
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006 

 

Enabling Automatic Clutter Reduction in Parallel Coordinate Plots 
Geoffrey Ellis and Alan Dix

Abstract— We have previously shown that random sampling is an effective clutter reduction technique and that a sampling lens 
can facilitate focus+context viewing of particular regions. This demands an efficient method of estimating the overlap or occlusion of 
large numbers of intersecting lines in order to automatically adjust the sampling rate within the lens. This paper proposes several 
ways for measuring occlusion in parallel coordinate plots. An empirical study into the accuracy and efficiency of the occlusion 
measures show that a probabilistic approach combined with a ‘binning’ technique is very fast and yet approaches the accuracy of 
the more expensive ‘true’ complete measurement. 

Index Terms—Sampling, random sampling, lens, clutter, occlusion, density reduction, overplotting, information visualisation, 
parallel coordinates. 

1 INTRODUCTION 
In previous work [4, 5] we proposed that random sampling can be 
used as an effective technique for density reduction in overcrowded 
displays. We argue that if there is too much data to fit on the screen, 
then taking a random sample of the data that will fit, not only 
removes overlapping data items and clutter but it also tends to 
preserve any trends or patterns that exist in the data. Unlike other 
clutter reduction techniques, such as filtering based on chosen 
attributes, random sampling does not require the user to decide on 
the criterion for which data to remove or keep and the view remains 
spatially undistorted. 

Recent work [6] demonstrated the Sampling Lens, a 
focus+context technique that allows sub-sampling and consequently 
clutter reduction in high density areas whilst retaining a higher-
sampling rate over the visualisation as a whole. This technique has 
been applied to both simple point plots and parallel coordinate plots. 
In practice, the sub-sampling rate of the lens needs to be changed as 
one moves from high density regions to less heavily plotted regions 
of the visualisation. This can be done manually using a slider, but to 
facilitate this process, an autosampling system was proposed which 
attempts to obtain a constant level of ‘density’ as the lens is moved 
over the visualisation. 

To implement autosampling we need (i) an effective measure of 
‘clutter’ or ‘density’ that can be set by the user and maintained by the 
system, and (ii) an efficient way of calculating the measure 
during interactive movement of the lens. We addressed the former 
issue in a previous paper [7], by considering several potential metrics 
to estimate the occlusion or overlap of lines in parallel coordinate 
plots. In this paper, we will address the latter issue by developing 
several ways of calculating occlusion that range from very direct 
methods based on the data, to more model-based methods using 
theoretical approximations. Interestingly, we find that the most 
simplistic model yields surprisingly good results and is also very 
cheap to calculate. 

Section 2 presents the background to this work by looking at the 
concept of sampling and the Sampling Lens tool. Section 3 gives an 
overview of the related literature on clutter reduction techniques, 
focussing primarily on those techniques used in parallel coordinates. 
In Section 4, we describe our experimental platform and the dataset 
used for the empirical study. Section 5 provides the theory behind 
our occlusion measures. We discuss the results of the empirical study 
into the accuracy and efficiency of the measures in Section 6 and 
choose the ‘best’ algorithm. In Section 7 we investigate some of the 

limits of this algorithm and show how a simple modification in its 
application copes with extreme cases and finally in Section 8 we 
present our conclusions and suggestions for future work.  

Please note that when we use the term sampling in this paper, we 
are referring to a random sample of the data.  

2 BACKGROUND: SAMPLING AND THE SAMPLING LENS 
We have found sampling to be a powerful technique in several kinds 
of visualisations that require individual data items or attributes to be 
represented on the display. By interactively adjusting the level of 
sampling, the data density of a visualisation can be reduced to reveal 
features that are otherwise hidden in the mass of points or lines in 
dense regions. This is particularly useful for tasks where the user is 
exploring large datasets. Often, visualisations are not uniformly 
dense, consequently the low sampling rate required to investigate 
denser regions can make the data in less dense regions ‘vanish’; this 
is often the case with outliers. A potential solution is to adjust the 
sampling rate for different areas of the screen [2] just like adjusting 
the contrast levels on a photograph.  

