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Abstract

We present a method to solve the problem of choosing a set of adverts to display
to each of a sequence of web users. The objective is to maximise user clicks over time
and to do so we must learn about the quality of each advert in an online manner by
observing user clicks. We formulate the problem as a novel variant of a contextual
combinatorial multi-armed bandit problem. Critical features of our formulation are
that the context takes the form of a probability distribution over the user’s latent
topic preference, and that the rewards are a particular nonlinear function of the
selected set and the context. Combined, these features ensure that optimal sets
of adverts are appropriately diverse. We give a flexible solution method in which
submodular optimisation is combined with existing bandit index policies. However,
user state uncertainty creates ambiguity in interpreting user feedback which pro-
hibits exact Bayesian updating, but we give an approximate method that is shown
to work well. An algorithm base on Thompson sampling is tested using simulations
and is shown to learn and perform effectively.

Keywords: multi-armed bandits, contextual bandits, statistical learning, diverse rec-
ommendation

1 Introduction

We present a contextual combinatorial multi-armed bandit method designed to solve
the problem of choosing an appropriately diverse set of adverts to display to each of a
sequence of users of a website. Our objective is to maximise the number of times that
adverts are clicked on. To achieve this it is necessary to match a set of adverts to each
user’s interests. Information about user preferences is considered as a context, provided
before the adverts for that user are selected. This user information will be based upon
historical behaviour and recent activity (such as search terms). In contrast, information
about the quality and relevance of adverts can only be learned by experimenting in a
bandit framework, so that only by displaying an advert can any information be gained
about it. Furthermore, due to uncertainties about both the user’s preferences, and the
adverts’ relevances, it is necessary to select a diverse set of adverts to display to maximise
the chance that at least one of the adverts matches the user’s preferences sufficiently well
to receive a click.
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Consider for example a web user searching for “bicycle”. This user could be interested
in many different types of bicycle (such as a mountain, racing or child’s) and will have
different price preferences. The type- and price-preferences of the user are likely to be
somewhat known based on previous web behaviour. On the other hand, with an ever-
changing pool of bicycle-relevant adverts it is likely that the relevance of any particular
advert to a particular type of bicycle will be uncertain and needs to be learned. Adverts
of an inappropriate type are likely to be ignored while good quality adverts which match
user preferences may perhaps be clicked.

The challenge of learning online the user response to the presented adverts is that
posed by the multi-armed bandit problem (MAB). Arms (equivalent to adverts) are
chosen in sequence with a reward (here a click or no click) received after each choice.
By observing rewards we learn about the arms’ reward distributions which can then
be used to inform which arms are chosen in future. The difficulty in the problem lies
in how best to trade-off choosing arms for expected immediate reward given current
information (exploitation) against choosing arms to learn about them and so to gain
improved reward in the long term (exploration). Our multiple adverts problem extends
the classical MAB since (i) we choose several arms at each time instead of one, (ii) at
most one advert is clicked by the user at each time so the reward is a function of the set
of arms not individual arms and, (iii) the reward depends on the users’ preferences as
well as the selected arm set.

The dependence of reward on each user means we have a form of contextual MAB
(e.g. Li et al. 2010, May et al. 2012) where the reward is a function of some context
given at each time prior to choosing an arm. In the general contextual MAB the context
is rarely given an interpretation or constraint. In contrast we assume the contexts follow
the model of Edwards & Leslie (2018); each user is assumed to have a latent preference
or state, corresponding to which topic of advert a user might click on, and the context
is a probability mass function over this discrete set of topics, called a topic preference
vector. The topic preference vector therefore represents the system’s beliefs about the
user’s latent topic.

Rewards in the system are modelled as in Edwards & Leslie (2018). This model will
be stated formally in Section 3 but the approach is based on using the topic preference
vector in an informative manner. In particular, if the state was known then adverts
could be chosen that are appropriate for that state. However with the state being latent
the probability an advert is clicked must be averaged over the states. It may then be
desirable to choose a set of adverts appropriate for several different states to ensure that
there is a good chance of a click whichever of the possible states is true. Thus good
advert sets tend to be diverse to avoid redundancy between similar adverts.

However in Edwards & Leslie (2018) all information about the adverts was assumed to
be known and advert sets were chosen by solving a submodular optimisation problem;
no learning was considered. A key innovation in this paper is that the quality and
characteristics of the adverts can only be learned by observing user click behaviour.
Furthermore, inference is challenging because we do not observe the true user preference
or advert topics. An online expectation maximisation framework will be used to handle
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these latent user preferences. The inherently Bayesian nature of this framework enables
prior information about the adverts to be utilised.

The main contributions of this paper are as follows. We give a formulation and
solution method for our multiple advert problem with online learning of advert quality
and topics. In doing this we:

• Formulate a contextual bandit problem which uses a context based on a latent
user state such that the context is a probability distribution. This is a new form
of context which allows for a richer representation of uncertainties involved in the
contextual information. This is needed to accurately motivate the selection of
diverse sets of objects but it introduces several difficulties that prohibit the easy
use of standard Bayesian bandit methods.

• Develop a method for inference under user state uncertainty and bandit feedback
which will have application beyond this problem. We adapt an online expectation
maximisation algorithm for use in a Bayesian setting, test its performance and
identify its limitations.

• Give a method by which existing bandit algorithms, which are designed for choos-
ing single arms at a time, can be combined with submodular optimisation methods
for choosing diverse sets of interacting elements. This allows uncertainty and learn-
ing to be incorporated into submodular optimisation.

• Present and test a complete policy using Thompson sampling paired with a se-
quential greedy set-choosing algorithm.

Related work will be discussed in Section 2. Section 3 will give a formal statement of
the problem together with models for user click behaviour based on uncertainty about
user preferences. Section 4 presents a Bayesian model for learning for when arm char-
acteristics are not known which will be developed into a solution method in Section
5. This is tested in simulations in Section 6. Section 7 concludes with a summary of
contributions and a discussion of issues.

The code used for all simulations in this paper can be found at https://bitbucket.
org/jedwards24/multiple_adverts.

2 Related Work

The main features of our multiple adverts problem are: (i) A MAB where multiple arms
(adverts) are chosen at each time; (ii) The arms interact so we need to learn about the
reward of sets of arms rather than individual arms; (iii) The quality and characteristics
(topics) of the arms must be learnt over time, (iv) There is a contextual aspect to the
problem which comes from information about the users’ preferences which are not known
exactly; (v) Feedback from the user is limited to either a click on a single advert/arm
or no click at all. This will be addressed within a Bayesian framework for inference and
learning.
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Several existing MAB frameworks allow selection of multiple arms at each time.
In the MAB with multiple plays (e.g. Whittle 1988) rewards are a simple sum of the
independent rewards of the individual arms which differs from our problem setup. The
combinatorial MAB is also concerned with selecting sets of arms at each time. In Chen
et al. (2013) rewards can be quite general functions of the arms selected but it does
not include the reward formulation we give in Section 3 because of the dependence of
rewards on the latent user state. They also assume that rewards from individual arms
are observed while we address the more difficult problem where only the total reward is
observed.

Another related framework is the linear bandit problem (e.g. Auer 2002), in which
a weight vector is chosen at each time then we observe a reward which is some linear
function of this vector. This has structural similarities with our work especially in the
submodular setting of Yue & Guestrin (2011). However, the weight vectors (correspond-
ing to adverts in our problem) are assumed known while the reward function (relating
to the user) is constant over time and must be learned. In our problem we must learn
about multiple adverts with a unique user at each time, which complicates the issue
significantly as interactions create a combinatorial learning problem over the adverts in
addition to user uncertainty.

Interactions within a set of objects has been studied in the area of information or
document retrieval. The models for user click behaviour given in Section 3 build on
ideas from Agrawal et al. (2009) and El-Arini et al. (2009). However, in both of these,
as in related work in Yue & Guestrin (2011) and Radlinski et al. (2008), the quality and
features of the available documents is assumed to be fixed and known. Streeter et al.
(2009) shares a number of aspects of our problem with sets of arms having a similar
reward structure. However, Yue & Guestrin (2011) notes that Streeter et al. (2009), as
well as most similar set-based bandit work, assume a “feature-free model” (i.e. it does
not utilise user contextual information).

