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ABSTRACT
This paper reconciles Kingsbury’s dual-tree complex wavelets
with Nason and Eckley’s local stationary model. We here es-
tablish that the dual-tree wavelets admit an invertible debiasing
matrix and that this matrix can be used to invert the covariance
relation. We also show that the added directional selectiv-
ity of the proposed model adds utility to the standard two-
dimensional local stationary model. Non-stationarity detection
on random fields is used as a motivating example. Experiments
confirm that the dual-tree model can distinguish anisotropic
non-stationarities significantly better than the current model.

Index Terms— wavelet, locally stationary, anisotropic

1. INTRODUCTION
First proposed by Nason et al. [1] in the one-dimensional
setting, the locally stationary wavelet (LSW) model offers a
translation-invariant, statistically well-principled means to cap-
ture the local covariance and local spectrum of a large class of,
possibly non-stationary, stochastic processes. Extension of the
theory to two-dimensional processes was recently pioneered
by Eckley et al. [2, 3] and was followed up with methodology
applied to non-stationarity detection in image textures [4] and
segmentation of imagery into stationary regions [5].

Alternative wavelet approaches to modelling random fields
often involve modelling the raw wavelet coefficients directly
[6] or passing them as features to machine learning tools [7].
This is in contrast to the LSW where the process is explicitly
described with a parameterised, generative model where the
parameters are estimated in a statistically rigorous manner to
ensure that: the asymptotic bias is understood and corrected;
and that consistency is characterised and, where appropriate,
obtained. Furthermore, the LSW model offers a natural way to
extend the notion of wavelet auto-covariance to the local case—
Prop. 1 and Cor. 1 in [2] show respectively that the local auto-
covariance converges uniformly to auto-covariance as sample
size increases and that one can be derived from the other via
explicit linear mappings. Although other wavelet models, such
as HMTs [8, 9], capture dependency structures between wave-
let coefficients, no other wavelet-based model other than the
LSW appears to satisfy these fundamental covariance prop-
erties. Perhaps the closest model to LSW is [10, 11] which
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was applied to paper and mamographic imagery; however their
wavelet variance-based framework is restricted to the smaller
class of (intrinsically) stationary fields.

The LSW model is translation invariant thanks to the use
of what Nason terms ‘discrete wavelets’, formed by an in-
verse, undecimated, à trous algorithm using finite impulse
response (FIR) wavelet filters. However, the current design
currently only accommodates wavelet bases with the standard
‘horizontal’, ‘vertical’, and ‘diagonal’ orientations. Such poor
directionality is a serious drawback when the data of interest
presents anisotropic behaviour. Some non-stationarity detec-
tion experiments in Section 4 illustrate examples of this point.

Motivated by this lack of directionality we here move to-
wards reconciling two significant contributions to the field of
wavelet analysis, namely: the LSW model [1, 2] and Kings-
bury’s dual-tree complex wavelet transform (DTCWT) [8, 12–
14]. The former evolved from the motivation to build a sta-
tistically rigorous notion of localised auto-covariance using
wavelets. The latter was motivated by the desire to design a
wavelet basis with good shift-invariance which could be im-
plemented in a decimated pyramidal scheme— a consequence
of which is that, in two-dimensions, the DTCWT furnishes
wavelets with superior directionality than standard real, FIR
wavelets. Since the DTCWT is implemented with an FIR fil-
terbank our proposed DTCWT-LSW model also uses ‘discrete
wavelets’ in a similar fashion to the LSW case.

By extending some key notions such as the auto-correlation
wavelet and the biasing matrix to the complex-valued DTCWT-
LSW case we then: (i) establish some mild conditions under
which the biasing matrix can be inverted (Theorem 6); (ii)
prove that the mapping between local auto-covariance and
standard auto-covariance is invertible (Prop. 8); (iii) demon-
strate that the added directional selectivity of the proposed
model adds utility to the standard two-dimensional local sta-
tionary model in that it is more general and, unlike the standard
LSW, can be used to detect anisotropic non-stationarities.

