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Abstract

It is becoming increasingly common to accept that heterogeneity of preferences is an ap-
propriate approach to describe aggregate experimental data on risky choice. We propose a
parametric form of utility consistent with Markowitz’s (1952) hypotheses as a useful model to
consider. This value function exhibits the fourfold attitude to risk and can also capture different
combinations of risk attitudes and higher-order preferences. Moreover, it can be combined with
probability weighting functions as well as with other value functions as part of mixture mod-
els that capture heterogeneity of preferences. We employ data from three recent experimental
studies and show that this model can contribute to the explanation of their findings.
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1 Introduction

Experimental research over the last four decades has provided a wealth of evidence about individ-

uals’ behaviour that has stimulated the development of theories to describe choice under risk and

uncertainty (see e.g. Hey and Orme, 1994; and Starmer, 2000). Over this period of time many

alternative theories have been put forward to further adjust or modify Expected Utility Theory

(EUT). By 1997 there were already around twenty generalizations of EUT (Hey, 1997). The ad-

vances in the available econometrics methods, starting with Harless and Camerer (1994) and Hey

and Orme (1994), allowed the horse-race type of comparisons between competitive models. Both

the aforementioned studies and subsequent ones (e.g. Carbone and Hey 1994, Gonzales and Wu,

1999) concluded that the two models that best explain behaviour are EUT and Prospect Theory (or

Ranked-Dependent Utility if the domain is constrained to gains).1 Some of the reasons that have

made Cumulative Prospect Theory (CPT) successful are its ability to explain the Allais Paradox,

gambling behaviour, and the fact that exhibits loss aversion for which there is lots of experimental

evidence (e.g. Rieger et al., 2015). Barberis (2013, p. 173), in his review of prospect theory, states

“More than 30 years later, prospect theory is still widely viewed as the best available description of

how people evaluate risk in experimental settings. Kahneman and Tversky’s papers on prospect the-

ory have been cited tens of thousands of times and were decisive in awarding Kahneman the Nobel

Prize in economic sciences in 2002.” Furthermore, Kothiyal et al. (2014) have recently extended

this result (the power of Prospect Theory as an alternative model to Expected Utility) in the field

of choice under ambiguity.

However, despite the fact that EUT and CPT remain as pre-eminent in model building and

data description, the difficulty of finding one single preference functional that fits any data exactly

has recently been addressed by considering mixture models (see Fehr-Duda et al., 2010; and Conte

et al., 2011).

In this paper we show that the properties of a value function inspired by the classical paper

of Markowitz (1952) can contribute to an explanation of experimental findings on risky choice.

This contribution could be as a utility function for money, but could also be used in conjunction

with probability weighting functions, or, more generally, as part of a mixture model that allows

1Hey (2014) and Conte et al. (2011) provide an overview of the history of fitting models of choice under risk, and
conclude that “Two remain pre-eminent: Expected Utility and Rank Dependent Expected Utility.”
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for heterogeneity of preferences. In that sense, this model offers a way to improve both the EUT

framework and the CPT framework.

Markowitz assumed that, from an agent’s customary or normal level of wealth, her reference

point, the agent was initially risk loving then risk averse over gains, whilst initially risk averse then

risk seeking over losses, and that the value function is bounded from above and below. Markowitz

also assumed his representative agent is loss averse,2 and that individuals did not exhibit probability

distortion, although he did not rule out that possibility.3 The Markowitz model predicts the fourfold

attitude to risky choice exhibited in numerous experimental studies on risky choice (see Scholten

and Read (2014) for recent evidence). We highlight below further empirical findings that are

difficult to reconcile with one single of the pre-eminent theories of choice under risk and where we

propose the Markowitz model can contribute to their explanation.4

First, it is reported in experimental research that a high proportion of choices exhibit risk-

seeking preferences when given the choice between a risky option with 0.5 probability of the payoffs

and the certain expected value (e.g. Hershey and Schoemaker, 1985; Battalio et al., 1990; Cox and

Vjollca, 2010; and Vieider et al., 2015).5 Choice of the risky option in such lotteries is not easy to

reconcile with models of EUT or with alternative theories that incorporate probability weighting to

concave value functions. We note that in those latter theories the individual is typically reported

to underweight probabilities above around 0.33 (prominent recent examples are Stott 2006; Conte

et al. 2011; and Bruhin et al., 2010). As a consequence, the representative individual underweights

2“Generally people avoid symmetric bets. This suggests that the curve falls faster to the left of the origin than it
rises to the right. We may assume that | U(−X) |> U(X), X > 0 where X = 0 is customary wealth.” (Markowitz
1952 p. 155). This was the same definition as subsequently employed by Kahneman and Tversky (1979). Conlisk
(1993) already noted that economists had initially neglected the Markowitz hypothesis while psychologists, such as
Kahneman and Tversky, considered it as basic in their theories.

3“I shall only consider situations wherein there are objective odds. This is because we are concerned with a
hypothesis about the utility function and do not want to get involved in questions concerning subjective probability
beliefs. It may be hoped, however, that a utility function which is successful in explaining behavior in the face of
known odds (risk) will also prove useful in the explanation of behavior under uncertainty.” (Markowitz 1952 p. 155)

4Part of the rationale for the Markowitz model of utility was to present a new model that removed the counter-
factual implications of the Friedman and Savage (1948) model of expected utility that introduced a convex segment
into an otherwise standard expected utility model. These counterfactual implications include that when in the risk-
seeking segment of the Friedman and Savage utility function an individual would be willing to extend insurance at an
expected loss to their self. Also, that a wealthy person is willing to risk a large fraction of their wealth at actuarially
unfair odds.

5Game show data also reveals that a substantial proportion of contestants act as risk seeking (see Post et al.
(2008), Roos and Sarafidis (2010), and Deck et al. (2008)). We also note that in experimental research correlating
higher-order preferences with risk preferences, Maier and Rüger (2012) report up to 55% of choices exhibit risk-seeking
preferences, Noussair et al. (2014) report that 19.4% of choices are risk-seeking, and Deck and Schlesinger (2010)
report up to 26% of males’ choices and 21% of females’ choices are risk seeking.
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probabilities of 0.5 which, in conjunction with the assumed risk aversion of the value function over

gains, implies choice of the safe option.6

The property of local risk seeking present in the Markowitz model is perhaps a particulary

interesting addition to the literature in this context since analysis of risk-seeking agents has been

relatively neglected. For instance, Deck and Schlesinger (2014, p.1914) note that

“Across a wide array of settings a majority of people have been found to exhibit risk

aversion; but the minority who are risk loving often only receive passing attention.

Except for the occasional attempt to explain risk-loving behavior, an abundance of

papers simply include an assumption of risk aversion.”

Second, there is substantial evidence showing that relative risk aversion increases with stake size

(e.g. Hogarth and Einhorn, 1990; Kuehberger et al. 1999; Weber and Chapman 2005), and that this

effect is even more distinct when real money is at stake (Holt and Laury, 2002) and the experiment

involves substantial monetary incentives (Binswanger, 1981; and Kachelmeier and Shehata, 1992).

As pointed out by Fehr-Duda et al. (2010), this evidence seems to confirm Markowitz’s conjecture

that risk preferences are likely to reverse from risk seeking over small stakes to risk aversion over

high stakes.

