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Abstract

We study nonlinear mixtures of integer-valued ARCH type models for count time series data. We

investigate the theoretical properties of these processes and we prove ergodicity and stationarity,

under minimal assumptions. The model can be generalized by including a GARCH component

but we show that such inclusion can be accommodated by an ARCH model whose number of

lagged variables tend to infinity. This work complements some previous studies in this area and

improves on existing results by developing asymptotic properties of the maximum likelihood esti-

mator. Furthermore, we discuss the estimation problem when the number of mixtures regimes is

overestimated and we prove theoretically that proper likelihood penalization enables asymptotic

estimation of the true number of mixture regimes. A real data example illustrates the methodol-

ogy.

Keywords: Bayesian Information Criterion, ergodicity, identifiability, nonlinear time series, penalized likeli-

hood, stationarity.
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1 Introduction

We consider models for count time series, which allow for the mean process to change according to the

values of an unobservable discrete random variable. Equivalently, an unobservable discrete random variable

determines the so called hidden regimes where the process alternates. In each of these regimes we assume

that the conditional distribution of the time series given its past is Poisson. This is a standard distributional

assumption which has been used for count time series analysis by several authors including Rydberg and

Shephard (2000), Ferland et al. (2006) and Fokianos et al. (2009), for instance. To motivate this research,

consider the top graph of Figure 2 which shows weekly number of E.coli cases in the state of North Rhine-

Westphalia from January 2001 to May 2013. The plot indicates that there might be two regimes where the

process of infected cases alternates. Indeed, we observe larger variability towards the end of the series. In

this paper, we show how to define properly models to accommodate these features of data. In addition we

study their properties, develop likelihood theory and suggest penalized likelihood methodology for obtaining

a consistent estimator of the number of regimes.

Count time series analysis have received considerable attention, see Kedem and Fokianos (2002, Sec 4 & 5)

and the recent edited volume by Davis et al. (2016) for several references. In the context of generalized linear

models (see McCullagh and Nelder (1989)) the Poisson distribution has been widely used for modeling and

inference of count data. In particular, INARCH (INteger ARCH) and INGARCH (INteger GARCH) processes

have been found quite useful in applications; see the previous references for more on applied work. However

application of mixtures models for count time series has not received a lot of attention. In the case of continuous

valued time series some early work on mixtures for time series can be found in Jacobs et al. (1991), Le et al.

(1996) and Francq and Zaköian (2001), for instance. In addition, Wong and Li (2000, 2001) have used a two-

component mixture model with logistic weights that may depend on time and exogenous variables to model

AR and ARCH models, respectively. Parameter estimation was performed via an EM algorithm and BIC

(Bayesian information criterion) was employed for autoregressive lag selection. Stability properties of such

models have been studied by Saikkonen (2007). Mixtures of AR models, in the Bayesian framework, have been

considered by the recent contribution of Wood et al. (2011), among others.

In the context of count time series that we consider, some early work can be found in Albert (1991). In

addition, Carvalho and Tanner (2005, 2007) proposed mixture-of-experts approach to model nonlinearities in

time series models following generalized linear models. These authors applied maximum likelihood estima-

tion, investigated identifiability and asymptotic normality of the estimates, and used AIC (Akaike Information

Criterion) and BIC for selecting the number of components in the model. However, the conditions that are

imposed for asymptotic inference are quite strict and their study focus on a log-linear model for count time

series. A linear model was considered by Zhu et al. (2010) but the authors again did not provide some the-

oretical evidence regarding its properties. More recently, Berentsen et al. (2018) applied a Markov-switching

Poisson loglinear model autoregressive model to a study of corporate defaults.
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The aim of this paper is to give theoretical justification to some of the previous findings. In doing so, we

extend previous studies because we consider a general class of nonlinear models. Indeed, the main model we

consider is a mixture of Poisson models but the mean is allowed to depend nonlinearly on lagged values of the

observed time series. Section 2 introduce the Mixture INARCH and INGARCH models. We discuss in detail

the properties of both of these models and we show that the MINGARCH model can be approximated by a

MINARCH model of infinite order. This result is of independent interest and is quite useful for the analysis of

count time series models. Section 3 studies the properties of maximum likelihood estimator for the MINARCH

model of finite order. Here we consider two cases; the case of known regimes and the case of unknown regimes.

In the former case, it is shown that the maximum likelihood estimator of the vector of unknown parameters

is strongly consistent and asymptotically normally distributed. This is a direct consequence of the regularity

of the model in the case of known number of regimes. Furthermore, we study the asymptotic behavior of

the likelihood ratio test statistic when the number of regimes is overestimated. This study yields a general

criterion for selecting the true number of regimes. It turns out that the BIC satisfies this criterion showing that

it can provide a consistent estimator for the unknown number of regimes. Section 4 discusses the challenges

associated with estimation for the MINGARCH model. Section 5 gives a data analysis example and the paper

concludes with an Appendix that contains proofs of all results.

2 Poisson Models for Mixtures of Count Time Series

Denote by Y a random variable whose probability mass function (pmf) is given by

P[Y = y] =
K

∑
k=1

pk
exp(−λk)λ

y
k

y!
, y = 0, 1, 2, . . . , (1)

where λk > 0, 0 < pk < 1, for k = 1, 2, . . . , K such that ∑K
k=1 pk = 1. Then we say that the distribution of Y is

a K-class mixture of Poisson distributions. For ease of notation, we will denote the pmf (1) as MP(p, λ) with

p = (p1, . . . , pK)
T and λ = (λ1, . . . , λK)

T . Elementary calculations show that

E[Y] =
K

∑
k=1

pkλk, Var[Y] =
K

∑
k=1

pkλ(1 + λk)−
( K

∑
k=1

pkλk

)2
. (2)

The Poisson mixture distribution (1) will be employed for modeling and analysis of integer valued count time

series.

2.1 The MINARCH model

To fix notation, suppose that {Yt} denotes a count time series and let {λk,t} be sequence of Poisson mean rates

for k = 1, 2, . . . , K. Define λt = (λ1,t, . . . , λK,t)
T . Suppose that Ft denotes the σ-field generated by {Ys, s ≤ t}.
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Let L be a positive integer and consider the following general class of nonlinear mixture models defined by

Yt | Ft−1 ∼ MP(p, λt), λk,t = fk(Yt−1, . . . , Yt−L), k = 1, . . . , K, (3)

where fk(·) are functions known up to a finite dimensional parameter vector, they are defined on NL and take

values on (0, ∞), for all k = 1, . . . , K. In this setup, several examples of nonlinear count time series models

have been studied by Fokianos et al. (2009), Neumann (2011), Fokianos and Tjøstheim (2012), Doukhan et al.

(2012) and Christou and Fokianos (2014). Indeed, if p1 = 1 and pk = 0, for k 6= 1, then (3) reduces to a Poisson

nonlinear count time series model. Because of (1), it is easy to see that (3) implies that the conditional pmf of

Yt, given its past values, is given by

P[Yt = y |Yt−1, . . . Yt−L ] =
K

∑
k=1

pk
exp(− fk(Yt−1, . . . Yt−L)) fk(Yt−1, . . . Yt−L)

y

y!
.

We call (3) a nonlinear Mixture INteger ARCH model of order L and we denote this process by MINARCH(L).

Example 2.1 The simplest example of model (3) is given by assuming that the functions fk(·) are linear on

Yt−1. In this case, we obtain that

Yt | Ft−1 ∼ MP(p, λt), λk,t = ψk,0 + ψk,1Yt−1, (4)

where the unknown parameters are such that ψ0,k, ψ1,k > 0 for k = 1, 2, . . . , K. The left plot of Figure 1 shows

five hundred realizations of model (4) with K = 2 regimes and the estimated sample autocorrelation function.

The plots illustrate that correlation decreases fast and that the process is taking values in two regimes; the one

regime corresponds to low count values and the other regime to higher values. This is a consequence of the

parameter specification. Indeed, for ψ1,1 = 1/4 we expect this regime to be the one which corresponds to low

values of count data. In contrast, ψ2,1 = 6/5 > 1 implies that in the second region the process will assume

larger values. Note that we allow for the autoregressive coefficient that corresponds to the second regime to

be larger than 1. This is a condition which does not guarantee stationarity for the case of a simple linear

Poisson model, see Ferland et al. (2006). However, (4) allows for non-stationary regimes yet the overall process

is stationary. Necessary conditions for m’th order stationarity of the linear model are given by Zhu et al. (2010).

For the process (4) to be first order stationary, it is required that

0 <
K

∑
k=1

pkψk,1 < 1.

When p1 = 1 and pk = 0 for k > 2, then the above condition reduces to 0 < ψ1,1 < 1 which is standard

condition for the Poisson INARCH(1) model (see Ferland et al. (2006)) .