Section 2 offers a brief overview of the LSW model and
the DTCWT. We propose the DTCWT-LSW model in Section
3, establish some fundamental results, and use a toy example
to illustrate that its enhanced directionality represents a more
general model space than the standard LSW. Experiments are
conducted in Section 4 which demonstrate the superiority of
the DTCWT-LSW at non-stationarity detection.



2. BACKGROUND
The (2-d) LSW and DTCWT are here reviewed.

2.1. Locally stationary wavelet model
The local stationary wavelet (LSW) model represents a stochas-
tic process X =

∑
j,`

∑
u w

`
j(u)ξ`j(u)ψ`j(u − ·) on the fi-

nite lattice [[1, T ]]2 as a weighted filtering (with weights w)
of a zero-mean orthonormal increment sequence ξ and an
overcomplete basis comprising ‘undecimated discrete wavelet
functions’ ψ`j(·) ∈ `2(Z2) [1, 2]. The wavelet functions are
defined/derived by performing the usual inverse decimated
wavelet transform (with upsampling) of Delta functions placed
at the jth scale level, cf. Daubechies p204 [15] and the `th
orientation. Note that, in contrast to the decimated case, a
collection of integer translated wavelets are used. This not
only offers a translation invariant basis but also ensures that
traditional stationary processes are captured. Asymptotically,
the weights are associated with a Lipshitz continuous func-
tion Wj : (0, 1)2 7→ R, defined over rescaled space z = t/T ,
t ∈ [[1, T ]]2 which restricts the variation of the weights over
space. In turn this captures the fact that the local structure be-
comes evermore stationary with respect to decreasing spatial
neighbourhoods. For notational convenience, the scale and ori-
entation indexes are amalgamated into one index η = η(j, `)—
e.g. η = j + (`− 1)J , j ∈ [[1, J ]] and we note that the model
can be written in terms of convolutions as: X =

∑
η wηξη∗ψη ,

where the · denotes a left-right and up-down spatial flip:
f := f(−·). A key thrust of the LWS is that it affords a
natural description of the notion of local covariance.

Definition 1 (local covariance, Eckley et al. [2], Nason et
al. [1]). The local covariance (LCV) c : (0, 1)2 × Z2 7→ R of
an LSW process with LWS Sη(·) is defined by

c(z, t) :=
∑
`

∑
j∈N

Sη(z)Ψη(t),

with local wavelet spectrum (LWS) Sη(·) = |Wη(·)|2 and
autocorrelation wavelet (ACW)

Ψη = ψη ∗ ψη =
∑
t

ψη(t)ψη(·+ t). (1)

A naive estimate of the LCV would be the (undecimated) local
wavelet periodogram (LWP) X∼η := |X ∗ ψη|2. However, the
following result suggests that this would be far from ideal.

Theorem 2 (Eckley et al. [16]). Let X be an LSW process
with LWP X∼; then

EX∼η ([zT ]) =
∑
ν

Aη,νSν(z) +O(T−1),

where the biasing matrix A := Aη,ν is defined as the Gram
matrix with entries

Aη,ν = 〈Ψη,Ψν〉 =
∑
t

Ψη(t)Ψν(t). (2)

Hence the redundancy of the non-decimated LWP results
in a biased estimator of the LCV. This mixes LWS content
between other scales and orientations. However, Nason et
al. [1] showed, in the one-dimensional Shannon and Haar
wavelet case, that this matrix is non-singular. Hence the LWP
can be debiased with the inverse biasing matrix to arrive at
Ŝ(z) := A−1X∼(z), i.e.

Ŝη(z) =
∑
ν

A−1η,νX
∼
ν (z) (3)

with the property that E Ŝ = S(z) + O(T−1). Furthermore,
numerical experimentation has shown, in practice, that fi-
nite order versions of A are invertible for other bases such
as Daubechies Extremal Phase [2].

In essence, the LSW model describes the multiresolution,
local covariance structure of the process of interest. In broad
terms, one expects the amplitude of wη(j,`)(t) to be large if
the image at point t is locally well-correlated at the jth finest
scale level and `th orientation.