The third issue relates to the evidence concerning agents’ higher-order preferences. Economic

theory demonstrates that numerous economic decisions depend on higher-order risk preferences such

as prudence and temperance. Recent experimental research on the apportion of risk consistent with

the higher order preference of prudence, employing the lottery preference definitions of Eeckhoudt

and Schlesinger (2006), report that the majority lottery choices are prudent (see Trautmann and

van de Kuilen (2018) for a comprehensive review on this area). Although the majority choices in

the experimental research is the prudent choice, the proportion is typically much lower than the

hundred percent predicted by value functions typically employed in EUT and CPT, and hard to

explain solely on the basis of stochastic error. In addition to this, the correlation between risk

aversion and higher-order preferences is weak, and it is often observed that the same experimental

subjects switch between prudent and imprudent, sometimes up to 14% of them, depending on the

6For example, Ebert and Wiesen (2014) fit the parametric model of Tversky and Kahneman (1992) to higher-
order-risk data, and their estimates imply that the average agent in their sample had a subjective probability of
0.2962 when the objective probability is 0.5. We also note that a few studies report overweighting of probabilities of
0.5 (Harrison et al., 2010; Bouchouicha and Vieider, 2017).
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size of the lottery payoffs (see Maier and Rüger, 2012; Noussair et al. 2014). The Markowitz

value function is a triply inflected function and allows the Markowitz agent to exhibit different

combinations of higher order preferences. In particular, the Markowitz individual unlike EUT or

CPT can exhibit prudent or imprudent preferences depending on payoff sizes.

Finally, some researchers report that other types of empirical evidence is consistent with the

Markowitz model of utility (see e.g. Pennings and Smidts, 2000; Pennings and Smidts, 2003; and

Post and Levy, 2005). For example, Post and Levy write

“Other than considering utility functions that are concave over gains and convex over

losses, we also, for completeness, consider utility functions that are convex over gains

and concave over losses. Interestingly, Markowitz (1952) already suggested this type of

utility function.“ (Post and Levy, 2005, p. 932)

“Finally, we hope that our results provide a stimulus for further research based on

Markowitz type utility functions (and non-concave utility functions in general).” (Post

and Levy, 2005, p. 950)

We contribute to this line of research and estimate an expo-power value function consistent with

Markowitz’s hypotheses for three prominent risky-choice data sets from recent studies, namely, by

Fehr-Duda et al. (2010), Scholten and Read (2014), and Pachur et al. (2018) (the dataset from

Pachur et al. (2018) is also employed in Murphy and ten Brincke (2017)). These papers examine

issues related to risky choices mentioned above: increasing relative risk aversion over both gains

and losses and the fourfold pattern of risk preferences. We compare and combine the fit of the

Markowitz model with four other specifications of CPT widely used in experimental research (e.g.

Stott, 2006; Conte et al. 2011; and Bouchouicha and Vieider, 2017). Those CPT specifications

include two different value functions –expo-power (nesting the power function) and logarithmic–,

and two alternative probability weighting functions –Tversky and Kahneman (1992) and Prelec

(1998)–. We consider mixture models of the expo-power value function with those four different

CPT parameterisations.

Our results show that the Markowitz model can be a valuable addition to the set of value

functions explaining risky choice. For example, it parsimoniously explains the risky choices of

between twenty three and forty eight percent of mixture models in the Fehr-Duda et al. (2010),
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Scholten and Read (2014), and Pachur et al. (2018) datasets.

The rest of the paper is structured as follows. In section 2 we set out the Markowitz model

of utility. In section 3 we describe the methodology employed to estimate the models for the

three different data sets, and section 4 discusses the results. The final section presents the main

conclusions.

2 The Markowitz model of utility

To illustrate the properties of the Markowitz model we employ the parametric form of the value

function based on the expo-power specification of Saha (1993) which, as noted by Abdellaoui et al.

(2007), captures the hypotheses of the Markowitz model. This value function defined over variable

gains, denoted here as g, is given by the following expression

u = 1− e−αgη , (1)

where α and η are positive constant parameters, and what characterises this value function

as consistent with Markowitz’s conjectures is that parameter η is above unity.7 With η > 1, the

agent is risk seeking over gains when η − 1 − αηgη > 0, risk averse when η − 1 − αηgη < 0, and

risk-neutral when η − 1 − αηgη = 0. We note that, as α approaches zero, the expo-power value

function (1) approximates the power value function gη. Given this property, parametric estimates

of risky choice data based on power utility or value functions when the power exponents reported

are significantly greater than unity could be interpreted as approximations to the Markowitz value

function, and evidence in favor of that model. In fact, there are a number of studies that report

estimates of the power exponents which are greater than unity (e.g. Bruhin et al. (2010), Vieider

(2012), and Abdellaoui and Bleichrodt (2007)). We also note that when η = 1 the expo-power

value function becomes that of an EUT maximiser with exponential utility. With exponential

utility, EUT maximisers risky choices are not determined by the individuals’ wealth.8 Accordingly,

7We are aware of two other functional forms that capture the Markowitz value or utility function. The first one
is the double expo-power proposed by Peel (2013), u = 1 − e−αgη − αgηe−αgη . We note that, in this case, when
η > 0.5 the agent is initially risk-seeking then risk-averse. The double expo-power function approximates the power
function g2η as α → 0. The second alternative specification of the Markowitz value function was proposed by Cain
et al. (2003), u = 1− e−αg − αge−αg. In this case, the agent is risk seeking over gains when αg < 1 and risk averse
for αg > 1. This value function approximates g2 as α → 0.

8Furthermore, Quiggin’s (1982) Rank Dependent Utility with exponential utility function can be nested in our
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if we obtain estimates of η > 1 we are rejecting EUT in favour of the Markowitz model.

The value function defined over the variable losses, denoted here as L, is given by

u = −λ(1− e−βLη
), (2)

where λ and β are positive constants.9 The agent is risk averse over losses when η−1−βηLη > 0

and risk-seeking when η − 1 − βηLη < 0. We note immediately from the conditions to be risk

seeking/risk averse over gains and losses that, since α ≥ β (see Appendix A), an agent who is

locally risk seeking over gains will necessarily be locally risk averse over losses for a gain and loss

of the same amount. However, if they are risk averse over gains, they could be either risk seeking

or risk averse over losses of the same amount.

Another appealing feature of the expo-power value function (1) is that it allows economic agents

to exhibit different risk attitudes depending on parameter values and the size of the payoffs. This

is illustrated by looking at the first four derivatives over gains

∂2u

∂g2
= αηgη−2e−αgη(η − 1− αηgη)

∂3u

∂g3
= αηgη−3e−αgη(η2(1 + α2g2η − 3αgη) + η(3αgη − 3) + 2)

∂4u

∂g4
= −αηgη−4e−αgη (η3(7αgη + α3g3η − 6α2g2η − 1) + η2(6α2g2η + 6− 18αgη) + η(11αgη − 11) + 6).

It is worth noting that when in the risk-seeking (or risk-averse) segment of the expo-power value

function the higher-order derivatives of a given order can exhibit multiple changes in sign for any

given value function and changing values of g, the stake size.10 This implies that Markowitz agents

estimates if parameter η = 1 in conjunction with Prelec’s weighting function, to be defined in the next section,
where w(p) = 0.5 = p, i.e. no probability distortion at p = 0.5 but overweight or underweight for p 6= 0.5. Quiggin
was drawn to this specification partly because it explains the early violation of EUT and partly because it has the
appealing property that 50− 50 bets will be undistorted by probability weighting.

9In this representation of the Markowitz model we constrain parameter η to be equal over gains, expression (1),
and over losses, expression (2). If exponents differ, then loss aversion can go to zero which in not apppropriate,
although this constraint can be relaxed in empirical work. In Appendix A we discuss in more detail the issue of loss
aversion, and in section 4 we discuss the constraint of equal parameter η in the empirical estimates.

