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Highlights

• We consider robust shortest path problems with real-world street data.

• Different uncertainty sets for data-driven robust optimisation are com-
pared.

• Trade-offs between uncertainty sets are identified.

• A new branch-and-bound algorithm for ellipsoidal uncertainty is proposed.
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Abstract

We consider robust shortest path problems, where the aim is to find a path
that optimizes the worst-case performance over an uncertainty set containing
all relevant scenarios for arc costs. The usual approach for such problems is to
assume this uncertainty set given by an expert who can advise on the shape and
size of the set.

Following the idea of data-driven robust optimization, we instead construct
a range of uncertainty sets from the current literature based on real-world traffic
measurements provided by the City of Chicago. We then compare the perfor-
mance of the resulting robust paths within and outside the sample, which allows
us to draw conclusions on the suitability of uncertainty sets.

Based on our experiments, we then focus on ellipsoidal uncertainty sets, and
develop a new solution algorithm that significantly outperforms a state-of-the-
art solver.

Keywords: robustness and sensitivity analysis, robust shortest paths,
uncertainty sets, data-driven robust optimization

1. Introduction

For classic shortest path problems in street networks, considerable speed-ups
over a standard Dijkstra’s algorithm have been achieved thanks to algorithm
engineering techniques [2], which makes the use of real-time information even
in large networks possible. Most types of robust shortest path problems, on the
other hand, are NP-hard (see [22]), and real-time re-optimization has not been
an option.

To formulate a robust problem, it is necessary to have a description of all
possible and relevant scenarios that the solution should prepare against, the so-
called uncertainty set. We refer to the surveys [1, 18, 19] for a general overview
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on the topic. The current literature on robust shortest paths usually assumes
this set to be given, by some mixture of data-preprocessing and expert knowl-
edge that is not part of the study. This means that different types of sets have
been studied (compare, e.g., [20, 9]), but it has been impossible to address the
question which would be the “right” choice.

A recent paradigm shift is data-driven robust optimization (see [6]), where
building the uncertainty set from raw observations is part of the robust opti-
mization problem. This paper is the first to follow such a perspective for shortest
path problems. Based on real-world observations from the City of Chicago, we
build a range of uncertainty sets, calculate the corresponding robust solutions,
and perform an in-depth analysis of their performance. This allows us to give
an indication which set is actually suitable for our application, and which are
not.

In the second part of this paper, we then focus on the case of ellipsoidal
uncertainty, and provide a branch-and-bound algorithm that is able to solve
instances considerably faster than an off-the-shelf solver.

Parts of this paper were previously published as a conference paper in [17].
In comparison, we provide a completely new set of experimental results based
on an observation period of 46 days (instead of one single day), which leads
to a more detailed insight into the performance of different uncertainty sets.
Furthermore, we provide a new analysis for axis-parallel ellipsoidal uncertainty
sets, including an efficient branch-and-bound algorithm that is able to outper-
form CPLEX [15] by several orders of magnitude, pushing robust shortest paths
towards applicability in real-time navigation systems.

The remainder of the paper is structured as follows. In Section 2 we briefly
introduce the robust shortest path problem along with six uncertainty sets used
in this study. The experimental setup and results on real-world data are then
presented in Section 3. Section 4 presents our algorithm for ellipsoidal un-
certainty sets, and includes additional computational results. The paper is
concluded in Section 5.

2. Uncertainty Sets for the Shortest Path Problem

In this section, we briefly introduce the robust shortest path problem and
different approaches to model uncertainty sets that are used in the current
literature. In the classic shortest path problem, we are given a directed graph
G = (V,A) where V denotes the set of nodes, and A denotes the set of arcs.
For every arc e ∈ A, we know its traversal time ce ≥ 0. For a start node s and
a target node t, the aim is to find a path minimizing the total travel time given
as the sum of times over all arcs that are part of the path.