Other models can be easily introduced. For instance, we can consider a two regime model where in the

first regime we assume that the mean process follows a linear model, such as (4), but in the second regime
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Figure 1: Left plot: Five hundred realizations obtained by model (4) where the parameter values are set to

ψ1,0 = 1, ψ1,1 = 1/4, ψ2,0 = 1/2 and ψ2,1 = 6/5, with the probability of each regime being equal to 0.5. (a)

Observations (b) Sample autocorrelation function. Right plot: Five hundred realizations obtained by model (7)

where the parameter values are set to ψ1,0 = 1, ψ1,1 = 1/4, ψ1,2 = 1/5, ψ2,0 = 1/2, ψ2,1 = 6/5 and ψ2,2 = 1/5

with the probability of each regime being equal to 0.5. (c) Observations (d) Sample autocorrelation function.

a nonlinear model is employed; see for instance Fokianos and Tjøstheim (2012, Eq. (5) & (7)) and the review

articles by Tjøstheim (2012, 2015). This discussion shows the great flexibility that mixture models can provide

for modeling count time series.

2.2 On ergodicity and stationarity of MINARCH(∞) models

In this section, we study properties of model (3) by assuming that L = ∞, i.e. we deliver conditions for

ergodicity and stationarity of MINARCH(∞) model. We resort to the notion of weak dependence, see Dedecker

et al. (2007) for details. In particular, the appropriate notion of weak dependence for model (3) corresponds

to τ–dependence as introduced by Dedecker and Prieur (2004). For a brief introduction to the τ–dependence

concept see Appendix A-1. To study the properties of model (3), it is instructive to rewrite it as

Yt =
K

∑
k=1

1{Zt=k}Nt(λk,t) = Nt(λZt ,t) (5)

where 1(.) denotes the indicator function, Zt is an iid sequence with P(Zt = k) = pk for k = 1, . . . , K, and Nt

is an iid sequence of unit rate Poisson processes which is independent of Zt, for all t.

Let (Ω,G, P) be a probability space and suppose thatM is a σ-algebra of G. We denote by Ls ≡ Ls(Ω,G, P)

the class of Rd−valued random variables W, such that ‖W‖s = (E‖W‖s)1/s < ∞. Then we obtain the following

results whose proof is given in Appendix A-2.
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Theorem 2.1 Consider model (3) with L = ∞ and assume that for any x and x′ in N∞ ×N∞ (with N =

{0, 1, 2, . . .}), there exist sequences (αkj)j≥1, k = 1, . . . , K of non-negative real numbers such that

| fk(x)− fk(x′)| ≤
∞

∑
l=1

αkl |xl − x′l | k = 1, 2, . . . , K.

Denote by Ak = ∑l αkl and let Bs = ∑K
k=1 pk As

k < 1. Then (i) If s = 1 there exists a τ−weakly dependent strictly

stationary process {Yt, t ∈ Z} which belongs to L1 and (ii) for s > 1 this solution belongs to Ls. Moreover

τ(r) ≤ 2
1− B1

max
1≤k≤K

fk(0) inf
1≤p≤r

{
B

r
p

1 +
1

1− B1

∞

∑
q=p+1

K

∑
k=1

pkαkq

}
.

The above theorem shows that there exists a strictly stationary solution for model (3) which has finite moments

and such that decay of the coefficients τ(·) ensures the conditions needed for studying asymptotic inference

for the maximum likelihood estimator. Furthermore, following Doukhan and Wintenberger (2008), it can be

shown that the solution of (3) can be approximated by a finite order Markov stationary sequence. This is a

crucial fact, since it enables approximation of infinite order model by Markov models whose order is finite, i.e.

we can approximate MINARCH(∞) by MINARCH(L) for some large value of L. If fk(0) = 0 for k = 1, . . . , K,

then the stationary solution of (3) is identical to null.

Remark 2.1 In the above theorem, the constant 2 can be replaced by any other constant C > 1/B1 when

B1 > 1/2 as this is deduced by the proof. Moreover, in the case of MINARCH(L) we can set αk,l = 0 for l > L

which implies a simpler, yet geometrically decreasing, upper bound for the τ coefficients; in other words

τ(r) ≤ 2
1− B1

max
1≤k≤K

fk(0) · B
r
L
1 .

2.3 The MINGARCH model

Following the works by Ferland et al. (2006) and Fokianos et al. (2009), for instance, we can extend model (3)

by including a feedback process in the right hand side equation. Recall the notation introduced by (5) and let

L1 and L2 be positive integers. Then (3) can be extended as

Yt | Ft−1 ∼ MP(p, λt), λk,t = hk(λZt−1,t−1, . . . , λZt−L1 ,t−L1 , Yt−1, . . . , Yt−L2 ), k = 1, . . . , K. (6)

Here the functions hk(·) are non-negative and known up to a finite dimensional parameter vector and they are

defined on R
L1
+ ×NL2 for all k = 1, 2 . . . , K. We note that (6) allows dependence of the hidden process to past

Zt’s in addition to past Yt’s. We will call this model as MINGARCH(L1, L2).

Example 2.2 Continuing Example 2.1, we have that in case that the functions hk(.) are assumed to be linear

and L1 = L2 = 1, then (6) becomes

Yt | Ft−1 ∼ MP(p, λt), λk,t = ψk,0 + ψk,1Yt−1 + ψk,2λZt−1,t−1, k = 1, 2, . . . , K. (7)
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The properties of this model are better understood by examining the right plot of Figure 1 which shows five

hundred realizations and the corresponding sample autocovariance function from (7) with K = 2. It is clear

that the inclusion of hidden process yields large correlation values which decay slower than those of model

(4). Here note again that we can allow for non-stationary components in each regime yet the overall process is

stationary. The same remarks made for model (4) apply in the case of model (7).

As we show next, (6) can be approximated by a MINARCH(∞) model, or in other words, it is written as

Yt | Ft−1 ∼ MP(p, λt), λk;t = fk(Yt−1, Yt−2, . . .), k = 1, . . . , K.

This fact is proved next for the simple case of K = 1 regime Poisson model. However Theorem 2.1 and (6)

show that the result is true for K > 1.

Lemma 2.1 Suppose that {Yt, t ∈ Z} is stationary count time series such that

Yt = Nt(λt), λt = h(λt−1, . . . , λt−L1 , Yt−1, . . . , Yt−L2 )

where {Nt(·), t ∈ Z} is a sequence of iid Poisson processes with unit rate and h(·) is a positive function.

Suppose further that there exist ai ≥ 0, i = 1, 2, . . . , L1, bj ≥ 0, j = 1, 2, . . . , L2 such that

|h(λ1, . . . , λL1 , y1, . . . , yL2 )− h(λ̃1, . . . , λ̃L1 , ỹ1, . . . , ỹL2 )| ≤
L1

∑
i=1

ai|λi − λ̃i|+
L2

∑
j=1

bj|yj − ỹj|,

for all λi, λ̃i > 0, i = 1, . . . , L1 and for all yj, ỹj in N, j = 1, . . . , L2 with 0 < ∑i ai + ∑j bj < 1. Then, it holds

that

Yt = Nt(λt), λt = f (Yt−1, Yt−2, . . .)

where f (.) is a positive function that satisfies

| f (y1, y2, . . .)− f (ỹ1, ỹ2, . . .)| ≤
∞

∑
i=

ci|yi − ỹi|

and (ci) is a sequence of positive coefficients that decay exponentially fast.

3 Maximum Likelihood Inference for MINARCH(L) models

We first investigate the behavior of maximum likelihood estimator (MLE) for model (3) when the number of

regimes is known. For ordinary Poisson nonlinear models, similar studies have been given by Fokianos and

Tjøstheim (2012) and Doukhan and Kengne (2015) for the MLE and by Christou and Fokianos (2014), Ahmad

and Franq (2016) and Douc et al. (2017) for the Quasi-MLE. However, under the mixture model we consider

in this work, some care should be taken to ensure identifiability of the parameter vector. In particular, when
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the number of regimes is not known, then an identifiability issue arises and we show that this problem can

be attacked by considering a penalized likelihood approach. Initially, we introduce notation and definition for

developing the asymptotic theory.

Assume that the observations {Yt, t = 1, . . . , n} is a realization of a strictly stationary process {Yt, t ∈ Z}.
Denote the vector of unknown parameters by ψ = (ψT

0 , ψT
1 , . . . , ψT

K)
T where ψT

0 = (p1, . . . , pK−1) ∈ [0; 1]K−1

and pK = 1−∑K−1
k=1 pk ∈ [0; 1]. Moreover, ψk, k = 1, 2, . . . , K, denotes the parameter vector of the k’th regression

function; i.e we assume that fk(.) := f (.; ψk), k = 1, 2, . . . , K, by recalling (3). Write dk for the dimension of the

parameter ψk. Hence dim(ψ) ≡ d = (K− 1) + ∑K
k=1 dk. Introduce the function

gk(y, y1, . . . , yL; ψk) =
exp(− f (y1, . . . , yL; ψk)) f y(y1, . . . , yL; ψk)

y!
, (8)

for the conditional pmf of Yt given that it is in regime k, k = 1, . . . , K. Denote by Ψ the parameter space which

is assumed to be an open subset of Rd. Finally, define the set G by

G =

{
g : g (y, y1, . . . , yL; ψ) =

K

∑
k=1

pkgk(y, y1, . . . , yL; ψk), ψ ∈ Ψ

}
(9)

The MLE of the parameter vector ψ can be computed by employing the EM algorithm (Dempster et al. (1977))

as in Zhu et al. (2010). Because we are working with a simple mixture and the number of regimes is known, it

is more convenient to compute directly the log-likelihood function and its derivatives, as we show next.

