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 Abstract 13  

The Nierji Basin, in the north-east of China, is one of the most important basins in the 14  

joint operation of the entire Songhua River, containing a major reservoir used for flood 15  

control. It is necessary to forecast the flow of the basin during periods of flood 16  

accurately and with the maximum lead time possible. This paper presents a flood 17  

forecasting system, using the Data Based Mechanistic (DBM) modeling approach and 18  

Kalman Filter data assimilation for flood forecasting in the data limited Nierji Reservoir 19  

Basin (NIRB).  Examples are given of the application of the DBM methodology using 20  

both single input (rainfall or upstream flow) and multiple input (rainfalls and upstream 21  

flow) to forecast the downstream discharge for different sub-basins. Model 22  

identification uses the simplified recursive instrumental variable (SRIV) algorithm, 23  

which is robust to noise in the observation data.  The application is novel in its use of 24  

stochastic optimisation to define rain gauge weights and identify the power law 25  
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nonlinearity.  It is also the first application of the DBM methodology to flood forecasting 26  

in China. Using the methodology allows the forecasting with lead times of 1-day, 2-27  

day, 3-day, 4-day, 5-day with 98%, 97%, 96%, 96% and 93% forecast coefficient of 28  

determination respectively, which is sufficient for the regulation of the reservoirs in the 29  

basin. 30  

 31  

Key words: flood forecasting, DBM, Kalman filter, SDP, large basin 32  

 33  

 34  

1 Introduction 35  

 36  

Flood forecasting is a particularly interesting and challenging application of 37  

hydrological theory.   It is interesting because of the considerable operational 38  

importance in providing timely and accurate forecasts with sufficient lead time to 39  

facilitate decision making during flood events that might have considerable impacts on 40  

people and damage to infrastructure.   It is also challenging because it is just during 41  

such flood events that we expect to have the greatest uncertainties associated with 42  

both inputs and flow data, and with the representation of hydrological processes.   43  

Unlike hydrological simulation, however, data assimilation can be used in the flood 44  

forecasting to constrain the forecast uncertainties and improve forecast accuracy.   45  

This is advantageous when we expect the next event to be different in both form and 46  

data uncertainties from those in the past (that might be used to calibrate a model).  47  

These specific aspects of flood forecasting have led to a variety of operational 48  

approaches from the use of conceptual models (e.g.  Franz et al. 2003; Schaake et 49  
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al., 2007); neural network models (e.g. Han et al., 2007; Chang et al., 2007); simple 50  

storage-outflow models based directly on data (e.g. Lambert 1972), and linear transfer 51  

function models using input transforms such as the Data-Based Mechanistic (DBM) 52  

methodology used here (the form of Hammerstein model of Young, 2002; Young et 53  

al., 2014).  Forecasting methods using ensembles of inputs from numerical weather 54  

prediction systems that would allow forecast lead times longer than the natural time 55  

delay of a basin have also been reviewed by Cloke and Pappenberger (2009). 56  

 57  

Currently, many different flood forecasting models including lumped conceptual 58  

models, semi-distributed models, and distributed models are used in China. The most 59  

popular conceptual models are Xinanjiang Model and Dahuofang Model. The 60  

Xinanjiang model developed by Zhao (1984) is suitable for both humid and semi-humid 61  

regions, and has been widely used in Southern China (Zhao, 1992; Cheng et al., 2006; 62  

Yao et al., 2014; Lu and Li, 2015).  The Dahuofang model (Wang, 1996; Wang et al., 63  

2012), developed by the Dalian University of Technology and the Office of State Flood 64  

Control and Drought Relief, is more effective for arid areas.  Semi-distributed models 65  

have also been commonly applied. In particular, TOPMODEL, developed by Beven 66  

and Kirkby (1979), has been applied in many basins in China, including arid areas 67  

(Peng et al., 2017), humid areas (Xiao et al., 2017) and semi-humid areas (Li et al., 68  

2015). With the advent of the information age, more and more distributed models have 69  

been developed and used in the country. Raster modelling concepts have been 70  

introduced into the Xinanjiang Model, resulting in the Grid-Xinanjiang distributed 71  

Model with good results (Zhi-Jia et al., 2007; Yao et al., 2009; Yao Ji et al., 2012; Yao 72  

et al., 2012; Yao et al., 2014). Many other models have also been used and modified 73  
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for Chinese basins, such as VIC (Guo et al., 2009; Xue et al., 2016; Li et al., 2016a, 74  

b); TOPKAPI (Liu, 2004; Liu, 2004; Liu et al., 2005; Liu et al., 2016; Liu et al., 2016); 75  

and HEC-HMS (Oleyiblo and Zhi-Jia, 2010). Other than   the  GIS and DEM data,  76  

distributed models require spatial fields of input variables (e.g. precipitation, radiation, 77  

and surface air temperature) which means that they are less suitable for areas with 78  

sparse in situ networks, such as the Nierji Basin that is the subject of this paper.  79  

 80  

Many existing models have been tested, but without achieving high accuracy in the 81  

study area (e.g. Liu et al., 2012; Wei et al., 2015).  This was a reason to test the 82  

application of the DBM methodology in this type of data-sparse application.  DBM 83  

models have a number of advantages in that they can be derived directly from the 84  

available data (even when only a small number of events are available); they have a 85  

physically mechanistic interpretation; and they are readily implemented within a data 86  

assimilation framework.   87  

 88  

One feature of flood forecasting relative to hydrological simulation is that the methods 89  

used, such as DBM, are not required to maintain mass balance.  In fact, given the 90  

uncertainties in the hydrological data associated with extreme events it might be 91  

disadvantageous to impose mass balance constraints.   That is also why data 92  

assimilation can be so useful in forecasting.   A number of data assimilation strategies 93  

have also been proposed from direct insertion of latest discharge values (as in the ISO 94  

model of Lambert, 1972); adaptive gain methods that can be applied to either model 95  

outputs or to a statistical model of residuals from a deterministic model (Smith et al., 96  

2012); and ensemble Kalman filter and particle filter methods (Moradkhani et al., 2005; 97  
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Weerts and El Sarafy, 2006). Most recent applications of these methods involve 98  

estimation of forecast uncertainties.   Other methods for uncertainty estimation used 99  

in flood forecasting include neural networks and quantile regression of model residuals 100  