More formally, we denote this problem as

min
{
ccctxxx : xxx ∈ X

}

X ⊆ {0, 1}n denotes the set of s-t-paths, and n = |A| is the number of variables.
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In our setting, we assume that travel times ccc are not known exactly. Instead,
we are provided with a setR of travel time observations, whereR = {ccc1, . . . , cccN}
with ccci ∈ Rn. We also refer to R as the available raw data. Based on this data,
an uncertainty set U is generated which is then used within the robust shortest
path problem

min

{
max
ccc∈U

ccctxxx : xxx ∈ X
}

that is, we search for a path that minimizes the worst-case costs over all costs
in U . We briefly sketch approaches to generate U in the following. Each is
equipped with a scaling parameter to control its size (see also [14] on the prob-
lem of choosing the size of an uncertainty set with a given shape). A visual
example using four data points in two dimensions is provided for each approach
in Figure 1. We use the notation [N ] = {1, . . . , N} and denote by ĉcc the average
of {ccc1, . . . , cccN}, i.e., ĉcc = 1

N

∑
i∈[N ] ccc

i. For more details on the resulting models,

we refer to the conference version of this paper [17].

• Convex hull uncertainty (see, e.g., [19, 22]): We set

UCH = R.

Note that this is equivalent to using the convex hull of raw data. To scale
this set, we substitute each point ccci with ĉcc + λ(ccci − ĉcc) for a given λ ≥ 0,
and take the convex hull of the scaled data points.

• Interval uncertainty (see, e.g., [11]): We set

UI =×
i∈[n]

[ĉi + λ(ci − ĉi), ĉi + λ(ci − ĉi)]

for some λ ≥ 0, where ci := maxj∈[N ] c
j
i and ci := minj∈[N ] c

j
i . By×,

we denote the Cartesian product. Note that maxccc∈UI ccctxxx =
∑
i∈[n](ĉixi +

λ(ci − ĉi)xi for every xxx ∈ X , and the robust optimization problem can be
solved by solving a nominal (non-robust) problem. In Figure 1(b), only
the top right corner of the boxes becomes part of the robust problem.

• Ellipsoidal uncertainty (see, e.g., [3, 4]): We set

UE = {ccc : (ccc− ĉcc)tΣΣΣ−1(ccc− ĉcc) ≤ λ}

with ΣΣΣ = 1
N

∑
i∈[N ](ccc

i− ĉcc)(ccci− ĉcc)t derived from a maximum-likelihood fit

of a normal distribution. The resulting sets are ellipsoids, see Figure 1(c),
containing the highest-density region of a fitted multivariate normal dis-
tribution.

• Budgeted uncertainty (see, e.g., [7, 8, 18]): We set

UB = {ccc : ci = ĉi + (ci − ĉi)δi for all i ∈ [n], 000 ≤ δδδ ≤ 111,
∑

i∈[n]
δi ≤ Γ}

4
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(a) Convex hull with λ = 1 and λ = 0.5.
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(b) Intervals with λ = 1 and λ = 0.5.
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(c) Ellipsoid with λ = 3 and λ = 1.
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(d) Budgeted uncertainty with Γ = 1.5
and Γ = 1.
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(e) Permutohull uncertainty for
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(f) Symmetric permutohull uncertainty
for qqq = ( 1

2
, 1
2
, 0, 0) and qqq = ( 1

2
, 1
4
, 1
4
, 0).

Figure 1: Example uncertainty sets.
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where the parameter Γ controls the size of UB . This approach can be seen
as a variant of interval uncertainty, where the top right corner is cut off to
decrease conservatism. The size of Γ controls the size of the region that is
cut off from the box.

• Permutohull uncertainty (see [5]): We set

UPH = conv






∑

i∈[N ]

qσ(i)ccc
i : σ ∈ SN








where SN denotes the set of permutations on [N ], and qqq is a column of
the matrix

QN :=




1 . . . 1
N−2

1
N−1

1
N

...
...

...
...

...
0 0 1

N−2
1

N−1
1
N

0 . . . 0 1
N−1

1
N

0 . . . 0 0 1
N



∈ RN×N

Scaling is included via the choice of the column, where using the jth
column of QN corresponds to using the conditional value at risk CV aR
criterion with respect to risk level j/N . Using qqq = ( 1

2 ,
1
2 , 0, 0) as shown in

Figure 1(e) means that we take the convex hull of the average of each pair
of original points; using qqq = ( 1

3 ,
1
3 ,

1
3 , 0) amounts to taking the convex hull

of the average of each triplet of original points.

• Symmetric permutohull uncertainty (see [5]): As in the above case, but
we generate USPH using columns of the matrix Q̃ ∈ RN×(bN/2c+1) defined
by

Q̃ :=
1

N




1 2 2 . . . 2
1 1 2 . . . 2
1 1 1 . . . 2
...

...
...

...
...