3.1 The log-likelihood function

Recall (5). Then, the conditional likelihood of the data for the parameter ψ is equal to

L(y1, . . . , yn; ψ) =
n

∏
t=L+1

L(yt |yt−1, . . . , yt−L ; ψ)

=
n

∏
t=L+1

K

∑
k=1

L(yt |Zt = k, yt−1, . . . , yt−L ; ψ)× P(Zt = k; ψ)

because P(Zt = k; ψ |yt−1, . . . , yt−L ) = P(Zt = k; ψ) = pk. By using (8) and (9), the conditional likelihood is

given by

L(y1, . . . , yn; ψ) =
n

∏
t=L+1

( K

∑
k=1

pkgk(yt, yt−1, . . . , yt−L; ψk)
)
=

n

∏
t=L+1

g (yt, yt−1, . . . , yt−L; ψ) . (10)

Hence, we obtain that the log-likelihood function is given by

ln(ψ) =
n

∑
t=L+1

log
(

g (yt, yt−1, . . . , yt−L; ψ)
)

. (11)

Note that the computation of the log-likelihood function is based on model (3) but the same calculation persists

for the more general case of model (6) with obvious modifications. Turning back to model (3), the MLE is

8



denoted ψ̂n and maximizes the log-likelihood function (11), that is

ψ̂n = arg max
ψ∈Ψ

ln (ψ) . (12)

When the number of regimes is known, the statistical inference for autoregressive regime-switching models

can be developed along the lines of standard likelihood theory. Initially, we address this simple case.

3.2 Known number of regimes

In this section we study the asymptotic behavior of the MLE, defined by (12), for the parameter ψ when the

MINARCH(L) model (3) holds true. More precisely, we prove consistency and asymptotic normality. In order

to study the asymptotic behavior of the MLE we assume the following standard assumptions.

H-1: The parameter vector ψ belongs to a compact subset of Ψ and the true parameter ψ0 of the model

belongs to the interior of Ψ.

H-2 The regression functions fk are continuous and identifiable with respect to ψk, i.e. f (·; ψk) = f
(
·; ψ′k

)
⇔

ψk = ψ′k. In addition, they satisfy that fk ≥ C1 for some constant C1 > 0 and for all k = 1, . . . , K.

H-3 Denote by ∂/∂ψ the derivative with respect to all components of ψ and by

I0 = −E

(
∂2 log

(
g
(
Yt, . . . , Yt−L; ψ0))
∂ψ∂ψT

)
= E

(
∂ log

(
g
(
Yt, . . . , Yt−L; ψ0))

∂ψ

∂ log
(

g
(
Yt, . . . , Yt−L; ψ0))

∂ψT

)
,

the Fisher information matrix, where expectation is taken with respect to the stationary distribution.

Assume that the matrix I0 exists, is invertible, and for a neighborhood V of ψ0:

E

(
sup
ψ∈V

∥∥∥ ∂2 log
(

g
(
Yt, . . . , Yt−L; ψ0))
∂ψ∂ψT

∥∥∥) < ∞,

where ‖.‖ denotes any norm in the space of d× d matrices.

H-4 The functions fk(·), k = 1, . . . , K are three times differentiable with respect to ψ. In addition, they satisfy

for all k that ∣∣∣∣ ∂ fk(Y1, . . . , YL; ψ)

∂ψi
−

∂ fk(Y′1, . . . Y′L; ψ)

∂ψi

∣∣∣∣ ≤ L

∑
l=1

bkli|Yl −Y′l |, i = 1, . . . , d,∣∣∣∣∣ ∂2 fk(Y1, . . . , YL; ψ)

∂ψi∂ψj
−

∂2 fk(Y′1, . . . , Y′L; ψ)

∂ψi∂ψj

∣∣∣∣∣ ≤ L

∑
l=1

bklij|Yl −Y′l |, i = 1, . . . , d,∣∣∣∣∣ ∂3 fk(Y1, . . . YL; ψ)

∂ψi∂ψj∂ψr
−

∂3 fk(Y′1, . . . , Y′L; ψ)

∂ψi∂ψj∂ψr

∣∣∣∣∣ ≤ L

∑
l=1

bklijr|Yl −Y′l |, i = 1, . . . , d,

We further assume ∀i, j, r ∈ {1, . . . , d} that ∑d
i bkli < ∞, ∑d

i,j bklij < ∞, ∑d
i,j,k bklijr < ∞, and E|∂ fk(0; ψ)/∂ψi| <

∞, E|∂2 fk(0; ψ)/∂ψi∂ψj| < ∞, E|∂3 fk(0; ψ)/∂ψi∂ψj∂ψk| < ∞.
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Assumptions H-1-H-4 are standard in the literature and they are used to ensure a well defined model and

for proving asymptotic normality of the conditional MLE. Assumption H-1 rules out the possibility of the true

parameter to belong to the boundary of the parameter space. Condition H-2 is equivalent to ψ0 being a locally

unique asymptotic maximizer of the log–likelihood function (10); see Berkes et al. (2003, Theorem 2.3) and

Francq and Zakoïan (2004, Assumption A4 and Remark 2.4). Assumption H-3 is implied by assuming that

the elements of the vector ∂ log(g(yt−1, . . . , yt−L))/∂ψ are linearly independent. Finally, H-4 implies that the

functions fk(·) are sufficiently smooth for all k, so that higher order derivatives of the conditional log-likelihood

function exist and are finite. Before proceeding to the main results we show that if the number of regimes is

known, then the model (4) is identifiable up to a permutation. The following lemma is proved in the appendix.

Lemma 3.1 Consider model (4). Then, under assumption H-2, there exists a permutation σ such that for all

(y, y1, . . . , yL)

K

∑
k=1

pkgk(y, y1, . . . , yL; ψk) =
K

∑
k=1

p′kgk(y, y1, . . . , yL; ψ′k)⇐⇒ σ(ψ) = ψ′,

where σ(ψ) = (σ(ψT
0 ), ψT

σ(1), . . . , ψT
σ(K))

T and σ(ψ0) = (pσ(1), . . . , pσ(K−1))
T .

The next result is a consequence of the results obtained in previous mentioned references. We will not

prove this in detail but in the Appendix we outline computations of the score function and information matrix.

The proof follows by employing Taniguchi and Kakizawa (2000, Thm 3.2.23).

Theorem 3.1 Consider model (3) and suppose that assumptions H-1–H-4 and the conditions of Theorem 2.1,

for s ≥ 4, hold true. Then, there exists a fixed open neighborhood O(ψ0) of ψ0 such that with probability

tending to 1 as n→ ∞, the equation

∂ln(ψ)

∂ψ
=

n

∑
t=1

∂ log(g(yt, yt−1, . . . , yt−L); ψ0)

∂ψ0 = 0

has a unique solution which is denoted by ψ̂n as in (12). Furthermore, the MLE estimator is strongly consistent,

i.e

ψ̂n
a.s.−→ ψ0,

and asymptotically normally distributed

√
n
(

ψ̂n −ψ0
) L−→ N

(
0, I−1

0

)
,

as n→ ∞.

3.3 Unknown number of regimes

When the number of regimes is unknown, the identifiability problem cause the likelihood ratio test statistic

(LRT) not to converge to a χ2-distribution, which is a consequence of standard theory. A simple example
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illustrates the identifiability problem. Assume a linear model for (3) with L = 1 and suppose that we want

estimate a model with K = 2 regimes. However, the true model has only K0 = 1 regime i.e.

P(Yt = y |Yt−1 ) = exp(−(ψ0
0 + ψ0

1Yt−1)
(ψ0

0 + ψ0
1Yt−1)

y

y!
.

A linear model with K = 2 regimes has conditional pmf

P(Yt = y |Yt−1 ) = p exp(−(ψ1,0 + ψ1,1Yt−1))
(ψ1,0+ψ1,1Yt−1)y

y! + (1− p) exp(−(ψ2,0 + ψ2,1Yt−1))
(ψ2,0+ψ2,1Yt−1)y

y! .

Hence, any parameter vector ψ = (p, ψ1,0, ψ1,1, ψ2,0, ψ2,1) such that ψ1,0 = ψ2,0 = ψ0
0 , ψ1,1 = ψ2,1 = ψ0

1 , p ∈ [0; 1]

or ψ2,0 = ψ0
0 , ψ2,1 = ψ0

1 , (ψ1,0, ψ1,1) ∈ R2, p = 0 or ψ1,0 = ψ0
0 , ψ1,1 = ψ0

1 , (ψ2,0, ψ2,1) ∈ R2, p = 1 satisfies to

the true conditional pmf. This implies that the Fisher information matrix is not invertible for a model whose

number of regimes is overestimated. However, we show next that we can still obtain the asymptotic distribution

of the LRT. Following recent work by Olteanu and Rynkiewicz (2012), we compute the asymptotic distribution

of the LRT, under suitable conditions, in the case that the number of regimes is overestimated.