(Brath et al., 2002; Weerts et al., 2011) and the Bayesian Forecasting System of 101  

Krzysztofowicz (2002, Reggiani and Weerts, 2008; Herr and Krzysztofowicz, 2010).   102  

Many of these methods are reviewed in Sene et al. (2014).   103  

 104  

The methodology adopted in this study is the DBM forecasting system developed at 105  

Lancaster University by Peter Young and his colleagues (Lees et al., 1994; Young, 106  

2002).   The DBM methodology has been applied to a number of UK catchments (Lees 107  

et al., 1994; Romanowicz et al., 2006, 2008; Leedal et al. 2010; Smith et al., 2013a, 108  

2014) and elsewhere (Alfieri et al., 2011; Smith et al. 2013b).   As the name suggests, 109  

DBM models are derived from data, using a combination of linear transfer functions 110  

and state dependent parameter estimation to identify appropriate nonlinear transforms 111  

of the input variables (Young and Beven, 1994; Beven et al., 2011).   The models can 112  

be derived from relatively few events, but this means that they will be necessarily 113  

approximate when applied to extreme events that may be outside the range of the 114  

calibration data. Thus, the calibrated models are used with a simple data assimilation 115  

algorithm to help improve the forecasts in real time.   Post-event analysis of the 116  

changing gains during an event can then be used to provide information about the 117  

effective nonlinearities for a new event.   The model itself can then be updated as more 118  

information from extreme events (or major catchment changes such as the building of 119  

reservoirs) becomes available.   120  

 121  
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The accuracy and information content of the input data are important in flood 122  

forecasting applications of the DBM methodology. What is required is an estimate of 123  

the inputs from the available raingauges that provides the most effective forecast.   124  

Many methods for deriving the weights of rain gauges have been developed such as 125  

methods based on spatial statistics (Griffith,1993); thin plate smoothing splines 126  

(Hutchinson, 1998); Thiessen polygons method (e.g. Thiessen 1911; Panigrahy et al., 127  

2005); and a variety of distance weighted methods (e.g. Yang et al., 2003). However, 128  

these methods will be less useful in basins like the Nierji that is the subject of this 129  

study with an extremely uneven spatial distribution of rain gauges and high rainfall 130  

spatial variability. Therefore, we use a stochastic optimisation approach which is 131  

simple and effective in determining the relative weights of rain gauges to optimise the 132  

forecasting performance as part of the model calibration process. 133  

 134  

The DBM methodology has previously been applied in China in modelling changes in 135  

Leaf Area Index (e.g. Chen et al. 2012; Guo et al., 2014; Zhou et al., 2017).  The 136  

present study is, however, the first application of the DBM methodology with the 137  

implementation of a full Kalman filter and a stochastic optimisation approach to finding 138  

raingauge weights in the identification of the input nonlinearity, to flood forecasting in 139  

China. 140  

 141  

2 Study Area and Datasets 142  

 143  
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 144  

Figure 1. The Nierji Basin upstream of the Nierji Reservoir: raingauge and discharge gauging 145  

sites and the location in China（(1) (2) … (8) are all the sub-basins’ number (see detail in section 146  

2.2).） 147  

 148  

2.1 Study Area 149  

 150  

The Nierji Reservoir Basin (NIRB) that is the subject of this study is located in the 151  

larger Nen River Basin (NRB).  It is the upstream basin above the Nierji Reservoir and 152  

spans the Inner Mongolia and Heilongjiang Provinces. The area of the basin is 66382 153  

km2, accounting for 22.35% of the NRB (Figure 1). The basin originates in the 154  

Dailinghuli Mountains, Daxinganling, where it goes through Nen River County, and 155  
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enters Nehe City and Nierji Town from north to south, with a length of 782 km. Left 156  

bank main tributaries include the Wodu River, the Menlu River and the Kehou River, 157  

while the right bank main tributaries include the Dobukuer River and the Gan River.  158  

In the section from the source to Kumotun the valley bottom is narrow with a width of 159  

1 km, while the section below Kumotun in the middle reaches has a 5 km-11 km wide 160  

valley bottom. The Nen River and the Second Songhua River flow into the Main 161  

Songhua River, which flows through the capital city of Heilongjiang Province, Haerbin,  162  

 163  

The average annual runoff of this basin is 104.7 × 10'	
  𝑚* , accounting for 45.7% of 164  

the flow from the whole NRB. The average annual precipitation in the basin is 400-500 165  

mm, with more in the upper reaches than in the lower reaches, and more in the 166  

mountainous areas than in the flat areas.  The basin belongs to the north temperate 167  

monsoon climate area with a long, cold and dry winter, hot and rainy summer, dry and 168  

windy spring, and rapid cooling short autumn.  As shown in Figure 1 the existing 169  

hydrological station network over the basin is unevenly distributed. In some areas, 170  

there are few or no stations (rain gauges and discharge stations) such as the Gan 171  

River tributary and upstream of Shihuiyao Station.  172  

 173  

The outlet of the basin is the Nierji reservoir, which is located near Nierji Town, 32 km 174  

downstream of the Ayanqian hydrological station. It is a large reservoir that mainly 175  

provides flood control, and storage for urban, industrial and agricultural water supplies. 176  

Nierji Reservoir is an important flood control structure for the Nen River Basin with a 177  

total storage capacity of 86.1 × 10'	
  𝑚*.  The limiting level for flood control is 213.37 m, 178  
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with a static maximum water storage level of 218.15 m, while the normal reservoir 179  

water level is at 216.00 m. 180  

  181  

It is known that summer rains in the NRB can be frequent and heavy. There have been 182  

numerous rainfall events that have caused severe floods and serious floods in 183  

downstream cities in the NRB such as Qiqihaer and Fulaerji. How to use existing 184  

engineering to control the floods is a significant management problem.  Thus, accurate 185  

forecasting to control the Nierji Reservoir, which is one of the three most important 186  

control structures in the whole Songhua River Basin, would improve the utilization of 187  

the reservoirs to achieve optimal flood reduction in the areas at risk in downstream 188  

cities including the capital city Haerbin.  189  

 190  

2.2 Data Sets  191  
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   192  
 193  

Figure 2. The relationships among the sub-models (the solid box represents the name of sub-basin 194  

and the corresponding rainfall gauges, (1) (2) … (8) are the sub-basin number; the dashed box 195  

represents the outlet name of sub-model) 196  

 197  

According to the discharge stations at Shuihuiyao, Guli, Kumotun, Jiagedaqi, Liujiatun 198  