10Since gη can be written as a function of any arbitrary fixed value g0, such that gη ≡ g
η
0 c

η, and since α can
be written as a function of any arbitrary fixed value α0, such that α ≡ α0c

η, the value function can be written as
1− e−αgη ≡ 1− e−α(g0∗c)

η

≡ 1− e−(α0c
η)gη . It therefore follows that we can compute the values of the derivatives by

fixing a value of g and to observe how the sign of the derivatives changes depending on the value of α for any given
η, or alternatively by fixing α and η and to observe how the sign changes depending on the value of g.
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can exhibit prudent or imprudent choices, and temperate or intemperate choices, in the gain or

loss domain, or different combinations of these choices, depending on the size of the payoffs and

the parameters of the value function.11

All the features of the Markowitz model described above are illustrated in Figure 1 with a plot

of the expo-power function (1)-(2) for parameter values η = 2, α = 0.0006, β = 0.0003, λ = 1.5,

with λ being the loss aversion parameter, and a range of gains and losses of up to 100. In this

particular case, the agent would be risk seeking for gains up to 29 and risk averse for gains larger

than 29 units, while she would be risk averse for losses of up to 40 and risk seeking for losses larger

than 40. The curvature of this value function makes apparent how the agent switches preferences,

between risk averse and risk seeking, and how relative risk aversion increases with stake size. The

agent with this particular parameterisation could over gains exhibit either prudent or imprudent

behaviour, and she could make temperate or intemperate choices. This latter feature of the model

is illustrated in Figure 2, which displays the values of the second, third and fourth derivative of

this particular expo-power parameterisation over gains. In this figure we have also included the

values of the derivatives for two other alternative values of α, α = 0.001, and 0.006 that, together

with α = 0.0006, represent the values of this parameter for the three best-fit models obtained in

our empirical analysis explained in subsequent sections. It is interesting to note at this point that,

as expected, as parameter α increases in value the range of payoffs corresponding to risk seeking,

imprudent and intemperate behaviour is reduced.

In the next section we describe the methodologies employed to estimate the competing, or

complementary, behavioural models for three recent datasets. Each of those datasets have been

employed in the experimental literature to examine different issues on risky choice, which we propose

the Markowitz model, either in its basic specification or in combination with probability weighting,

or as part of a more general mixture model, can contribute to their explanation.

3 Methodology

We assume that the representative economic agent’s utility or value functions are parsimoniously

captured by the expo-power form described in the previous section. Given this assumption, three

11Eeckhoudt and Schlesinger (2006) discuss the relationship between risk apportionments of nth grade with the
signing of the nth derivative of the utility function.
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prominent models of risky choice are nested in our estimates. Linear and nonlinear probability

weighting and estimates of the exponent of the expo-power function (1) which are significantly

larger than unity provide evidence for the Markowitz model of utility. Significant departures from

linear probability weighting, with over-weighting of smaller probabilities, and estimates of the

exponent of the expo-power function which are significantly less than unity, or not different from

unity, are evidence for CPT. We assume two specifications of the probability weighting functions.

These are, first, the one-parameter form first proposed by Quiggin (1982) and later employed by

Tversky and Kahnemann (1992), and second, the two-parameter form proposed by Prelec (1998).

Finally, standard expected utility theory is captured by linear probability weighting and estimates

of the exponent in the expo-power utility function that are less or equal to unity. We estimate

these three models separately and evaluate their relative statistical fits to our risky choice data sets

employing various statistical criteria.

We will, however, not restrict our empirical analysis to single models of risky choice. It is now

widely accepted that one model is unlikely to provide a parsimonious fit to risky choice data sets

(see e.g. Conte et al, 2011). We examine this possibility and capture any heterogeneity in the

preference functionals of individuals by estimating finite mixture models.

Appendix B includes a brief description of the experimental design and reports the stimuli

employed in the three papers we examine. The analyses takes place using the pooled dataset which

means that the mean parameter values of the population are estimated, compared to the individual

subject ones. The three studies ask a sufficiently large number of questions to the participants to

guarantee the stability of the estimated parameters (at individual level). Given that we estimate

models at the aggregate level, the combination of many subjects with a large number of questions

per subject, overcomes any sample issues. Both Fehr-Duda et al. (2010) and Pachur et al. (2018)

follow standard payment methods and pay one of the tasks at random at the end of the experiment.

Scholten and Read (2014) do not provide any payment related to the task as the amounts that

they investigate are forbidding (they only provide a flat payment). The importance of incentives

in experimental research is discussed in Bracha and Brown (2012). They develop a dual-process

theory of choice under risk and uncertainty (affective decision making) which is the result of two

processes, a rational one, which chooses an action, and an emotional one, which forms perception.

The rational process coincides with the expected utility model. The emotional process selects an
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optimal risk perception that balances two contradictory impulses: the affective motivation and the

taste for accuracy. This kind of process may lead to optimism bias, the tendency to overestimate

the likelihood favourable outcomes and underestimate the likelihood of unfavourable ones. The lack

of substantial financial incentives during the experiment may not provide the suitable motivation to

the subject to form optimistic beliefs and it may therefore affect the tradeoff between the rational

choice and the psychologically based belief utility. While there may be some issues with the lack of

monetary payoffs (lack of interest, higher levels of risk seeking behaviour), the evidence from the

literature does not seem to be conclusive (see Bardsley et al, 2010; Etchart-Vincent and L’Haridon,

2011).

The first data set we employ to estimate the models is the one in Fehr-Duda et al. (2010),

whose experiment involved the elicitation of certainty equivalents of risky choice lotteries, over

gains and losses, with both low and high stakes. The experiment involved the elicitation of certainty

equivalents from 56 two-outcome lotteries over a wide range of outcomes and probabilities. The

lotteries were of the following form L = {x1, p;x2, 1− p} with x1 > x2 and p being the probability

of the prospect x1. Given this, in order to fit the various specifications of risky choice we need to

calculate the optimal certainty equivalents, CE∗, for each of the lotteries, based on a given set of

behavioural parameters. Since the certainty equivalent is the amount that a subject should receive

so as to be indifferent between this amount and a given lottery L, we can define the CE for the

simplest case of Markowitz (M) or Expected Utility Theory (EUT) as:

u(CE) = pu(x1) + (1− p)u(x2). (3)

For a lottery in the gains domain, and assuming an expo-power utility function, solving for CE

gives:

CE =

[

−
ln(1−Q)

α

]1/η

, (4)

where, for the case of M and EUT, Q = p(1− e−αx1
η
) + (1− p)(1− e−αx2

η
). For the case of CPT,

Q = w(p)(1 − e−αx1
η
) + (1 − w(p))(1 − e−αx2

η
), where w(p) is the probability weighting function,

and α, η can differ in each specification.12 However, in the case that η > 1, Q = w(p)(1− e−αx1
η
)+

(1 − w(p))(1 − e−αx2
η
), would correspond to Markowitz agents. In a similar way, we solve for the

12We follow the same procedure for the calculation of CE for the case of a logarithmic value function.
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CE for gambles in the losses domain.

We employ two parametric forms of the probability weighting functions with possibly different

parameter values over gains and losses. The first one is the form first proposed by Quiggin (1982)

and subsequently used in Tversky and Kahnemann (1992):

w(p) =











pγ

(pγ+(1−p)γ)1/γ
if x ≥ 0

pδ

(pδ+(1−p)δ)1/δ
if x < 0

(5)

and the second one is the two-parameter Prelec (1998) weighting function of the form:

w(p) =







(exp(−(−log(p))γ ))γ2 if x ≥ 0

(exp(−(−log(p))δ))δ2 if x < 0
(6)

Finally, deviations from the predicted CE of the deterministic models are captured by an ad-

ditive, domain-specific, error term ǫ, such that CE = CE∗ + ǫ, which is assumed to be normally

distributed with mean zero and standard deviation which is a function of the lottery’s outcome

range |x1−x2|. The standard deviation is given by σg = sg|x1−x2| for gains, and σL = sL|x1−x2|

for losses, with sg and sL the error parameters to be estimated.