Suppose that K0 denotes the true number of regimes. If K ≤ K0 there are no identification issues with

model (3); therefore we assume that K > K0 in the sequel. The LRT for testing the hypothesis H0 : K = K0 is

given by

2λn = 2

(
sup
ψ∈Ψ

ln(ψ)− ln(ψ0)

)
= 2 sup

ψ∈Ψ

∑n
t=P ∑K

k=1 pkgk(y, y1, . . . , yL; ψ)

∑n
t=P ∑K0

k=1 p0
k gk(y, y1, . . . , yL; ψ0)

(13)

where ψ0 is a parameter value satisfying the true density function g0:

g0(y, y1, . . . , yL) =
K0

∑
k=1

p0
k gk(y, y1, . . . , yL; ψ0)

There might exist an infinite number of such parameters but the true mass function is unique.

To prove the main result in this section we will use Doukhan et al. (2012, Thm.2) which states that every

τ-weakly dependent multivariate integer valued stationary Markov chain is also β–mixing (for appropriate

definitions see Doukhan (1994)). We will denote the β-mixing coefficients by (βr), r ∈ N. Recall (3). Then,

the (L + 1)-dimensional process (Yt, . . . , Yt−L)
T is Markov chain taking values in the discrete state space ZL+1.

Hence, Thm. 2 of Doukhan et al. (2012) applies and shows that the process is is geometrically β-mixing process.

This results has been proved by Neumann (2011) for the case L = 1 and and some more recent related work has

been given by Truquet (2017) and Doukhan and Neumann (2017). Denote by µ the corresponding stationary

measure of the vector (Yt, Yt−1, . . . , Yt−L). We will also need the following notation. For η > 0, denote by

Gη =
{

g ∈ G, ‖g− g0‖L2(µ) ≤ η
}

. The extended set of score-functions Sη is defined as:

Sη =

sg =

g
g0 − 1∥∥∥ g

g0 − 1
∥∥∥

L2(µ)

, g ∈ Gη

 .
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We also define the limit-set of scores D

D =
{

d ∈ L2(µ) | ∃ (gn) ∈ G, ‖ gn − g0

g0 ‖L2(µ) −−−→n→∞
0, ‖d− sgn‖L2(µ) −−−→n→∞

0
}

.

Setting gt = gn for t ∈ [0, 1] and n ≤ 1
t < n + 1, we obtain that, for all d ∈ D, there exists a parametric

path (gt)0≤t≤1 such that ∀ t ∈ [0, 1], gt ∈ G, t → ‖ gt−g0

g0 ‖L2(µ) is continuous, ‖ gt−g0

g0 ‖L2(µ) −−→t→0
0 and

‖d− sgt‖L2(µ) −−→t→0
0. With the previous notations, we introduce the following assumption

T-1 The set G is Glivenko-Cantelli and the parameter space Ψ contains a neighborhood of the parameters

defining the true conditional density g0.

T-2 There exists η > 0 such that for all g ∈ G with ‖g− g0‖L2(µ) ≤ η,
∥∥∥ g

g0 − 1
∥∥∥

L2(µ)
< ∞

Following Olteanu and Rynkiewicz (2012), we have the following theorem

Theorem 3.2 Assume T-1–T-2 and H-4 and let the conditions of Theorem 2.1 be true for s ≥ 4. Then there exists

a centered Gaussian process {WS, S ∈ F} with continuous sample path and covariance kernel P (WS1 WS2 ) =

P (S1S2) such that

lim
n→∞

2λn = sup
S∈F

(max(WS, 0))2 ,

where 2λn is defined by (13). The index set F is defined as F = ∪tFt, with the union taken over t =

(t0, . . . , tK0 ) ∈NK0+1 with 0 = t0 < t1 < · · · < tK0 ≤ K and

Ft =

{
Ω

(
K0

∑
k=1

ζklψ0
k
+

p

∑
k=K0+1

ζklψk +
K0

∑
k=1

λT
k l′k + δ

K0

∑
k=1

ti

∑
l=ti−1+1

γT
l l′′k γl

)
, λ1, . . . , λK0 , γ1, . . . , γtK0 ∈ RP;

ζ1, . . . , ζK ∈ R, ψtK0+1, . . . , ψK ∈ Ψ −
{

ψ0
1, . . . , ψ0

K0

}}
where δ = 1 if there exists a vector q such that ql ≤ 0, ∑tk

l=tk−1+1 ql = 1, ∑tk
l=tk−1+1

√
qlγl = 0 for k = 1, . . . , K0;

and δ = 0, otherwise. In addition, we denote by l′k = ∂lψk /∂ψk
(
ψ0

k
)
, and l′′j = ∂2lψk /∂ψk

2 (ψ0
k
)
.

For the special case of model (4) we will see in Sec. A-5 of the Appendix that both T1− T2 are satisfied.

But the proof shows that it can be extended to include the case of order L linear models. The previous theorem

shows that asymptotic law of the LRT depends on the true parameters of the model. The next result illustrates

the implications of this theorem. For l ∈N+, let us denote

Gl =

{
g (y, y1, . . . , yL; ψ) =

l

∑
k=1

pkgk(y, y1, . . . , yL; ψ), ψ ∈ Ψ

}
.

For some fixed L ∈N+ sufficiently large, we shall consider the following class of functions

GL =
L⋃

l=1

Gl

12



For every g ∈ GL define the number of regimes as

l (g) = min {l ∈ {1, . . . , L} , g ∈ Gl} .

Then, l0 = l
(

g0) denotes the number of regimes of the true model. An estimate of the number of regimes, say

l̂ is defined as the integer l ∈ {1, . . . , L} which maximizes the following the penalized criterion,

Tn (l) = sup
g∈Gl

ln (g)− αn (l) , (14)

where ln(g) is given by (11) and αn(·) is a suitably chosen sequence.

Proposition 3.1 Assume T-1–T-2 and H-4 and let the conditions of Theorem 2.1 be true for s ≥ 4. Let (αn (·))
be an increasing function of l such that an (l1)− an (l2) −−−→n→∞

∞ for every l1 > l2 and an (l)/n −−−→
n→∞

0 for every

l. Then, as n→ ∞, the estimator l̂, defined by maximizing (14), converges in probability to the true number of

regimes, i.e.

l̂ P−−−→
n→∞

K0

.

The proof of the above results is based on arguments given for proving Olteanu and Rynkiewicz (2012,

Cor. 2.3) and therefore it is omitted. Penalization like the Bayesian information criterion (BIC) fulfills the

assumptions of Proposition 3.1 and it gives a theoretical justification of the empirical results obtained by Zhu

et al. (2010) for the case of linear model. Proposition 3.1 applies to nonlinear models though.

4 On likelihood inference for the MINGARCH model

Recall now model (6). Then the likelihood equations (11) are still true for this case but the complexity of

computation required to fit (6) is of exponential order. Indeed, consider the simplest case of a linear model

λt,k(ψk) = dk +
L1

∑
i=1

ψi,kλZt−i ,t−i +
L2

∑
j=1

ψj,kYt−j k = 1, . . . , K.

For calculating the log-likelihood function, we see that we need to consider all the possible states for Z1, · · · , Zn

and therefore the complexity of such computation is of the order Kn. Hence, in general, likelihood inference is

intractable unless the number of observations is very small. Furthermore, note that knowledge of the expected

value of λZt−1,t−1, · · · , λZt−q ,t−q is not enough to compute the conditional distribution of λt,1(ψ1), · · · , λt,K(ψK)

and therefore an EM algorithm cannot be applied for likelihood optimization.

An alternative way to deal with these issues could be to employ Lemma 2.1 and use the infinite represen-

tation MINARCH(∞) of (6) with fk(·) being linear. Then using a finite order would suffice to make likelihood

inference for such models. However, the following counterexample proves that misspecification of the model

doesn’t allow anymore to estimate the true number of regimes.
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Example 4.1 Assume that the observations are a realization of a stationary INGARCH(1,1) process (Yk)k∈N,

vis.

Yt | Ft−1 ∼ MP(p, λt) λt = ψ0
0 + ψ0

1Yt−1 + ψ0
2λt−1.

Here, we assume that the process has only one regime. The practitioner does not know the true data generating

process and fits a MINARCH(1) model with a 2 regimes. In this case, the vector of unknown parameters is

ψ = (p1, ψ1, ψ2)
T . With this notation, we obtain by (10) that the conditional likelihood is

L(y1, . . . , yn; ψ) =
n

∏
t=1

( 2

∑
k=1

pk
exp(−λt,k(ψk))λ

yt
t,k(ψk)

yt!

)
=

n

∏
t=1

(
p1

exp(−(ψ1,0 + ψ1,1yt−1)) (ψ1,0 + ψ1,1yt−1)
yt

yt!

+ (1− p1)
exp(−(ψ2,0 + ψ2,1yt−1)) (ψ2,0 + ψ2,1yt−1)

yt

yt!

)
.