Kehou, Menlu and Ayanqian, the flood forecasting system has been divided into 8 sub-199  

models as follows (Figure 2):  200  

(1)  using rainfall (Shihuiyao,Woduhe,Songlin and Handaqi) to forecast the discharge 201  

at Shihuiyao gauge; 202  

(2)  using rainfall (Songlin,Guli,Zhuangzhi and Xintian) to forecast the discharge at 203  

Guli gauge; 204  

Rainfall_Input
Songlin

Shihuiyao
Woduhe
Handaqi

Guli

Rainfall_Input
Songlin

Guli
Zhuangzhi 

Xintian

Shihuiyao

Sub-model (4)

Menluhe

Rainfall_Input
Kehou
Baiyun

Kehou

Rainfall_Input
Jiwen

,Jiagedaqi 
Alihe

Jiagedaqi

Liujiatun

Kumotun

Ayanqian

Rainfall_Input
Jiwen

Jiagedaqi 
Liujiatun

Rainfall_input
Haertong

Huolongmen
Shihuiyao

Rainfall_Input
Kumotun

Kehou
Liujiatun
Nen River

Sub-model (3)Sub-model (6) Sub-model (8)

Sub-model (7)

Sub-model (1)Sub-model (2)

Sub-model (5)



11  
  

(3)  using rainfall (Kehou and Baiyun) to forecast the discharge at Kehou gauge; 205  

(4)  For this particular sub-model, no observed flow data are available for the Menlu 206  

sub-basin, so the Kehou station is used to represent Menlu, scaled by the 207  

difference is area.  The two stations are not only adjacent but also similar in size, 208  

and comparing the rainfall data of these two sub-basins suggests that they are 209  

similar in response even in large flood events. 210  

(5)  using rainfall (Jiwen,Jiagedaqi and Alihe) to forecast the discharge at Jiagedaqi 211  

gauge; 212  

(6)  using rainfall (Jiwen,Jiagedaqi and Liujiatun) and the forecasting discharge at 213  

Jiagedaqi gauges to forecast the discharge at Liujiatun;  214  

(7)  using rainfall (Haertong,Huolongmen and Shihuiyao) and the forecasted discharge 215  

of Shihuiyao, Menluhe and Guli gauges to forecast the discharge at Kumotun 216  

gauge;  217  

(8)  using rainfall (Kumotun,Kehou,Liujiatun and Nen River) and the forecasting 218  

discharge at Kumotun, Liujiatun and Kehou gauges to forecast the discharge at 219  

Ayanqian, which is used to represent the input discharge of Nierji Reservoir. 220  

 221  

 222  

3 Methodology 223  

 224  

The reason why we chose DBM for flood forecasting in the complex NIRB is that it 225  

allows the system to be represented with few parameters to describe the relationship 226  

between rainfall and flow, or for flow routing from upstream to downstream stations. 227  

The DBM approach allows the model structure to be defined by the available data, 228  

including both a linear transfer function and nonlinear input transform if required. The 229  
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framework of the DBM forecasting system is illustrated in Figure 3.  230  

 231  

  232  

Figure 3 the structure of forecasting algorithm.  (See text for explanation of abbreviations) 233  

 234  

Within the methodology, the nonlinear transform box can then be used to apply the 235  

form of any input nonlinearity required.  Here we use a simple form of stochastic 236  

optimization to identify the best weights on rain gauges and parameter of the nonlinear 237  

input transform for each sub-basin model within the forecasting process (see below).   238  

This proved to be the best way of defining an optimal effective input for forecasting.  239  

The Simplified Recursive Instrumental Variable (SRIV) algorithm is used to identify the 240  

transfer function for the DBM model.  SRIV is fast, robust to data errors, and just needs 241  

a few iterations to converge (see Young, 2011). For updating the forecasts in real time, 242  

the transfer function has been put into a data assimilation strategy to improve accuracy 243  

and constrain uncertainty. The Kalman filter has been chosen as a data assimilation 244  

strategy here because it is not assumed that the uncertainty on the transfer function 245  

parameters and forecast error is constant, but parameter vectors and associated 246  

covariance matrix are continuously updated. All of the DBM methods used here have 247  

been implemented in the CAPTAIN Toolbox for Matlab (Taylor et al, 2007). 248  

 249  

3.1 Method of estimation of the raingauge weights and input nonlinear transform 250  

Due to the extremely uneven spatial distribution of rain gauges and rainfall spatial 251  

variability, traditional Thiessen polygons and rainfall averaging methods cannot be 252  

used for observed rainfall in the studied basins. To define the best available 253  
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forecasting model, therefore, different weights on the available rainfall stations have 254  

been considered in model calibration for each sub-model in the NIRB. A set of samples 255  

were formed by weighting each rainfall station that might contribute to each rainfall-256  

runoff sub-model. In each case 1000 sets of sample weights are randomly selected 257  

constrained to a total of 100% by uniform random sampling of approach. This is a form 258  

of stochastic optimization of the rain gauge weights, where the normal procedure 259  

would have been to use Thiessen Polygons. Forecasting performance with weights 260  

chosen in this way compares favorably with the Thiessen weights approach and a 261  

simple average.    262  

 263  

As is well known, input-output relationships in hydrology are non-linear in many 264  

situations. How to identify the non-linearity between the input and the effective input 265  

is the first step of DBM and is very necessary to the accuracy of the whole model.  266  

State Dependent Parameter estimation (SDP) is a way of identifying the nature of the 267  

nonlinear transform required in the DBM modelling methodology based on recursive 268  

estimation of the gains on an initial estimate of the transfer function (see, for example, 269  

Young and Beven, 1994; Beven et al., 2011).  Different methods can be used to 270  

represent the form of that nonlinearity, including a power law, radial basis functions, 271  

piecewise cubic hermite data interpolation and so on (e.g. Beven et al., 2011). In this 272  

paper, a power law function of the current discharge, which has been suggested by 273  

past SDP identifications (as in Young and Beven 1994), has been adopted to 274  

transform the observed input to an effective input because it is simple to use and has 275  

a reasonable physical explanation in that the current discharge can be taken as an 276  

index of the wetness of the catchment. The power law function has the simple form: 277  
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 278  