We have proposed an alternative technique namely the Sampling 
Lens [6] − a moveable region with its own sampling control. This 
follows a tradition of visualisation ‘lenses’ [3] that apply 
transformations or add information to the area under focus, similar to 
passing an x-ray glass over the display. The Sampling Lens simply 
sub-samples the points within the region under the lens (see Figure 1 
in Section 4). The user can therefore investigate dense regions of a 
plot by reducing the lens sampling rate to an appropriate level. This 
can potentially uncover interesting patterns and trends whilst still 
retaining the context of the lens region within the overall plot. In 
addition to its sampling control, which incidentally is relative to the 
overall sampling rate, the user can alter the size of the lens, choose 
its shape (circle, square or rectangle) and drag it around the display 
with the mouse. In addition, the user can easily request new random 
samples within the lens, thus ‘real’ patterns will persist whilst sampling 
induced artefacts will disappear. This also means that outliers will be 
shown at some stage. A more detailed description of Sampling Lens 
can be found in [6]. 

2.1 Auto-sampling 
Manually adjusting the sampling rate of the lens was found to be 
particularly tiring for the user. A more desirable option was for the 
system to set the lens sampling rate automatically, based on a 
measurement of the density of the points or lines within the lens. 
This was fairly straightforward for scatterplots1 as only the number 
of data items at each display point had to be counted in order to 
estimate the density. However for parallel coordinate plots, the 

                                                
1 Although it becomes more difficult if the data points are larger than a 

pixel and hence partial occlusion of points has to be taken into account. 
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density estimation was more challenging, especially as little 
information was found in the literature on this topic. It should be 
noted that the user can set the ‘desired density’ if they wish and thus 
have some control on what they consider to be cluttered. 

Our first attempt at estimating density in a parallel coordinate plot 
was based on a statistical approach, which was fed with data on the 
calculated overlap of lines in the lens. This is later referred to as the 
lines algorithm (see Section 4). While this method was reasonably 
good in some regions of the plots, in others, the behaviour of auto-
sampling was not satisfactory and therefore we felt it was necessary 
to come up with a better method that provides both an effective 
measure of ‘clutter’ and an efficient way of calculating it. 

3 RELATED WORK 
Techniques for clutter reduction include filtering, distortion, 
clustering, aggregation, reordering, space filling, constant density 
and random sampling and these are well documented in the research 
literature. However, the majority of these techniques do not attempt 
to measure clutter, but they rely on the user to adjust some controls 
in order to reduce the clutter. Exceptions are Woodruff’s constant 
information density application [14] that does attempt to measure 
data density, albeit very simply, and Bertini & Santucci [2] who 
measure overplotting in sub-regions of scatterplots as part of their 
quality metric and subsequent clutter reduction using non-uniform 
sampling. 

Previous work on reducing clutter in parallel coordinates has 
applied methods such as reordering, clustering, attribute combination 
and transparency. Peng et al [10] utilise dimensional reordering to 
minimise the impact from outliers, which they argue obscure any 
inherent structure from clustered lines. They define the clutter 
measure in terms of closeness of lines, so a line without a neighbour 
within a certain threshold is treated as an outlier.  

Another technique is hierarchical clustering [9,15] which 
constructs a tree of nested clusters of lines, also based on proximity 
information. The user can decide on the level of detail displayed and 
with appropriate use of transparency, the mean and extent of each 
cluster can be readily seen. This helps to differentiate between 
clusters; in addition, proximity-based colouring aids the separation. 
As with all aggregate functions, this technique tends to remove the 
detail, but one can see trends in an otherwise saturated display. 
Wegman and Luo [13] also use transparency to identify regions of 
high overplotting through their dense colour. Artero et al [1] use 
clustering to reduce visual clutter. Their algorithm uses frequency 
data, based on counting coincident lines and then smoothes the data 
to produce a ‘density map’, which has the effect of grouping lines 
that are fairly close to each other as well as those that are coincident. 
The lines are shaded to visually identify those that are in higher 
density regions. Note that, no attempt is made to measure the 
occlusion of the lines. VizCluster [16] approaches the clutter issue of 
high dimensional data by combining adjacent dimensions, thus 
reducing the complexity of the display. 

