
A Longitudinal Study of Anti Micro Pa�erns in 113 versions of
Tomcat

G. Destefanis, S. Qaderi, D. Bowes, J. Petrić
University of Hertfordshire

Hat�eld, UK
{g.destefanis,d.h.bowes,j.petric}@herts.ac.uk

M. Ortu
DIEE, University of Cagliari

Cagliari, Italy
marco.ortu@diee.unica.it

ABSTRACT
Background: Micro patterns represent design decisions in code.
They are similar to design patterns and can be detected automati-
cally. These micro structures can be helpful in identifying portions
of code which should be improved (anti-micro patterns), or other
well-designed parts which need to be preserved. The concepts ex-
pressed in these design decisions are de�ned at class-level; therefore
the primary goal is to detect and provide information related to a
speci�c granularity level. Aim: this paper aims to present prelimi-
nary results about a longitudinal study performed on anti-micro
pattern distributions over 113 versions of Tomcat. Method: we
�rst extracted the micro patterns from the 113 versions of Tom-
cat, then found the percentage of classes matching each of the six
anti-micro pattern considered for this analysis, and studied correla-
tions among the obtained time series after testing for stationarity,
randomness and seasonality. Results: results show that the time
series are stationary, not random (except for Function Pointer), and
that additional studied are needed for studying seasonality. Regard-
ing correlations, only the Pool and Record time series presented
a correlation of 0.69, while moderate correlation has been found
between Function Pointer and Function Object (0.58) and between
Cobol Like and Pool (0.44).

KEYWORDS
micro patterns, time series analysis, software engineering

ACM Reference Format:
G. Destefanis, S. Qaderi, D. Bowes, J. Petrić and M. Ortu. 2018. A Longitu-
dinal Study of Anti Micro Patterns in 113 versions of Tomcat. In The 14th
International Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE’18), October 10, 2018, Oulu, Finland. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3273934.3273945

1 INTRODUCTION
Gil and Maman [13] introduced the concept of micro patterns as
design decisions in Java, somehow similar to design patterns, but at
a lower level of abstraction. Design patterns are di�cult to detect
from source code using automated tools and represent a general
concept or methodology used for designing a piece of software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PROMISE’18, October 10, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6593-2/18/10. . . $15.00
https://doi.org/10.1145/3273934.3273945

Micro patterns are de�ned at class level and can capture good
and bad programming practices, spanning from data encapsulation
and inheritance to coding practices typical of procedural program-
ming. Singer et al. [22] presented a catalog of 17 nano-patterns
which are categorized into 4 groups. Codabux et al. [6], extracted
micro patterns and nano-patterns from three versions of Tomcat
and other two systems and compared their distributions in code
smell versus non-code smell classes and methods, concluding that
code smells are correlated with both micro and nano-patterns.
Micro patterns have been proven useful also for detecting soft-
ware vulnerabilities [23, 24]. In this work, we present a prelim-
inary study of the evolution (in terms of quantity) of six micro
patterns of the catalog introduced by Gil and Maman [13] for 113
versions of Tomcat1, an open source Java Servlet Container devel-
oped by the Apache Software Foundation (from version 3.3.2 to
version 8.0.9) and heavily used in software engineering research
[20]. We enriched the dataset provided by Destefanis et al. [8], de-
tecting the micro patterns from the source code of each version
of Tomcat. The new dataset is openly available at the following
link https://bitbucket.org/giuseppedestefanis/promise2018 and con-
tains 113 new tables with all the micro patterns for each version
of Tomcat. We considered six micro patterns which are related to
bad programming practices and which have already been analyzed
in previous studies [1, 7, 10, 11, 17]. Here we de�ne each micro
pattern considered in this study (de�nitions provided by Gil at al.
[13]) and the motivations which explain why they are considered
anti-patterns.
Cobol-like: a class with a single static method, but no instance mem-
ber. As explained by Arcelli et al. [1], a class matching this pattern
is not designed following the object-oriented paradigm, and can be
frequent in code developed by beginners.
Pool: a class which declares only static �nal �elds, but no methods.
This pattern is also known as constant interface (anti) pattern [4],
and it describes the practice of implementing interfaces which con-
tain de�nitions of constants.
Function Pointer: a class with a single public instance method, but
with no �elds. Classes matching this pattern are not necessarily
badly designed, but they considered the object-oriented equivalent
of function pointers in procedural programming.
Record: a class in which all �elds are public, no declared meth-
ods. Classes matching this pattern do not respect encapsulation, a
principle according to which �elds should be declared private and
managed with getter and setter methods.
Function Object: a class with a single public instance method, and
at least one instance �eld. Classes matching this pattern fall in the
micro pattern category called “degenerate behavior”. It is similar