                                              𝑷.(𝒊)=𝑷(𝒊) × 𝑸𝜷(𝒊 − 𝜹)                                                 (1) 279  

 280  

Where 𝑷.(𝒊) is the effective input at the ith time step, 𝑷(𝒊) is the observed input at the 281  

ith time step, 𝛿 is the pure time delay between the observed output and the effective 282  

input and b  is the power law parameter. In this paper it has been found that the 283  

channel flow routing model components required only linear transfer functions. 𝑷(𝒊) is 284  

the observed rainfall and 𝑷.(𝒊) is the effective rainfall input to the transfer function. The 285  

nonlinearity is only considered in the rainfall-runoff model components. Identification 286  

of the power value β in Equation (1) was achieved by uniform random sampling of 100 287  

values between 0 and 1, and using those values to generate model outputs with an 288  

initial estimate of the transfer function. The optimal rain gauge weights and power law  289  

coefficient values in the DBM models for each sub-basin were then found by 290  

evaluation of the Young Information Criterion (YIC) and coefficient of determination 291  

(see Section 4 below).   292  

 293  

3.2 Fitting the transfer function 294  

After defining the nonlinear transform between the input and effective input, this 295  

section will introduce how to fit the transfer function. The linear transfer function can 296  

be described as follows: 297  

 298  

             𝑸(𝑖) = 𝑩𝟏;𝒛=𝟏>
𝑨;𝒛=𝟏>

𝑷𝟏@(𝑖 − 𝛿(1)) + ⋯+ 𝑩𝑵;𝒛=𝟏>
𝑨;𝒛=𝟏>

𝑷𝑵@(𝑖 − 𝛿(N)) + 𝜺𝒊                   (2) 299  

 300  
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           𝑩F(𝑧HI) = 𝑏F(0) + 𝑏F(1)𝑧HI +⋯+ 𝑏F(𝑚(𝑘))𝑧HL(F) (k=1, 2, …, N)               (3)  301  

 302  

                                𝑨(𝑧HI) = 1 + 𝑎(1)𝑧HI +⋯+ 𝑎(𝑛)𝑧HO	
                                  (4)  303  

 304  

                                            𝑧HI𝑷F@(𝑖) = 𝑷F@(𝑖 − 1)                                              (5) 305  

 306  

Where 𝑸(𝑖)is the discharge at the 𝒊th time step, k is the index of an input, 𝑷P@(𝑖 − 𝛿(𝑘)) 307  

is the kth effective input at the (𝑖 − 𝛿(𝑘))th sample, a(1), a(2)… a(n) are the transfer 308  

function denominator parameters, b(0), b(1)… b(m(k)) are the numerator parameters, 309  

m(k) represents the numerator order of the k th  input, 𝛿 (k) means the lead time of the 310  

k th input, N is the number of effective inputs, and 𝑧HI is the backward shift operator.   311  

Sub-models (1),(2),(3),(4) and (5) (see section 4) have only rainfall input data so that 312  

they are all single input models (N=1).  Sub-models (6), (7) and (8) all include both  313  

rainfall and upstream flow inputs so that they are defined as multiple input models 314  

(N>1).  The parameterisations of single input and multiple inputs models are different 315  

and so they are summarised and discussed separately in section 4 for clarity.  316  

 317  

Stability of the transfer parameter estimates can be examined by examining plots of 318  

their variation in the time step by time step recursive estimation, while the physical 319  

acceptability of the transfer function can be assessed by plotting the response to a 320  

unit effective input.  A variance-covariance matrix of the parameter estimates is also 321  

produced. The speed of estimation allows many different transfer functions to be 322  

evaluated.   Model choice is based on the Young Information Criterion (YIC) that is a 323  

combination of model fit, and parameter uncertainty. 324  



16  
  

 325  

                                      𝐘𝐈𝐂 = 𝐥𝐨𝐠𝒆
𝝈𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔
𝟐

𝝈𝒐𝒃𝒔
𝟐 + 𝐥𝐨𝐠𝒆{𝑵𝑬𝑽𝑵}                                (6) 326  

 327  

Where 𝜎𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔g  is the variance of the model residuals, 𝜎hijg 	
  is the variance of the 328  

observed flow, and NEVN is the normalized error variance norm.  The first term is 329  

similar to the coefficient of determination and is a measure the feasibility of the 330  

identified model. The term will become more negative with the decease of 𝜎𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔g . 331  

The second term is used to penalize the degree of over-parameterization. Normally, 332  

with an increase in model complexity, the dynamics of the system could be described 333  

more accurately. However, if the model is over-parameterized, this increase is 334  

associated with the increase of uncertainty in the parameter estimates and 335  

consequent rapid rise in the YIC.   Results are also presented in terms of the forecast 336  

coefficient of determination for a lead time t, defined as 337  

𝑹𝒕𝟐 = 1 −
𝝈𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔𝟐

𝝈𝒐𝒃𝒔𝟐  338  

This is identical to the Nash-Sutcliffe efficiency measure often used to evaluate 339  

simulation model results when used the calibration process, but is also used later to 340  

assess the forecasting results at different lead times with the forecast residuals with 341  

and without data assimilation. 342  

 343  

3.3 Kalman Filter 344  

Data assimilation in real time is important in forecasting, where this is possible.   The 345  

Kalman filter has been chosen as the data assimilation methodology in this application. 346  

The Kalman filter was developed by Kalman (1960) to define a way of updating model 347  
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parameters and uncertainty as new observations become available. The standard 348  

Kalman Filter is suitable for linear systems, so it can be used in the forecasting system 349  

in conjunction with the transfer function identified for each model component in the 350  

catchment, once any nonlinear transform has been applied to the inputs. Equation (2) 351  

can be converted to a state-space equation as follows: 352  

 353  

         𝒙(𝒊) = 𝐅𝒙(𝒊 − 𝟏) + 𝑮𝟏𝑷𝟏@(𝒊 − 𝜹(1)) +⋯+ 𝑮p𝑷p@;𝒊 − 𝜹(N)> + 𝑫𝜼(𝒊 − 𝟏)          (7) 354  