1 1 1 . . . 0
1 1 0 . . . 0
1 0 0 . . . 0




,

instead, i.e., in the first column, all entries are 1/N ; in the second column,
the first entry is 2/N and the last entry is 0, etc. The resulting sets are
symmetric with respect to ĉcc.

In total we use six methods to generate uncertainty set U based on the raw
data R. The resulting optimization model and its complexity are summarized
in Table 1. Here, “(M)IP” stands for (mixed-)integer linear program, “LP” for
linear program, and “MISOCP” for mixed-integer second order cone program.
Furthermore, “NPH” denotes that the problem is NP-hard, while “P” means
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UCH UI UE UB UPH USPH
Complexity NPH P NPH P NPH NPH

Model IP LP MISOCP MIP MIP MIP
Additional constraints N 0 1 n+ 1 N2 N2

Additional variables 1 0 1 n 2n 2n

Table 1: Uncertainty sets in this study.

that it is solvable in polynomial time. While the robust model with budgeted un-
certainty sets can be solved in polynomial time using combinatorial algorithms,
we still used the MIP formulation for our experiments, as it was sufficiently fast.

3. Real-World Experiments

3.1. Data Collection and Cleaning

We used data provided by the City of Chicago1, which provides a live traffic
data interface. The data set consists of traffic updates for every 15-minute
interval over a time horizon of 46 days spanning Tuesday morning, March 28,
2017 to Friday evening, May 12, 2017.

Out of all 46 · 96 = 4,416 potential observations, only 4,363 had usable data
or were recorded due to server downtimes. Every data point contains the traffic
speed for a subset of a total of 1,257 segments (that is, a part of a street given
through its geographical coordinates). The resulting plot in Figure 2(a) with a
zoom-in for the city center. The complete travel speed data set contains a total
of 3,891,396 records. There were 1,045 segments where the data was recorded
at least once in the 4,363 data points. For nearly 55% of the segments, at least
1,340 data points were recorded, and more than 90% of them have at least 450
data points. For almost all segments at least 400 data points were recorded.
We used linear interpolation to fill the missing records keeping in mind that
data was collected over time. For segments that did not have any data, we
set the travel speed to 20 miles per hour (which is slightly slower than the
average speed in the network). Any speed record below 3 miles per hour was
set to 3 miles per hour to ensure reasonable travel times. Segment lengths were
given through longitude and latitude coordinates, and approximated using the
Euclidean distance.

As segments are purely geographical objects without structure, we needed to
create a graph for our experiments. To this end, segments were split when they
crossed or nearly crossed, and start- and end-points that were sufficiently close
to each other were identified as the same node. The resulting graph is shown
in Figure 2(b); note that this process slightly simplified the network, but kept
its structure intact. The final graph contains 538 nodes and 1,308 arcs. Using
arc length and speed, we calculate their respective traversal time for each of the

1https://data.cityofchicago.org
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(a) Raw segments with zoom-in for the city center, longitude ver-
sus latitude. In red are segments without data.
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(b) Resulting graph model with zoom-in for the city center, lon-
gitude versus latitude.

Figure 2: Chicago instance.
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4,363 data points. In the following, we refer to 4,363 scenarios generated this
way.

We then used this full dataset to derive the following subsets aimed at pro-
viding robust solutions in different contexts:

1. Find a path that is robust when driving during morning rush hours. We
only use scenarios sampled on weekdays from 8am to 10am. These are
271 such scenarios (“mornings dataset”).

2. Find a path that is robust when no additional information is given. We
use all 4,363 scenarios (“complete dataset”).

In the following, we present results only for the mornings dataset. Results for
the complete dataset can be found in Appendix A. Additionally, we also carried
out experiments on an evenings dataset (272 scenarios for weekdays from 4pm
to 6pm), a Tuesdays dataset (671 scenarios for all Tuesdays), and a weekends
dataset (1,141 scenarios for all Saturdays and Sundays). As results were found
to be very similar, they are not presented here. All dataset are available from
the corresponding author upon request.

3.2. Data Exploration

Figure 3 visualizes the travel time data used in these experiments plotted
against the time of one week, where each point represents the average travel
speed over all segments in the network in one observation. The red line shows the
hourly average travel speed, and the shaded area represents the corresponding
95% confidence band.
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Figure 3: Averaged recorded travel speed data.