1http://tomcat.apache.org

PROMISE’18, October 10, 2018, Oulu, Finland G. Destefanis et al.

to the Function Pointer micro pattern, but Function Object has
instance �elds instead. An instance of a class which matches the
de�nition of Function Object can store parameters to the main
method of the class.
Pseudo Class: a class which can be rewritten as an interface: no
concrete methods, only static �elds. Classes matching this pattern
should be refactored and rewritten as interfaces.
We built six time series, on for each anti-pattern, which represent
the percentage of occurrence of a given pattern in every release
of Tomcat. The obtained time series have 113 points. In this pre-
liminary work, we only considered production classes (e.g., we
excluded all the test classes from each release). Time series are
heavily used for predictive studies and provide information about
trends and seasonality. We �rst studied the six time series for sta-
tionarity and calculated the cross-correlation coe�cient among all
the anti-patterns.

2 METHODOLOGY AND RESULTS
In this study, we were interested in analysing randomness, season-
ality and evaluating the cross-correlation of six antipatterns of the
catalog proposed by Gil and Maman [13].
To analyze such properties, we considered an observation time of
one release. Since in the Tomcat dataset [8], there are 113 releases,
we obtained 113 points for the six time series, and measured the
percentage of production classes matching the six anti-patterns.
The six time series are presented in Fig. 2, with a linear trend line
(in red) which provides a visual indication of the presence of the
patterns over time. Software developers should aim at reducing the
percentage of these anti-patterns. If the presence of an anti-pattern
grows over time, managers and developers should take action to re-
verse the condition. Visualizing the six anti-pattern time series (Fig.
2) provides useful information about the evolution of the system.
Additionally, it is possible to see that the percentage of the classes
matching the six anti-patterns is low. Only Pool, Function Pointer
and Function Object reached values above 8%, but only for one
release. Cobol-Like and Pseudo Class reached a maximum of 1.2%,
while Record reached a maximum of only 1%. Before studying the
cross-correlation among the six anti-patterns and analyzing ran-
domness and seasonality, we studied the time series for stationarity.
A time series is stationary if autocorrelation, variance, expectation,
do not vary with time [14, 18, 19]. Stationarity is a condition re-
quired for being able to perform predictive analysis on a time series.
We used the R environment and we applied the Ljung-Box test [16]:
this test for stationarity con�rms the independence of increments,
where rejection of the null hypothesis H0 suggests stationarity (the
null hypothesis H0 is that the data are non-stationary). The results
of the test is shown in Table 1. The cells in green indicate that
the p-value for the corresponding test is below 5% (our cuto� for
signi�cance); thus we infer in these cases that the test indicates
stationarity.

If the time-series under study are stationary, it is possible to
calculate the cross correlation. The cross correlation function (ccf)
is de�ned as the set of correlations (height of the vertical line
segments in Fig. 1) between two time series xt + h and �t for lags
h = 0,±1,±2, A negative value for h represents a correlation
between the x-series at a time before t and the �-series at time t .

Table 1: Stationarity test results

Pattern Ljung-Box

Cobol Like 4.441e-16
Pool 5.155e-05
Function Pointer 9.329e-06
Record 3.256e-09
Function Object 6.883e-15
Pseudo Class 2.2e-16

For example, if the lag h = �1, then the cross correlation value
would give the correlation between xt � 1 and �t . On the contrary,
negative lines correspond to anti-correlated events.

The ccf helps to identify lags of xt that could be predictors of
the �t series.

• When h < 0, x leads �.
• When h > 0, � leads x .

Figure 1: Pool and Cobol-like Cross-Correlation

As shown in Table 2, the highest correlation of 0.69 (at lag 0)
is between the patterns Pool and Record. A correlation of 0.58 (at
lag -10) exists between the patterns Function Pointer and Function
Object, while a correlation of 0.44 (at lag 17) exists between the
patterns Cobol-like and Pool. The highest correlation (Pool-Record),
at lag 0, con�rm the similarity between the two patterns (which
is possible to appreciate from the two de�nitions), but highlights
the fact that even if the correlation value is not negligible, the two
time series brings di�erent information. A time series is consid-
ered random if it consists of independent values from the same
distribution. We used the Bartels test [3] for studying randomness
[5]. We used the R package randtest2 and applied Bartels test, in
which the null hypothesis H0 of randomness is tested against non
randomness. For studying the seasonality of the time series, we con-
sidered the Augmented Dickey Fuller test [2, 12, 21] in which
the null hypothesis H0 is that the data are non-seasonal, and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [15]: the null