 355  

                                                  𝒚(𝐢) = 𝑪𝒙(𝒊) + 𝝃(𝒊)                                           (8) 356  

 357  

Where 𝑿(𝒊) is the state vector; 	
  𝒚(𝐢) is the vector of observations;  𝐅,	
  𝐆,	
  𝐂 and	
  𝐃 are 358  

the model matrices which are derived from Equation (2); 𝑷𝒌@(𝒊) is the effective inputs, 359  

k=1,2,…, N, N is the number of input; 𝜹(𝑘)  is the lead time of the kth input,  360  

𝑮F𝑷F@;𝒊 − 𝜹(𝑘)> is the term to allow the 𝑷F@(𝒊 − 𝜹(𝑘)) to affect the output. The variables 361  

𝝃(𝒊) and 𝜼(𝒊) are assumed to follow independent Gaussian distributions with zero 362  

mean and time-variable covariance matrices 𝑯(𝒊) and 𝑹(𝒊) respectively.	
  𝐏(𝐢) is the 363  

error covariance matrix of the state vector 𝒙(𝒊).   The nonlinear power identified in 364  

model calibration is assumed constant; the other model parameters are included in 365  

the Kalman filter.  366  

 367  

Equations (7) and (8) are implemented at each time step as follows: 368  

 369  

Prediction: 370  

      𝒙(𝒊|𝒊 − 𝟏) = 𝐅𝒙(𝒊 − 𝟏) + 𝑮𝟏𝑷𝟏@(𝒊 − 𝜹(𝟏)) + ⋯+ 𝑮p𝑷p@;𝒊 − 𝜹(N)>                 (9) 371  
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 372  

                              𝐏(𝐢|𝐢 − 𝟏) = 𝐅𝐏(𝒊 − 𝜹)𝐅𝑻 + 𝑫𝑯(𝒊)	
  𝐃𝑻                                (10) 373  

 374  

                                         𝒚(𝐢) = 𝑪𝑿(𝒊|𝒊 − 𝟏)                                                  (11) 375  

 376  

Correction: 377  

 378  

    𝒙(𝐢) = 𝒙(𝐢|𝐢 − 𝟏) + 𝐏(𝐢|𝐢 − 𝟏)𝑪𝑻[𝑹(𝐢) + 𝑪𝐏(𝐢|𝐢 − 𝟏)𝑪𝑻]H𝟏{𝒚(𝐢) − 𝑪𝐱(𝐢|𝐢 − 𝟏)}      (12) 379  

 380  

    𝐏(𝐢) = 𝐏(𝐢|𝐢 − 𝟏) − 𝐏(𝐢|𝐢 − 𝟏)𝑪𝑻[𝑹(𝐢) + 𝑪𝐏(𝐢|𝐢 − 𝟏)𝑪𝑻]H𝟏𝑪𝐏(𝐢|𝐢 − 𝟏)           (13) 381  

 382  

  383  

4 Results 384  

In this section the results are presented for the 8 sub-basin models. Given the rainfall 385  

regime in the NIRB, there is not a significant flood event each year.  For each sub-386  

basin, the five years of data (1984, 1985, 1988, 1989, 1998), which had significant 387  

flood peaks, are used for model calibration, while the 2013 flood data are used for 388  

validation.  Two types of sub-models are differentiated: those involving only a single 389  

weighted rainfall input, and those that have both rainfall and upstream discharge 390  

inputs.   The results are presented both with and without data assimilation.     391  

 392  

4.1 Design of rain gauge spatial weighting 393  

The results of the stochastic optimization of the rainfall weights for each of the sub-394  

models are shown in Table 1.   Table 2 shows how the results compare with Thiessen 395  
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polygon and simple averaging of the available rain gauges in each sub-model, in terms 396  

of the YIC and Rt
2 statistics of fitting the DBM model for the calibration data.   The 397  

optimized weights show somewhat better results (more negative YIC and Rt
2 closer to 398  

1) than the other methods.   The differences are more marked in the sub-models 399  

having only rainfall as an input (1,2,4,5). 400  

 401  

Table 1.  The optimal weight of rain gauges in different sub-models determined by stochastic 402  

optimisation 403  

Sub-models Rain gauges Name (the Best weight) 

(1) Shihuiyao(0.13) Woduhe(0.37) Songlin(0.50)  
(2) Songlin(0.4) Guli(0.1) Zhuangzhi(0.4) Xintian(0.1) 

(3) (4) Kehou(0.75) Baiyun(0.25) 
(5) Jiwen(0.5) Jiagedaqi(0.13) Alihe(0.37) 
(6) Jiwen(0.17) Jiagedaqi(0.33) Liujiatun(0.5) 
(7) Haertong(0.3) Shihuiyao(0.3) Kumotun(0.4) 
(8) Kumotun(0.22)Kehou(0.09) Liujiatun(0.44) Nen River(0.34) 

 404  

 405  

 406  

Table 2.   A comparison of using different methods of defining raingauge weights (method  of  407  

section  2.2,  Thiessen  polygons  method  and  averaging  method) in different sub-models  408  

Sub-
model 

The best weight Thiessen polygons Averaging 
YIC 

 

YIC 
 

YIC 
 

(1) -7.67 0.79 -6.5 0.67 -7.5 0.78 
(2) -9.45 0.87 -9.38 0.86 -9.3 0.86 

(3)(4) -8.34 0.79 -8.21 0.77 -7.94 0.75 
(5) -8.94 0.81 -8.92 0.81 -8.83 0.81 
(6) -7.79 0.9 -7.75 0.9 -7.68 0.9 
(7) -7.76 0.98 -7.52 0.97 -7.62 0.97 
(8) -8.73 0.98 -8.67 0.98 -8.64 0.98 

 409  

 410  
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4.2 Sub-models using a single input to forecast downstream discharge   411  

 412  

The model structure of a single input single output model is defined by the following 413  

triplet: 414  

 415  

[n m d], 416  

 417  

Where n is the denominator order (Equation (4)); m represents the numerator order of 418  

the input (Equation (3)); and d is the lead time of the input (d in Equation (2)). 419  

 420  

The outlet discharges for the 4 sub-models at sub-basins (1), (2), (4) and (5) are 421  

forecast using single input models. The outputs from sub-basin (3) are estimated by 422  

simple area of scaling from the output from (4).  Because of the similarity of the 423  

modelling process at these sub-basins, Shihuiyao (sub-basin 1) is used as a 424  

representative site to show the modelling process and results. Assuming a power law 425  

nonlinearity and optimizing the exponent, we obtained the nonlinear relationship 426  

between rainfall and discharge as follows: 427  

 428  

                                         	
  𝑷.𝟏(𝒊) = 𝑷𝟏(𝒊) × 𝑸𝟏𝟎.𝟑(𝒊 − 𝟏)                                                                                                      (14)  429  