2.2. Dual-tree complex wavelets
It is remarkable that the dual-tree complex wavelet achieves
near translation-invariance and directional selectivity whilst,
at the same time, it can be realised with a decimated wavelet
transform, with finite impulse response filters, that satisfy the
perfect reconstruction property [14]. As such the DTCWT also
admits a multiresolution analysis in the true and full sense in
that the resulting two-scale relations are satisfied with finite se-
quence filters. One interpretation of the q-shift solution is that
it represents a multiwavelet which comprises two orthonormal
wavelets. In any guise, the DTCWT is without doubt a singular
member of what many refer to as the wavelet zoo.

In contrast to the LSW model, the DTCWT is non-
decimated. An immediate means to harmonise both frame-
works is to incorporate a non-decimated version of the
DTCWT into the LSW. Whilst the extra computation required
does very little in terms of improving translation invariance—
from near-invariance to exact invariance— non-decimation
does greatly enhance the poor directional description suffered
by the LSW model. Indeed, undecimated versions of the
DTCWT have recently been proposed by Hill et al. [17] who,
in addition, note the added virtues that the resulting wavelet
coefficients are truly co-located over the scale levels rather
than lying on the usual dyadic grid.

The DTCWT uses complex-valued basis functions to
achieve near translation invariance by designing the real and
imaginary parts of the filters such that they approximately
form a Hilbert transform pair (90◦ out of phase with each
other). There exist several practicable means to achieve this
but perhaps the most appealing is via q-shift filters [12]. These
result in a pair of wavelets {ψ·;0, ψ·;1} such that:

ψ·;1(t) = ψ·;0(n− 1− t), (4)

where n denotes the FIR filter length. The resulting quasi-
analytic wavelet function ψ·;0 + iψ·;1 will then not only be



(approximately) shift invariant but, in two-dimensions, it can
also be used to form directionally selective wavelets in the
twelve directions {(30k − 15)◦}12k=1. In contrast, the DWT
only offers space-scale content over ‘two and a half’ directions,
namely vertical, horizontal, and a ‘diagonal’ direction which
mixes both the +45◦ and −45◦ orientations together.

3. THE DTCWT-LSW MODEL
With complex-valued wavelets, the DTCWT-LSW model reads
similarly to the real-case, namely

X =
∑
η

wηξη ∗ ψη,

but now the weights wη : N2 7→ C can be complex-valued.
The ACW, Eqn. (1) is hereby generalised to the complex case
using complex-valued autocorrelation and the biasing matrix,
Eqn. (2), is extended to the complex case by simply adopting
the more general definition of inner products for complex-
valued vectors. We hence propose the following definitions as
natural generalisations of those found in the LSW framework.

Definition 3 (Complex ACW). Let the superscript ·? denote
complex conjugation. Define the ACW associated with the
possibly complex-valued wavelet ψ by

Ψη = ψη ∗ ψ?η =
∑
t

ψ?η(t)ψη(·+ t). (5)

Definition 4 (DTCWT-LSW biasing matrix). Let Ψ be the
complex ACW as above. Then the associated biasing matrix is

Aη,ν = 〈Ψη,Ψν〉 =
∑
t

Ψη(t)Ψ?
ν(t). (6)

3.1. Properties
With the DTCWT-LSW defined, we now establish some key
results which confirm that the biasing matrix of the proposed
model can be inverted under very mild conditions.

Lemma 5. Let Ψ be the ACW (Defn. 1). The entries of the
biasing matrix (Defn. 4) are positive, real, and symmetric.
Proof. By construction,A is a Gram matrix. Hence, symmetry
follows immediately. We then invoke Plancherel to write
A =

〈
ψη ∗ ψ?η , ψν ∗ ψ?ν

〉
=
〈∣∣ψ∧η ∣∣2, ∣∣ψ∧ν ∣∣2〉.

Theorem 6 (Invertibility of the biasing matrix). Let the bias-
ing matrix A′ associated with an appropriately chosen real-
valued wavelet ψ·;0 be non-singular. Then, the biasing matrix
A (Defn. 4) associated with the dual-tree wavelet (Eqn. 4)
ψ = ψ·;0 + iψ·;1 is non-singular with A = 2A′.