The estimation for the average values of all the behavioural parameters stated above is done

using Maximum Likelihood Estimation techniques.13 To this end, we pool all the data together and

we need to define the likelihood function that is going to be maximised. Based on the assumption

of normal distribution of the errors, the likelihood function is defined as:

L = f(ce,L, θ, s) =

N
∏

1

L
∏

l=1

1

σl
φ

(

cel − ce∗l (L, θ)

σl

)

, (7)

where L is the set of lotteries, θ is the vector of the behavioural parameters of interest regarding

the utility and the weighting function, s is the domain specific error term14, φ(.) denotes the

13The MLE method we are using assumes the observations are independent. One could object on the grounds that
subjects learn during the experiment which may affect their choices. Nevertheless, the incentive mechanism that is
applied in the three experiments under consideration excludes the provision of feedback during the experiment. The
subjects complete the required number of trials, without receiving any feedback and without any realization of the
outcomes. At the end, one of the problems is randomly chosen, and this problem is played for real with the aid of a
physical randomisation device (e.g. dice, numbered tokens, etc.). In that case, subjects do not have the opportunity
to learn by experience and each task differs from another both in the dimension of payoffs and the dimension of
probabilities. Therefore, the independence between tasks assumption may not be so unrealistic.

14Fehr-Duda et al. (2010) introduce a subject specific error term in order to capture heterogeneity between subjects.
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standard normal distribution,N is the total number of subjects, cel is the actual certainty equivalent

as stated by the subject for a given lottery l.15 The objective is then to find the maximum likelihood

estimates for the vector θ that maximise the value of the following log-likelihood function:

lnL = ln f(ce,L, θ, s).

Still with the Fehr-Duda et al. dataset, we now relax the assumption of a representative agent and

homogeneity regarding the preference functional, and we instead assume that there are two types

of agents (decision makers), namely, a Markowitz (M) or expected utility (EUT) maximiser, and a

CPT maximiser. To this end, we use the choice data to estimate finite mixture models which assign

each subject to one of the two distinct behavioural types. Each type is characterised by a distinct

vector of parameters θM and θCPT . The estimation procedure yields estimates for the relative sizes

of the different groups, where πM denotes the proportion of subjects characterised by Markowitz

and EUT preferences, as well as the group-specific parameters θ. The likelihood function is in this

case written as:

lnL =

N
∑

1

ln(πM × fM(ceM ,L, θEUT , s
M ) + (1− πM )× fCPT (ceCPT ,L, θCPT , s

CPT )),

where

fM =
L
∏

l=1

1

σM,l
φ

(

ceM,l − ce∗M,l(L, θM )

σM,l

)

,

and similarly defined for CPT.

For the second data set, the one of Scholten and Read (2014), we need to employ a different

method of estimation as the experimental design did not involve the statement of certainty equiv-

alents. To this end, we use a a modification of the method employed by Scholten and Read (2014)

in order to accommodate a finite mixture model. Subjects were asked to choose between a safe

amount of money x (Option S) and a risky option (Option R) of the form L = {10 x, 0.1; 0, 0.9}

This adds 153 extra parameters for gains, and another 153 extra parameters for losses. We estimated our econometric
models following both the Fehr-Duda et al. (2010) method and the one assuming only two common, domain-specific,
error terms for all subjects. Since the results do not differ substantially, for parsimony reasons, we estimate only two
additional parameters for each specification in all subsequent analyses.

15Notice that we do not distinguish between high-stake and low-stake lotteries. We follow Fehr-Duda et al. (2010)
and we estimate the parameters based on the full set of lotteries. In addition, we dropped the dummies for ‘high’
that Fehr-Duda et al. (2010) estimate in their analysis for parsimony reasons, because omitting them does not
qualitatively affect the results.
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with x increasing geometrically from $0.25 to $25,000.16

Under Luce’s (1959) choice axiom, the predicted probability of choosing the gamble R is

P̂ k =
1

1 + 1/Ω̂
,

where Ω̂ = V (R)1/s

V (S)1/s
and k ∈ {M,CPT} denoting whether the model is evaluated assuming a

Markowitz-EUT or a CPT specification. V (R) and V (S) are the expected utility values if k =

M(or the non-expected values in the case of k = CPT ) of the two options, and ǫ is a noise

parameter. For a lottery choice pair l, the likelihood conditional on M being the true model

fM
l (L, θ, s) is given by fM

l = P̂M if the risky option has been chosen, otherwise f ′M
l = 1 − P̂M

(the likelihood fCPT
l for the CPT model is defined in a similar way). The specification of the

mixture model is based on the estimation strategy employed in Harrison and Rustrom (2009)

where it is assumed that any one observation can be generated by both models according to

the latent probabilities πM , 1 − πM , with πM the probability that the M model is the correct

one.17 The mixture likelihood can be written as a weighted average of the conditional likelihoods

lnL =
∑

L

[

q × ln(πM × fM
l + (1− πM )× fCPT

l ) + (N − q)× ln(πM × f ′M
l + (1− πM )× f ′CPT

l )
]

where q is the number of subjects who chose the risky choice in lottery l and N − q those who chose

the safe option. For the estimation, maximum-likelihood techniques are used to obtain estimates

for the parameters of the utility functions, the weighting function, as well as the noise parameters

which are assumed to be domain-specific. Using Maximum Likelihood Estimation techniques, we

find values of the parameters that maximise the log-likelihood function above.

The Pachur et al. (2018) dataset consists of 91 binary lotteries defined in the gains, losses and

mixed domains.18 Each option of a lottery pair has two possible outcomes ranging from -100 to

100, that may occur with probability p and 1− p respectively, with p taking values in the interval

[0,1]. We again fit a finite mixture model between M and CPT, adopting the same stochastic

model as Pachur et al. (2018) do. The likelihood function is written as a mixture of the conditional

16Scholten and Read also include the data set from the original Hershey and Shoemaker (1980) experiment
where they asked subjects to choose between a safe amount of money x and a risky option of the form L =
{100 x, 0.01; 0, 0.99} with x increasing geometrically from $1 to $10,000.

17We resort to this estimation approach due to the available data being in a form of percentages rather than
subjects’ individual choices (e.g. q% of the subjects preferred the risky lottery). This form of data allows to classify
individual observations to latent models, but not subjects themselves.

18As the mixed gambles require the estimation of a loss aversion parameter, we drop them from our analysis in
order to make the results between the three datasets comparable.
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likelihood of a subject being classified as M or CPT. The function to maximise can be written as:

lnL =
∑

N

∑

L

ln(πM × fM
l + (1− πM )× fCPT

l ),

where fk
l = exp(sV (A))

exp(sV (A))+exp(sV (B)) if the subject picks lottery A in lottery pair l and fk
l = 1 −

exp(sV (A))
exp(sV (A))+exp(sV (B)) otherwise, with k ∈ [M,CPT ]. V (A) and V (B) are defined as before. s is

a domain-specific error term. N is the number of subjects and L is the set of lotteries. Using

Maximum Likelihood Estimation techniques, we obtain estimates for the behavioural parameters

of the preference functionals, the stochastic error terms and the mixture probability πM .19

4 Empirical Results

Tables 1, 2 and 3 report the estimates for the four mixture models described above using the Fehr-

Duda et al. (2010), Scholten and Read (2014) and Pachur et al. (2018) datasets, respectively.20

Two of those models are the combination of the Markowitz model with expo-power value function

with probability weighting of either the Tversky-Kahneman or the Prelec functional form. The

other two mixture models are the combination of the Markowitz model with a logarithmic value

function with probability weighting of either the Tversky-Kahneman or the Prelec functional form.

In addition to the parameter estimates for gains and losses, we report three measures of goodness of

fit, namely, the maximised log-likelihood, the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC). The best-fit model is the one with the highest value of the maximised

log-likelihood (the least negative value), while for the BIC and AIC criteria, a lower value indicates

a better fit of the data.