We find that there is little correlation between edges (for 99.36% of pairs
of edges, the absolute value of correlation is ≤ 0.3), but a strong correlation
between points in time (for 87.52% pairs of times, the absolute value of corre-
lation is > 0.6). This gives rise to the question whether optimal paths between
fixed pairs of nodes change over time (if not, a robust optimization approach

9
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was not necessary). To consider this aspect, we generated 200 random s − t
pairs and calculated an optimal path for each scenario and pair. For only 6 out
of 200 pairs, there was one path which was optimal in every scenario. For 128
pairs, there were at least 10 unique shortest paths; and for 63 pairs, there were
at least 50 such paths. On average, there are 64.15 different shortest paths per
s− t pair.

3.3. Setup

Each uncertainty set can be tuned with a scaling parameter. For each pa-
rameter we generated 20 possible values, reflecting a reasonable range of choices
for a decision maker:

• For UCH and UI , λ ∈ {0.05, 0.10, . . . , 1.00}.

• For UE , λ ∈ {0.5, 1.0, . . . , 10.0}.

• For UB , Γ ∈ {1, 2, . . . , 20}.

• For UPH , we used columns qqq1, qqq3, . . . , qqq39.

• For USPH , we used columns qqq1, qqq2, . . . , qqq20.

Additionally, we calculate a solution to the average-case scenario ĉcc. Note that
this is a special case of all uncertainty sets presented here if the scaling parameter
is sufficiently small. Each uncertainty set is generated using 75% of scenarios
sampled uniformly (e.g., 203 out of 271), and we evaluate solutions in-sample
and out-sample separately. Furthermore, we generated 200 random s − t pairs
uniformly over the node set, and used each of the 6 ·20 methods on the same 200
pairs. Each of our 120 methods, hence, generates 200 · 271 = 54, 200 objective
values for the mornings set.

It is non-trivial to assess the quality of these robust solutions, see [13]. If
one just uses the average objective value, as an example, then one could as
well calculate the solution optimizing the average scenario case to find the best
performance with respect to this measure. To find a balanced evaluation of
all methods, we used three performance criteria. Let X ′ = {xxx1, . . . ,xxxP } with
P = 200 be the set of paths generated by some solution approach.

• The average objective value over all s− t pairs and all scenarios, i.e., the
value

AV =
1

P

∑

i∈[P ]


 1

N

∑

j∈[N ]

(cccj)txxxi




• The average of the worst-case objective value for each s− t pair, i.e., the
value

MAX =
1

P

∑

i∈[P ]

(
max
j∈[N ]

(cccj)txxxi
)
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• The average value of the worst 5% of objective values for each s − t pair
(as in the CV aR measure). Formally, let Cij =

∑
j∈[N ](ccc

j)txxxi, and let Ci(j)
be a sorting of indices such that Ci(j) ≥ Ci(j+1) for all j ∈ [N − 1]. Then
we use

CV aR =
1

P

∑

i∈[P ]


20

N

∑

j∈[N/20]
Ci(j)




Note that many more criteria would be possible to use.
For all experiments we used a computer with a 16-core Intel Xeon E5-2670

processor, running at 2.60 GHz with 20MB cache, and Ubuntu 12.04. Processes
were pinned to one core. We used CPLEX v.12.6 to solve all problem formu-
lations (note that specialized combinatorial algorithms are available for some
problems).

3.4. Results

We present the performance of solutions in Figures 4 and 5. In each plot,
the 20 parameter settings that belong to the same uncertainty set are connected
by a line, including the average case as a 21st point. They are complemented
with Figure 6 showing the total computation times for the methods over all 200
shortest path calculations. For better visibility, Figures 4 and 5 do not show
outlying data; plots showing all data can be found in Appendix A.

The first set of plots in Figure 4 shows the trade-off between the average
and the maximum objective value; the second set of plots in Figure 5 shows the
trade-off between the average and the average of the 5% worst objective values.
For each case, the in-sample and out-sample performance is shown (i.e., the
performance on the set of scenarios that were used in building the uncertainty
set, and the performance on the set of scenarios which were not used). All
values are in minutes of travel time. Note that for all performance measures,
smaller values indicate a better performance – hence, good trade-off solutions
should move from the top left to the bottom right of the plots. In general, the
points corresponding to the parameter settings that give weight to the average
performance are on the left sides of the curves, while the more robust parameter
settings are on the right sides, as would be expected.