A bandit problem with similar user uncertainty (but with only a single arm chosen
at each time) can be found in Hauser et al. (2009) who studied adapting website designs
based on users’ cognitive styles. Their Bayesian updating approach is similar to that
given here in Section 4.2. Their justification is heuristic while we come to the method
via online expectation maximisation which gives stronger theoretical underpinnings. We
also highlight circumstances where the method fails, which is relevant to the application
in Hauser et al. (2009).

Schwartz et al. (2017) applies bandit learning to online advertising. Although there
are features of their work relevant to ours, their model does not consider interactions
between adverts displayed simultaneously which leads to a different modelling approach.
Their problem is to select adverts with different attributes (e.g. size or message) to
display on a range of websites. The hierarchical Bayesian model used incorporates
advert attributes and models heterogeneity in the click through rate (CTR) across both
adverts and the websites. Differences in advert CTRs across different websites represent
differences between user populations of the websites and has similarities with our use of
a user state. However, while the website on which the advert is placed is known and
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can be controlled, in our model the user state is uncontrolled, unobserved and cannot
be learnt over time. This feature, which is crucial in the selection of advert sets, creates
extra challenges in inference and the adaption of existing bandit algorithms.

Much work has been done in online search advertising on developing models for
predicting user CTRs. Often these are built on standard models that are practical at
the large scales of online applications, for example: logistic regression (McMahan et al.
2013, Richardson et al. 2007, Chapelle et al. 2015); Bayesian probit regression(Graepel
et al. 2010); and linear Poisson regression (Chen et al. 2009). The feature spaces used for
these usually take a non-specific form but several studies, such as Hillard et al. (2010)
and Richardson et al. (2007), utilise the text of either the search term or keywords
associated with the advert as features of their models. Similarly to our model Hillard
et al. (2010) distinguishes between advert CTR and advert relevance - it is desirable to
identify adverts that are relevant to the current user, which may be different to the one
with the highest overall CTR. Chen et al. (2009) and Yan et al. (2009) use behavioural
targeting to identify the adverts that are most relevant to users which incorporates user
history into click prediction. The empirical study in Yan et al. (2009) found that the
benefits of appropriate matching of adverts to users could be significant. In each of
these cases there are similarities to our approach but none are designed to work with
multiple interacting adverts which prevents their direct use in our work. In Section 7 we
will discuss how our model for multiple adverts could be built upon to fit some of the
frameworks used by the references given here.

The problem of web advertising includes a number of aspects that we do not consider
directly here. We study the problem exclusively from the viewpoint of the publisher
displaying the adverts and assume that the available adverts are given and that there
are no constraints on their use. A related but different problem takes the view of
an advertiser who must pay for their adverts to be displayed. Rusmevichientong &
Williamson (2006) has most in common with our work. Here, the advertiser must bid
for search advertising slots based on search keywords with a limited budget. Their
method combines a stochastic knapsack with bandit learning.

In the area of operational research the majority of research into display advertising
has been concerned with pricing and contracts between the publisher and the advertiser,
mainly from the publisher’s perspective. Traditionally, contracts may involve a price per
view or per click with constraints on the number of times the advert is displayed. The
publisher needs to meet the agreed constraints despite uncertainty in demand for slots,
traffic, and click behaviour. Ahmed & Kwon (2014) considers the choice of contract size
with pay-per-view pricing while the choice of price is studied using a queueing approach in
Najafi-Asadolahi & Fridgeirsdottir (2014) and Fridgeirsdottir & Najafi-Asadolahi (2018)
for pay-per-click and pay-per-view respectively. Hojjat et al. (2017) gives a framework
which allows more complicated contracts where advertisers can specify how their ad-
verts are displayed (e.g. advert placement and the demographics of targeted users).
An alternative to fixed contracts that have become more popular recently are dynamic
auctions where advertisers bid for slots offered by publishers. These are investigated by
Balseiro et al. 2014) and Chen (2017) with the latter studying a market that includes
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both guaranteed contracts and dynamic auctions.

3 Problem Formulation

This section will formally state our multiple adverts problem. Here and in the rest of
the paper we will use the terms arms and adverts interchangeably.

3.1 Topic Preference Vector

Our model for user click behaviour is based on the idea that each user has a latent
preference or state. This state is never observed directly but we will assume that we
are provided with a probability distribution over the user’s states. This topic preference
vector represents existing knowledge or beliefs about the current user’s state.

The most general way to think about the state space is as a segmentation of the
population where users with the same state will have similar click behaviour with regard
to available adverts. We do not give details of how to choose appropriate segments or
states here but many methods exist. For example, in the field of Recommender Systems
users are often characterised by vectors of latent factors or features, corresponding to
our topic preference vectors. Although these could be chosen using domain-specific
knowledge, they can also be generated automatically by methods such as collaborative
filtering (see, for example, Ricci et al. 2011). Our method does not put any constraints on
the length of topic preference vectors so the number of states is also chosen as part of the
feature generation process. Note that these states do not need to have any interpretation
or meaning in order to be useful.

We characterise the arms by using weight vectors which correspond to the topic
preference vector. The value in a given entry indicates how relevant the arm is to a user
with that state (how appropriate the advert is to that topic). Adverts remain available
over time so it is beneficial to learn the advert weights. Each user, however, is different
from those that have been seen before so the topic preference vectors are unique to the
current time so there is no learning about future users’ states. Using a new, known topic
preference vector at each time is not too strong an assumption since the time frame over
which an advert is displayed will be small relative to the number of times a search term
has been entered so much greater prior information would be available about searches
(and therefore the user population’s preferences) than about the adverts. We make no
assumptions about being able to classify adverts in advance as being compatible with
one state or another; this will be learnt over time. However if knowledge is available
then this can be used in the priors for relevant weights.

The mathematical formulation of the users and arms is as follows. At each time
step t = 1, 2, . . . a user arrives with a state xt ∈ {1, . . . , n}. This state is hidden but
its distribution Xt is observed and is given by a topic preference vector qt such that
Pr(Xt = x) = qt,x. In response to this we present m arms as an (ordered) set At ⊆ A
where A is the set of k available arms. The user will respond by selecting (or clicking)
at most one arm. If any arm is clicked then a reward of one is received, with zero reward
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otherwise. A more general model would be to allow the reward given a click to vary
between arms. For simplicity we do not do this here but the model and solution method
can easily be adapted by substituting expected rewards for expected clicks.

Each arm a ∈ A is characterised by a weight vector w of length n with each wa,x ∈
(0, 1). Let wA denote the set of vectors {wa}, a ∈ A. The weight wa,x represents the
probability a user with state x will click advert a. Each weight is not known exactly but
can be learnt over time as a result of the repeated selection of arms and observation of
outcomes. The outcome at each time is given by the reward together with which advert
(if any) is clicked. Further details on the feedback and learning process are given in
Section 4.1.

This framework is complete if m = 1 advert is to be displayed and x is known: the
click probability if a is presented is simply wa,x. However if x is latent and m > 1 we
need to build a model which gives the probability of receiving a click on the set of arms
A as well as determining which arm (if any) is clicked. As described earlier we assume
that at most one arm is clicked at a given time so we cannot simply sum the rewards
from individual arms.

3.2 Click Models

We describe a statistical model of which arm, if any, a user selects at each time. The
models used come from Edwards & Leslie (2018) (building on work by El-Arini et al.
2009) but will be repeated here. The click through rate (CTR) will refer to the expected
probability over all relevant unknowns (if any) of a click on some arm in a set of arms.
The term arm CTR will be used if we are interested in the probability of a click on a
specific arm.

A simple and popular model that addresses the question of which arm is clicked is
the cascade model (Craswell et al. 2008). Arms are presented in order and the user
considers each one in turn until one is clicked or there are no more left. An issue with
this model is that the arm CTR is unaffected by position while, in reality, users would
likely lose interest before looking at arms later in the list. However, it is not the purpose
of this work to address these issues and the framework given here can readily be adapted
to more complex models. For more on alternatives to the cascade model see Chuklin
et al. (2015).