In what follows expectation is taken wrt to stationary measure of (Y1, Y2) which exists by Theorem 2.1. The

negative of the expected log-likelihood converges to the Kullback-Leibler distance (up to a constant), by ergod-

icity. In other words

− log L(y1, · · · , yn; ψ)

n
a.s.−→ K(ψ)

.
= E

[
log
(

p1
exp(−(ψ1,0 + ψ1,1Y1)) (ψ1,0ψ1,1Y1)

Y2

Y2!

+(1− p1)
exp(−(ψ2,0 + ψ2,1Y1)) (ψ2,0 + ψ2,1Y1)

Y2

Y2!

)]
.

The "best" model (which is not the true model) is the model that minimizes the Kullback-Leibler distance

K(ψ∗) = arg min
ψ∈Ψ

K(ψ).

The problem that we are faced with is to examine whether the best model has one or two regimes. If the

best model has only one regime then ψ∗ =
(

p∗1 , ψ∗1,0, ψ∗1,1, ψ∗2,0, ψ∗2,1

)
has to satisfy p∗1 = 0, or p∗1 = 1 or

(ψ∗1,0, ψ∗1,1) = (ψ∗2,0, ψ∗2,1). If these conditions are not satisfied, then the "best" model will have two regimes but

the true number of regimes is only one.

Hence the vector ψ∗ has to satisfy the following equations

−E
[ ∂

∂ψ∗i
log

(
p1

exp(−(ψ1,0 + ψ1,1Y1)) (ψ1,0 + ψ1,1Y1)
Y2

Y2!
+ (1− p1)

exp(−(ψ2,0 + ψ2,1Y1)) (ψ2,0 + ψ2,1Y1)
Y2

Y2!

)]
= 0,

where ψ∗i is the i’th component of ψ∗, i = 1, . . . , 5. By taking into account the calculations in Appendix A-5 we
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have that if p∗1 = 0, then the above system reduces to

−E

[
exp(−(ψ1,0 + ψ1,1Y1)) (ψ1,0 + ψ1,1Y1)

Y2

exp(−(ψ2,0 + ψ2,1Y1)) (ψ2,0 + ψ2,1Y1)
Y2
− 1

]
=0,

−E
[(

Y2
ψ2,0 + ψ2,1Y1

− 1
)]

=0,

−E
[(

Y1Y2
ψ2,0 + ψ2,1Y1

− 1
)]

=0.

The last equation shows that

E
[(

Y1Y2
ψ2,0 + ψ2,1Y1

− 1
)]

= E
[

E
[(

Y1Y2
ψ2,0 + ψ2,1Y1

− 1
)
|Y1

]]
= Eµ [Y1 − 1] 6= 0.

By a symmetric argument, if p∗1 = 1 we obtain that E [Y2 − 1] = 0 which is false again. Finally, for the case of

(ψ1,0, ψ1,1) = (ψ2,0, ψ2,1), we get the following system

−E
[

p1

(
Y2

ψ1,0 + ψ1,1Y1
− 1
)]

= 0,

−E
[

p1

(
Y1Y2

ψ1,0 + ψ1,1Y1
− 1
)]

= 0,

−E
[
(1− p1)

(
Y2

ψ1,0 + ψ1,1Y1
− 1
)]

= 0,

−E
[
(1− p1)

(
Y1Y2

ψ1,0 + ψ1,1Y1
− 1
)]

= 0.

Arguing as before, we have that this system of equations is again false, in general. Hence we illustrated that

approximating a MINGARCH model with an MINARCH model will not allow to estimate the true number

of regimes. It is easy to see that his problem will occur even if we had applied MINARCH models with lag L

bigger than 1.

5 A Data Example

In this section, we apply the methodology to the time series shown at the top of Figure 2 which consists

of weekly number of disease cases caused by E.coli in the state of North Rhine-Westphalia (Germany) from

January 2001 to May 2013. The data are available in the R package tscount; Liboschik et al. (2017). As a first

remark we note that there was an outbreak of E.coli infections all over Northern Germany around middle May

to end of June 2011; for further details see https://en.wikipedia.org/wiki/2011_Germany_E._coli_O104:

H4_outbreak. The plot reveals the outbreak quite clearly and it suggests two possible modeling approaches.

The one is the approach taken in this work since the graph illustrates the existence of one region with low

activity and another region of higher activity. A second possible approach for analysing these data is that
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of Fokianos and Fried (2010) who consider various types of interventions and develop methodology for their

detection. In what follows we will discuss both approaches. The time series of E.coli cases consist of 646

observations but we removed the first three observations for model fitting; hence n = 643 in what follows.

To fit model (4) we employ the transformation pk = exp(θk)/(1+ ∑K
j=1 exp(θj)), k = 1, . . . , K and θK = 0 to

avoid numerical instability. Table 1 shows the values of BIC after fitting a model with K = 1 (ordinary Poisson

model) and K = 2 components model for various choices of lag L. The BIC favors a two-component model

where in each region Yt is regressed on Yt−1, Yt−2. The parameter estimates and their standard errors for ψ =

(θ1, ψ1,0, ψ1,1, ψ1,2, ψ2,0, ψ2,1, ψ2,2)
T are (−0.597, 9.475, 0.573, 0.262, 5.431, 0.344, 0.226)T and (0.068, 1.123, 0.003,

0.003, 0.641, 0.001, 0.002)T . These results can be interpreted broadly as follows. The probability of one regime

is p1 = 0.36 and the probability of the other regime is p2 = 1− p1 = 0.64. In the region which has the smaller

probability, the mean number of weakly cases is larger than the mean number of weakly cases in the region

with higher probability. This interpretation agrees with Figure 2 where the plots reveals this specific structure

and indicates some correlation of the response to Yt−1 and Yt−2.

It is worth comparing this approach with the methodology developed by Fokianos and Fried (2010) for

detecting intervention in count time series and is implemented in the R package tscount. Indeed, some

further data analysis shows the existence of a transient effect at time t = 540 which corresponds to the week

starting at May 23rd, 2011. In this case, the fitted model is

Yt | Ft−1 ∼ Poisson(λt)

λt = 8.478(.533) + 0.339(.027)Yt−1 + 0.219(.026)Yt−2 + 33.120(3.51)
1

(1− 0.9B)1t(540)

where B is the shift operator such that BiYt = Yt−i and It(τ) is an indicator function, with It(τ) = 1 if t = τ,

and It(τ) = 0 if t 6= τ . Corresponding standard errors of the regression coefficients are in parentheses. The

corresponding BIC values obtained after fitting this model is equal to 4411.754 which improved the model

without intervention; see Table 1 for K = 1 and L = 2. Yet, it seems that a mixture model with two regimes

might be a better alternative for modeling these data. This is also supported informally by considering the

Pearson residuals defined by

et =
Yt − E[Yt | Ft−1]√

Var[Yt | Ft−1]

In the case of model (4), use (2) to calculate the above quantity. The mean square error of the Pearson residuals

is equal to 1.998 when using the model with intervention. Model (4) has mean square error equal to 1.13.

So there is some further evidence supporting the mixture approach for modeling these data. Finally, the top

graph of Figure 3 shows plots of the autocorrelation function of the Pearson residuals after fitting both models

discussed to the data. In both cases, the plot does not indicate any gross departure from white noise but it

should be used cautiously in practice. The lower plot of Figure 3 shows plot of the auto-distance correlation

function. This quantity quantifies dependence better as it was explained by Székely et al. (2007) (for the
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independent case) and Fokianos and Pitsillou (2018) for the time series case. Both of the plots indicate that the

fit of both models to weakly number of E.coli cases is satisfactory.
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Figure 2: Weekly number of reported disease cases caused by E.coli in the state of North Rhine-Westphalia

(Germany) from January 2001 to May 2013 and their sample autocorrelation and partial autocorrelation func-

tions.

L K = 1 K = 2

1 4636.327 4364.537

2 4540.943 4319.091

3 4522.201 4328.674

Table 1: BIC values after fitting model (4) to E.coli count time series.
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Figure 3: Left plot: (a) Autocorrelation and (b) Auto-Distance Correlation function of the Pearson residuals

after fitting the model with intervention to the weekly number of E.coli cases. Right plot: (c) Autocorrelation

and (d) Auto-Distance Correlation function of the Pearson residuals after fitting (4) with K = 2 and L = 2 to

the weekly number of E.coli cases.
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Appendix

The following auxiliary lemma can be proved easily upon recalling the s-moments of a Poisson random vari-

able, see Johnson et al. (1992) and Ferland et al. (2006).

Lemma A-1 Recall (1) and let Y ∼ MP(p, λ) and s ∈N∗. The uncentered moments of Y satisfy

EYs =
K

∑
k=1

pk

s

∑
j=0

 s

j

 λ
j
k,

where

 s

j

 denote Stirling numbers of the second kind such that when s ≥ 0 and 0 ≤ j ≤ s,

 s

j

 = 0

for j /∈ {1, . . . , s} and satisfy the following recurrence: s

j

 =

 s− 1

j− 1

+ j

 s− 1

j



A-1 On τ-dependennce

For the Euclidean space Rd and h : Rd → R, we denote by ‖h‖∞ = supx∈Rd |h(x)|. In addition, let

Lip(h) = sup
x 6=y

|h(x)− h(y)|
‖x− y‖ .