2https://cran.r-project.org/web/packages/randtests/randtests.pdf

A Longitudinal Study of Anti Micro Pa�erns in 113 versions of Tomcat PROMISE’18, October 10, 2018, Oulu, Finland

(a) Presence of Cobol Like over the 113 Tomcat releases (b) Presence of Function Pointer over the 113 Tomcat releases

(c) Presence of Pseudo Class over the 113 Tomcat releases (d) Presence of Function Pointer over the 113 Tomcat releases

(e) Presence of Record over the 113 Tomcat releases (f) Presence of Function Object over the 113 Tomcat releases

Figure 2: Time series

PROMISE’18, October 10, 2018, Oulu, Finland G. Destefanis et al.

Table 2: Cross correlation among time series

CL P FP R FO PC

CL - 0.44 - {17} 0.18 - {0} 0.41 - {0} 0.028 - {-13} 0.38 - {17}
P - - 0.18 - {4} 0.69 - {0} 0.1 - {-4} 0.31 - {-3}
FP - - - 0.29 - {-8} 0.58 {-10} 0.005 - {8}
R - - - - 0.15 - {-5} 0.28 - {12}
FO - - - - - 0.02 - {-17}
PC - - - - - -

hypothesis H0 is that the data are non-seasonal.
The results of the tests are shown in Tables 3. For randomness,
the cell in red indicates that the p-value for the corresponding
test is higher than our cuto� for signi�cance (5%); thus we infer
in these cases that the test indicates randomness (null hypoth-
esis H0 of randomness). On the contrary, cells in white indicate
that the p-value for the corresponding test is lower than 5%. For
seasonality, the cells in green indicate that the p-value for the cor-
responding test is less than 5% (our cuto� for signi�cance); thus we
infer in these cases that the test rejects the null hypothesis H0 of
non-seasonality; hence the time series are considered seasonal.

Table 3: Randomness and seasonality test results

Randomness Seasonality
Pattern Bartels-rank p-value Aug. D-F p-value KPSS

Cobol Like 2.2e-16 0.3151 0.01
Pool 0.001091 0.01 0.1
Function Pointer 0.4604 0.01 0.01
Record 5.602e-15 0.01 0.1
Function Object 8.724e-07 0.1641 0.01
Pseudo Class 2.2e-16 0.5822 0.01

Table 3 shows the results for all the time series of each anti-
micro pattern. For �ve time series, the hypothesis of randomness
is rejected. Only for Function Pointer, the Bartels test indicates
randomness. For the Augmented Dickey-Fuller test, Pool, Function
Pointer and Record have a time series which presents seasonality,
while Cobol Like, Function Object and Pseudo Class are not sea-
sonal. For the KPSS test, the null hypothesis of non-seasonality is
rejected for Pool and Record. We considered two tests for seasonal-
ity, following the same procedure adopted by Destefanis et al. [9].
Since there is discordance between the two tests in �ve cases over
six, it would be necessary to perform additional studies, using, for
example, Fast Fourier Transform (FFT).

3 CONCLUSIONS
In this preliminary work, we studied the time series of six anti-
micro patterns for 113 releases of Tomcat. Results show that the
time series are stationary, not random (except for Function Pointer)
and that further investigations are needed for seasonality. Regard-
ing correlations, only the Pool and Record time series presented
a correlation of 0.69, while moderate correlation has been found
between Function Pointer and Function Object (0.58) and between
Cobol Like and Pool (0.44). Time series are useful for predictive
analysis, and for future works, we plan to study the time series of

every micro pattern of the catalog and to study if micro patterns
can be used for defect prediction purposes. The main limitation of
this study is that we only considered Tomcat as the subject for our
investigation, and this might a�ect the generalization of our results.
Additional systems must be considered for future studies.

REFERENCES
[1] Francesca Arcelli and Stefano Maggioni. 2009. Metrics-based detection of micro

patterns to improve the assessment of software quality. In Proceedings of the 1st
Symposium on Emerging Trends in Software Metrics. 50–59.

[2] Anindya Banerjee, Juan J Dolado, John W Galbraith, David Hendry, and others.
1993. Co-integration, error correction, and the econometric analysis of non-
stationary data. OUP Catalogue (1993).