The empirical results reported in these three tables reveal that the Markowitz model of utility,

19The estimation was conducted using the R programming language for statistical computing (The R Manuals,
version 3.4.4. Available at: http://www.r-project.org/). To ensure that the solution is not trapped to a local optimum,
and that we instead reach a global one, we use a genetic algorithm that combines evolutionary search algorithms with
derivative-based methods. For the genetic algorithm, the package genoud (Mebane and Sekhon, 2011) was used. The
estimation codes are available upon request.

20We already point out in Appendix A that, from a theoretical point of view, it is appropriate to present the
Markowitz model specified in expressions (1) and (2) with parameter η constrained to be the same across gains and
losses. The empirical results presented in Tables 1-3 are obtained with such constraint imposed. As a robustness
check, we have, however, also carried out the empirical analysis employing an unconstrained version of the model.
The results, not reported here but available upon request, provide similar qualitative conclusions. The best-fit model
specification coincides in both the constrained and unconstrained cases, and the proportion of Markowitz agents
presents higher variation but it is similar in most cases.
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captured by the expo-power value function with an exponent η significantly greater than unity, plays

an important role in the explanation of the risky choice data.21 The estimated proportion of choices

consistent with Markowitz’s specification in the mixture models varies with the experiment under

consideration. The best fitting mixture model in each of the three datasets assign a proportion of

between twenty three to forty eight percent of choices to the Markowitz specification. However, the

majority choice in each dataset exhibits probability distortion.

The results also reveal that the different specifications of the probability weighting function

make a crucial difference to the estimates and fit of the mixture models. The most parsimonious

fit of the mixture model in all three datasets is achieved employing the Prelec weighting functions

in the CPT model. In the Scholten and Read (2014) and Pachur et al. (2018) datasets the Prelec

weighting function is combined with logarithmic value functions while combined with expo-power

value functions in the Fehr-Duda et al. (2010) dataset.22 To further investigate the reason why

the Prelec probability weighting function leads to a different interpretation of the mixture model

results to that implied by the Tversky-Kahneman probability weighting function, in Figure 3 we

plot the implied degree of probability distortion of each weighting function, w(p) − p, against

the objective probability, p, for both gains and losses. The plots reveal a much greater degree

of probability distortion in the estimates of the Prelec probability weighting function than that

proposed by Tversky and Kahneman for any objective probability of less than 0.4. Ceteris paribus,

the greater the positive (negative) difference between the subjective probability, w(p), and the

objective probability, p, for any given objective probability, the more likely the individual to behave

as risk-seeking (risk-averse) in experimental research on risky choices. Clearly the risk-seeking

choices over smaller probabilities are better captured by the Markowitz value function than the

Tversky and Kahneman probability weighting function in this data set.

In any case, it is important to note that the fact that we find a significant proportion of

Markowitz agents in a mixture model that includes the best specification obtained in the three

papers considered here further endorses the importance of acknowledging heterogeneity of prefer-

21We have also produced estimates solely for each representative model for these three datasets. The results,
available upon request, confirm that the Markowitz expo-power specification produces estimates of the parameter
η significantly greater than unity. However, it is typically a CPT specification with Prelec probability weighting
function that exhibits the best fit.

22It is interesting to note that, for the data sets of Fehr-Duda et al. and Scholten and Read, an expo-power value
function combined with the Tversky-Kahnemann probability weighting function implies all agents are consistent with
the Markowitz model, i.e. η > 1, with a proportion πM of them exhibiting no probability distortion.
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ences in experimental work. Furthermore, it illustrates the fact that the preferences of some agents

can be consistent with risk loving behaviour without the need to impose probability distortion.

More generally, and unlike previous findings, the introduction of a Markowitz model embedded in

a mixture model allows the researcher to capture the four-fold pattern of risk preferences over both

gains and losses without necessarily assuming probability distortion.

The difference between the predictions of CPT and Markowitz will be most apparent for higher

probabilities. For example, in the Fehr Duda et al. data set, certainty equivalents for 56 two-

outcome lotteries over a wide range of outcomes and probabilities were elicited. This included the

certainty equivalents of the two lottery choices L = {15, 0.95; 4, 0.05} and L = {320, 0.95; 130, 0.05}.

The expected values of these two lotteries are 14.45 and 310.5, respectively. Employing the estimates

of the expo-power for the Markowitz individual in Table 1, we find predicted certainty equivalents

of 14.8 and 308.8. So that the Markowitz individual would be risk-seeking over the lower payoff

but risk-averse over the higher payoffs. In both cases, the underweighting of probabilities of 0.95

associated with the higher payoff (weighted first in CPT) gives a risk-averse choice for both lotteries

for the estimates for the representative CPT preferences.23

In summary, the Markowitz model of utility offers an alternative explanation of risk-seeking

choices and the fourfold attitude to risk to that of CPT. The estimated mixture models employing

three prominent experimental data sets reveal that a significant proportion of risky choices can be

explained by the Markowitz model though the majority choice was captured by a CPT specification.

5 Conclusions

Although theories of risky choice such as EUT and CPT remain as the prominent choices in the

economics literature for describing agents behaviour, it is becoming increasingly common to accept

23Whilst both Markowitz and CPT can explain gambling on low probability outcomes at actuarially unfair long
odds they also exhibit important differences. An individual with Markowitz preferences will not wager on more than
one outcome in an event where all possible outcomes have negative expected return to a unit stake such as roulette
since they are locally risk-seeking. However, betting on more than one outcome in an event or betting each-way is
popular with punters according to Betfair. The CPT model can predict wagering on one or more than one outcome
in an event such as roulette or a horse race as the risk-aversion over gains in conjunction with the high subjective
expected returns to wagering on the long shot permits conditions for optimal bet diversification (e.g. Peel (2017)).
Similarly, individuals with Markowitz preferences would optimally prefer one-prize lotteries whilst national or state
lotteries typically have many prizes. Although heterogeneity in Markowitz preferences can justify more than one
prize it appears difficult to explain why lotteries would have more than two prizes on the basis of heterogeneity of
Markowitz preferences (e.g. Peel (2013)). On the other hand, CPT can more readily explain the multiple prize
structure of National lotteries.
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that heterogeneity of preferences is an appropriate approach to describe aggregate experimental

data. To date the mixture models have combined EUT with CPT.

The purpose in this paper has been to examine whether a parametric form of utility consistent

with Markowitz’s (1952) hypotheses can help provide an explanation of experimental results on

risky choice. We illustrate how this utility function exhibits the fourfold attitude to risk, and it

is flexible enough to allow different combinations of risk attitudes and higher-order preferences.

Moreover, this value function could also be used in conjunction with probability weighting. We

empirically test the Markowitz model by including it in estimates of mixture models employing

three datasets from recent studies that focus their analyses on different behavioural issues. In

particular, the one of Fehr-Duda et al. (2010) examines increasing relative risk aversion over both

gains and losses, whilst those of Scholten and Read (2014) and Pachur et al. (2018) investigate

the fourfold pattern of risk preferences. We compare and combine the estimates of the Markowitz

model (which nests EUT with exponential utility) with four CPT specifications which include two

different value functions and two alternative probability weighting functions.