The space Λ1
(
Rd) is the set of functions h : Rd → R such that Lip(h) ≤ 1. Let (Ω,G, P) be a probability

space and suppose thatM is a σ-algebra of G. We denote by Ls ≡ Ls(Ω,G, P) the class of Rd−valued random

variables W, such that ‖W‖s = (E‖W‖s)1/s < ∞. Let X be a random variable with values in Rd. Assume that

‖X‖1 < ∞ and define the coefficient τ as

τ(M, X) =

∥∥∥∥sup
{∣∣∣∣∫ f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣∣∣ / f ∈ Λ1
(
E
)}∥∥∥∥

1
.
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An easy way to bound this coefficient is based on a coupling argument which shows that

τ(M, X) ≤ ‖X−Y‖1,

for any random variable Y with the same distribution as X and independent of M, see Dedecker and Prieur

(2004). Moreover, if the probability space (Ω,G, P) is rich enough, then there exists such an X∗ with τ(M, X) =

‖X− X∗‖1. Using the definition of τ, the dependence between the past of the sequence (Xt)t∈Z and its future

k-tuples may be assessed as follows. Consider the norm ‖x − y‖ = ‖x1 − y1‖ + · · · + ‖xk − yk‖ on Rdk, set

Mp = σ(Xt, t ≤ p) and

τk(r) = max
1≤l≤k

1
l

sup
{

τ(Mp, (Xj1 , . . . , Xjl ))
/

p + r ≤ j1 < · · · < jl
}

,

τ∞(r) = sup
k>0

τk(r).

For the sake of simplicity τ∞(r) is denoted by τ(r). The time series (Xt)t∈Z is τ-weakly dependent when

limr→∞ τ(r) = 0.

A-2 Proof of Theorem 2.1

Recall that Ak = ∑l αkl and Bs = ∑K
k=1 pk As

k. We will show that the following statements hold true:

1. If B1 = ∑K
k=1 pk Ak < 1 < 1, then there exists a weakly dependent strictly stationary process {Yt, t ∈ Z}

which belongs to L1.

2. If Bs < 1, then the strictly stationary process {Yt, t ∈ Z} belongs to Ls, for s ∈N∗.

3. If Bs < 1, then the strictly stationary process {Yt, t ∈ Z} belongs to Ls, for s ∈ [1, ∞).

Step 1. The proof of point 1 is based on verifying condition (3.1) of Doukhan and Wintenberger (2008) since

their condition (3.2) is assumed while condition (3.3) in the same paper trivially holds. We denote by MPt is

a sequence of iid mixture homogeneous Poisson processes with p = (p1, . . . , pK) and λ = (1, . . . , 1) and by

model definition we have that Yt = MP(p, λt), where

λt = (λt;1, . . . , λt;k) = ( f1(λt−1, Yt−1), . . . , fk(λt−1, Yt−1)) = f (λt−1, Yt−1),

where we have defined the K-dimensional function f = ( f1, . . . , fk). For this model, the noise sequence can

be written as MP = (Z, N) for a random variable Z with P(Z = k) = pk and N a unit rate Poisson process

independent of Z. Note that (recall (5))

MP(p, f (x)) =
K

∑
k=1

1{Z=k}N( fk(x)).
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It is seen that (3) is expressed as Yt = MP(p, λt) = F(Yt−1, . . . , MPt). Then, with x = (x1, x2, . . .) ∈ N∞ and x′

defined analogously, condition (3.1) of Doukhan and Wintenberger (2008) becomes

E|F(x, MP)− F(x′, MP)| = E
∣∣∣MP( f (x))−MP( f (x′))

∣∣∣
=

K

∑
k=1

pk| fk(x)− fk(x′)|

≤
K

∑
k=1

pk

∞

∑
l=1

αkl |xl − x′l |,

where the second equality follows from the properties of the Poisson process. In addition E|F(0, MP)| =

∑K
k=1 pk fk(0). Hence, the first part of the theorem holds.

Step 2. To obtain the second part of the theorem, we use recursion. We give a one step recursion for the special

case of s ∈N. For k = 1, . . . , K, we have that fk(x) = fk(x)− fk(0) + fk(0) thus the assumption of the theorem

implies with ck ≡ fk(0) that

| fk(x)| ≤ gk(x) + ck, gk(x) =
∞

∑
l=1

αkl |xl |.

Therefore we obtain that

| fk(x)|i ≤
i

∑
j=0

 i

j

 ci−j
k gj

k(x) for i < s

and

| fk(x)|s ≤ gs
k(x) +

s−1

∑
j=0

 s

j

 cs−j
k gj

k(x) ≤ gs
k(x) + rk(x). (A-1)

Now Jensen’s inequality with probability weights akl/Ak yields the following for i ∈ {1, . . . , s}

gi
k (x) ≤ Ai−1

k ∑
l

akl |xl |i.

Therefore, we obtain that

E

(
∑

l
akl |Yt−l |

)i

≤ Ai−1
k ∑

l
aklE|Yt−l |i ≤ Ai

kE|Y0|i. (A-2)

Hence setting δt;k ≡ ∑l akl |Yt−l |, we obtain that

E (Ys
t ) ≤

K

∑
k=1

pkEλs
t;k +

K

∑
k=1

pk

s−1

∑
j=0

 s

j

E[λj
t;k],

by using Lemma A-1. The last expression may be infinite but it is always well defined. Using repeatedly

equations (A-1) and (A-2) and noting that the Y’s are stationary, we obtain that

E|Y0|s = E (Ys
t ) ≤

K

∑
k=1

pkEδs
t;k + C1 ≤ BsE|Y0|s + C2
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for some constants C1 ≤ C2 < ∞ since from recursion E|Yt|s−1 < ∞. Hence choose Bs < 1 to conclude that

E|Y0|s ≤
C2

1− Bs
< ∞.

Step 3. If s /∈ N∗ then S = [s] < s and we set s = S + m for some m ∈ (0, 1). Jensen’s inequality entails

that BS ≤ BS/s
s < 1 thus the assumption also holds for S. Thus using step 2 for the integer value S and the

sublinearity of λ 7→ λm we obtain that

f s
k (x) = f S

k (x) f m
k (x) ≤ (gS

k (x) + rk(x))(gm
k (x) + cm

k )) ≤ gs
k(x) + Rk(x)

where the remainder term has degree ≤ S, i.e. Rk(x) ≤ Ck(‖x‖S + 1) for some finite constant Ck < ∞ and we

thus obtain from step 2,

Eλs
k,0 ≤ BsE|Y0|s + Ck(E|Y0|S + 1)

and hence the desired conclusion follows as before. �

A-3 Proof of Lemma 2.1

Because of the representation

Yt = Nt(λt), λt = h(λt−1, . . . , λt−L1 , Yt−1, . . . , Yt−L2 )

we have that λt is measurable with respect to σ-field Ft. By repeated substitution we obtain that there exists

a positive function f (·) such that λt = f (Yt−1, Yt−2, . . .). Put δ = |λt − λ̃t|, and εt = |Yt − Ỹt|. Then, by the

contraction condition on h(.), we obtain that

δt ≤
L1

∑
i=1

aiδt−i +
L2

∑
j=1

εt−j.

Define the polynomials a(z) = 1−∑L1
i=1 aizi and b(z) = ∑L2

i=1 bizi. With this notation and because of positivity,

the last display is written as

a(B)δt ≤ b(B)εt

where B is the backward shift operator. Define νt = b(B)εt − a(B)δt ≥ 0. Since ∑L1
i=1 ai < 1, all the roots of

a(z) lie outside the unit circle. In case that νt = 0, then

δt =
b(B)
a(B) εt =

∞

∑
i=1

ci|Yt−i − Ỹt−i|,

where the sequence (ci) is positive and decays exponentially fast. In fact, by the multinomial expansion, it

satisfies the following set of recursions

ci =
L1

∑
j=1

bj Ai−j, Am = ∑
l1+2l2+···+klk=m

(
l1 + · · ·+ lk

l1, . . . , lk

)
al1

1 · · · a
lk
k .
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In the special that b(z) = 1, the above derivation proves that the coefficients of the power series expansion

of 1/a(z) are also positive. Indeed, when b(z) = z the power series expansion of z/a(z) has also positive

coefficients and thus the claim follows. Therefore

δt =
b(B)
a(B) εt −

νt
a(B) ≤

b(B)
a(B) εt.

The claim follows. �

A-4 Proof of Lemma 3.1

The conclusion of the lemma will be true if we show that the functions

(y, y1, . . . , yL) 7→
exp(− f (y1, . . . , yL; ψk)) f y(y1, . . . , yL; ψk)

y!
, k ∈ {1, . . . , K}

are linearly independent provided that ψk 6= ψl for k 6= l. Indeed, let us assume that for all y, y1, . . . , yL, a

linear combination of these functions is equal to zero. Then

K

∑
k=1

pk
exp(− f (y1, . . . , yL; ψk)) f y(y1, . . . , yL; ψk)

y!
= 0,

implies that

K

∑
k=1

pk exp(− f (y1, . . . , yL; ψk)) f y(y1, . . . , yL; ψk) = 0.