Using the cascade model we now give models to determine the CTR of a set of arms.
We will work with two intuitive models which are motivated by the idea that there will
be redundancy in sets that contain arms that are very similar to one another (if the
user isn’t interested in an arm then they are unlikely to be interested in any arm that is
similar). The consequences of model choice will be discussed later in this section. Each
model is initially specified for known xt then extended to latent xt at the end of this
section.

Definition 3.1 (Probabilistic Click Model). In the Probabilistic Click Model (PCM) the
user considers each arm in At independently in turn until they click one or run out of
arms. At each step, the click probability for arm a is wa,xt. Therefore the CTR of the
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set At for known wA and xt is

rPCM(xt, At,wAt) = 1−
∏
a∈At

(1− wa,xt).

An issue with PCM is that a set of two identical arms gives a higher CTR than a
single such arm. The next model avoids this unrealistic feature.

Definition 3.2 (Threshold Click Model). In the Threshold Click Model (TCM) each
user has a threshold ut drawn independently from distribution U(0, 1). They consider
each arm in turn, clicking the first arm a ∈ At such that wa,xt > ut. The CTR of the
set is thus the probability that U is less than the maximal wa,xt:

rTCM(xt, At,wAt) = max
a∈At

wa,xt .

The TCM represents a user who, with state xt, will click an advert if its relevance
wa,xt exceeds a user-specific threshold ut.

Since xt is unobserved a more important quantity is the expected reward over q. We
write this, the CTR, for any click model π, as

CTRπ(At,qt,wAt) = Ext∼qt [rπ(xt, At,wAt)]. (1)

This expectation is easy and fast to calculate as q defines a discrete distribution. Im-
portantly, the latent xt, means that in (1) arms are not independent for either click
model.

The two click models differ in their effect on the diversity on optimal sets. Edwards
& Leslie (2018) found that adverts in sets chosen to optimise CTRTCM were less similar
to each other than those chosen to optimise CTRPCM and there was evidence that
assuming PCM could lead to choosing sets with undesirable redundancy. Therefore we
will develop and test both models in this work so that applications retain flexibility in
choice of model. Edwards & Leslie (2018) also gave a continuum of models between
PCM and TCM to provide intermediate set diversity and the methods and results given
here hold for those click models.

3.3 Solution Method and Behaviour with Known Weights

Where arm weights are known the CTR, as given in Equation 1, is our objective function.
Maximising the immediate reward (exploiting) is usually the simpler part of the bandit
problems compared to calculating the value of exploration. However, maximising CTR
is not straightforward as there is a combinatorial explosion in the number of available
arm sets, online evaluation of which is computationally impractical for the intended
web-based application.

The reward functions for both PCM and TCM were shown in Edwards & Leslie (2018)
to possess a property, submodularity, for which there is a simple but effective heuristic
algorithm. Submodularity in our context captures the intuitive idea of diminishing
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returns with advert set size - adding an advert to a large set gives a smaller increase in
set CTR than adding it to a smaller subset.

Maximising a submodular function is NP-hard but for monotone submodular func-
tions a computationally feasible greedy heuristic algorithm is known to have good prop-
erties (Nemhauser & Wolsey 1978). This algorithm starts with the empty set then selects
arms iteratively, at each stage adding the arm that most increases the objective function
(1). It will be referred to here as the sequential algorithm (SEQ) and is shown in
Algorithm 1. Its calculation time scales linearly with km so it can be employed efficiently
with large scale problems, unlike any method that tries to enumerate arm combinations.

Algorithm 1 Sequential Algorithm for Set Selection

Input: A set of available arms A with weights wA; a click model π; a topic preference
vector qt; a number of arms m to select.
Set A = ∅.
for each slot i in 1, 2, . . . ,m do

Set Ai = arg maxa∈ACTRπ(A ∪ a,qt,wA∪a)− CTRπ(A,qt,wA).
Set A ← A \Ai.

end for
Output: The set A of arms to display.

Computational studies in Edwards & Leslie (2018) found that performance was very
close to optimal when arm weights are known. In Section 6 we will test how well SEQ
performs when arm weights are not known exactly. This will include the effect of click
model misspecification and so we now describe a model which is not dependent on the
click model, the Naive algorithm (NAI). This selects the top m elements as ranked
in order of independent element CTR Ex∼qtwa,x = qt ·wa.

4 Inference

The arm weights are initially unknown but can be learnt over time. This section will give
an inference model for learning the weights from user actions. A model of learning for
weights requires an estimate of our current knowledge of each weight (a point estimate
and an estimate of uncertainty) together with a method to record how that knowledge
changes as user actions are observed. User click behaviour depends on their state and
the advert weights but, crucially, we do not observe the user state x so we do not
know which weight to attribute click behaviour to. We address these issues by using
a Bayesian framework to incorporate knowledge of each user’s topic preference vector
q. The Bayesian model is presented in Section 4.1. There are practical computational
problems with implementing this exactly so an approximate version is detailed in Section
4.2. The method is analysed in Section 4.3 together with a discussion of the conditions
on q required for learning to be reliable.
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4.1 Feedback and Learning

We will quantify our knowledge of weights with a joint probability distribution over all
arm weights with density given by p(wA). A single step of learning then proceeds as
follows. We are presented with a user with topic preference q. In response we choose a
set of arms A, to which the user gives feedback in the form of either a click (together
with which arm was clicked) or no click. Based on this feedback, the belief density
p(wA) is updated which is then used in the next step. Since only a single updating step
is described in this section no time subscripts will be used in the notation for simplicity.
Updating through time is simply a series of single updating steps. Formally p(wA) would
then need to be conditioned on the history of all relevant information up to the current
time but, again, for notational simplicity this is omitted here.

User feedback is summarised with two new variables: y where y = 1 if the user
clicked some arm and y = 0 otherwise, and m∗ the number of arms considered by the
user. Under the cascade model m∗ = i if arm ai is clicked or m∗ = m if no arm
is clicked. This distinguishes between two possible interpretations for arms that are
not clicked. Arms ai, i ≤ m∗ are considered by the user so we receive information which
affects the updating, but arms ai, i > m∗ are not considered by the user so no information
is received. To simplify notation in the following it is useful to define the set of arms
considered by the user but not clicked as

A′ =

{
A if y = 0

{a1, . . . , am∗−1} if y = 1.

The full updating equations for both PCM and TCM are given in Appendix A.1. These
involve finding the joint distribution over a large number of variables which cannot be
decomposed due to dependency on q. Not knowing the state x means we do not know
which wa,x to attribute any click or refusal to click. TCM has the added complication
of dependency on the latent user threshold u which is common to all arms. This means
conjugate updates are not possible and exact updating is impractical. The next section
will describe an alternative approximate updating method.

4.2 Updating Weight Beliefs

The standard way to resolve the issues in updating caused by dependency on latent
variables, such as found in the previous section, is to use an expectation maximisation
algorithm for which online versions exist (e.g. Cappé & Moulines 2009, Larsen et al.
2010). The approach used is to sample an x̃ from the belief distribution for x and then
update the weights using x̃ as the state. By conditioning on x̃ instead of q we can treat
user actions for any arm a as a Bernoulli trial and attribute successes or failures to wa,x̃.
For PCM this allows beliefs for all points to be independent Beta distributions. Each
weight wa,x has a belief distribution Wa,x ∼ Beta(αa,x, βa,x) and the joint distribution
of the weight beliefs for all arms in A is WA. The belief state is given by the α and β
values so 2kn values are required to store the belief state. The model is now conjugate
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and the update conditional on x̃ is given by αam∗ ,x̃ ← αam∗ ,x̃ + y and βa,x̃ ← βa,x̃ + 1 for
all a ∈ A′ with all other α, β values unchanged.

A key observation in Larsen et al. (2010) is that the belief distribution from which
x̃ is drawn should be dependent on the user feedback just observed (rather than just
q). This posterior q̃ = (q̃1, . . . , q̃n) depends on WA, y, m∗, q and A. The detail of the
derivation of q̃ is given in Appendix A.2. Under PCM and conditioning on x we are able
to obtain an easy to calculate formula for q̃:

q̃x = qx
(µam∗ ,x)y

∏
a∈A′(1− µa,x)∑n

j=1[qj(µam∗ ,x)y
∏
a∈A′(1− µa,x)]

. (2)

The complete method for updating is shown in Algorithm 2.