The empirical results reveal that the Markowitz model can be a useful addition to the set of

preference functionals employed to explain risky choices in experimental research. In particular, our

estimated mixture models suggest that between twenty three and forty eight percent of individuals

make risky choices consistent with the Markowitz model, while the other, majority of choices, are

consistent with CPT models with flexible probability weighting functions such as that proposed by

Prelec.
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Table 1: Parameter estimates mixture models (data from Fehr Duda et al., 2010)

Parameter M & EP/TK M & EP/PRL M & LOG/TK M& LOG/PRL

α 0.0010934 0.0012041 0.0007631 0.0011239
0.000 0.000 0.000 0.000

MODEL 1 η 1.12225 1.1321653 1.1896054 1.1424607
M 0.065 0.063 0.082 0.066

β 0.0001212 0.0001129 0.0000100 0.0001355
0.000 0.000 0.000 0.000

α 0.0000002 0.0116962 0.0000000 0.0438867
0.000 0.001 0.000 0.014

η 2.323822 0.811606 - -
0.000 0.000 - -

MODEL 2 γ 0.4198914 0.2550274 0.5331487 0.2594438
CPT 0.003 0.008 0.004 0.008

γ2 - 0.7478619 - 0.7330843
- 0.010 - 0.015

β 0.0000000 0.0000000 0.0000000 3.6981751
0.000 0.000 0.000 5.573

δ 0.4653005 0.3079249 0.5822907 0.3199964
0.000 0.001 0.004 0.008

δ2 - 0.7541779 - 0.5610389
- 0.001 - 0.008

sg 0.1785405 0.169802 0.1926512 0.169523
0.002 0.002 0.002 0.002

sL 0.15032 0.1475023 0.1746842 0.150795
0.002 0.002 0.002 0.002

πM 0.2112265 0.2319692 0.1708266 0.2362684
0.034 0.035 0.032 0.035

LL -28215.08 -27923.40 -29171.14 -28010.74
AIC 56452.16 55872.80 58362.28 56045.48
BIC 56473.43 55897.93 58381.61 56068.68

Parameters 11 13 10 12
Obs 8568 8568 8568 8568

Notes: The Table reports the estimates of four mixture models. For each column, the specification on the upper panel (MODEL
1) is a Markowitz model (M), with expo-power utility function, while on the lower panel (MODEL 2), the specification is a CPT
model with corresponding utility and weighting function. EP stands for the expo-power utility function, LOG for the logarithmic
utility, TK is the Tversky-Kahneman weighting function and PRL is the Prelec weighting function with 2 parameters. For
model 2 (CPT), when the estimate of parameter η is significantly larger than unity, all agents would be classified as M and
πM would in this case denote the proportion of M agents that exhibit no probability distortion. Standard errors are rounded
to three digits. All parameters close to zero are confirmed to be statistically significant.
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Table 2: Parameter estimates mixture models (data from Scholten and Read, 2014)

Parameter M & EP/TK M & EP/PRL M & LOG/TK M& LOG/PRL

α 0.0029094 0.0068537 0.0051434 0.006166
0.001 0.001 0.001 0.001

MODEL 1 η 2.4057663 1.7805835 2.2771875 1.2404174
M 0.144 0.110 0.137 0.033

β 0.0000497 0.0003899 0.000053 0.0000001
0.000 0.000 0.000 0.000

α 0.0001907 0.0093531 0.0034564 0.0086267
0.000 0.003 0.001 0.004

η 1.2801343 0.7834122 - -
0.041 0.024 - -

MODEL 2 γ 0.2700006 0.0000001 0.3800542 0.271152
CPT 0.016 0.123 0.023 0.088

γ2 - 1.1284413 - 0.9846459
- 0.154 - 0.114

β 0.0000003 0.0000636 0.0000185 0.0254093
0.000 0.000 0.002 0.017

δ 1.0487638 3.5777632 0.8374058 2.7709825
0.069 0.023 0.042 0.309

δ2 - 0.014109 - 0.05545
- 0.040 - 0.027

sg 1.4373579 0.8829167 0.921063 0.7133355
0.064 0.046 0.003 0.040

sL 5.0094524 2.9559209 4.4161233 1.8828997
0.467 0.2306032 0.012 0.096

πM 0.4612979 0.375577 0.4036325 0.4828455
0.020 0.0190309 0.022 0.0288842

LL -7649.31 -7602.08 -7637.45 -7585.70
AIC 15320.62 15230.16 15294.89 15195.40
BIC 15343.70 15257.43 15315.87 15220.57

Parameters 11 13 10 12
Obs 12518 12518 12518 12518

Notes: The Table reports the estimates of four mixture models. For each column, the specification on the upper panel (MODEL
1) is a Markowitz model (M), with expo-power utility function, while on the lower panel (MODEL 2), the specification is a CPT
model with corresponding utility and weighting function. EP stands for the expo-power utility function, LOG for the logarithmic
utility, TK is the Tversky-Kahneman weighting function and PRL is the Prelec weighting function with 2 parameters. For
model 2 (CPT), when the estimate of parameter η is significantly larger than unity, all agents would be classified as M and
πM would in this case denote the proportion of M agents that exhibit no probability distortion. Standard errors are rounded
to three digits. All parameters close to zero are confirmed to be statistically significant.
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Table 3: Parameter estimates mixture models (data from Pachur et al., 2018)

Parameter M & EP/TK M & EP/PRL M & LOG/TK M& LOG/PRL

α 0.000448 0.007504 0.000558 0.0006222
0.000 0.001 0.000 0.000

MODEL 1 η 1.263951 0.994885 1.3897595 1.4999956
M 0.050 0.061 0.026 0.022

β 0.00013 0.00203 0.0000654 0.0003444
0.000 0.000 0.000 0.000

α 0.009674 0.015 0.0185917 0.0824894
0.002 0.005 0.003 0.024

η 0.938423 0.694874 - -
0.043 0.055 - -

MODEL 2 γ 0.699084 0.493011 0.7227931 0.6833249
CPT 0.023 0.036 0.024 0.033

γ2 - 0.756522 - 0.6644438
- 0.055 - 0.059

β 0.001341 0.005254 0.0009445 0.0112901
0.000 0.001 0.000 0.002

δ 0.788473 0.479603 0.7806999 0.7543283
0.031 0.079 0.030 0.054

δ2 - 0.58974 - 0.6935879
- 0.042 - 0.032

sg 0.067437 0.054029 0.1387111 0.2415318
0.015 0.013 0.016 0.021

sL 0.014589 0.021549 0.0135117 0.1048963
0.003 0.005 0.001 0.015

πM 0.249348 0.313366 0.2488866 0.2412276
0.062 0.056 0.046 0.046

LL -2856.20 -2832.41 -2850.56 -2833.25
AIC 5734.39 5690.82 5721.13 5690.50
BIC 5753.45 5713.34 5738.45 5711.29

Parameters 11 13 10 12
Obs 5400 5400 5400 5400

Notes: The Table reports the estimates of four mixture models. For each column, the specification on the upper panel (MODEL
1) is a Markowitz model (M), with expo-power utility function, while on the lower panel (MODEL 2), the specification is a CPT
model with corresponding utility and weighting function. EP stands for the expo-power utility function, LOG for the logarithmic
utility, TK is the Tversky-Kahneman weighting function and PRL is the Prelec weighting function with 2 parameters. For
model 2 (CPT), when the estimate of parameter η is significantly larger than unity, all agents would be classified as M and
πM would in this case denote the proportion of M agents that exhibit no probability distortion. Standard errors are rounded
to three digits. All parameters close to zero are confirmed to be statistically significant.
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Figure 1: Expo-power utility function for η = 2, α = 0.0006, β = 0.0003, λ = 1.5.
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Figure 2: Second, third and fourth derivative of the expo-power utility function over gains.
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our estimates of the mixture model (Fehr-Duda et al. 2010) reported in Table 1.
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Appendix A Loss Aversion

To facilitate the discussion about loss aversion in the Markowitz model of utility let us first rewrite

the expo-power value function in a more general way where parameter η is initially set differently

over gains and over losses, and where α is replaced for convenience by α = ρ ∗ β

u(g) =1− e−ρ∗β∗gηg

u(L) =− λ(1− e−β∗LηL ),

where λ, β > 0, ρ > 1, ηg, ηL > 1. For a symmetric gain and loss, g = L, the ratio u(L)
u(g) is a

measure of loss aversion as g = L goes to zero. However, we note that if the model allows different

parameters ηg and ηL, this measure of loss aversion can go to zero which is not appropriate.

u(L)

u(g)
≃

λ ∗ ηL ∗ LηL−ηg

ηgρ
e−β(LηL−ρLηg )

lim
L→0

λ ∗ ηL ∗ LηL−ηg

ηgρ
e−β(LηL−ρLηg ) =

λ ∗ ηL ∗ LηL−ηg

ηgρ
.