As far as we are aware, Anisotropic Volume Rendering [12] has 
not been applied to parallel coordinate plots. However, this novel 
approach from the world of scientific visualisation and computer 
graphics reduces the clutter of 3D visualisations consisting of a huge 
number of lines by converting shaded lines into anisotropic voxels. 
The authors claim significant speed enhancement, reduction in 
storage space and good level of detail; a promising approach to try 
on parallel coordinate plots perhaps. 

4 DATASET AND EXPERIMENTAL PLATFORM 
The implementation of the Sampling Lens application in Java is 
based on the InfoVis Toolkit [8], which has been augmented with 
additional code to provide the sampling lens functionality in both 
parallel coordinate plots and scatterplots. The experiments used an 
instrumented version of the Sampling Lens that collects statistics 
about the measures being investigated. It is also capable of producing 
a real-time variable cell-width raster grid showing the overplotting 

for each pixel. The application can be automated so it steps through a 
range of lens sampling rates and raster cell-widths and saves the 
results in a useful file format for further analysis. 

The data used in most of the experiments is from the Portland 
cars dataset [31/3/05 http://www.cars.com]. The 5850 records 
contain details of cars for sale within 40 miles of Portland, Oregon. 
The attributes on the parallel coordinates plots shown in Figure 1 are, 
from left to right: year of manufacture, price, mileage, and vehicle 
type (given as an integer code). The highest values are at the top of 
the axes. 

 
Figure 1.  Parallel coordinate plot using 1K car dataset (labels and 
lens positions for exp2 & exp3 are superimposed) 

Figure 1 shows a screen shot of the parallel coordinate 
visualisation based on 1000 records of the cars dataset. The majority 
of our experiments used this randomly produced subset because 
details in this dataset are only visible at sampling rates that are less 
than 15%. So, we are pre-sampling to stretch this data range for 
illustration purposes. However, further experiments were conducted 
on the full dataset (and other datasets up to 10000 records) to verify 
that the results scale up. Note that, we have made no attempt here to 
re-organise the attributes in order to minimise occlusion. 

exp1 exp2 exp3 

   
Figure 2.  Lines within the lens at a 10% lens sampling rate 

The lens positions for the main experiments (exp1, exp2, exp3) 
referenced in this paper are shown in Figure 1. These positions were 
chosen to exemplify different patterns of lines crossing the lens, as 
illustrated in Figure 2. exp1 has a large proportion of the lines 
crossing each other at large angles, exp2 has many of the lines 
ending at a single point, while exp3 has many lines crossing at 
narrow angles. 

Note that, further experiments have been conducted with the lens 
at many positions and on additional real and simulated data sets to 
verify the generality of observations, but we only describe selected 
experiments that cover critical issues in detail here. Furthermore, we 
have experimented with other lens shapes, but users are more 
comfortable with the ‘spy glass’ circular lens. 
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5 METHODS FOR CALCULATING OCCLUSION 
In order to implement autosampling, we need both a measure of 
‘clutter’ and an efficient way of calculating this measure. But to have 
a computationally tractable measure, we decided to use fairly simple 
measures based on hidden or occluded data items, as it is important 
that the user is aware of the proportion of data that is not visible. If 
we can measure the occlusion, then we can iteratively adjust the lens 
sampling rate to give a desired density. Even better, if we can predict 
the occlusion for any given sampling rate, we can choose the 
sampling rate directly without the expense of an iterative procedure. 

In a previous paper [7], we looked at several potential metrics to 
measure occlusion in different ways. From empirical studies and 
through developing a mathematical model, we found that the metrics 
were in fact functionally related and can thus be used 
interchangeably. Hence in this study, the simplest metric is chosen, 
which we have called overplotted% − the percentage of plotted 
pixels with more than one point plotted on them. Note, a plotted 
point means a point on a line from a single record in the data per se. 
Because of overplotting, the number of pixels with one or more 
plotted points is less than the total number of plotted points. 