Algorithm 2 Posterior Sampled Bayesian Updating

Input: A set of arms A presented to the user; weight belief distributions WA param-
eterised by {αa,i, βa,i | a ∈ A, i = 1, . . . , n}; a user response given by y and m∗; the
state probability vector q for the n states.
Calculate the posterior state probabilities q̃ = (q̃1, . . . , q̃n), given in (2).
Draw x̃ from q̃.
Update weight beliefs:

αam∗ ,x̃ ← αam∗ ,x̃ + y,

βa,x̃ ← βa,x̃ + 1, for all a ∈ A′,
and all other αa,x, βa,x unchanged.

Output: A set of updated belief distributions WA.

By studying the stochastic approximation methods (e.g. Larsen et al. 2010) it be-
comes clear that deterministic averaging over x is equally valid. This is done by updating
elements of WA in proportion to q̃, that is, by setting

αam∗ ,x ← αam∗ ,x + yq̃x,

βa,x ← βa,x + q̃x for all a ∈ A′ (3)

All other α, β values are unchanged as before. These two methods will be compared in
Section 4.3.

For TCM, click probabilities are not independent even when x is known and therefore
it does not reduce to a simple updating model even given a sampled x. The updating for
known x for TCM (given in Appendix A.3) does not fit into a simple updating scheme.
In addition, to use this in the posterior sampled Bayesian updating in Algorithm 2
requires taking integrals over the multiple belief distributions to find the posterior for
q. Therefore the heuristic updating method used for PCM will not work for TCM. The
approach we use to handle this difficulty is to record and update beliefs as though the
click model is PCM. For the arm a1 in the first slot the models are the same but for
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subsequent arms we are making an independence assumption. This does not utilise all
available information but it will be shown empirically in simulations in Section 6 that
weight beliefs converge to the true weights as effectively under this method as when the
PCM is the true click model.

4.3 Approximate Updating Analysis

In Section 4.2 two approximate updating methods were given, each using q̃, the posterior
of q given user actions. Algorithm 2 updates using a sampled value from q̃ while (3)
updates deterministically in proportion to q̃. These can be compared by using the single
arm case where k = m = 1 so that the results are unaffected by click model or set
choosing algorithms.

The simulation has 500 runs, each with N = 1000 time steps. In each run, for each
time t, a qt is drawn i.i.d. from a Dirichlet distribution. There are n possible states for x
so each Dirichlet distribution has n parameters which here are set to 1/n. At each time
a user click is simulated for the single arm set, beliefs are updated, then the absolute
error |µ1,x−w1,x| between the current mean belief µ1,x and the true weight w1,x for each
state x is recorded. This error, averaged over all the runs and x, is shown on the left in
Figure 1. In addition, the state thought to have the highest weight argmaxx(µ1,x) was
compared to the truth argmaxx(w1,x). The proportion that this was incorrect is shown
on the right in Figure 1. This last metric tests an issue found to happen occasionally
in a similar problem in Larsen et al. (2010) where the updating mixes up the state
weights. On both measures the deterministic version performed better. Similar patterns
are found with other values of n and β.

Note that accurate inference relies on qt being varied over time since if qt is fixed
then inference is unreliable as illustrated in Figure 2. The weight posterior distributions
are still converging but often to the wrong value. This is an identifiability issue due to
there being insufficient information to solve the problem, rather than an issue with the
updating method. This can be seen by considering the offline version of the problem for
the simplest case where n = 2 given T observations. We then have a system of equations
y = Qw + ε where y is a vector of T observed rewards, Q is a T × 2 matrix where each
row t is qt, and ε is a noise term. The least squares solution is given by (Q>Q)−1Q>y
which has a unique solution if and only if Q is of rank 2. Therefore using a constant qt
will not give a single solution.

This may be important in practice since it indicates that we cannot reliably learn
the qualities of adverts by observing clicks with only a single search term or very similar
search terms. Indeed, simulations suggest that the algorithm attributes rewards most
accurately and reliably when each qx is sometimes large which motivates the use of
feedback for a variety of search terms. This has implications for Hauser et al. (2009)
where prior beliefs for user cognitive styles are generated from a priming study and so
are the same for all users. This is equivalent to using a constant q over time which we
have shown to be unreliable.
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Figure 1: The mean absolute error of ŵ (left) and the proportion of times that the
highest weight is misidentified (right) over 500 runs for a single arm with n = 5, α = 1
and β = 2.

Figure 2: The mean absolute error of ŵ (left) and the proportion of times that the
highest weight is misidentified (right) over 500 runs for a single arm with n = 5, α = 1
and β = 2 and each qt = (0.8, 0.05, 0.05, 0.05, 0.05).
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5 Exploring the Weights

Section 3.3 gave the SEQ algorithm for selecting a set of arms when weights are known.
This corresponds to the exploitation part of a bandit problem. With weights initially
unknown and learned from experience it is also necessary to explore by choosing arms to
learn the true weights effectively without neglecting immediate reward. The objective is
still to achieve high CTR but over all future times as well as the current time. The exact
objective and time frame will depend on the application and business objectives. In this
section a method is given whereby a range of existing bandit algorithms (or policies)
can be easily adapted to learn the true weights while still retaining the good short term
CTR performance of the SEQ algorithm as weights become known.

Index policies are a family of bandit policies which assign to each arm a real valued
index and then chooses the arm with the highest index. Examples include: the Greedy
policy for which the index is the expected immediate reward; the Gittins index (Gittins
et al. 2011) where the index is found by solving a stochastic optimisation problem on
each arm; Thompson sampling (e.g. May et al. 2012) which uses a stochastic index by
sampling from the posterior for the arm; and the upper-confidence-bound policy family
(e.g. Auer et al. 2002) where the index is based on an optimistic upper bound of the
arm’s value.

To adapt these methods for the multiple advert problem the index is substituted
for the true weight in SEQ (or other set selection algorithm). Let It be the history
up to time t which consists of all available information that is relevant to the current
decision, namely q1, . . . ,qt−1; the weight priors; past actions A1, . . . , At−1; and user
responses given by m∗1, . . . ,m

∗
t−1 and y1, . . . , yt−1. For the purposes of choosing arms this

information is used only via the current posterior weight belief distributions WA,t. Then,
formally, a policy for our problem consists of two parts: (1) an exploration algorithm
ν(WA,t|It) which maps WA,t to real valued indices w̃A,t, and (2) a set selection algorithm
S(A, w̃A,t,m) which takes w̃A,t and outputs a set A of m chosen arms. Each w̃a,t,i in
w̃A,t can be thought of some proxy for the unknown weight wa,t,i.

We will not attempt to compare the general performance of the many available index
policies since these have been widely studied on simpler bandit problems. Instead we will
concentrate on adapting and testing one, Thompson sampling. Thompson sampling is
chosen because it fits the requirements of this problem, namely that it is fast to compute
and in similar long horizon bandit problems it has been shown to work well and explore
effectively (see e.g. Russo & Van Roy 2014, May et al. 2012). The method is given in
Algorithm 3.

In order to learn the best arm sets for any user it is necessary for the algorithm
to sample infinitely often from all arms (so that it never stops learning completely).
Theorem 5.1 below gives conditions under which Algorithm 3 using the deterministic
updating scheme from Section 4.2 will select each arm infinitely often. The strongest
condition is on the distribution of each qt, and will be discussed after the theorem.

Theorem 5.1. Let q∗ = inft,x Pr(qt,x = 1) > 0. Then the multiple action Thomp-
son sampling algorithm given in Algorithm 3 with SEQ as set choosing method sam-
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Algorithm 3 Multiple Action Thompson Sampling

Input: The available arms A with posterior weight beliefs WA,t where each Wa,t,i is a
Beta(αa,t,i, βa,t,i) distribution; the number of arms to be selected m; a set choosing
algorithm S(A, w̃A,t,m).
for all a ∈ A, i = 1, . . . , n do

Draw w̃a,t,i ∼Wa,t,i

end for
Select an arm set using set choosing algorithm S(A, w̃A,t,m)

Output: A set of chosen arms A of size m.

ples infinitely often from each arm for any click model from Section 3.2. That is,
Pr(|τa,T | → ∞ as T →∞) = 1 for any arm a ∈ A, where τa,T is set of times t = 1, .., T
that a ∈ At.