On the other hand, if parameters ηg and ηL are constrained to be equal (e.g. η), the ratio u(L)
u(g)

as g = L goes to zero, a measure of loss aversion, becomes λ
ρ ,

u(L)

u(g)
≃

λ

ρ
e−β(1−ρ)Lη

lim
L→0

λ

ρ
e−β(1−ρ)Lη

=
λ

ρ
.

We note that while loss aversion is typically discussed in the context of small gains/losses, large-

loss-aversion (LLAD), a measure introduced by He and Zhou (2011), characterises loss aversion with

respect to large payoffs. This can be linked to the issue of whether agents would potentially take

infinite leverage in a portfolio choice setup. Employing the notation by He and Zhou, LLAD can

be defined as

λ̃ := lim
x→∞

u−(x)

u+(x)
,
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where u− and u+ both mapping from ℜ+ to ℜ+, measure gains and losses respectively. u− is

in fact the disutility of losses (u+ := u(x), and u− := −u(−x) whenever x ≥ 0), and

u+(z) = 1− e−ρ∗β∗xη

u−(z) = λ(1− e−β∗xη
).

In our case, λ̃ = λ. For practical purposes this may be better considered as a local approximation

over gains and losses of a moderate amount. The issue of a limiting case for loss aversion has also

been recently raised by Kahneman (2011). He hypothesised that loss aversion probably tends to

increase (although not dramatically) as stakes rise. Loss aversion could in principle become infinite

when possible loss is potentially ruinous. See also Theorem 1 in He and Zhou for limiting cases of

λ (0 and +∞) which applies to our case. It is worth noting that, from an empirical perspective and

for the range of payoffs typically employed in experimental work, it seems appropriate to assume

λ is constant.

We note that, with the expo-power value function, loss aversion is bounded between λ
ρ and

λ. Estimates of λ will reflect the highest degree of loss aversion observed in the experiment.

Consequently, a method of reflecting varying loss aversion as recently suggested by Kahneman

(2011).
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Appendix B Data sets and experimental stimuli

Fehr-Duda et al. (2010)

The main research question of this study is whether risk aversion increases with stake size,

taking into consideration both the domain of gains and losses. To this end, Fehr-Duda et al. elicit

certainty equivalents (CE) using 56 two-outcome lotteries of the form L = {x1, p;x2, 1 − p} with

|x1| > |x2| and p the probability of the higher gain, over a wide range of stakes and probabilities.

Twenty eight lotteries use low stakes, and the rest use high stakes. There are stakes both in the

gains and the losses domain and a specific endowment is provided in the loss domain in order to

cover potential losses. To incentivise decisions, subjects are paid for two randomly chosen lotteries,

one from each set of lottery stakes (low, high). To elicit CEs, they asked subjects, for each lottery,

to choose between the lottery and a list of 20 equally spaced certain outcomes, ranging from the

lottery’s maximum payoff to its minimum payoff. The CE is then calculated as the average of the

smallest certain amount preferred to the lottery and the subsequent certain amount on the list. In

total, 153 subjects participated in the experiment.

Scholten and Read (2014)

The authors in this study show how Prospect Theory can accommodate the fourfold pattern

by combining an overweighting of low probabilities with a decreasingly elastic value function. The

choice task is a decision between the sure monetary payoff x and a gamble that yields outcome

10x with probability 0.1 and nothing otherwise (10x, 0.1; 0, 0.9). For their estimations they use

two different datasets. The first comes from Hershey and Schoemaker (1980) experiment with 41

participants, which consists of 10 pairwise choices of the form x for sure or 100x with probability

p = 0.01, otherwise 0. The second dataset consists of 12 pairwise choices from the experiment

that Scholten and Read (2014) conducted of the form x for sure or 10x with probability p = 0.1,

otherwise 0.

569 subjects participated to the second experiment. As there is a disparity between the number

of subjects in the two studies, they assumed that all data from the first study were collected from

569 subjects assuming that the data from the 41 subjects would be replicable over 528 additional

participants. None of the experiments include real losses, instead, they use random payment of

some of the subjects with a lump sum, claiming that incentive compatible payment schedules are

31



prohibitive for this kind of Markowitzian choice series.

Pachur et al. (2018)

This experiment includes 90 subjects, making choices in a set of 91 risky binary lotteries.

Objective of the study is to test whether psychological constructs in CPT, such as loss aversion

and outcome and probability sensitivity, can be interpreted in terms of attention allocation. Each

binary task includes two lotteries LA and LB. Each lottery Li has two possible outcomes that occur

with known probabilities of the form L〉 = {xi1, pi1;xi2, 1− pi1}. The outcomes range from -100 to

100 and there are four types of lotteries, namely (1) only gains (35 lotteries); (2) only losses (25

loteries); (3) mixed lotteries with both gains and losses (25 lotteries); and (4) mixed zero lotteries

with one gain and one loss against a zero outcome (6 lotteries). To make comparison easy between

all datasets employed in our paper, we fit the various specifications using the lotteries from Pachur

et al. dropping the mixed domain lotteries. Subjects participated to the experiment twice, with an

approximately 2-week gap between the sessions. At each session, subjects were asked the same 91

lotteries. We perform the analysis by using the data from the first session.

Table 4: Stimuli from Fehr-Duda et al. (2010)

p x1 x2 p x1 x2 p x1 x2

0.05 15 4 0.25 250 65 0.75 250 65
0.05 20 7 0.25 320 130 0.75 320 130
0.05 55 20 0.50 7 4 0.90 7 4
0.05 250 65 0.50 15 4 0.90 130 65
0.05 320 130 0.50 20 7 0.95 15 4
0.05 950 320 0.50 130 65 0.95 20 7
0.10 7 4 0.50 250 65 0.95 250 65
0.10 130 65 0.50 320 130 0.95 320 130
0.25 15 4 0.75 15 4
0.25 20 7 0.75 20 7

Notes: The Table presents the 28 gain lotteries (x1, p;x2) which were used to elicit certainty
equivalents. The losses lotteries follow the same structure.
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Table 5: Stimuli from Scholten and Read (2014)

Sample xS p xR

HS 1 0.01 100
HS 10 0.01 1,000
HS 100 0.01 10,000
HS 1,000 0.01 100,000
HS 10,000 0.01 1,000,000
HS 1 0.01 100
HS 10 0.01 1,000
HS 100 0.01 10,000
HS 1,000 0.01 100,000
HS 10,000 0.01 1,000,000
SR 0.25 0.10 2.50
SR 2.50 0.10 25
SR 25 0.10 250
SR 250 0.10 2,500
SR 2,500 0.10 25,000
SR 25,000 0.10 250,000
SR 0.25 0.10 2.50
SR 2.50 0.10 25
SR 25 0.10 250
SR 250 0.10 2,500
SR 2,500 0.10 25,000
SR 25,000 0.10 250,000

The Table presents the gambles used in the experiment. xS represents the safe amount while xR
represent the amount of the gamble (xR, p; 0). HS stands for the stimuli used in the Hershey and
Shoemaker (1980) experiment, while SR stands for the sample from Scholten and Read (2014).