 430  

Where 𝑸𝟏(𝒊 − 𝟏)  represents the discharge at Shihuiyao at the (𝒊 − 𝟏)th sample. 	
  𝑷.𝟏  431  

represents the effective input of sub-basin 1, and 𝑷𝟏 is the observed input of sub-basin 432  

1. 433  



21  
  

The structure of the transfer function is [1 1 2], i.e. a simple first order DBM model with 434  

parameters identified by the SRIV algorithm as: 435  

 436  

                                    𝑸𝟏(𝒊) =
I.��*

IH�.�ggI�=�
𝑷.𝟏(𝒊 − 𝟐)	
                                                 (15) 437  

 438  

Following the procedure for identifying rain gauge weights outlined above, the 439  

combination minimizing the YIC criterion (-7.67) is chosen. This is a first order model 440  

without data assimilation which, when used with the power law transformation (14), 441  

gives a forecast coefficient of determination Rt
2 of 79%. For the same model used 442  

within the Kalman filter framework, the 2-day ahead forecast has a coefficient of 443  

determination of nearly 88% for the calibration period, and accounts for 92% of the 444  

observed variance in the 2013 forecasting period. As Figure 4 (a) shows, the discharge 445  

of the model without data assimilation is relatively inaccurate in the small flood events 446  

in 1984 and 1985 and the extremely large flood event in 1988.  The reason for this is 447  

the limited rainfall gauge information in this sub-basin which has just 4 rainfall gauges 448  

on the two sides of the basin while the central area has no rainfall monitoring station. 449  

However, it is noteworthy that the Kalman filter could improve the accuracy of 450  

discharge by assimilating the latest flow data, which reduces the effect of the 451  

uncertainty resulting from the limited rainfall information to some extent. Regarding 452  

the uncertainty in the different weights for the rainfall gauges, the yellow curves in 453  

Figure 4 show clearly how the forecast uncertainty is significantly reduced after using 454  

the Kalman Filter and the accuracy of the forecasts has increased. As Figure 5 (a) 455  

shows, the observation points are all nearly in the CB shading which is the 95% 456  

confidence limits for the forecasts using the final DBM model and best weights of 457  
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rainfall gauges found from the sampling. The values of flood peak in observation and 458  

forecast are 1690 m3/s and 1711 m3/s, respectively.  A value of Rt
2 in the 2013 459  

forecasting period of 92% is good enough for operational use in the future.  The 460  

observation is larger than the forecast value following the forecast peak (2013/08/14), 461  

which may be still a result of the limited rainfall gauge availability.  462  

 463  

  464  

Figure 4. (a) 2-day ahead flood forecasts at Shihuiyao (sub-basin 1) in 1984,1985,1988,1989,1998 465  

without Kalman Filter data assimilation; (b)  2-day ahead forecasts at Shihuiyao in 466  

1984,1985,1988,1989,1998 with Kalman Filter data assimilation.   RD shows the forecasting result 467  

using all 1000 sets of rainfall gauge weights; RB shows the forecasting result of the best weight set; 468  

OF is the observed flow value; MD is the mean forecasting result of the 1000 sets of rain gauge 469  

weights. 470  

 471  
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 472  

Figure 5.  Forecasting results using Kalman Filter data assimilation (a) the 2-day ahead forecast 473  

for Shihuiyao in 2013 flood event ; (b) the 2-day ahead forecast for Guli in 2013 flood event;(c) the 2-474  

day ahead forecast for Kehou in 2013 flood event;(d) the 3-day ahead forecast for Jiagedaqi in 2013 475  

flood event.  CB shading shows the 95% confidence limits for the forecasts using the final DBM 476  

model using the best weights of rainfall gauges; RB shows the forecasting result of the best weight 477  

set; OF is the observed flow value; MD is the mean forecasting result of the 1000 sets of rain gauge 478  

weights. 479  

 480  

Table 3. Summary of model result of single input sub-models (p(1) p(2) p(3) in the model 481  

structure [p(1) p(2) p(3)] represents denominator order, numerators order, time delays respectively; 482  

the Sub-models are defined in Section 2.2  and a and b are defined in section 3.2).   483  

(a)

(b)

(c)

(d)
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Sub-
model 

Outlet 
Name Area(km2) Power 

law Structure A b 

(1) Shihuiyao 17205 0.3 [1 1 2] [0 0 1.573] [1 -0.8221] 
(2) Guli 5490 0.7 [1 1 2] [0 0 0.05704] [1 -0.8832] 

(3),(4) Kehou 7310 0.68 [1 1 2] [0 0 0.2297] [1 -0.8389] 
(5) Jiagedaqi 9575 0.2 [1 1 3] [0 0 0 2.554] [1 -0.8057] 

 484  

Table 4. Evaluation measures for the single input models. The Sub-models are defined in Section 485  

2.2.  486  

Sub-
model 

Outlet 
Name 

Calibration (1984 1985 1988 1989 1998)  Validation (2013) 

Lead Time YIC 
without Kalman 

Filter 
with Kalman 

Filter Lead Time 
  

   

(1) Shihuiyao 2 -­‐7.67   0.79 0.88 2 0.92 
(2) Guli 2 -­‐9.45   0.82 0.89 2 0.89 

(3),(4) Kehou 2   -­‐8.34   0.79 0.92 2 0.89 
(5) Jiagedaqi 3 -­‐8.94   0.81 0.9 3 0.89 

 487  

The Guli, Kehou, and Jiagedaqi sub-basins analyses resulted in similar model 488  

characteristics as Shihuiyao.   The results are summarized in Tables 3 and 4. The 489  

coefficients of determination of each sub-basin for their own lead time ahead forecasts 490  

in the 2013 validation period are above 89%. Figure 5 show the results for this period 491  

graphically, showing that most observations are covered by the 95% confidence limits 492  

of the forecast, which suggests that the uncertainty in assessing the rainfall inputs is 493  

the main uncertainty in the whole forecasting process.  494  

 495  

4.3  Multiple  inputs  including  rainfall  and  upstream  discharges  to  forecast  the  downstream  496  

discharge.    497  

 498  

In the case of a model structure with multiple inputs, the general form of a DBM model 499  

can be defined by  500  
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 501  