We first discuss the in-sample performance in Figure 4(a). In general, we
find that most methods indeed present a trade-off between average performance
and robustness through their scaling parameter (i.e., curves run from top left to
bottom right). Solutions calculated using the convex hull dominate the others.
Symmetric permutohull solutions tend to focus on a good average performance,
while ellipsoid and permutohull solutions show a broader front over the two
criteria. Interval and budgeted uncertainty solutions tend to perform worse
for larger scaling values, without the desired trade-off property, which confirms
previous findings in [12].

Comparing these findings with the out-sample results in Figure 4(b), we see
that a general ranking of concepts is kept intact. The solutions generated by
the convex hull lose their trade-off property, as they are apparently over-fitted

11
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Figure 4: Average vs worst-case performance.
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Figure 5: Average vs CVaR performance.
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Figure 6: Computation times in seconds.

to the data used in the sample (see also the results in Appendix A). We also
find that the interval uncertainty outperforms budgeted uncertainty here, while
they showed similar performance in-sample.

We now consider the results presented in Figure 5. Here the average is
plotted against the average performance of the 5% worst performing scenarios,
averaged over all s − t pairs. While the convex hull solutions showed the best
trade-off in Figure 4(a), we find that the permutohull solutions are prominent
among the non-dominated points in this case. As before, symmetric permu-
tohull solutions tend to remain on one end of the spectrum with good average
performance. Solutions obtained from ellipsoidal uncertainty are still among the
best, and stable when considered out-sample (compare Figures 5(a) and 5(b)).
Interval uncertainty and in particular budgeted uncertainty do not perform well
in comparison with the other approaches.

Regarding computation times (see Figure 6), note that the two polynomially
solvable approaches (intervals and budgeted) are also the fastest when using
CPLEX; these computation times can be further improved using specialized
algorithms. Using ellipsoids is faster than using the convex hull, which is in turn
faster than using the symmetric permutohull. For the standard permutohull, the
computation times are sensitive to the uncertainty set size; if the qqq vector that
is used in the model has only few entries, computation times are smaller. This
is in line with the intuition that the problem becomes easier if fewer scenarios
need to be considered.

To summarize our findings in our experiment on the robust shortest path
problem with real-world data:

• Convex hull solutions show good in-sample performance, but are not stable
when facing scenarios out of sample.
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• Interval solutions do not perform well in general, but are easy and fast
to compute, which makes them a reasonable approach, in particular for
smaller scalings.

• Budgeted uncertainty does not seem an adequate choice for robust shortest
path problems. Scaling interval uncertainty sets gives better results and
is easier to use and to solve.

• Ellipsoidal uncertainty solutions have good and stable overall performance
and represent a large part of the non-dominated points in our results.

• Permutohull solutions offer good trade-off solutions, whereas symmetric
permutohull solutions tend to be less robust, but provide an excellent
average performance. These methods also require most computational
effort to find.

In the light of these findings, permutohull and ellipsoidal uncertainty tend
to produce solutions with the best trade-off, while being computationally more
challenging than most of the other approaches. The algorithmic research for
robust shortest path problems with such structure should therefore be studied
further. Results on additional experiments leading to the same conclusions can
be found in the appendix. In the following section, we consider a variant of
ellipsoidal uncertainty where correlation between arcs is ignored.

4. Ellipsoidal Uncertainty Sets

4.1. From General to Axis-Parallel Ellipsoids

Since our experiments have shown that ellipsoidal uncertainty sets are a rea-
sonable choice, we devote this section to these sets. First, we show that changing
the general ellipsoid to an axis-parallel ellipsoid by setting all non-diagonal en-
tries of ΣΣΣ to 0, has almost no effect on the solutions found. Second, we derive a
specialized branch-and-bound algorithm for such axis-parallel ellipsoidal uncer-
tainty sets which clearly outperforms the standard approach of using a generic
solver. Problems with the same structure were previously considered in [21],
where a heuristic method was proposed.

Comparing general and axis-parallel ellipsoids for the experiments presented
in Section 3, we find that the maximum deviation over all plotted datapoints is
less than 0.002% for average travel times, less than 0.005% for average worst-
case values, and less than 0.003% for average CVaR values. That is, plotted
in our figures, general and axis-parallel ellipsoids would look indistinguishable.
On the other hand, using axis-parallel ellipsoidal uncertainty sets in the robust
model instead of general ellipsoids decreases the computation time significantly,
see Figure 7. The computation time can be further reduced by the use of
specialized algorithms, as shown in the next section.
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Figure 7: Comparison between general and axis-parallel ellipsoids, computation times in sec-
onds.