Proof. See Appendix C

The condition that all q∗ > 0 in Theorem 5.1 is unlikely to hold in practice. It is
needed for our proof method to eliminate the case where µa,t,x → 1 as |τa,t| → ∞ even
though wa,x < 1. However, the conditions for this to happen are extremely unlikely
to occur as the prior Wa,0,x would have to be concentrated close to 1. In practice, as
found in Larsen et al. (2010) and discussed in Section 4 it is sufficient for each qx to be
sometimes large.

To summarise, this work is the first to formulate a contextual bandit problem where
the context takes the form of a discrete probability distribution. This form of context
represents uncertainty about a latent state which creates challenges in inference for
the arm weights. In Section 4 we gave a computationally fast approximate Bayesian
method for inference and learning which overcomes these problems. In this section we
gave a new method by which many existing bandit algorithms can be adapted to work
with submodular set choosing methods and illustrate this method with a policy using
Thompson sampling. The next section will test all the parts of our solution method as
a complete policy in simulations of the full multiple adverts problem.

6 Computational Experiments

This section uses simulations to test the complete solution method proposed in Section
5 and given here in Algorithm 4.

6.1 Regret Simulations

The performance measure used is the cumulative regret over time. This compares the
expected reward of policies to the SORACLE policy which uses SEQ to select arms
with knowledge of the true weights and assuming the true click model. At any time T
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Algorithm 4 Full Multiple Adverts Algorithm

Input: The available arms A with prior weight beliefs WA,0; the number of arms to be
selected m; a multiple action policy ψ; a click model π.
for t = 1, . . . , T do

Select a set of m arms using Algorithm 3.
The user responds according to click model π.
Update arm weight beliefs using (3).

end for
Output: T chosen arm sets with a user click history.

the cumulative regret is

1

T

T∑
t=1

[
CTRπ(ASORACLEt ,wA,qt)− CTRπ(Aψt ,wA,qt)

]
where CTRπ is the CTR with click model π, and Aψt and ASORACLEt are the arm sets
chosen by, respectively, the policy ψ being tested and SORACLE.

For each simulation run a policy is selected. This consists of a set choosing method
(either SEQ or NAI) and a bandit exploration algorithm (either Thompson sampling
(TS) or the Greedy policy, which uses the posterior mean as an estimate of the true
weights). Each policy is denoted by a two-part name where the first part gives the set
choosing algorithm, either N for NAI or S for SEQ, and the second part gives the bandit
algorithm, either TS or G for Greedy.

Two sets of experiments are reported in this section. The first uses randomly gen-
erated arm weights while the second uses a scenario with fixed arm weights with low
expected CTR.

6.1.1 Set 1

The true weights for the run are independently drawn from a mixture distribution where
each is relevant with probability ξ = 0.5 and non-relevant otherwise. If relevant the
weight is drawn from a Beta(α = 1, β = 2) distribution, otherwise the weight is 0.001.
Each weight is given an independent Beta(1, 2) prior belief (all assumed a priori to
be relevant). At each time t = 1, 2, . . . , T a state distribution qt is sampled from a
Dirichlet distribution with all n parameters equal to 1/n. Note that this does not satisfy
the assumption on q given in Theorem 5.1. In response the policy chooses a set of m
arms from the available k. A user action is then simulated using π, and weight beliefs
updated. The values of k = |A|, m = |At|, T and n used are given with the results. This
is repeated for all policies using the same weights, qt and common random numbers.
Both PCM and TCM are used as true click models to generate the rewards which are
given to the algorithm. The SEQ-based policies will use the correct click model which
will be appended to its name e.g. STS-PCM. Section 6.2 will consider learning when the
click model is misspecified.
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Figure 3: Mean cumulative sequential regret. Simulation setting are n = 5, k = 20,
m = 2, ξ = 0.5, α = 1 and β = 2. The true click model is PCM on the left and TCM on
the right.

At each time, for each of the 500 simulation runs and each policy the cumulative
regret is calculated using the chosen arm set and the true weights.

Two different sizes of problem are used to give an idea of how the learning rates
scale. The cumulative regret averaged over all runs is shown in Figures 3 and 4 for the
smaller and larger problems respectively. The overall pattern is the same for each but
on different timescales.

Some aspects of the results are as would be expected. For policies using TS, as the
weights are learnt, SEQ chooses higher reward sets than NAI and so STS outperforms
NTS. Greedy is more effective than TS at earlier times but does not learn well and so
falls behind later. It takes longer for the superior learning of TS to pay off for TCM
than PCM.

There are some surprises though. The two Greedy policies perform very differently
on PCM and TCM. SG does better than NG on PCM as would be expected but on TCM
the order is reversed indicating that the SG-TCM does not learn well. It appears that
NTS does not learn well as it is slow to catch up with the Greedy policies (and may not
be catching the best of the Greedy policies at all on the larger problem). This supports
the use of combination of SEQ and TS on this problem. Further simulations in Section
6.2 will look at learning rates and these issues in more detail.

6.1.2 Set 2

The experiments in the second set are setup as in the first set except that the arm weights
are fixed over all runs. This allows us to observe policy behaviour in more detail which
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Figure 4: Mean cumulative sequential regret. Simulation setting are n = 10, k = 40,
m = 3, ξ = 0.5, α = 1 and β = 2. The true click model is PCM on the left and TCM on
the right.

State
Arm number

1 2 3 4 5 6 7 8 9 10

1 0.03 0 0 0.015 0.015 0 0.01 0.021 0 0
2 0 0.03 0 0.015 0 0.015 0.01 0 0.021 0
3 0 0 0.03 0 0.015 0.015 0.01 0 0 0.021

Table 1: The arm weights for experiment set 2. Arms 1-3 are type A, 4-7 are type B,
and 8-10 are type C.

highlights differences between problems using PCM as true click models and those using
TCM. In these experiments we select arm weights to be much smaller than in the first
set, creating a more challenging and realistic scenario where the policies must distinguish
between arms with similar but low CTRs.

We take m = 2 and n = 3, with k = 10 arms split into three types. Arms of type
A and B all have the same mean weight 0.01. For the three arms of type A this is
concentrated on a single state (a different state for each arm), while for four arms of
type B the weight is split evenly between two or three states (a different combination
of states for each arm). The three arms of type C have concentrated weight like type
A but at 70% of the strength of type A. The arm weights are shown in Table 1. For
TCM it is optimal to always choose two arms of type A but for PCM the correct action
is more varied depending on qt.

The regret performance for each policy over N = 40000 time steps is shown in Figure
5. A longer time horizon is used because learning is slower with the smaller number of
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Figure 5: Mean cumulative sequential regret for experiment set 2. A fixed arm scenario
with small weights is used. The true click model is PCM on the left and TCM on the
right.

clicks that come with low CTRs. For all click models the two greedy policies struggle.
With PCM the two TS-based policies are very similar. This is unsurprising since with
low expected CTRs the reward function under PCM is a similar function to additive
rewards and in this setting SEQ and NAI act similarly. For TCM the results are more
unexpected with NTS outperforming STS, although with a similar pattern.

Figure 6 shows the arm types chosen by each policy at times t ∈ {35001, . . . , 40000}.
In the TCM problem it is optimal to choose arms of type A but the other policies
choose arms from both of the other groups. The STS-TCM policy has chosen a higher
percentage of optimal arms than NTS, showing that it doing better by the end of the
simulation but, because the available reward is small, its cumulative regret performance
is only catching slowly. In the PCM problem the optimal mix of arms consists of arms
from all groups. Here the TS policies have a similar mix of types to the Oracle policy
while the greedy policies select from type B (the all-rounders) too often, indicating a
lack of adequate learning.

Overall, it appears from the experiments that both exploration algorithm and set
choosing method are important for good performance. Which is more important varies
between experiment, especially for short term performance. However, over the longer
term, while the naive set choosing method can do quite well on some problems, using a
greedy exploration algorithm consistently results in under-performance.
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Figure 6: The actions for each policy in the last 5000 time steps in experiment set 2.
The true click model is PCM on the left and TCM on the right.