In this section we define overplotted% precisely and describe 
three different ways in which we have calculated overplotted%, from 
a very direct data-driven pixel counting method to a more model-
based approach embodying simplifying assumptions about the data. 
In brief, the methods are: 
raster algorithm – This rasterises the lines on a grid of a given cell-

width (in pixels) and counts the number of plotted points on 
each grid cell to get an estimate of overplotted%. In the case 
when the cell-width is 1 pixel, this corresponds exactly to the 
desired value. It is thus the ‘gold standard’ as it is based on the 
actual overlap of the lines being displayed.  

random algorithm – This treats every plotted point as if it were 
randomly placed in the viewable pixels and calculates the 
overplotted% using probability. Here, only the number of 
plotted points comes from the data; everything else is based on 
the theoretical model. 

lines algorithm – This estimates the intersection volumes of all the 
lines crossing the lens. This is partly data-driven in that it uses 
actual lines, but is partially model-based in the way the line 
overlaps are combined to give an overall overplotted% value. 

Later in this section we will look at each of these algorithms in 
more detail then in Section 6, we will see how they compare using 
actual data. 

5.1 Some definitions 
In order to be precise about our occlusion metric and algorithms we 
need some basic definitions. 

For a given screen region (in particular the interior of the 
sampling lens) we write S for the total number of available pixels 
and M for the number of plotted data points. In general, M is not the 
number of actual pixels with points plotted on them as some points 
will be overplotted on the same pixel, so the number of plotted pixels 
is usually less than the number of plotted points. We then define the 
following raw values: 

M1 –  number of plotted points on their own pixel 
Mn –  number of plotted points sharing a pixel 
S0 –  number of empty pixels 
S1 –  number of pixels with 1 plotted point (same as M1) 
Sn –  number of pixels with more than 1 plotted point 

Note that M = M1 + Mn and S = S0 + S1 + Sn and always M1 = S1, but 
Mn ≥ 2*Sn as each overplotted pixel contains two or more overplotted 
points.  

Figure 3 shows an example of these values for a simple 3x3 plot. 
Note too in this example there are 2 records, giving rise to 2 lines 
with 3 plotted points per line, so there are 6 plotted points in total 
(M), but only 5 pixels containing plotted points (S1 + Sn). 

   

   

An example of a 3x3 pixel section of the screen 
with a horizontal and a vertical line crossing at 
the centre. 
M = 6, S = 9 
M1 =  4,  Mn  = 2 
S0  = 4,  S1  = 4 and Sn  = 1    

Figure 3.  Example of overplotting 

5.2 Occlusion metric – overplotted% defined 
We can then define our occlusion metric as: 
 overplotted% = 100 * Sn / (S1 + Sn) 
In other words, overplotted% is the percentage of plotted pixels with 
more than 1 plotted point. The range is 0% (all plotted points on their 
own) to 100% (no single plotted points).  In the example in Figure 3 
this is: 
 overplotted% = 100 * 1 / (4 + 1)  = 20 
We will now look at the three different algorithms we have 
developed to calculate overplotted% in more details.  

5.3 Raster algorithm 
This is clearly the simplest method and the only one that corresponds 
directly to the desired measurement. In effect this amounts to 
emulating the action of the graphics processing in drawing the lines 
across the area of the lens. This could be achieved by using the 
graphics processor’s own line drawing, but is itself often slow for 
very high line densities. Single pixel counting is even slower; hence 
we have looked at using raster grids greater than 1 pixel wide in 
order to reduce the calculation time. Now, a given line will cross a 
greater proportion of the grid cells when the cells are larger – the 
proportion of cells crossed being on average proportional to the grid 
size. Therefore, in order to maintain the correct proportions, we can 
sub-sample the lines when using coarser grids. This together with 
fewer grid cells ‘plotted’ per line results in a roughly N2 speed 
increase with larger cell sizes. 

 
Figure 4.  Accuracy of different raster cell-widths 

Figure 4 shows how these approximations match up with 
different grid sizes. Note that the ‘adjusted’ number of plotted points 
refers to those plotted on a 1-pixel grid. The actual number of grid 
cells ‘plotted’ is lower because of both the sub-sampling of lines and 
the larger grid size. In terms of accuracy, only the coarsest grid size 
of 16 pixels (leading to around 35 grid cells on a 100 pixel diameter 
lens) shows any deviation from the ‘true’ 1 pixel grid. The 
unevenness of the lines for cell width 8 and 16 is due to greater 
random variation with smaller numbers of ‘plotted’ grid cells. 
Graphs for other lens areas show similar behaviour. The resulting 
significant increase in calculation speed is discussed in Section 6.2. 
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5.4 Random algorithm 
For our second algorithm we simply assume that all the points on all 
the lines are individually randomly scattered over the available 
pixels. Given this very simplistic model, the number of points plotted 
in each pixel follows the binomial distribution where p, the 
probability of a single point being plotted in a particular pixel is 1/S. 
Hence, we can calculate expected values for the different raw values 
as follows: 