4.2. Efficient Algorithm for Axis-Parallel Ellipsoids

4.2.1. A Bicriteria Perspective

In this section, we describe an efficient branch-and-bound algorithm to solve
the robust shortest path problem if the uncertainty set is given as an axis parallel
ellipsoid. Recall that the mathematical formulation of the problem is

min ĉcctxxx+ z

s.t. z2 ≥
(
xxxtΣΣΣxxx

)

xxx ∈ X

where ΣΣΣ is a diagonal matrix specifying the shape and the size of the ellipsoid.
Let ddd be the diagonal of ΣΣΣ. Since xxx is a binary vector, we have x2i = xi and we
can simplify the quadratic expression xxxtΣΣΣxxx to a linear expression dddtxxx. Hence
the problem can be reduced to

min ĉcctxxx+
√
dddtxxx

s.t. xxx ∈ X

As pointed out in [21], this problem can be transformed to the following bicri-
teria optimization problem.

min

(
ĉcctxxx
dddtxxx

)

s.t. xxx ∈ X

There it is shown that each optimal solution of the robust problem is an efficient
extreme solution of this bicriteria optimization problem. We call a solution xxx∗

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of this bicriteria optimization problem efficient extreme if there exists α0 and
α1 with 0 ≤ α0 < α1 ≤ 1 such that for all α ∈ [α0, α1] it holds that there exists
no other solution xxx′ with (αccc+ (1− α)ddd)txxx′ < (αccc+ (1− α)ddd)txxx∗. This means
that we can find efficient extreme solution by solving the following weighted
sum problem which corresponds to a classic shortest path problem.

min (αĉcc+ (1− α)ddd)txxx

s.t. xxx ∈ X

Hence, the robust solution can be found by computing all efficient extreme solu-
tions of the bicriteria problem. Unfortunately, there is no polynomial bound for
the number of efficient extreme solutions of a bicriteria shortest path problem.
In fact, it has been shown in [10] that there exist instances of the bicriteria
shortest path problem with a subexponential number of efficient extreme solu-
tions. Hence, [21] proposes a heuristic to compute only a subset of all efficient
extreme solutions of the bicriteria problem. Among the found solutions, the
best is chosen with respect to the robust objective function.

In the following, we present an exact algorithm which is guaranteed to find an
efficient extreme solution which is optimal for the robust problem without com-
puting all efficient extreme solutions. Unfortunately, we cannot prove that the
number of computed solutions by the exact algorithm is polynomially bounded.
However, for real-world or randomly generated instances the number of com-
puted solutions is so small that it can be assumed to be constant. We verify this
claim in computational experiments. For convenience, we first present a naive
algorithm to compute the complete set of all extreme efficient solutions.

4.2.2. Naive Algorithm

Algorithm 1 Naive Algorithm to Compute all Efficient Extreme Solutions

1: Compute xxxl = arglexminxxx∈X (ĉcctxxx,dddtxxx).

2: Compute xxxr = arglexminxxx∈X (dddtxxx, ĉcctxxx).
3: return EXPLORE(xxxl,xxxr)

Note that the lexmin in Step 1 (or Step 2, respectively) of Algorithm 1
can be found by solving a problem of the form minxxx∈X ((1 − ε)ĉcc + εddd)txxx for a
sufficiently small chosen ε. The subroutine described as Algorithm 2 recursively
finds all efficient extreme solutions. The recursion halts if the found solution is
not efficient extreme anymore.

We remark that for each efficient extreme solution xxx∗, it is guaranteed that
Algorithm 1 either finds xxx∗ or an alternative solution xxxalt with ĉcctxxxalt = ĉcctxxx∗

and dddtxxxalt = dddtxxx∗. Further, it is not guaranteed that all solutions returned by
Algorithm 1 are efficient extreme, as the indifference curves (ĉtxxx,

√
dddtxxx) in the

objective space are parabolas. However, all non efficient extreme solutions could
be easily removed.
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Algorithm 2 Recursive Subroutine for the Naive Algorithm

1: procedure EXPLORE(xxx0,xxx1)
2: Set αm such that (αmĉcc+ (1− αm)ddd)txxx0 = (αmĉcc+ (1− αm)ddd)txxx1.
3: Compute xxx∗ = argminxxx∈X (αmĉcc+ (1− αm)ddd)txxx
4: if (αmĉcc+ (1− αm)ddd)txxx∗ < (αmĉcc+ (1− αm)ddd)txxx0 then
5: return EXPLORE(xxx0,xxx