But assumption H-2 shows that for k 6= l, f (.; ψk) 6= f (.; ψl). Hence, there exist a (y1, . . . , yL) and an index

l exist such that, for k 6= l, f (y1, . . . , yL; ψl) > f (y1, . . . , yL; ψk). By letting y going to infinity we deduce that

pl = 0. Hence
K

∑
k=1,k 6=l

pk exp(− f (y1, . . . , yL; ψk)) f y(y1, . . . , yL; ψk) = 0,

and by recursion all pk will be equal to zero. �

A-5 Score and information matrix calculations for Theorem 3.1

Computation of first and second order derivatives: For ease of notation, define y(t−1) = (yt−1, . . . , yt−L).

By definition, we obtain that, for k ∈ {1, . . . , K− 1},

∂ log g(yt, y(t−1); ψ)

∂pk
=

gk(yt, y(t−1); ψk)− gK(yt, y(t−1); ψK)

g(yt, y(t−1); ψ)
. (A-3)

Now, for k ∈ {1, . . . , K} and i ∈ {1, . . . , dk} we get that

∂ log g(yt, y(t−1); ψ)

∂ψki
=

pk

(
∂gk(yt, y(t−1); ψk)/∂ψki

)
g(yt, y(t−1); ψ)

,
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with

∂gk(yt, y(t−1); ψk)

∂ψki
= gk(yt, y(t−1); ψk)

∂ f (y(t−1); ψk)

∂ψki

(
yt

f (y(t−1); ψk)
− 1

)
.

Therefore

∂ log g(yt, y(t−1); ψ)

∂ψki
=

pkgk(yt, y(t−1); ψk)

g(yt, y(t−1); ψ)

∂ f (y(t−1); ψk)

∂ψki

(
yt

f (y(t−1); ψk)
− 1

)
. (A-4)

For the second order derivatives we get with (k, l) ∈ {1, . . . , K− 1}2:

∂2 log g(yt, y(t−1); ψ)

∂pk∂pl
= −

(
gk(yt, y(t−1); ψ)− gK(yt, y(t−1); ψ)

) (
gl(yt, y(t−1); ψ)− gK(yt, y(t−1); ψ)

)
g(yt, y(t−1); ψ)2 .

Similarly, for k ∈ {1, . . . , K− 1} and i ∈ {1, . . . , dk}:

∂2 log g(yt, y(t−1); ψ)

∂ψki∂pk
=

gk(yt, y(t−1); ψk)
∂ f (y(t−1) ;ψk)

∂ψki

(
yt

f (y(t−1) ;ψk)
− 1
)

g(yt, y(t−1); ψ)

g(yt, y(t−1); ψ)2

−
pkgk(yt, y(t−1); ψk)

∂ f (y(t−1)) ;ψk)
∂ψki

(
yt

f (y(t−1) ;ψk)
− 1
) (

gk(yt, y(t−1); ψk)− gK(yt, y(t−1); ψK)
)

g(yt, y(t−1); ψ)2 .

For (k, l) ∈ {1, . . . , K− 1}2, k 6= l and i ∈ {1, . . . , dk}:

∂2 log g(yt, y(t−1); ψ)

∂ψki∂pl
=

pkgk(yt, y(t−1); ψk)
∂ f (y(t−1) ;ψk)

∂ψki

(
yt

f (y(t−1) ;ψk)
− 1
) (

gl(yt, y(t−1); ψl)− gK(yt, y(t−1); ψK)
)

g(yt, y(t−1); ψ)2 .

For k ∈ {1, . . . , K− 1} and (i, j) ∈ {1, . . . , dk}2:

∂2 log g(yt, yt−1; ψ)

∂ψki∂ψkj
= pk

∂2gk(yt, yt−1; ψk)

∂ψki∂ψkj

1
g(yt, yt−1; ψ)

− p2
k

(
∂gk(yt, yt−1; ψk)/∂ψki

)(
∂gk(yt, yt−1; ψk)/∂ψkj

)
g(yt, yt−1; ψ)2 ,

with

∂2gk(yt, yt−1; ψk)

∂ψki∂ψkj
=

∂gk(yt, yt−1; ψk)

∂ψkj

∂ f (yt−1; ψk)

∂ψki

( yt
f (yt−1; ψk)

− 1
)

+ gk(yt, yt−1; ψk)

 ∂2 f (yt, yt−1; ψk)

∂ψki∂ψkj

( yt
f (yt−1; ψk)

− 1
)
− ∂ f (yt−1; ψk)

∂ψki

yt

(
∂ f (yt−1; ψk)/∂ψkj

)
f (yt−1; ψk)2


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For (k, l) ∈ {1, . . . , K− 1}2, k 6= l, and (i, j) ∈ {1, . . . , dk} × {1, . . . , dl}:

∂2 log g(yt, yt−1; ψ)

∂ψki∂ψl j
= −pk pl

(
∂gk(yt, yt−1; ψk)/∂ψki

)(
∂gk(yt, yt−1; ψk)/∂ψkj

)
g(yt, yt−1; ψ)2

The special case of model (4): If f (yt−1, . . . , yt−L; ψk) is assumed to be a linear function like in equation

(4), then the previous equations can be simplified considerably. More precisely

∂gk(yt, yt−1; ψk)

∂ψk,0
= gk(yt, yt−1; ψk)

(
yt

ψk,0 + ψk,1yt−1
− 1
)

∂gk(yt, yt−1; ψk)

∂ψk,1
= gk(yt, yt−1; ψk)yt−1

(
yt

ψk,0 + ψk,1yt−1
− 1
)

.

For k ∈ {1, . . . , K− 1} and i ∈ {1, . . . , dk}:

∂2 log g(yt, yt−1; ψ)

∂ψk,0∂pk
=

gk(yt, yt−1; ψk)

g(yt, yt−1; ψ)

(
yt

ψk,0 + ψk,1yt−1
− 1
)

−
pkgk(yt, yt−1; ψk)

(
yt

ψk,0+ψk,1yt−1
− 1
)
(gk(yt, yt−1; ψk)− gK(yt, yt−1; ψK))

g(yt, yt−1; ψ)2

∂2 log g(yt, yt−1; ψ)

∂ψk,1∂pk
=

gk(yt, yt−1; ψk)

g(yt, yt−1; ψ)

(
yt

ψk,0 + ψk,1yt−1
− 1
)

−
pkgk(yt, yt−1; ψk)yt−1

(
yt

ψk,0+ψk,1yt−1
− 1
)
(gk(yt, yt−1; ψk)− gK(yt, yt−1; ψK))

g(yt, yt−1; ψ)2

For (k, l) ∈ {1, . . . , K− 1}2, k 6= l and i ∈ {1, . . . , dk}:

∂2 log g(yt, yt−1; ψ)

∂ψk,0∂pl
=

pkgk(yt, yt−1; ψk)
(

yt
ψk,0+ψk,1yt−1

− 1
)
(gl(yt, yt−1; ψl)− gK(yt, yt−1; ψK))

g(yt, yt−1; ψ)2

∂2 log g(yt, yt−1; ψ)

∂ψk,1∂pl
=

pkgk(yt, yt−1; ψk)yt−1

(
yt

ψk,0+ψk,1yt−1
− 1
)
(gl(yt, yt−1; ψl)− gK(yt, yt−1; ψK))

g(yt, yt−1; ψ)2

For k ∈ {1, . . . , K− 1} and (i, j) ∈ {1, . . . , dk}2:

∂2gk(yt, yt−1; ψk)

∂ψk,0∂ψk,0
=

∂gk(yt, yt−1; ψk)

∂ψk,0

(
yt

ψk,0 + ψk,1yt−1
− 1
)
− gk(yt, yt−1; ψk)

(
yt(

ψk,0 + ψk,1yt−1
)2

)
∂2gk(yt, yt−1; ψk)

∂ψk,0∂ψk,1
=

∂gk(yt, yt−1; ψk)

∂ψk,0

(
yt

ψk,0 + ψk,1yt−1
− 1
)
− gk(yt, yt−1; ψk)

(
ytyt−1(

ψk,0 + ψk,1yt−1
)2

)
∂2gk(yt, yt−1; ψk)

∂ψk,1∂ψk,1
=

∂gk(yt, yt−1; ψk)

∂ψk,1
yt−1

(
yt

ψk,0 + ψk,1yt−1
− 1
)
− gk(yt, yt−1; ψk)

(
yty2

t−1(
ψk,0 + ψk,1yt−1

)2

)
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Some remarks on Theorem 3.1 By construction, for any k ∈ {1, . . . , K}, |gk(yt, yt−1; ψk)| ≤ 1. In addition,

|gk(yt, yt−1; ψk)/g(yt, yt−1; ψ)| ≤ 1 and |g(yt, yt−1; ψ)| ≤ 1. Therefore square integrability of the score function

follows easily. Recall (A-3). Then ∣∣∣ ∂ log g(yt, y(t−1); ψ)

∂pk

∣∣∣ ≤ 2.