E( M1 ) =  M (1–p)M–1 
E( Mn ) =  M – E(M1)  =  M (1 – (1–p)M–1)  
E( S0 ) =  S (1–p)M 
E( S1 ) =  S *M (p) (1–p)M–1  =  M (1–p)M–1 
E( Sn ) =  S – (E(S0) + E(S1)) 
(M1, Mn  etc. have been defined in Section 5.1) 

A value for the overplotted% can be obtained from: 
overplotted% = 100 * (1–((1–p)M + M/S (1–p)M–1))/(1– (1–p)M) 

This algorithm is very cheap to calculate, as it only requires an 
estimate of the total number of points to be plotted. However, it is 
the least realistic, basically treating each line as a collection of points 
to be randomly distributed over the available pixels. 

5.5 Line algorithm 
Here the lines crossing the lens (or a sample of the lines, in the case 
of a denser region) are taken and the overlap between each pair of 
lines is estimated by first checking the end points of the pair to verify 
whether the lines cross and if they do, the overlap on one of the lines 
is calculated as: 
 line overlap proportion = max( 1.0, wid / ( len * sin(α) ) ) 
where wid and len are the width and length of the chosen line in 
pixels and α is the angle between the two lines (see Figure 5). Note 
that if the crossing lines are nearly parallel, they have a higher 
overlap than if they cross at 90 degrees. 

 
Figure 5.  Line overlap proportion  

An average overlap, p1, is computed by combining the line 
overlap proportion for all intersecting lines and weighting by the 
total length of the lines (non-intersecting lines are not included). 
Although there are many pairs of lines (almost L2 possible pairs; a 
line is not compared to itself) only an estimate is required, so it is 
sufficient to use a small sample in order to calculate this overlap 
proportion. 

p1 effectively tells us how a point plotted on a line is likely to be 
overplotted by one other line. To estimate pfree,, the likelihood that a 
pixel will not be overplotted by any line, we can use: 
 pfree  =  (1–p1)L–1 
Using the definitions from 5.1 we see that: 
 pfree  = E(M1) / M 
where M is the total of the line lengths in pixels. We then use 
formulae similar to the random algorithm, but taking into account 
that the lines do not cover all pixels with equal probability.  Inverting 
the equation for E(M1), we get an ‘effective’ number of pixels S’ 
(which would be expected to be smaller than S). 
 S’ = 1/q 
where    q  =  1 – pfree 1/(M-1) 
Note that this algorithm uses some of the same assumptions as the 
random algorithm, but bases it on some more direct measures of the 
lines as they actually fall. We would therefore expect that in terms of 

accuracy, this would lie somewhere between the raster and the 
random algorithm. 

6 COMPARING OCCLUSION ALGORITHMS 
We compared the above three algorithms using a 1000 record sub-
sample of the Portland cars dataset as described previously in 
Section 4. We will first consider the accuracy of the methods and 
then discuss how computationally efficient they are. 

6.1 Accuracy: which is good enough? 
Figure 6 shows the results for exp1. It demonstrates very good 
agreement between the ‘gold standard’ raster plot, based on actual 
screen pixels, and the random plot [+1%, sd=1.3]. This is somewhat 
surprising as the latter is based on a standard distribution of a given 
number of plotted points and available pixels. The lines calculation is 
still fairly close, overestimating the overplotted% by about 6% 
[sd=3]. 

 
Figure 6.  Three different occlusion algorithms (exp1) 

We have plotted similar graphs for exp2 and exp3, but to compare all 
three experiments, we have normalised the lines using the ‘gold 
standard’ raster value (see Figure 7). Note that these results have 
been chosen to show a range of behaviours typical of other lens 
positions and datasets. 