                   [den {m(1) m(2) …m(N)} {	
  𝛿(1) 𝛿(2) …𝛿(𝑁)}]                               (16) 502  

 503  

Where N is the number of inputs, den is the denominator order; m (k) represents the 504  

numerator order of the k th  input; and 𝛿(𝑘) means the lead time of the k th input. 505  

 506  

The outlets of 3 sub-models at Kumotun, Liujiatun and Ayanqian represent the use of 507  

multiple inputs. The model for Kumotun (sub-model 7) will be discussed in some detail.   508  

The modelling process at Liujiatun and Ayanqian is very similar.  509  

 510  

The discharge from the upstream stations of Shihuiyao, Guli and Menlu, together with 511  

the rainfall data for the sub-basin between the Shihuiyao station and the Kumotun 512  

station are applied to forecast the discharge of Kumotun station. Therefore, there are 513  

four inputs in the DBM model and one output (the discharge at the Kumotun station). 514  

The resulting transfer function model structure is  515  

[1 {1 1 1 1} {3 1 1 1}], 516  

and the form of the TF decomposition is: 517  

 518  

 	
  𝑸𝟒(𝒊) =
�.*���

IH�.*g���=�
𝑷.𝟐(𝒊 − 𝟑) +

�.��gg
IH�.*g���=�

𝑸𝟏(𝒊 − 𝟏) +
�.����

IH�.*g���=�
𝑸𝟐(𝒊 − 𝟏) 519  

+ �.���'
IH�.*g���=�

𝑸𝟑(𝒊 − 𝟏)	
  	
  	
  	
                                                                                                                            (17)  520  

  521  

Where  𝑸𝟏(𝒊)  represents the discharge at Shihuiyao at the (𝒊)th sample, and the lead 522  

time from Shihuiyao to Kumotun is 1 day; 𝑸𝟐  represents the discharge of Menlu with 523  

a 1-day lead time; 𝑸𝟑   represents the discharge of Guli with a 1-day lead time; 𝑸𝟒  524  
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represents the discharge at Kumotun; and  𝑷.𝟐  represents the effective input of the 3 525  

weighted rain gauges (Haertong, Huolongmen and Shihuiyao) with a 3-day lead time, 526  

𝑷𝟐 is the observed input of the 3 weighted rain gauges. The best nonlinear power law 527  

function of rainfall was identified1 528  

 529  

                                       𝑷.𝟐(𝒊) = 𝑷𝟐(𝒊) × 𝑸𝟒𝟎.𝟑(𝒊 − 𝟏)	
  	
                                                                                                                (18)  530  

 531  

As shown in Figure 6 and Table 5, the forecasting results without the Kalman filter and 532  

the forecasting results with the Kalman filter are both very good in calibration.  The RD 533  

is very small which means the rain gauge weightings in this case has a small influence 534  

in the accuracy of forecasting the flood peak of forecasting flood.  This is also reflected 535  

in the numerator of the effective rainfall in the TF decomposition (Equation14), which 536  

is smaller than other inputs.  The performance of forecasting process in the 2013 537  

validation period is shown in Figure 7. The coefficient of determination is nearly 95%.  538  

 539  

  540  

Figure 6(a) 3-day ahead flood forecast for Kumotun without data assimilation in 541  

1984,1985,1988,1989,1998 with different rainfall weights; (b) 3-day ahead flood events forecast of 542  
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Kumotun in 1984,1985,1988,1989,1998 with different rainfall weights with Kalman Filter data 543  

assimilation.  The meaning of each variable is as defined in Figure 5. 544  

  545  

  546  

Figure 7. The 3-day ahead forecasting result with Kalman Filter data assimilation for Kumotun 547  

in 2013 flood event.  The meaning of each variable is as defined in Figure 5. 548  

 549  

Table 5. Summary of model result of multiple inputs sub-models (p(1) p(2) p(3) in the model 550  

structure [p(1) p(2) p(3)] represents denominator order, numerators order, time delays respectively; 551  

the Sub-models are defined in Section 2.2.)   552  

Sub-
model Outlet Name Area(km2) Power 

law Structure 

(6) Liujiatun 10090 1 [1 1 1 3 1] 
(7) Kumotun 9534 0.3 [1 1 1 1 1 3 1 1 1] 
(8) Ayanqian 7178 0.9 [1 1 1 1 1 4 3 1 2] 

 553  

Table 6. Evaluation measures for the single input models. The Sub-models are defined in Section 554  

2.2.1 555  

Sub-model 

  
Outlet 
Name 

  

Calibration (1984 1985 1988 1989 1998) Validation (2013) 

Lead 
Time YIC 

without 
Kalman Filter 

with Kalman 
Filter Lead 

Time 
  

   

(6) Liujiatun 1   -­‐7.79   0.9 0.92 3 0.92 
(7) Kumotun 1   -­‐7.76   0.97 0.98 3 0.95 
(8) Ayanqian 1   -­‐8.67   0.98 0.98 4 0.96 

 556  

The structures of the sub-models for Liujiatun and Ayanqian are as follows: 557  

 558  
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Liujiatun: 559  

                            𝑸𝟔(𝒊) =
�.�I�I�

IH�.���g�=�
𝑷.𝟑(𝒊 − 𝟑) +

�.���'
IH�.���g�=�

𝑸𝟓(𝒊 − 𝟏)	
                      (19) 560  

  561  

Where  𝑸𝟓  represents the discharge of Jiagedaqi, and the lead time from Jiagedaqi to 562  

Liujiatun is 1 day. 𝑷.*  represents the effective input from rainfall observation(effective 563  

rainfall) in the basin above Jiagedaqi with the 3-day lead time and 𝑷𝟑 is the observed 564  

input in the basin. The nonlinear function of rainfall (effective rainfall nonlinearity) was 565  

estimated as: 566  

 567  

                                        𝑷.𝟑(𝒊) = 𝑷𝟑(𝒊) × 𝑸𝟔𝟏.𝟎𝟎	
  (𝒊 − 𝟏)	
  	