∗) ∪ {xxx∗} ∪ EXPLORE(xxx∗,xxx1).
6: else
7: return ∅

4.2.3. Improved Algorithm

For the improved algorithm, we first find the two lexicographic minimal
solutions xxxl and xxxr as in the naive method (see Figure 8(a)). We denote by
p : X → R2, p(xxx) = (p1(xxx), p2(xxx)) =

(
ĉcctxxx,dddtxxx

)
the map from the solution space

to the two-dimensional objective space of the bicriteria optimization problem.
From the definition of efficient extreme solutions, it follows that for each

efficient extreme solution xxx∗, p(xxx∗) is contained in the triangle ∆unexp with the
vertices p(xxxl), (p1(xxxl), p2(xxxr)), and p(xxxr) (see Figure 8(a)).

Denote by xxx∗rob = argmin(ĉcctxxxl+
√
dddtxxxl, ĉcc

txxxr+
√
dddtxxxr) the current best solution

for the robust problem and by OBJ its corresponding objective value. Assume
to have a solution xxx which improves the current best solution. It must hold that

ĉcctxxx+
√
dddtxxx < ĉcctxxx∗rob +

√
dddtxxx∗rob

⇔ dddtxxx <
(
ĉcctxxx∗rob +

√
dddtxxx∗rob − ĉcc

txxx
)2

⇔ p2(xxx) < (OBJ − p1(xxx))
2

This means p(xxx) must be contained in the region Rimp = {z ∈ R2 | z2 <
(OBJ − z1)2} (see Figure 8(b)).

Intuitively, we always have two regions in which we are interested during the
algorithm. First, the unexplored region, which may contain efficient extreme
solutions which we have not found yet. At the beginning this region corresponds
to ∆unexp. Second, the improving region, corresponding to Rimp, which could
contain solutions that improve our current best solution. We call the intersection
of these two regions Rint in the following. During the algorithm we keep track
of Rint. The algorithm then solves, for different values of α, shortest path
problems with the objective function α · ccctxxx+ (1− α) · dddtxxx. After each solution
of such a problem, Rint can be shrunk. If Rint is empty, we have proven to
have an optimal solution.

Next we have to describe how we generate from Rint the next α for which
we solve the weighted sum problem.

At the beginning, we intersect the triangle ∆unexp and Rimp and project to
the first axis. This results in the interval which we use to initialize a list of
intervals L (see Figure 8(c)). The idea of the improved algorithm is then to
shrink, split or remove intervals from L until L is empty.
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(a) To initialize the algo-
rithm we compute the two
solutions which minimize the
first and second objective
function. The unexplored re-
gion which might contain ef-
ficient extreme solutions is
marked with horizontal lines.

(b) The region of improve-
ment which might contain so-
lutions that improve the ac-
tual best solution is marked
with vertical lines. The in-
tersection of both regions,
shown in gray, defines the
area in which we try to find
solutions.

(c) Projecting the gray area
to the first axis defines the
first interval the algorithm
tries to shrink. The algo-
rithm computes the midpoint
of the interval and projects it
to the parabola to obtain the
next direction of optimiza-
tion

(d) A new solution is found.
This solution intersects the
previous unexplored region
with one half-space, which re-
sults in two smaller triangles.

(e) Intersecting the region of
improvement with the new
unexplored region leads to
two small areas.

(f) Projecting the two gray
areas to the first axis de-
fines two smaller intervals.
The algorithm proceeds by
shrinking, splitting or remov-
ing these intervals until the
gray area corresponds to the
empty set

Figure 8: Visualization of the improved algorithm.
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To do so, the improved algorithm picks an interval I = [a, b] from L, com-
putes its midpoint m = 0.5(a + b) and defines a local approximation of the
boundary of Rimp at (m, (OBJ −m)2) (see Figure 8(c)). The slope of the ob-
tained line l is 2(m−OBJ). We set αm = 2(m−OBJ)/(2(m−OBJ)− 1) to
optimize in the direction which is perpendicular to l (see Figure 8(c)).