Proof. We use the same arguments as the proof Lemma 5 and
then note that the Fourier magnitudes of the real and imagi-
nary parts of the dual-tree wavelets are identical by design:
A =

〈
ψη ∗ ψ?η , ψν ∗ ψ?ν

〉
=
〈∣∣ψ∧η ∣∣2, ∣∣ψ∧ν ∣∣2〉 =

〈∣∣ψ∧η;0∣∣2 +∣∣ψ∧η;1∣∣2, ∣∣ψ∧ν;0∣∣2 +
∣∣ψ∧ν;1∣∣2〉 = 2

〈∣∣ψ∧η;0∣∣2, ∣∣ψ∧ν;0∣∣2〉.
Remark 7. Thm. 6 also holds for analytic wavelets since the
real and imaginary components have equal magnitude.

Proposition 8 (DTCWT-LWS covariance inversion). Assume
that the debiasing matrix A is non-singular; then

Sη(z) =
∑
ν

A−1η,ν
∑
t

c(z, t)Ψ?
ν(t).

Proof. As in [1], we follow a proof by verification and then
note that A is both symmetric and, by Lemma 5, real.:∑

ν

A−1η,ν
∑
t

∑
η′

Sη′(z)Ψη′(t)Ψ
?
ν(t)

=
∑
η′

Sη′(z)
∑
ν

A−1η,ν
∑
t

Ψη′(t)Ψ
?
ν(t)

=
∑
η′

Sη′(z)
∑
ν

A−1η,νAν,η′ =
∑
η′

Sη′(z)δη,η′ = Sη(z).

3.2. Simulation
If the local wavelet spectrum of a process is known one can
readily sample fields directly from the LSW and DTCWT-
LSW models. Furthermore, as described in Algorithm 1, one
can also simulate fields from data using the estimated LWS Ŝ.
A telling comparison between LSW and DTCWT-LSW can be
seen in Fig. 1. We first simulate some textures using the LSW
model. The field ‘dwt, band 1’ is created by setting Sη = 0
at all bands except the vertical band at one of the scale levels
which is set to 1. Likewise ‘dwt, band 3’ uses only the diagonal
band. These fields are then ‘resimulated’ with the DTCWT
model using the estimated LWS. The top row of Fig. 1 labels
these resimulations as ‘dtcwt sim of dwt. . . ’. In the second
row of Fig. 1, the roles are reversed so that the DTCWT is
used to simulate and the DWT is used to resimulate. It should
be clear that the DTCWT model can reproduce the behaviour
of the DWT model much better than the DWT can reproduce
the DTCWT. Clearly, the DWT cannot simulate the range of
directionality inherent in the DTCWT-LSW model.

Algorithm 1 Simulation algorithm, cf. Taylor [4]
for (level, orientation) = η; do

compute LWP X∼η , LWS Ŝη , and µη := T−2
∑
t Ŝη(t)

simulate: X̂ =
∑
η ŵηξη ∗ ψ, using ŵη(·) ≡ √µη

end for

4. EXPERIMENTS
Non-stationarity testing was carried out using the bootstrap-
ping scheme proposed in [4], namely for a given field X we
test the null hypothesis that Sη(z) is a constant function for
all z and η using the test statistic τX := (JK)−1

∑
η σ̂

2(Ŝη)
which is the mean, over J scales and K subbands, of the LWS
sample variance computed over pixels. When compared to
bootstrapped samples cf. Alg. 2, this affords a statistically
rigorous means to evaluate how likely an observed statistic τX
is compared to bootstrapped values τX̂i assuming stationarity.
One would expect a non-stationary field to register a small



p-value. As such this would indicate that the null hypothesis
could be rejected. As in [4], experiments were performed on
both stationary and non-stationary fields. Unlike [4], we also
include experiments on anisotropic fields.