6.2 State of Knowledge Simulations

Cumulative regret measures the overall performance of a policy but is not ideal for
comparing how SEQ and NAI affect exploration as this can be obscured by the inferior
set choosing ability of NAI for known weights. We give a new performance measure which
separates the learning capabilities of an algorithm from the immediate CTR performance
of its set choosing component. This allows us to directly examine how SEQ affects
exploration and how this changes with the click model assumed by the policy (both
correct and misspecified).

For Set 2 in Section 6.1 we could assess how well the algorithms had learnt by directly
observing their selections towards the end of the simulation (Figure 6). To measure how
effectively a policy has learnt in experiment set 1 of Section 6.1 we rerun these simulations
but rather than record the cumulative regret, we instead use a new measure, the greedy
posterior regret (GPR). To define this we first define the greedy posterior reward of a
policy. At any time this is the expected reward using the SG policy with the true click
model if no further learning occurs beyond that time. The GPR is then the difference
between this value and the expected reward of the SORACLE policy which knows the
true weights. This is a more useful measure of learning than more general measures such
as the Kullback-Leibler difference because GPR gives a measure of effective learning by
estimating how well the policy has focused on the arms likely to have larger weights
which are therefore more likely to be part of optimal sets.

The simulation estimates the GPR for a policy at any time as follows. A qt is
generated as usual and a single action taken using the SG policy using the posterior
mean of all weights at time t. This is repeated for 100 different simulated values of qt
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Figure 7: Mean greedy posterior regret for TS-based policies with PCM (left) and TCM
(right). Simulation setting are n = 10, k = 40, m = 3, ξ = 0.5, α = 1 and β = 2.

for each run of the original simulation. The GPR at time t is the mean regret over the
100 qt values.

The GPR over time for TS-based policies with PCM and TCM as the true click
model are shown in Figure 7. It also tests misspecified click models for SEQ-based
policies. NTS ignores click model. The time axis starts at t = 1000 because GPR values
are high at early times before the policies have had much time to learn. GPR values for
the Greedy-based policies are much higher and so these are shown on a separate plot in
Figure 8 with just NTS for comparison. We will consider the TS-based policies first
before moving on to the Greedy-based policies. For PCM all of the TS policies are very
similar. On TCM both STS policies do better than NTS with STS-TCM best of all.
Generally, all the TS-based policies appear robust to variation in the click model.

The learning for the Greedy-based policies is, as expected, clearly worse than for
TS but, in addition, there is large variation among the Greedy variants. In particular
SG-TCM learns poorly on both PCM and TCM. This explains the poor regret for SG
with TCM in Section 6.1, showing that the problem is with the click model assumed by
the policy rather than the true click model. So, for Greedy-based policies, it is more
robust for learning to assume PCM.

The results here and the regret simulations in Section 6.1 suggest that, in addition to
superior exploitation, STS also learns as effectively as NTS and is better for a correctly
specified TCM.
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Figure 8: Mean greedy posterior regret for Greedy-based policies with PCM (left) and
TCM (right). Simulation setting are n = 10, k = 40, m = 3, ξ = 0.5, α = 1 and β = 2.
The NTS policy is shown for comparison.

7 Discussion

In this paper we formulated the multiple advert problem and gave a solution method
which combined bandit algorithms with submodular set-choosing methods in a Bayesian
setting. The setting is a challenging one, principally due to the twin uncertainties con-
cerning: (i) the topic and quality of each advert and, (ii) the preferences of the users.
The first of these can be learnt over time by observing user click behaviour but the
second uncertainty is inherent due to an unobservable user state. The resulting contex-
tual bandit problem, our analysis and proposed methods will have wider application in
problems where there is state uncertainty in addition to the usual arm uncertainty.

The model used here is structurally simple but can encompass greater complexity
in application through the topic preference vector q which could contain considerable
information since model and solution methods are practical with very large q . A possible
limitation of the model is that a user state is given by a single x. An easily implemented
extension would be to record the user state as a very sparse vector the same length as
w and model clicks with some function of these two vectors e.g. the probit of the dot
product. A similar model for single advert CTR prediction that has been implemented
in commercial web search is given in Graepel et al. (2010).

We did not compare our approach with existing methods because none were designed
for our problem formulation and make inappropriate assumptions for our specific model.
A formal bound on finite time regret would be desirable but the difficulty of our problem
with a stochastic latent state in addition to stochastic arms makes this impractical.
In particular the approximate Bayesian scheme does not give guarantees of accurate
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convergence of weight beliefs so regret growth cannot be usefully bounded.
The simulations in Section 6.1 suggest exploration of weights will be slow as the

problem is scaled up. This is mainly due to there being kn parameters to learn com-
pared to just k for the standard MAB but also because the unknown x makes feedback
less informative than normal. Therefore slow exploration is a feature of the problem
rather than the methods used and so is unavoidable unless greater assumptions (e.g. de-
pendence between weights or arms) are made on the structure of the weights. There are
examples of this in bandit problems (e.g. Yue & Guestrin 2011) but the intention in this
work is to use a model that is as general as possible, only adding in such assumptions if
it is clear they are valid and necessary. Furthermore we anticipate that exploration may
not be a problem in practice due to the high rate of observations and by using priors
that represent existing knowledge of likely arm CTRs. This ability to incorporate prior
knowledge is a strong advantage of the proposed Bayesian scheme.
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A Derivations for Section 4

A.1 Updating Equations for Arm Weights

PCM. The joint distribution for all weights given a feedback step is updated as given
below. In the following note that p(·|q, x) simplifies to p(·|x) and that p(wA, x|q, A) =
p(wA)qx since x is independent of wA. The posterior belief for the weights after a user
action is,

p(wA|y,m∗,q, A) =
n∑
x=1

p(wA, x|y,m∗,q, A)

=
n∑
x=1

p(y,m∗|wA, x,q, A)p(wA, x|q, A)

p(y,m∗|q, A)

=
1

p(y,m∗|q, A)

n∑
x=1

{[
(wam∗ ,x)y

∏
a∈A′

(1− wa,x)

]
p(wA)qx

}

=
p(wA)

p(y,m∗|q, A)

n∑
x=1

[
qx(wam∗ ,x)y

∏
a∈A′

(1− wa,x)

]
.

TCM. The updating equation for wA for TCM is similar to that for PCM except
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that p(y,m∗|wA, x,q) changes due to the user threshold u:

p(wA|y,m∗,q, A) =
n∑
x=1

p(wA, x|y,m∗,q, A)

=

n∑
x=1

p(y,m∗|wA, x,q, A)p(wA, x|q, A)

p(y,m∗|q, A)

=
p(wA)

p(y,m∗|q, A)

∫ 1

u=0

n∑
x=1

[
qx(1{wam∗ ,x>u}

)y
∏
a∈A′

1{wa,x≤u}

]
du. (4)

A.2 Derivation of q̃

The posterior q̃ = (q̃1, . . . , q̃n) depends on WA, y, m∗, q and A. For ease of reading the
rest of this section will use w and W to respectively stand for wA and WA. Bayes The-
orem will be used to condition the outcome on x which allows the use of the conditional
independence of arms under PCM to factorise to a simple formula.

q̃x = p(x |W, y,m∗,q, A)

=

∫
p(x,w |W, y,m∗, a, A) dw

=

∫
p(x | w, y,m∗,q, A)p(w |W, y,m∗,q, A) dw

=

∫
p(y,m∗ | x,w,q, A)p(x | w,q, A)

p(y,m∗ | w,W,q, A)
p(w |W, y,m∗,q, A) dw,

Then, substituting in

p(w |W, y,m∗,q, A) =
p(w, y,m∗ |W,q, A)

p(y,m∗ |W,q, A)

=
p(y,m∗ | w,W,q, A)p(w |W)

p(y,m∗ |W,q, A)
,

and cancelling gives

q̃x =

∫
p(y,m∗ | x,w,q, A)p(x | w,q, A)p(w |W)

p(y,m∗ |W,q, A)
dw

= qx

∫
p(y,m∗ | x,w,q, A)p(w |W)∑

x̃ qx̃
∫
p(y,m∗ | x̃, w̃,q, A)p(w̃ |W) dw̃

dw, (5)

where the last step uses p(x | w,q, A) = p(x | q) = qx.
It remains to find

∫
p(y,m∗ | x,w,q, A)p(w | W) dw. Under PCM this is easily

found since, given x, the probability of clicking any arm a considered by the user is the
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same as its independent click probability (as though it were the only arm in the set) and
is independent from all weights except wa,x. That is, for a single arm a,∫

p(y,m∗ | x,w,q, A)p(w |W) dw =

∫
p(y,m∗ | x,wa,x,q, A)p(wa,x |Wa,x) dwa,x

= (µa,x)y(1− µa,x)(1−y), (6)

where µa,x =
αa,x

αa,x+βa,x
is the expectation of Wa,x. Under PCM, the outcome of any arm,

given it is considered by the user, is independent of the other arms so (5) and (6) can
be combined to give

q̃x = qx
(µam∗ ,x)y

∏
a∈A′(1− µa,x)∑n

j=1[qj(µam∗ ,x)y
∏
a∈A′(1− µa,x)]

.