We then compute xxxnew = argminxxx∈X (αmĉcc+(1−αm)ddd)txxx. We know for each
other solution xxx that

αmĉcc
txxxnew + (1− αm)dddtxxxnew ≤ αmĉcctxxx+ (1− αm)dddtxxx

⇔ αm
1− αm

(ĉcctxxxnew − ĉccxxx) + dddtxxxnew ≤ dddtxxx

⇔
2(m−OBJ)

2(m−OBJ)−1

1− 2(m−OBJ)
2(m−OBJ)−1

(ĉcctxxxnew − ĉcctxxx) + dddtxxxnew ≤ dddtxxx

⇔ −2(m−OBJ)(ĉcctxxxnew − ĉcctxxx) + dddtxxxnew ≤ dddtxxx
⇔ 2(m−OBJ)p1(xxx)− 2(m−OBJ)ĉcctxxxnew + dddtxxxnew ≤ p2(xxx)

Hence, we conclude that for all efficient extreme solutions xxx∗, p(xxx∗) must lie
above the line through p(xxxnew) with slope 2(m−OBJ). Hence, we can exclude
a half space from the unexplored region (see Figure 8(d)) and shrink, split or
remove intervals contained in L (see Figure 8(e)). Further, it might happen that
xxxnew improves the actual best solution in this case we update OBJ and Rimp

and consequently all intervals in L .
If the algorithm has reduced L to the empty set the current best solution is

indeed the optimal solution of the robust optimization problem.

4.2.4. Computational Experiments for the Improved Algorithm

We test the performance of the branch-and-bound algorithm on grid graphs,
using the same computational environment as in Section 3. We used the LEMON
graph library v.1.3.1 [16] to solve the classic shortest path problems that needs
to be solved during the branch-and-bound algorithm. The goal is to find a path
from the upper left corner to the lower right corner of the grid. For each arc
we chose 50 values uniform at random from {1, . . . , 100}. Further, we fit an
axis-parallel ellipsoidal uncertainty set to these points as described previously.
We vary the grid size from a 5 × 5 grid to a 20 × 20 grid. For each grid size
we create 100 instances and solve them in two ways: By using CPLEX to solve
the resulting MISOCP and by the proposed branch-and-bound algorithm. The
averaged computation times are shown in Figure 9.

It can be seen that our approach outperforms CPLEX by several orders of
magnitude (note the logarithmic vertical scale). While the computation times
for CPLEX scale exponentially with the graph size, this is not observed for our
method. We show the average number of shortest path calculations required
by our method in Table 2, where we increase the grid size to 100 × 100. It
can be seen that on average only very few calls are required, and the increase is
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Figure 9: Comparison of average computation times for grid graphs.

slow. By using further improved algorithms for shortest path calculation in road
networks (see [2]), the application of our method in real-time route planning is
within reach.

Instance size SP comp.
5× 5 3.625

10× 10 3.929
20× 20 4.251
50× 50 4.778

100× 100 5.127

Table 2: Average number of shortest path computations for different grid sizes.

Finally, we revisit the computation times for the real-world instance from
our previous experiment (Figure 7). Figure 10 shows the performance of our
method for comparison.

5. Conclusions

In this paper, we constructed uncertainty sets for the robust shortest path
problem using real-world traffic observations for the City of Chicago. We eval-
uated the model suitability of these sets by finding the resulting robust paths,
and comparing their in-sample and out-sample performance using different per-
formance indicators. Naturally, conclusions can only be drawn within the reach
of the available data. It remains to be seen how the considered uncertainty sets
perform on other datasets for robust shortest paths.

We have observed that using ellipsoidal uncertainty sets provides high-quality
solutions with less computational effort than for the permutohull. If one uses
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Figure 10: Comparison between general and axis-parallel ellipsoids, computation times in
seconds.

only the diagonal entries of the matrix ΣΣΣ, then one ignores the data correlation
in the network, but the solution quality remains roughly the same. For the re-
sulting problem, a specialized branch-and-bound algorithm was developed that
is able to reduce computation times considerably compared to CPLEX. In fact,
the computational effort to solve this problem is comparable to the complexity
of solving a few classic shortest path problems, which even makes the application
on real-time navigation devices a possibility.
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[12] André Chassein and Marc Goerigk. A bicriteria approach to robust opti-
mization. Computers & Operations Research, 66:181–189, 2016.
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Figure A.11: Average vs worst-case performance, mornings dataset.
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Figure A.12: Average vs CVaR performance, mornings dataset.
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Figure A.13: Average vs worst-case performance, complete dataset.
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Figure A.14: Average vs CVaR performance, complete dataset.
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