 
Figure 7.  Exp1, 2 and 3 normalised against raster values 

Figure 7 shows that the random and lines plots for exp1 follow a 
path close to the diagonal (i.e. the raster values), reflecting once 
again the close agreement between the three algorithms for the data 
generated by this particular lens position. The light coloured yellow 
pair of lines near the diagonal are for exp3, a lens region that has 
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almost parallel lines and areas of varying density (as in Figure 2). 
The lines show that estimates from the lines and random algorithms 
differ more from the true raster value (up to 10% in places) than for 
exp1. We believe that this discrepancy is due to the range of 
densities within the lens region having a disproportionate effect on 
the calculations, something we investigate further in section 7.  

The two lines that deviate most are for exp2. Recall that this area 
includes one of the parallel coordinate attribute axes and the points 
on the axes have large numbers of lines converging on them (see 
Figure 2). It appears that the lines algorithm for exp2 substantially 
overestimates the overplotted% values for the whole range of 
sampling rates, whereas the random algorithm underestimates 
overplotted% at the lower sampling rates. 

We have been looking at ways of dealing with extreme2 cases 
where many lines converge to a single point on an attribute axis 
within the lens. We currently allow expert users to specify a dead 
zone around the attribute axes and we believe there are ‘fixes’ for the 
lines algorithm to improve the robustness of its estimates (basically 
the parallelogram in Figure 5 needs to be modified at line ends). 
However, it is notable that even in this particularly extreme case, the 
random estimate does track the general trend of the ‘gold standard’ 
raster curve remarkably well. 

To summarise, all three algorithms yield comparable results 
except in extreme situations. This is particularly noteworthy for the 
random algorithm as it embodies a fairly rudimentary model of the 
data! The random algorithm also performs passably in the difficult 
case when the lens overlaps an attribute axis, a case where even the 
direct measurement is problematic.  

6.2 Efficiency: which is fast enough? 
So far, whilst the lines algorithm has some problems in ‘difficult’ 
cases, all the algorithms are potential contenders as estimates of the 
overplotted% occlusion measure. Recall that the lines algorithm uses 
the intersection volumes of all the lines crossing the lens, so in terms 
of efficiency, is L2 in the number of lines. The raster algorithm 
rasterises the lines to a grid of given cell-width in pixels (say C 
pixels), thus the time taken is proportional to the number of lines and 
the number of cells crossed by the lines. However, bear in mind that 
for larger cell sizes we should undersample the lines to obtain a 
proper measure, so the actual time is proportionate to: 
 L × ppl / C2, where ppl is points per line.   
In contrast, the random calculation depends only on a count of the 
number of points to be plotted. This often comes almost ‘for free’ as 
a side effect of other calculations, but in the case of very large 
numbers of lines, it can be easily estimated. Typically, line lengths 
have a standard deviation of less than 3% of their average, so 
sampling the lengths of even 1000 lines would give an error of less 
than 0.1%. 

Finally, we should note that there is a difference between the 
modes of use of the two model-based algorithms compared with the 
data-driven raster algorithm. Given initial data for a lens position 
(average crossing area for lines and number of pixels for random) the 
overplotted% can be calculated for any sampling rate. Thus the 
appropriate sampling rate can be chosen directly to give the desired 
occlusion measurement, overplotted%. However, the raster 
calculation is based on the actual lines plotted at a given sampling 
rate. The raster calculation therefore has to be used in an iterative 
cycle adjusting the sampling rate and recalculating the measure at 
each iteration. The actual time taken to use the raster algorithm is 
perhaps 5-10 times the ‘headline’ figure for a single iteration.  
Figure 8 shows times (in ms) to perform the raster algorithm at a 
number of different cell-widths and also the times to perform the 
lines algorithm (labelled LOT). The time for the random algorithm is 
too small to measure. The times were taken from our Java 
implementation running on a 867MHz G4 PowerBook. The x-axis 

                                                
2 Although this is a fairly common occurrence, in terms of the algorithms, 

the fact that so many points meet at a point is an extreme state. 

shows calculations at different sampling rates (different numbers of 
lines) and the quadratic growth time for the lines algorithm is 
evident. The other three plots, for the raster algorithm with cell-
widths of 1, 2 and 4 pixels, are roughly linear in the number of lines 
(as expected) and the decrease in the slope with increasing cell-
widths is also clear. 