A.3 Updating for TCM with Known x

Adapting (4) in Section A.1, the updating for known x under TCM is

p(wA|y,m∗, x) =
p(wA)

p(y,m∗|q)

∫ 1

u=0
qx(1{wam∗ ,x>u}

)y
∏
a∈A′

1{wa,x≤u}du

=
qxp(wA)

p(y,m∗|q)

∫ 1

u=0
(1{wam∗ ,x>u}

)y1{u>maxa∈A′ (wa,x)}du

=
qxp(wA)

p(y,m∗|q)

[
(wam∗ ,x)y −max

a∈A′
(wa,x)

]
.

B Lemma B.1

The following lemma is used in the proof of Theorem 5.1 which is given in Appendix C.
Both this lemma and the proof of Theorem 5.1 use the following notation.

Let RTS(a,Wa,t,qt | It) = qt · w̃a,t denote the stochastic index for the multi-
ple action Thompson sampling policy for a single arm a where each w̃a,t,x ∼ Wa,t,x.
Then under SEQ the arm chosen in slot one is the one with the highest index: at,1 =
argmaxa∈AR

TS(a,Wa,t,qt|It).

Lemma B.1. Let τa,T be the set of times t = 1, . . . , T at which a ∈ At. Let q∗ =
inft,x Pr(qt,x = 1) and w∗ = maxa∈A,xwa,x and, from these, set η = q∗(1 − w∗)m. If
q∗ > 0 then under the deterministic updating scheme given in Section 4.2 using any
click model from Section 3.2,

Pr

(
RTS(a,Wa,T ,qT | It) ≤

1

1 + η − δ1
+ δ2

)
→ 1 as |τa,T | → ∞

for any a ∈ A and any δ1, δ2 such that η > δ1 > 0 and δ2 > 0.
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Proof. For any a ∈ A, x = 1, . . . , n we will give bounds for expected rate at which
αa,t,x and βa,t,x increase as the arm a is selected over time (an upper bound for αa,t,x
and a lower bound for βa,t,x). This will give an asymptotic upper bound less than 1 on
each posterior mean µa,t,x = E [Wa,t,x] as |τa,t| → ∞. Showing that V ar(Wa,t,x)→ 0 as
|τa,t| → ∞ then gives the required result. Throughout, a is an arbitrary arm in A and
x an arbitrary state in {1, . . . , n}.

Let αa,0,x and βa,0,x be values of the parameters of the Beta prior placed on wa,x,
then an upper bound for αa,T,x, T ≥ 1 is simply

αa,T,x ≤ αa,0,x + |τa,T | (7)

since αa,T,x can only increase by at most one at times when when a ∈ At and is un-
changing at other times.

For a lower bound on E [βa,T,x] we consider only times when a ∈ At, qt,x = 1 and
yt = 0. Then yt = 0 guarantees that arm a is considered by the user and qt,x = 1 means
the failure to click can be attributed to wa,x. Hence, for t ≥ 1,

βa,t+1,x | (qt,x = 1, yt = 0, a ∈ At, βa,t,x) = βa,t,x + 1. (8)

At all times βa,t+1,x ≥ βa,t,x since the β parameters cannot decrease. For PCM,

Pr(yt = 0 | qt,x = 1, At,wAt) =
∏
b∈At

(1− wb,x)

which is no larger than the corresponding probability for TCM. The probability that yt =
0 can therefore be bounded below. Let w∗ = maxb∈A,xwb,x and q∗ = mint,x Pr(qt,x = 1)
then for any At ⊂ A,

Pr(yt = 0 | At,wA) ≥ q∗(1− w∗)m. (9)

We can now give a lower bound on E [βa,T,x | I1] where the expectation is joint over all
qt, yt, m

∗
t for t = 1, . . . , T , and I1 is just the priors for W. Using (8) and (9), we have

at any time T ,

E[βa,T,x | I1] ≥ βa,0,x +
∑
t∈τa,T

[
Pr(qt,x = 1) Pr(yt = 0 | qt,x = 1, a ∈ At,wAt)

]
≥ |τa,T |q∗(1− w∗)m. (10)

Let η = q∗(1 − w∗)m and note that η > 0 since w∗ < 1 by the problem definition and
q∗ > 0 by the assumption given in the statement of the Lemma. Combining (7) and (10)
gives, for any τa,T ,

E
[
βa,T,x
αa,T,x

| I1
]
≥ 1

αa,0,x + |τa,T |
E [βa,T,x | I1]

≥
|τa,T |η

αa,0,x + |τa,T |
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and so by the strong law of large numbers, for sufficiently large |τa,T | and conditional on
I1,

βa,T,x
αa,T,x

≥
|τa,T |η

αa,0,x + |τa,T |
→ η . (11)

Note that

µa,T,x =
αa,T,x

αa,T,x + βa,T,x
=

1

1 +
βa,T,x

αa,T,x

,

and so from (11),

Pr

(
µa,T,x ≤

1

1 + η − δ1

)
→ 1 as |τa,T | → ∞ (12)

for any δ1 such that η > δ1 > 0.
Then, using the variance of a Beta distribution and (10) we have

V ar(Wa,T,x) =
αa,T,xβa,T,x

(αa,T,x + βa,T,x)2(αa,T,x + βa,T,x + 1)

<
(αa,T,x + βa,T,x)2

(αa,T,x + βa,T,x)2(αa,T,x + βa,T,x + 1)

=
1

(αa,T,x + βa,T,x + 1)
→ 0 as |τa,T | → ∞,

and so for any δ2 > 0 the sampled w̃a,T,x ∼Wa,T,x satisfy

Pr (w̃a,T,x ≤ µa,T,x + δ2)→ 1 as |τa,T | → ∞. (13)

By definition RTS(a,Wa,t,qt | It) =
∑n

x=1(qt,xw̃a,t,x) ≤ maxx w̃a,t,x where w̃a,t,x ∼
Wa,t,x. Therefore, to complete the proof it is sufficient that Pr(w̃a,T,x < 1/(1 + η− δ1) +
δ2) → 1 as |τa,T | → ∞ for all a ∈ A, x = 1, . . . n and any δ1, δ2 such that η > δ1 > 0
and δ2 > 0, which follows from (12) and (13).

C Proof of Theorem 5.1

The proof will assume that there is a non-empty set of arms AF ⊂ A whose members
are sampled finitely often as t→∞ and show that this leads to a contradiction. Under
this assumption

∑
b∈AF

|τb,∞| < ∞ and so there exists a finite time M = maxb∈AF
τb,t

even as t→∞.
Let AI = A \ AF be the set of arms sampled infinitely often (which must be non-

empty). Let w∗ = maxa∈A,xwa,x and η = q∗(1 − w∗)m as in the proof of Lemma B.1.
Note that η > 0 since w∗ < 1 by the problem definition and q∗ > 0 by the given
condition. Then fix some 0 < δ1 < η and 0 < δ2 < 1− 1/(1 + η − δ1). Then by Lemma
B.1 for all a ∈ AI ,

Pr

(
RTS(a,Wa,t,qt) ≤

1

1 + η − δ1
+ δ2

)
→ 1 as t→∞.
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So there exists a finite random time T > M such that

Pr

(
RTS(a,Wa,t,qt) ≤

1

1 + η − δ1
+ δ2

)
> 1− δ2 for t > T, ∀a ∈ AI . (14)

Let ε = minb∈AF
[Pr(RTS(b,Wb,T ,qT | IT ) > 1/(1 + η − δ1) + δ2)]. Then for all t > T ,

b ∈ AF we have

Pr

(
RTS(b,Wb,t,qt | It) >

1

1 + η − δ1
+ δ2

)
≥ ε, (15)

since no arm in AF is selected at times t > T > M and so Wb,t is unchanged over these
times. We know that ε > 0 since Pr(w̃b,T,x > 1/(1 + η+ δ1) + δ2) > 0 for all b, x because
1/(1 + η − δ1) + δ2 < 1 and Wb,T,x is a Beta distribution with support (0, 1).

