating the initial layer, the feature vector is passed
in parts by forming groups (also known as the receptive fields)
to the hidden layers. The grouping is done in order to connect the
feature vector to the hidden neurons locally for a particular region.
In this way, the traditional weights used in CNN for different
locations are overlapped to share the same amount of information
(as in MLP with full connectivity) with less connectivity. This
also decreases the overall complexity of the CNN, which is very
important considering the large training set.
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Fig. 4: CNN architecture for traffic control in VCPS.

In the hidden module of CNN model, the first hidden layer is
the convolution layer. In the layer, a mask (also called function
or kernel) is applied on the various receptive fields of the input
feature vector. Once the mask is applied on the receptive field,
the average weighted values are computed from the receptive
fields, which are passed onto the neurons of next hidden layer, i.e.,
pooling layer. The convolution operation performed by applying
this mask can be mathematically represented as:

n n

convg, =0 | b+ Z Z W(p,q)¥(x+p,y+4q)

p=0¢=0

ey

where o and b represent the activation function and the value of
bias, respectively. w, 4 is the weighted mask of dimension nxn,
and oz ,)) is the input at (x, )" position. The activation function
o used in the convolution operation can be of various types like
sigmoid or tanh. However, rectified linear unit (ReL.U) has been
very successfully used in the past for deep learning applications as
it is easy to implement and takes less training time [15]. ReLU is
a simple discrete operation, which outputs the maximum value of
the input to the neuron a [i.e, max(0,a)]. After applying this
activation function, the output of the hidden convolution layer
(also known as feature map) is passed to the pooling layer. It
is to be noted here that the different masks can be applied to the
input layer to create different feature maps. The task of the pooling
layer is to simply the output of these feature maps so that hidden
features from the input patterns can be learned from them. To
perform this task, max-pooling function is used in the proposed
scheme, which gives the maximum value of the considered region
as an output. The major benefit of this function is that it helps
to identify the data values, which are most likely to influence the
outcome.

The process of convolution and pooling layers is repeated in
various stages so that a final fully connected neuron layer can
be created which is easy to handle. The fully connected layer is
further mapped to the neurons of the final output layer (which is
responsible for assigning the optimal route for the data packets).
Once the output layer is created for the CNN model using the
training dataset, this model is able to learn the hidden features
from unknown data packets and assign the optimal route based
on the learned features. This assignment is fast and optimal as it
results in less delay and packet loss, and high network throughput.

Deep learning is used to manage the flow control of traffic
in VCPS as follows. Initially, the data is gathered to train the
deep learning model from the vehicles present in the network.
Then, the network controller sends network information about the
available bandwidth, resource utilization, capacity, type of service
requested, protocol used, number of switches between source &
destination, and path from one switch to other at different time
instances. These parameters are passed onto the input layer of the
deep learning which uses convolution and pooling layers to learn
about the hidden patterns in the data to traverse the path from
source switch to destination switch. It then repeats this process in
various stages so as to learn new patterns in every stage. Once the
learning phase is complete, it is able to specify the new path from
one switch to another.

5 RESULTS AND DISCUSSIONS
5.1

The simulation scenario consists of 1000 vehicles, which com-
municates with a centralized controller to access various services.
This scenario is simulated and tested in NS-2 and SUMO. To
train the proposed CNN model, data requests from vehicles are
considered for accessing various services. All these data requests
along with the network capabilities such as bandwidth, resource
utilization, capacity, number of switches, etc. are given as an
input to the proposed CNN model to predict the optimal flow.
The deep learning model is run for 1000 epochs using the feature
set mentioned above. The input layer comprises of 1000 x 360
entries in each epoch having the values of different feature for
each vehicles for every minute. It is to be noted that the feature
set is inter-dependent where the final solution depends on number
of hidden layers. The number of layers is taken to be 20 so as to
converge at a faster pace. Once the route is decided, the proposed
scheme is evaluated on the basis of performance metrics such as-
delay, throughput, packet delivery ratio and load.

Simulation scenario

5.2 Performance evaluation
52.1

Fig S5a shows the impact on delay with increasing number of
vehicles in the VCPS. It can be inferred from Fig. 5a that the
delay for the proposed scheme is minimum as compared to the
scenarios where only TCP/IP and SDN protocols are used. This

Impact on delay
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number of vehicles.

is because the TCP/IP follows only the defined set of protocols,
which incurs more delay as compared to the SDN protocol that
is more adaptive. The proposed scheme assigns the routes using
CNN model in such a way that it decreases the delay.

5.2.2 Impact on network throughput

Figure 5b shows the variations of the overall throughput in the
underlying network with respect the number of requests processed
from the vehicles in the network. This figure indicates that the
throughput of the network increases in all the three cases, which
is because of the increase in incoming packets. It can also be
inferred from Fig. 5b that the throughput is maximum in the case
of proposed scheme which proves the efficacy of our scheme. The
reason behind this is the optimal route planning in an adaptive way
such that the requests can be processed in consideration with the
network resources.

5.2.3 Impact on packet delivery ratio (PDR)

The variations in PDR with respect to number of vehicles are
shown in 5c. As seen in this figure, the PDR reduces with the
rise in number of vehicles. It is because the network congestion
increases, which leads to the frequent collisions and hence increase
in the packet drop.

5.2.4 Impact on load on network

The load on the entire network is shown in Fig. 5d. This figure
suggests that the load on the network grows with increase in the
number of vehicles. It is because when more vehicles request for
the network services, the consumption of network resources such
as bandwidth and utilization increases, which puts more load on
the underlying network. However, this load is considerably less in
case of the proposed approach when compared to the other cases.

6 CONCLUSION

An SDN-based network architecture is used in the proposed
scheme, which uses a virtualized control scheme to manage the
flow in SDN. To control the network traffic, a deep learning frame-
work is used to learn the hidden patterns in the data packets for
planning their optimal routes. The effectiveness of the proposed
scheme is tested using various evaluation metrics such as delay,
network throughput, packet delivery ratio, and network load. The
results prove the superiority of proposed scheme in comparison to
the traditional variants. Although, the proposed scheme performs
well in context to faster flow forwarding and optimal utilization
of resources in VCPS environment, however, there are some
limitations with respect to network overhead, complexity and data
security. In future, security, data imbalance, overhead, complexity
analysis and fault tolerance aspects in VCPS would be explored.
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