 
Figure 8.  Calculation times for raster and lines algorithms 

Note that the 280 ms time for the lens calculation is slow for 
interactive feedback (200ms max), but given the need for iterations 
with the raster algorithm, the lines algorithm was in fact more 
responsive in our initial implementations. However, the 280ms is 
based on 742 lines, that is over half a million line pairs. Using a 
sample of these lines within the lens would reduce the lines 
calculation times by several orders of magnitude whilst not 
substantially altering its accuracy. 

6.3 The winner … 
Combining efficiency with our accuracy measurements from Section 
6.1, we can see that raster algorithms with cell sizes up to 4 pixels 
has little noticeable effect on accuracy and leads to a significant 
decrease in processing time of at least 90% compared with the single 
pixel raster. The lines algorithm is at first sight slower, but being 
model-based, it can use sampled data and does not require an 
iterative process. However, it is the least robust method in extreme 
situations. So the clear winner is the random algorithm as it is not 
only very accurate in normal cases and reasonably stable in difficult 
situations, but it is also almost instantaneous compared with both 
other algorithms.  

7 LIMITS AND GENERALISATION 
So far we have seen how the random algorithm is surprisingly 
accurate and also very efficient to calculate.  However, it is based on 
a very rudimentary model of the plotted points, so we would expect 
to find cases where it breaks down.  We have already seen one 
example in exp2 near the axis where many lines converge.  In this 
case the systematic property of parallel coordinates led to an 
underestimation of overlap% by the random algorithm. 

The main simplification of the random algorithm is to assume 
that the points are randomly and uniformly scattered over the 
available area.  The fact that the points are on lines of course means 
that the points are not randomly scattered; but when using real data, 
this lack of randomness is clearly not an overriding problem, albeit a 
surprising result.  However, the lines themselves do not always lie 
uniformly over the lens area and this creates a different class of 
extreme cases. We will now consider empirical results for parallel 
coordinates, near such areas and show how this relates to a 
theoretical analysis of the performance of random algorithm on 
scatter plots.  The result is used to suggest a modification to the 
random algorithm, which we can test empirically. 
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7.1 Extreme cases – non-uniform density 
As noted, we expect problems in areas where there is a marked 
difference in density across the lens.  Figure 9 shows a series of lens 
positions at just such a boundary, taken from exp30 to exp34. These 
lens positions move from being in an area of fairly uniform line 
coverage (exp30) to one where only about 20-25% of the area is 
covered (exp34). 

Figure 11 shows plots at three of these positions (exp30, exp32 
and exp34).  Each figure has plots for the lines, raster and random 
algorithm (reading each graph from top to bottom) at different 
sampling rates.  In relation to the 'golden standard' raster calculation, 
the lines algorithm overestimates overplotted% and the random 
algorithm slightly underestimates this occlusion measure.  However, 
as the lens gets less uniformly covered there is a noticeable widening 
and by exp34 the random measure is underestimating by nearly 50%.  
Whilst in most areas the random algorithm is surprisingly good, in 
this extreme case it is no longer accurate. 

There are a number of effects at the edge of a dense area, for 
example the lines tend to be lying in the same direction, hence less 
likely to cross, but when they do cross the overlap is greater due to 
the shallow angle. Also, by definition such areas are at the edges as 
far as the data set is concerned and may have unusual properties.  
However, we can more easily model scatter plots in such 
circumstances. 

7.2 Scatter plots – theoretical analysis 
Imagine a scatter plot of M totally random points spread over a lens 
of area S pixels.  This is exactly the model of our random 
calculation, hence the true (raster) overplotted% (using Poisson 
approximation) is: 
 overplotted%  =  100 * (1 – (1+λ)e –λ) / (1 – e –λ) 
where  λ = M/S  is the density of points. 

Now imagine spreading M/2 points over half the area, i.e. the 
effect of having a lens partly over an area with density λ and half 
with no points.  The average density is now λ/2, but the actual 
overplotted% is exactly the same as above.  So the raster algorithm 
would give the value above, but random algorithm would give the 
value with λ/2: 
 raster overplotted% =  100 * (1 – (1+λ)e –λ) / (1 – e –λ) 
 random overplotted% = 100 * (1 – (1+λ/2)e –λ/2) / (1 – e –λ/2) 
Figure 10 shows these values plotted against one another.  Notice 
that for low densities (lower sampling rate), the random algorithm 
would show values that are half those of the raster algorithm (this 

can also be shown analytically) and for higher densities, the values 
are still substantially lower. 