Combining (14) and (15),

Pr
[
RTS(b,Wb,t,qt | It) > RTS(a,Wa,t,qt | It),∀a ∈ A

]
> ε(1− δ2) (16)

for all t > T . Therefore

∞∑
t=T

Pr(b ∈ At for some b ∈ AF ) >

∞∑
t=T

ε(1− δ2)|AI | =∞.

Using the Extended Borel-Cantelli Lemma (Corollary 5.29 of Breiman 1992) it follows
that

∑
b∈AF

|τb,∞| = ∞ which contradicts the assumption that |τb,∞| is finite for all
b ∈ AF . Therefore some arm in AF is selected infinitely often and since AF was of
arbitrary size it follows that AF = ∅.
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Cappé, O. & Moulines, E. (2009), ‘On-line expectation–maximization algorithm for la-
tent data models’, Journal of the Royal Statistical Society, B 71(3), 593–613.

Chapelle, O., Manavoglu, E. & Rosales, R. (2015), ‘Simple and scalable response predic-
tion for display advertising’, ACM Transactions on Intelligent Systems and Technology
(TIST) 5(4), 61.

Chen, W., Wang, Y. & Yuan, Y. (2013), Combinatorial multi-armed bandit: General
framework and applications, in ‘Proceedings of the 30th International Conference on
Machine Learning’, pp. 151–159.

Chen, Y.-J. (2017), ‘Optimal dynamic auctions for display advertising’, Operations Re-
search 65(4), 897–913.

Chen, Y., Pavlov, D. & Canny, J. F. (2009), Large-scale behavioral targeting, in ‘Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining’, ACM, pp. 209–218.

Chuklin, A., Markov, I. & Rijke, M. d. (2015), Click models for web search, Vol. 7,
Morgan & Claypool Publishers.

Craswell, N., Zoeter, O., Taylor, M. & Ramsey, B. (2008), An experimental comparison
of click position-bias models, in ‘Proceedings of the International Conference on Web
Search and Web Data Mining’, ACM, pp. 87–94.

Edwards, J. A. & Leslie, D. S. (2018), Diversity as a Response to User Preference
Uncertainty, World Scientific, chapter 4, pp. 55–68.

El-Arini, K., Veda, G., Shahaf, D. & Guestrin, C. (2009), Turning down the noise in the
blogosphere, in ‘ACM Conference on Knowledge Discovery and Data Mining’, ACM,
pp. 289–298.

Fridgeirsdottir, K. & Najafi-Asadolahi, S. (2018), ‘Cost-per-impression pricing for dis-
play advertising’, Operations Research 66(3), 653–672.

Gittins, J. C., Glazebrook, K. D. & Weber, R. (2011), Multi-armed bandit allocation
indices, second edn, John Wiley & Sons, Chichester, UK.

Graepel, T., Candela, J. Q., Borchert, T. & Herbrich, R. (2010), Web-scale Bayesian
click-through rate prediction for sponsored search advertising in Microsoft’s Bing
search engine, in ‘Proceedings of the 27th International Conference on Machine Learn-
ing’, pp. 13–20.

Hauser, J. R., Urban, G. L., Liberali, G. & Braun, M. (2009), ‘Website morphing’,
Marketing Science 28(2), 202–223.

Hillard, D., Schroedl, S., Manavoglu, E., Raghavan, H. & Leggetter, C. (2010), Improv-
ing ad relevance in sponsored search, in ‘Proceedings of the third ACM international
conference on Web search and data mining’, ACM, pp. 361–370.

29



Hojjat, A., Turner, J., Cetintas, S. & Yang, J. (2017), ‘A unified framework for the
scheduling of guaranteed targeted display advertising under reach and frequency re-
quirements’, Operations Research 65(2), 289–313.

Larsen, T., Leslie, D. S., Collins, E. J. & Bogacz, R. (2010), ‘Posterior weighted rein-
forcement learning with state uncertainty’, Neural Computation 22(5), 1149–1179.

Li, L., Chu, W., Langford, J. & Schapire, R. E. (2010), A contextual-bandit approach to
personalized news article recommendation, in ‘Proceedings of the 19th International
Conference on World Wide Web’, ACM, pp. 661–670.

May, B. C., Korda, N., Lee, A. & Leslie, D. S. (2012), ‘Optimistic Bayesian sampling in
contextual-bandit problems’, Journal of Machine Learning Research 13(1), 2069–2106.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L., Phillips,
T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M., Hrafnkelsson,
A. M., Boulos, T. & Kubica, J. (2013), Ad click prediction: a view from the trenches,
in ‘Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining’, ACM, pp. 1222–1230.

Najafi-Asadolahi, S. & Fridgeirsdottir, K. (2014), ‘Cost-per-click pricing for display ad-
vertising’, Manufacturing & Service Operations Management 16(4), 482–497.

Nemhauser, G. L. & Wolsey, L. A. (1978), ‘Best algorithms for approximating the max-
imum of a submodular set function’, Mathematics of Operations Research 3(3), 177–
188.

Radlinski, F., Kleinberg, R. & Joachims, T. (2008), Learning diverse rankings with
multi-armed bandits, in ‘Proceedings of the 25th international conference on Machine
learning’, ACM, pp. 784–791.

Ricci, F., Rokach, L. & Shapira, B. (2011), Recommender Systems Handbook, Springer
US, Boston, MA.

Richardson, M., Dominowska, E. & Ragno, R. (2007), Predicting clicks: estimating the
click-through rate for new ads, in ‘Proceedings of the 16th international conference on
World Wide Web’, ACM, pp. 521–530.

Rusmevichientong, P. & Williamson, D. P. (2006), An adaptive algorithm for selecting
profitable keywords for search-based advertising services, in ‘Proceedings of the 7th
ACM Conference on Electronic Commerce’, ACM, pp. 260–269.

Russo, D. & Van Roy, B. (2014), ‘Learning to optimize via posterior sampling’, Mathe-
matics of Operations Research 39(4), 1221–1243.

Schwartz, E. M., Bradlow, E. T. & Fader, P. S. (2017), ‘Customer acquisition via display
advertising using multi-armed bandit experiments’, Marketing Science 36(4), 500–522.

30



Streeter, M., Golovin, D. & Krause, A. (2009), Online learning of assignments, in ‘Ad-
vances in Neural Information Processing Systems’, pp. 1794–1802.

Whittle, P. (1988), ‘Restless bandits: Activity allocation in a changing world’, Journal
of Applied Probability 25, 287–298.

Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y. & Chen, Z. (2009), How much can
behavioral targeting help online advertising?, in ‘Proceedings of the 18th international
conference on World wide web’, ACM, pp. 261–270.

Yue, Y. & Guestrin, C. (2011), Linear submodular bandits and their application to di-
versified retrieval, in ‘Advances in Neural Information Processing Systems’, pp. 2483–
2491.

31


	Introduction
	Related Work
	Problem Formulation
	Topic Preference Vector
	Click Models
	Solution Method and Behaviour with Known Weights

	Inference
	Feedback and Learning
	Updating Weight Beliefs
	Approximate Updating Analysis

	Exploring the Weights
	Computational Experiments
	Regret Simulations
	Set 1
	Set 2

	State of Knowledge Simulations

	Discussion
	Acknowledgements
	Derivations for Section 4
	Updating Equations for Arm Weights
	Derivation of 
	Updating for TCM with Known x

	Lemma B.1
	Proof of Theorem 5.1