  	
                                          (20) 568  

 569  

Ayanqian: 570  

 571  

   𝑸𝟗(𝒊) =
�..�I�I�

IH�.�g���=�
𝑷.𝟒(𝒊 − 𝟒) +

�.����
IH�.�g���=�

𝑸𝟕(𝒊 − 𝟑) +
�.�g�I

IH�.�g���=�
𝑸𝟔(𝒊 − 𝟏) 572  

                                              + �.��I'
IH�.�g���=�

𝑸𝟒(𝒊 − 𝟐)	
  	
  	
  	
  	
  	
  	
  	
                                                                                                        (21) 573  

 574  

Where  𝑸𝟕   represents the discharge of Kehou, and the lead time from Kehou to 575  

Ayanqian is 3-day. where  𝑸�  represents the discharge of Liujiatun, and the lead time 576  

from Liujiatun to Ayanqian is 1-day. where  𝑸𝟒  represents the discharge of Kumotun, 577  

and the lead time from Kumotun to Ayanqian is 2-day.  𝑷.�     and  𝑷𝟒	
  represent the 578  

effective input and the observed input from rainfall observation between Kumotun and 579  

Ayanqian with the 4-day lead time. The nonlinearity for the effective rainfall for this 580  

data set is found as: 581  

 582  
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                                          𝑷.𝟒(𝒊) = 𝑷𝟒(𝒊) × 𝑸𝟗𝟎.𝟗	
  (𝒊 − 𝟏)	
  	
  	
                                                                                                    (22)  583  

 584  

  585  

Figure 8. The 3-day forecasting result with Kalman Filter data assimilation for Liujiatun in 2013 586  

flood event. The meaning of each variable is as defined in Figure 5. 587  

 588  

  589  

Figure 9. The 4-day forecasting result with Kalman Filter data assimilation for Ayanqian in 2013 590  

flood event. The meaning of each variable is as defined in Figure 5. 591  

 592  

Here, the parameters and model structures for the multiple input sub-models have 593  

been summarized in Table 5 and Table 6. Lijiatun has two inputs including rainfall 594  

between Jiagedaqi and Liujiatun and the discharge of Jiagedaqi with 92% coefficients 595  

of determination in the calibration period and 92% in out–of-sample forecasting for 596  

2013. Ayanqian has four inputs including rainfall between Kumotun and Ayanqian and 597  

the discharge of Liujiatun, Kehou and Kumotun and the coefficient of determination Rt
2 598  

in calibration and out-of-sample forecasting are 98% and 96% respectively. It is 599  

noteworthy that the lead time and value of the final forecast are very accurate at the 600  

peak of the flood, but are at times less accurate for relatively low flow levels. However, 601  
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the performance of the forecasting results in Ayanqian is nearly 96%, which is 602  

adequate for the operational forecasting of inputs to the Nierji reservoir. 603  

 604  

In additional, the 1 day, 2 days, 3 days and 5 days forecasting results are shown in 605  

Figure 10 with coefficients of the determination of 98%, 97%, 96% and 93% 606  

respectively. When the forecasting lead time is four days, we need to use extended 607  

forecasts from Kumotun and Kehou, beyond the identified time delays, which could 608  

certainly increase the uncertainty of the result. With an increase in the lead time from 609  

2 days to 4 days, the uncertainty and the accuracy of the flood forecasting result of 610  

Ayanqian Station, which is also the outlet of Nierji Basin, is decreasing from 98% to 611  

93%. However, this is still sufficiently accurate to provide useful information for 612  

forecasting further downstream for the whole Songhua River and consequently 613  

improve decision making about flood management and warnings.  614  
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  615  

Figure 10.  The 1-day, 2-day, 3-day and 5-day forecasting result with Kalman Filter data 616  

assimilation for Ayanqian in 2013 flood event, illustrated in (a), (b), (c) and (d), respectively.  The 617  

meaning of each variable is as defined in Figure 5. 618  

 619  

 620  

5 Discussion and Conclusions 621  

The main aim of this paper has been to develop flood forecasting models for the Nen 622  

River Basin above the Nierji Reservoir using the adaptive DBM methodology so as to 623  

maximize the lead time and accuracy of forecasts as an input to flood management in 624  

the whole Songhua River. This paper represents the first application of the DBM 625  

methodology to flood forecasting in China with  Kalman filter data assimilation, coupled 626  

(a)

(b)

(c)

(d)
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to a stochastic optimisation approach to finding weights and nonlinearity identification. 627  

It has produced accurate forecasting results with lead times up to 5 days ahead with 628  

the associated uncertainties updated on a daily basis.  629  

 630  

The main findings from this study can be summarized as follows: 631  

(1)  In this data-sparse basin, the stochastic optimisation of rain gauge weights 632  

produces better results than either Thiessen polygons or simply averaging.    633  

(2)  The adaptive version of the Kalman filter can, to some extent, handle data and 634  

model uncertainties and improve the accuracy of the forecasting model 635  

significantly; the coefficients of determination have increased by up to nearly 10% 636  

as shown in Table 4.  637  

(3)  The multiple input models are generally more accurate than the single input models 638  

because the multiple input models all include an upstream discharge input which 639  

does not have the degree of uncertainty of the rainfall-runoff process, even though 640  

the observed discharges themselves may be subject to significant uncertainties, 641  

particularly for the flood peaks.  642  

(4)  The models identified by the DBM methodology provide a suitable basis for 643  

forecasting in the study basin. The coefficients of determination for the final 1-day, 644  

2-day, 3-day, 4-day and 5-day ahead forecasting at the Nierji Reservoir are 98%, 645  

97%, 96%, 96% and 93%, respectively, and can therefore provide a useful forecast 646  

for the operation of downstream reservoirs under flood conditions.  647  

One of the limitations of the DBM methodology is that it will provide results only where 648  

data series are available for calibration (except for cases where simple scaling can be 649  

used for nearby sites, as with the Menlu sub-basin in this study).  However, a particular 650  
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advantage of the approach is that the model representations are easily updated as 651  

new data are made available.  In doing so, we note that models can be applied to 652  

predicted water levels, rather than discharges, making the installation of new 653  

forecasting points as required rather inexpensive (see for example Leedal et al., 2013).   654  

Thus new data sources are easily added to the forecasting system, and models are 655  

easily evaluated and recalibrated after each major event provides new information 656  

about the system response.   657  

 658  
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