While the theoretical scatter plot data is different in many ways 
from parallel coordinate lines, it does shed some light on the pattern 
of difference between the results of the random algorithm and the 
true overplotted%. 

 
Figure 10.  Theoretical values of random algorithm for an uneven 
scatterplot 

7.3 Using multiple bins 
Given the findings of the scatter plot analysis, an obvious way to 
improve the random algorithm is to split the lens area into a number 
of smaller areas or bins, calculate the random overplotted% for each 
bin and then perform a weighted average (weighted by the number of 
plotted pixels per bin). 

Figure 12 shows a bin-based correction on the same area as 
exp34 in Figure 9.  The data has been plotted for different bin widths 
on a 100 pixel diameter circular lens. The plot is normalised (as in 
Figure 7) where the binned random approximations are plotted 
against the true raster calculation for different sampling rates. We 
can see that whilst the original random algorithm under-
approximates the true value, the binned estimates lie remarkably 
close to the perfect 45-degree line (shown as a dotted line). Even the 
plot for a bin width of 50 pixels (4 bin, i.e. lens divided into quarters) 
lies very close to the true line. 

   
Figure 11.  Lines, raster and random values at different sampling rates for lens positions exp30, exp32 and exp34 

 

 
Figure 9.   Lens at 10% sampling rate, exp30 is on the left. 
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Figure 12.  Binned-random algorithm 

The binned calculation time is proportional to the number of bins 
(time ∝ 1/(lensdiameter/binwidth)2).  However, given that the 
random calculations are very fast, the time is negligible for small 
numbers of bins. Even with 64 bins, the time is still too small to 
measure against the other calculation methods (see Figure 8). 

8 CONCLUSION AND FUTURE WORK 
We have come quite a long way to obtain such a simple result − the 
best way to calculate a measure of occlusion for parallel coordinate 
plots. However, the end point was quite unexpected. From the 
beginning of our work with sampling, we have often used binomial 
approximations to obtain an order of magnitude estimate of 
behaviour. However, the level of simplification embodied in the 
random algorithm seems just too coarse to use in actual calculations. 
The degree of fit we have seen in both Sections 6 and 7 is truly 
remarkable. Even if the lines were randomly scattered, the points on 
them would not be; they would be lines! Strangely this seems to be 
irrelevant to the bulk behaviour and it appears that such a simple 
(even simplistic) model is surprisingly good! 

Areas of rapidly varying density are approximated least well by 
the random algorithm, but we have seen that we only need to split 
the lens into a small number of bins to improve this to acceptable 
levels, even for the worst areas. 

Our empirical investigations have focussed on parallel coordinate 
plots. We would not like to speculate that the random algorithm 
would work for other visualisations, but it may be worth looking into 
applying this to other line based techniques. For example, Rafiei & 
Curial [11] use sampling to reduce the clutter of very large graphs. 
Our technique can be used to choose appropriate sampling rates 
based on the occlusion within the graph. Furthermore, autosampling 
based on the whole plot could be useful in an application which 
compares multiple plots (either side by side or in rapid succession), 
where the ‘density’ of the whole plot could be normalized to some 
extent. 

Random sampling as a clutter reduction technique is most useful 
for exploratory tasks. If the user has specific questions or is very 
knowledgeable about the particular data set, then other more 
appropriate techniques can be applied. However, a user faced with a 
cluttered display due to excess data, can choose between applying a 
technique that distorts the view in some way or one that adopts a 
fairly natural process of taking a sample of the data. We believe the 
sampling approach is worth considering; in fact many data sets are a 
sample of an even larger data set (e.g. population of country) or of 
continuous data (e.g. atmospheric data readings). 

We have yet to verify that similar methods will work on point 
plot data, where instead of overlapping lines there are full or partially 
overlapping data points of finite size, but we deem this feasible. We 
also plan to undertake studies to ascertain the practical use of the 

Sampling Lens to users who are actively using parallel coordinate 
plots.  

Implementation details of all algorithms are at this paper’s web page: 
http://www.hcibook.com/alan/papers/InfoVis06-NoClutter/ 
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