[3] Robert Bartels. 1982. The rank version of von Neumann’s ratio test for random-
ness. J. Amer. Statist. Assoc. 77, 377 (1982), 40–46.

[4] Joshua Bloch. 2001. E�ective Java: Programming Language Guide. Java series.
(2001).

[5] Peter J Brockwell and Richard A Davis. 2006. Introduction to time series and
forecasting. Springer Science & Business Media.

[6] Zadia Codabux, Kazi Zakia Sultana, and Byron J Williams. 2017. The relationship
between traceable code patterns and code smells. In Proc. 29th Int. Conf. Software
Engineering and Knowledge Engineering.

[7] Giulio Concas, Giuseppe Destefanis, Michele Marchesi, Marco Ortu, and Roberto
Tonelli. 2013. Micro patterns in agile software. In International Conference on
Agile Software Development. Springer, 210–222.

[8] Giuseppe Destefanis, Mahir Arzoky, Steve Counsell, Stephen Swift, Marco Ortu,
Roberto Tonelli, and Michele Marchesi. 2018. 113 times Tomcat: A dataset. PeerJ
Preprints 6 (2018), e26491v1.

[9] Giuseppe Destefanis, Marco Ortu, Steve Counsell, Stephen Swift, Roberto Tonelli,
and Michele Marchesi. 2017. On the randomness and seasonality of a�ective
metrics for software development. In Proceedings of the Symposium on Applied
Computing. ACM, 1266–1271.

[10] Giuseppe Destefanis, Roberto Tonelli, Giulio Concas, and Michele Marchesi.
2012. An analysis of anti-micro-patterns e�ects on fault-proneness in large java
systems. In Proceedings of the 27th Annual ACM Symposium on Applied Computing.
ACM, 1251–1253.

[11] Giuseppe Destefanis, Roberto Tonelli, Ewan Tempero, Giulio Concas, andMichele
Marchesi. 2012. Micro pattern fault-proneness. In Software engineering and
advanced applications (SEAA), 2012 38th EUROMICRO conference on. IEEE, 302–
306.

[12] Francis X Diebold and Glenn D Rudebusch. 1991. On the power of Dickey-Fuller
tests against fractional alternatives. Economics letters 35, 2 (1991), 155–160.

[13] Joseph Yossi Gil and Itay Maman. 2005. Micro patterns in Java code. ACM
SIGPLAN Notices 40, 10 (2005), 97–116.

[14] James Douglas Hamilton. 1994. Time series analysis. Vol. 2. Princeton university
press Princeton.

[15] Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. 1992.
Testing the null hypothesis of stationarity against the alternative of a unit root:
How sure are we that economic time series have a unit root? Journal of econo-
metrics 54, 1 (1992), 159–178.

[16] Greta M Ljung and George EP Box. 1978. On a measure of lack of �t in time
series models. Biometrika 65, 2 (1978), 297–303.

[17] Marco Ortu, Giuseppe Destefanis, Matteo Orru, Roberto Tonelli, and Michele L
Marchesi. 2015. Could micro patterns be used as software stability indicator?. In
Patterns Promotion and Anti-patterns Prevention (PPAP), 2015 IEEE 2nd Workshop
on. IEEE, 11–12.

[18] Maurice Bertram Priestley. 1981. Spectral analysis and time series. (1981).
[19] Maurice Bertram Priestley. 1988. Non-linear and non-stationary time series

analysis. (1988).
[20] Brian Robinson and Patrick Francis. 2010. Improving industrial adoption of soft-

ware engineering research: a comparison of open and closed source software. In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 21.

[21] Said E Said and David A Dickey. 1984. Testing for unit roots in autoregressive-
moving average models of unknown order. Biometrika 71, 3 (1984), 599–607.

[22] Jeremy Singer, Gavin Brown,Mikel Luján, Adam Pocock, and Paraskevas Yiapanis.
2010. Fundamental nano-patterns to characterize and classify java methods.
Electronic Notes in Theoretical Computer Science 253, 7 (2010), 191–204.

[23] Kazi Zakia Sultana. 2017. Towards a software vulnerability prediction model
using traceable code patterns and software metrics. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 1022–1025.

[24] Kazi Zakia Sultana and Byron J Williams. 2017. Evaluating micro patterns and
software metrics in vulnerability prediction. In Software Mining (SoftwareMining),
2017 6th International Workshop on. IEEE, 40–47.

View publication statsView publication stats