Table 6: Stimuli Pachur et al. (2018)

task pa A1 1-pa A2 pb B1 1-pb B2 session 1 session 2 type

1 0.34 24 0.66 59 0.42 47 0.58 64 20 16 G

2 0.88 79 0.12 82 0.2 57 0.8 94 67 62 G

3 0.74 62 0.26 0 0.44 23 0.56 31 87 80 G

4 0.05 56 0.95 72 0.95 68 0.05 95 72 65 G

5 0.25 84 0.75 43 0.43 7 0.57 97 94 98 G

6 0.28 7 0.72 74 0.71 55 0.29 63 45 54 G

7 0.09 56 0.91 19 0.76 13 0.24 90 28 36 G

8 0.63 41 0.37 18 0.98 56 0.02 8 16 14 G
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Table 6: Stimuli Pachur et al. (2018)

task pa A1 1-pa A2 pb B1 1-pb B2 session 1 session 2 type

9 0.88 72 0.12 29 0.39 67 0.61 63 68 68 G

10 0.61 37 0.39 50 0.6 6 0.4 45 136 135 G

11 0.08 54 0.92 31 0.15 44 0.85 29 112 115 G

12 0.92 63 0.08 5 0.63 43 0.37 53 85 101 G

13 0.78 32 0.22 99 0.32 39 0.68 56 85 89 G

14 0.16 66 0.84 23 0.79 15 0.21 29 125 131 G

15 0.12 52 0.88 73 0.98 92 0.02 19 16 26 G

16 0.29 88 0.71 78 0.29 53 0.71 91 75 62 G

17 0.31 39 0.69 51 0.84 16 0.16 91 109 104 G

18 0.17 70 0.83 65 0.35 100 0.65 50 40 40 G

19 0.91 80 0.09 19 0.64 37 0.36 65 124 121 G

20 0.09 83 0.91 67 0.48 77 0.52 6 132 132 G

21 0.44 14 0.56 72 0.21 9 0.79 31 121 124 G

22 0.68 41 0.32 65 0.85 100 0.15 2 28 28 G

23 0.38 40 0.62 55 0.14 26 0.86 96 16 16 G

24 0.62 1 0.38 83 0.41 37 0.59 24 50 43 G

25 0.49 15 0.51 50 0.94 64 0.06 14 18 10 G

26 0.16 -15 0.84 -67 0.72 -56 0.28 -83 109 107 L

27 0.13 -19 0.87 -56 0.7 -32 0.3 -37 21 24 L

28 0.29 -67 0.71 -28 0.05 -46 0.95 -44 102 101 L

29 0.82 -40 0.18 -90 0.17 -46 0.83 -64 80 82 L

30 0.29 -25 0.71 -86 0.76 -38 0.24 -99 62 58 L

31 0.6 -46 0.4 -21 0.42 -99 0.58 -37 136 131 L

32 0.48 -15 0.52 -91 0.28 -48 0.72 -74 99 97 L

33 0.53 -93 0.47 -26 0.8 -52 0.2 -93 65 71 L

34 0.49 -1 0.51 -54 0.77 -33 0.23 -30 104 102 L

35 0.99 -24 0.01 -13 0.44 -15 0.56 -62 112 119 L
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Table 6: Stimuli Pachur et al. (2018)

task pa A1 1-pa A2 pb B1 1-pb B2 session 1 session 2 type

36 0.79 -67 0.21 -37 0.46 0 0.54 -97 48 53 L

37 0.56 -58 0.44 -80 0.86 -58 0.14 -97 61 61 L

38 0.63 -96 0.37 -38 0.17 -12 0.83 -69 28 16 L

39 0.59 -55 0.41 -77 0.47 -30 0.53 -61 16 11 L

40 0.13 -29 0.87 -76 0.55 -100 0.45 -28 94 101 L

41 0.84 -57 0.16 -90 0.25 -63 0.75 -30 18 10 L

42 0.86 -29 0.14 -30 0.26 -17 0.74 -43 112 105 L

43 0.66 -8 0.34 -95 0.93 -42 0.07 -30 77 71 L

44 0.39 -35 0.61 -72 0.76 -57 0.24 -28 26 33 L

45 0.51 -26 0.49 -76 0.77 -48 0.23 -34 50 43 L

46 0.73 -73 0.27 -54 0.17 -42 0.83 -70 58 54 L

47 0.49 -66 0.51 -92 0.78 -97 0.22 -34 78 82 L

48 0.56 -9 0.44 -56 0.64 -15 0.36 -80 112 122 L

49 0.96 -61 0.04 -56 0.34 -7 0.66 -63 16 14 L

50 0.56 -4 0.44 -80 0.04 -46 0.96 -58 108 105 L

51 0.43 -91 0.57 63 0.27 -83 0.73 24 44 48 M

52 0.06 -82 0.94 54 0.91 38 0.09 -73 121 121 M

53 0.79 -70 0.21 98 0.65 -85 0.35 93 53 50 M

54 0.37 -8 0.63 52 0.87 23 0.13 -39 124 116 M

55 0.61 96 0.39 -67 0.5 71 0.5 -26 70 74 M

56 0.43 -47 0.57 63 0.02 -69 0.98 14 54 55 M

57 0.39 -70 0.61 19 0.3 8 0.7 -37 91 87 M

58 0.59 -100 0.41 81 0.47 -73 0.53 15 51 65 M

59 0.92 -73 0.08 96 0.11 16 0.89 -48 41 50 M

60 0.89 -31 0.11 27 0.36 26 0.64 -48 44 53 M

61 0.86 -39 0.14 83 0.8 8 0.2 -88 62 62 M

62 0.74 77 0.26 -23 0.67 75 0.33 -7 48 57 M
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Table 6: Stimuli Pachur et al. (2018)

task pa A1 1-pa A2 pb B1 1-pb B2 session 1 session 2 type

63 0.91 -33 0.09 28 0.27 9 0.73 -67 102 102 M

64 0.93 75 0.07 -90 0.87 96 0.13 -89 68 53 M

65 0.99 67 0.01 -3 0.68 74 0.32 -2 124 121 M

66 0.48 58 0.52 -5 0.4 -40 0.6 96 60 68 M

67 0.07 -55 0.93 95 0.48 -13 0.52 99 107 109 M

68 0.97 -51 0.03 30 0.68 -89 0.32 46 33 43 M

69 0.86 -26 0.14 82 0.6 -39 0.4 31 70 71 M

70 0.88 -90 0.12 88 0.8 -86 0.2 14 82 89 M

71 0.87 -78 0.13 45 0.88 -69 0.12 83 18 11 M

72 0.96 17 0.04 -48 0.49 -60 0.51 84 87 95 M

73 0.38 -49 0.62 2 0.22 19 0.78 -18 38 43 M

74 0.28 -59 0.72 96 0.04 -4 0.96 63 28 24 M

75 0.5 98 0.5 -24 0.14 -76 0.86 46 95 89 M

76 0.5 -20 0.5 60 0.5 0 0.5 0 104 104 M-ZERO

77 0.5 -30 0.5 60 0.5 0 0.5 0 101 91 M-ZERO

78 0.5 -40 0.5 60 0.5 0 0.5 0 99 78 M-ZERO

79 0.5 -50 0.5 60 0.5 0 0.5 0 87 74 M-ZERO

80 0.5 -60 0.5 60 0.5 0 0.5 0 68 62 M-ZERO

81 0.5 -70 0.5 60 0.5 0 0.5 0 53 50 M-ZERO

82 0.1 40 0.9 32 0.1 77 0.9 2 121 124 G

83 0.2 40 0.8 32 0.2 77 0.8 2 122 116 G

84 0.3 40 0.7 32 0.3 77 0.7 2 119 114 G

85 0.4 40 0.6 32 0.4 77 0.6 2 107 105 G

86 0.5 40 0.5 32 0.5 77 0.5 2 91 92 G

87 0.6 40 0.4 32 0.6 77 0.4 2 85 75 G

88 0.7 40 0.3 32 0.7 77 0.3 2 60 50 G

89 0.8 40 0.2 32 0.8 77 0.2 2 38 30 G
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Table 6: Stimuli Pachur et al. (2018)

task pa A1 1-pa A2 pb B1 1-pb B2 session 1 session 2 type

90 0.9 40 0.1 32 0.9 77 0.1 2 27 14 G

91 1 40 0 32 1 77 0 2 10 6 G
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