Similarly, by (A-4) (with some abuse of notation)∣∣∣ ∂ log g(yt, y(t−1); ψ)

∂ψki

∣∣∣ ≤ ∣∣∣ ∂ f (y(t−1); ψk)

∂ψki

∣∣∣∣∣∣( yt
f (y(t−1); ψk)

− 1

)∣∣∣
≤
( L

∑
l=1

bkli|Yl |+
∣∣∣ ∂ f (0, ψ)

∂ψki

∣∣∣) |Yt|
C1

,

by using assumptions H-2 and H-4. Square integrability of these score components follow by Cauchy-Schwartz

and Theorem 2.1. Indeed, the score process is a square integrable martingale which satisfies Lindeberg’s

condition provided that E[Y4
t ] < ∞. The martingale central limit theorem concludes the proof. �

A-6 Verification of assumptions T1-T2 for linear MINARCH

We will illustrate, in the case of the simple linear model (4) assumptions T1-T2 which are required in the

proof of Theorem 3.2 and Proposition 3.1. Recall (4) where (ψ0,k, ψ1,k)1≤k≤K are positive numbers, and for all

k ∈ {1, · · · , K}, ψ0,k greater or equal than a number C1 > 0 (recall assumption H-2). We assume also that the

true model satisfies

P[Yt = y |Yt−1, . . . Yt−L ] =
K

∑
k=1

p0
k

exp(−(ψ0
k,0 + ψ0

k,1Yt−1))(ψ
0
k,0 + ψ0

k,1Yt−1)
y

y!
,

such that for all k ∈ {1, · · · , K0}, 0 ≤ ψ0
k,1 < 1. Under these assumptions, we will show that there exists a δ > 0

such that:
∞

∑
yt−1=0

eδyt−1 µ(yt−1) < ∞, (A-5)

where µ denotes the stationary measure.

Lemma A-2 Let ψ0
1,1, · · · , ψ0

1,K0 be the true regression parameters. If, for all k ∈ {1, · · · , K0}, 0 ≤ ψ0
1,k < 1, then

there exists a δ0 > 0 such that for all δ < δ0, (A-5) is true.

Proof: Assume that Y0 = 0 and let M > 0. Then we have by the dominated convergence theorem:

∞

∑
yt−1=0

M ∧ eδyt−1 µ(yt−1) = lim
t→∞

E
(

M ∧ eδYt
)

.

Let ρ0 = max1≤k≤K0 (ψ0
0,k) and ρ1 = max1≤k≤K0 (ψ0

1,k). Observe that if Zt ∼ Poisson(ρ1Zt−1 + ρ0) and Z0 = Y0,

then, for all t ∈N

E
(

eδYt
)
≤ E

(
eδZt

)
.
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But E (exp(δZ1)) = exp(ρ0(eδ − 1)) and E (exp(δZ2)) = exp(ρ0(eδ − 1)) exp(ρ0

(
eρ1(eδ−1) − 1

)
). Moreover, for

ρ1 < C < 1 and if δ < ln (C/ρ1) we obtain

E (exp(δZ2)) ≤ exp(ρ0(eδ − 1)(1 + C)).

By recursion and taking the limit as t→ ∞

lim
t→∞

E (exp(δZt)) ≤ exp(ρ0(eδ − 1)(
1

1− C
)).

Therefore the claim follows by noting that

lim
M→∞

∞

∑
yt−1=0

M ∧ eδyt−1 µ(yt−1) =
∞

∑
yt−1=0

eδyt−1 µ(yt−1) ≤ eρ0(eδ−1)( 1
1−C )

�

Verification of Assumption T-1 for model (4): Assumption T1 is a consequence of assumptions H1,

H-2 and H-3. Assumption H1 has to be assumed. The assumption H-2 follows from the linearity and that

and for all y ∈ N, P(Yt = y) > 0 if Yt is stationary. Finally, since for all k ∈ {1, . . . , K}, pk ≥ C > 0 and

exp
[
−(ψ0,k + ψ1,kYt−1)

]
(ψ0,k + ψ1,kYt−1)

yt /yt! ≤ 1, we have

log (g(yt, yt−1; ψ)) = log

(
K

∑
k=1

pk
exp−(ψ0,k + ψ1,kyt−1)(ψ0,k + ψ1,kyt−1)

yt

yt!

)

≤ log(C) +
K

∑
k=1

log
exp−(ψ0,k + ψ1,kyt−1)(ψ0,k + ψ1,kyt−1)

yt

yt!

= log(C) +
K

∑
k=1
−(ψ0,k + ψ1,kyt−1) + yt log(ψ0,k + ψ1,kyt−1) + log(yt!)

≤ log(C) +
K

∑
k=1

[
−(ψ0,k + ψ1,kyt−1) + yt log(ψ0,k + ψ1,kyt−1)

]
+ yt log(yt).

Because of the compactness of the parameter space, we obtain

E

(
sup
ψ∈Ψ

g(yt, yt−1; ψ)

)
< ∞

provided E(Ys
t ) < ∞ for some s > 1.

Verification of Assumption T-2 for model (4): After some calculations, we obtain that

∥∥∥∥ g
g0 − 1

∥∥∥∥2

L2(µ)

=
∞

∑
yt=0

∞

∑
yt−1=0

(
∑K

k=1 pk
exp−(ψ0,k+ψ1,kyt−1)(ψ0,k+ψ1,kyt−1)yt

yt !

)2

∑K0

k=1 p0
k

exp−(ψ0
0,k+ψ01,kyt−1)(ψ0

0,k+ψ0
1,kyt−1)yt

yt !

µ (yt−1)− 1.
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By employing the inequality(
K

∑
k=1

pk
exp−(ψ0,k + ψ1,kyt−1)(ψ0,k + ψ1,kyt−1)

yt

yt!

)2

≤
K

∑
k=1

pk

(
exp−(ψ0,k + ψ1,kyt−1)(ψ0,k + ψ1,kyt−1)

yt

yt!

)2

,

the integral will be finite if, for all k ∈ {1, ..., K}:

∞

∑
yt=0

∞

∑
yt−1=0

(
exp−(ψ0,k+ψ1,kyt−1)(ψ0,k+ψ1,kyt−1)yt

yt !

)2

∑K0

k=1 p0
k

exp−(ψ0
0,k+ψ0

1,kyt−1)(ψ0
0,k+ψ0

1,kyt−1)yt

yt !

µ (yt−1) < ∞

On the other hand, since

K0

∑
k=1

p0
k

exp−(ψ0
0,k + ψ01,kyt−1)(ψ

0
0,k + ψ0

1,kyt−1)
yt

yt!
≥ p0

k
exp−(ψ0

0,k + ψ01,kyt−1)(ψ
0
0,k + ψ0

1,kyt−1)
yt

yt!

for every k ∈
{

1, ..., K0}, the generalized score function is well defined provided that for every k ∈ {1, ..., K},
there exists l ∈

{
1, ..., K0} such that

∞

∑
yt=0

∞

∑
yt−1=0

(
exp−(ψ0,k+ψ1,kyt−1)(ψ0,k+ψ1,kyt−1)yt

yt !

)2

exp−(ψ0
0,l+ψ0

1,l yt−1)(ψ0
0,l+ψ0

1,l yt−1)yt

yt !

µ (yt−1) < ∞.

But the Poisson pmf is always less than 1 and therefore this will be true if

∞

∑
yt=0

∞

∑
yt−1=0

exp−(ψ0,k + ψ1,kyt−1)(ψ0,k + ψ1,kyt−1)
yt

yt!

exp−(ψ0,k+ψ1,kyt−1)(ψ0,k+ψ1,kyt−1)yt

yt !
exp−(ψ0

0,l+ψ0
1,l yt−1)(ψ0

0,l+ψ0
1,l yt−1)yt

yt !

µ (yt−1) < ∞,

or if

∞

∑
yt=0

∞

∑
yt−1=0

(
exp(ψ0

0,l − ψ0,k) exp((ψ0
1,l − ψ1,k)yt−1)

exp−(ψ0,k + ψ1,kyt−1)(ψ0,k + ψ1,kyt−1)
yt

yt!

exp

(
yt log

(
ψ0,k + ψ1,kyt−1

ψ0
0,l + ψ0

1,lyt−1

))
µ (yt−1) < ∞.

By summing with respect to yt, and recognizing the moment-generating function of a Poisson random variable

the previous inequality becomes:

∞

∑
yt−1=0

exp(ψ0
0,l − ψ0,k) exp((ψ0

1,l − ψ1,k)yt−1) exp((ψ0,k + ψ1,kyt−1)

(
ψ0,k + ψ1,kyt−1

ψ0
0,l + ψ0

1,lyt−1
− 1

)
µ (yt−1) < ∞.

Since the mixtures weigths are bounded by below, if ‖g− g0‖ is sufficiently small, then min(k,l)∈{1,··· ,K}×{1,··· ,K0}((ψ
0
0,l−

ψ0,k)
2 + (ψ0

1,l − ψ1,k)
2) is sufficiently small , and the last inequality will be true as soon as, a δ > 0 exists such

that:
∞

∑
yt−1=0

exp(δyt−1)µ(yt−1) < ∞

But this follows from Lemma A-2.
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