Algorithm 2 Stationarity detection, cf. Taylor [4]
for (level, orientation) = η; do

compute LWS Ŝη from (3) and test statistic τobs

compute mean stationary spectrum µη := T−2
∑
t Ŝη(t)

end for
for i in 1 : B bootstraps do

simulate X̂i using Alg. 1 and compute test statistic τX̂i

end for
compute p-value p := (B + 1)−1(1 + #(τX ≤ τX̂i))

4.1. Stationary processes
Stationarity tests were performed on an isotropic first order
spatial moving average field with weight parameter 0.9 (pro-
cess ‘S2’ in [4]). One hundred realisations of this process were
simulated. For each realisation, bootstrapping was performed
over one hundred simulations, cf. Alg 2. Both the LWS and
DTCWT-LWS model registered p-values greater than 0.05 for
all realisations. As such, this experiment corroborates findings
in [4] and [18] that the test is conservative.

A second test was performed on anisotropic Gaussian
noise, simulated using a simple directional mask oriented at
45◦ with angular width 30◦ together with a Fourier synthesis
method. The LWS again registered p-values great than 0.05 for
all realisations. The DTCWT-LWS resulted in 2 realisations
with p-values greater than 0.05 which is closer to the 5% figure
one would expect.

4.2. Non-stationary processes
Further experiments were carried out on non-stationary ran-
dom fields. An isotropic field was generated where pixels in
one half were drawn from unit-variance Gaussian white noise.
The other half was formed from a Gaussian random field with
an order 1 Bessel-Matérn covariance function (cf. process
‘NS2’ from [4]). This experiment was repeated for three dif-
ferent scale values. Table 1 records the number of p-values
below 0.05 that resulted from 100 realisations (i.e. the number
of times that the null-hypothesis was correctly rejected). The
DTCWT-LSW appeares to detect the non-stationarity better
than the LSW. The extra redundancy may add some value to
the estimation or simulation process but this requires further
work to fully explain.

A set of fields with covariance exp(−(t−t′)>DRθ(t−t′))
were used with D = diag(4, 1), where the rotation matrix Rθ
is piecewise constant with θ = 90◦ for (t − t′) ∈ t0 and
θ ∈ {0◦, 20◦, 40◦, 60◦} for (t − t′) 6∈ t0 and where t0 is
a central square region, cf. Fig. 2. Note that these fields
are anistotropically non-stationary. The number of instances
where the null-hypothesis was correctly rejected is recorded
in Table 2. Thanks to its superior directionality, the proposed

(a) dwt, band 1 (b) dtcwt sim. of
dwt, band 1

(c) dwt, band 3 (d) dtcwt sim. of
dwt, band 3

(e) dtcwt, band 1 (f) dwt sim. of
dtcwt, band 1

(g) dtcwt, band 3 (h) dwt sim. of
dtcwt, band 3

Fig. 1. Top row: dtcwt simulations of dwt simulation. Bottom
row: dwt simulations of dtcwt simulation.

Fig. 2. Anisotropically non-stationary textures. Processes
comprise inner and outer region with different orientations.
Top row: spectral density functions. Bottom row: realisations
of the processes.
Table 1. Proportion (%) of bootstrap samples with p-value
below 0.05 for non-stationary isotropic random field.

Method/scale 0.4 0.5 0.6
DTCWT-LSW 1 51 94

DWT-LSW 0 25 28
Table 2. Proportion (%) of bootstrap samples with p-value
below 0.05 for non-stationary anisotropic random field.

Method/θ 0 20 40 60
DTCWT-LSW 99 99 98 66

DWT-LSW 9 10 5 1

method offers a clear advantage here. Furthermore, as the
orientations of the two regions become more similar the non-
stationary detection becomes worse for both methods.

5. CONCLUSION
Kingsbury’s dual-tree complex wavelet basis was successfully
harmonised with Nason and Eckley’s locally stationary wavelet
model. We have established some initial properties of the re-
sulting proposed DTCWT-LSW model and have confirmed the
enhanced utility afforded by the extra directionality. The perva-
siveness of anisotropic non-stationary random fields in image
processing and the elementary description that covariance pro-
vides means that there is much scope for further investigation
including: quality inspection via machine vision (e.g. texture
pilling [4, 19]); segmentation [5]; sonar/denoising [20, 21],
change detection [22]. It is also anticipated that a more com-
plete range of anisotropy testing machinery (e.g. Thon et
al. [11]) would provide greater statistical power.
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