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Abstract 

Recent advances in sensor technologies have witnessed a vast amount of very fine 

spatial resolution (VFSR) remotely sensed imagery being collected on a daily basis. 

These VFSR images present fine spatial details that are spectrally and spatially 

complicated, thus posing huge challenges in automatic land cover (LC) and land use 

(LU) classification. Deep learning reignited the pursuit of artificial intelligence towards 

a general purpose machine to be able to perform any human-related tasks in an 

automated fashion. This is largely driven by the wave of excitement in deep machine 

learning to model the high-level abstractions through hierarchical feature 

representations without human-designed features or rules, which demonstrates great 

potential in identifying and characterising LC and LU patterns from VFSR imagery. In 

this thesis, a set of novel deep learning methods are developed for LC and LU image 

classification based on the deep convolutional neural networks (CNN) as an example. 

Several difficulties, however, are encountered when trying to apply the standard pixel-

wise CNN for LC and LU classification using VFSR images, including geometric 

distortions, boundary uncertainties and huge computational redundancy. These 

technical challenges for LC classification were solved either using rule-based decision 

fusion or through uncertainty modelling using rough set theory. For land use, an object-

based CNN method was proposed, in which each segmented object (a group of 

homogeneous pixels) was sampled and predicted by CNN with both within-object and 

between-object information. LU was, thus, classified with high accuracy and efficiency. 

Both LC and LU formulate a hierarchical ontology at the same geographical space, and 

such representations are modelled by their joint distribution, in which LC and LU are 

classified simultaneously through iteration. These developed deep learning techniques 

achieved by far the highest classification accuracy for both LC and LU, up to around 

90% accuracy, about 5% higher than the existing deep learning methods, and 10% 

greater than traditional pixel-based and object-based approaches. This research made a 

significant contribution in LC and LU classification through deep learning based 

innovations, and has great potential utility in a wide range of geospatial applications. 

 Keywords: deep learning, land cover classification, land use classification, very fine 

spatial resolution, remotely sensed imagery, hierarchical representations 
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Chapter 1      Introduction 

1.1      Project Background 

Ordnance Survey, the British National Mapping Agency, acquires thousands of square 

kilometres of aerial photography each year to update their imagery and topographic 

products. For example, in 2015, 139, 000 images were acquired, covering 56, 000 km2 

of Great Britain. The volume of sensor data being flown is constantly growing in terms 

of increasing both spatial resolution (up to 25 cm) and temporal frequency (twice a 

year), owing to the improved instrumentation and the pressure from potential customers 

and end-users to increase data currency. The considerable majority of the ground 

features were captured manually through on-site survey and aerial photo interpretation, 

which are extremely labour-intensive and time-consuming. Arguably, this large archive 

of aerial imagery is highly under-utilised and could be ‘mined’ for much more 

information efficiently and effectively through modern geospatial artificial intelligence 

(AI) and machine learning.  

1.2      Real-world Demands from Ordnance Survey 

Great Britain is one of the most highly urbanised countries around the world (Bibby 

2009). The urban areas in Britain developed over thousands of years of human 

habitation, and are still rapidly changing with fast-paced and poorly-planned urban 

growth (Dwyer 2011), posing grand challenges across the country: from environmental 

degradation and food insecurity, to unsustainable economy. Such demanding problems, 

caused by rapid urban development, require responsive plans and decisions from 

environmental planners, policy makers, and local government authorities (Hu and 
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Wang 2013).  Accurate and up-to-date land cover and land use (LULC) information is, 

therefore, urgently needed to keep pace with the ever-changing urban environments and 

to support relevant policies and decision-making. 

As a government-owned company, Ordnance Survey has experienced increasing 

demand from customers, including, but not excluding UK government, different 

stakeholders and end-users, for both more bespoke products and rapid development of 

new products. The expectations of customers are driven by the offerings of other 

geospatial players, such as Google, as well as broader technological advances such as 

those included under banners as “big data”, “AI technologies” and “Smart Cities”. One 

of the key requirements is to obtain reliable LULC information in a detailed, coherent 

and consistent approach that promotes automation as part of the Industry 4.0 revolution. 

Such requirements of customers are greatly motivated and emboldened by the 

increasing volume of sensor data, substantially improved computational resources, and 

state-of-the-art geospatial technologies, where the characteristics of, and changes in, 

urban LULC can be extracted and analysed by developing intelligent and automatic 

methods through technological innovations. 

1.3      Broad Context and Academic Requirements 

Land cover and land use (LULC) information is essential for a variety of geospatial 

applications, such as urban planning, regional administration, and environmental 

management (Liu et al. 2017). It also serves as the basis for understanding the complex 

interactions between human activities and global environmental changes (Cassidy et al. 

2010, Patino and Duque 2013). Many predictive models (e.g. ecosystem, hydrologic, 

and transportation models) involve LULC as their input variables to simulate natural 

and anthropogenic processes and the functioning of the Earth surface (Verburg et al. 
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2011). Earth observations from diverse sources, including satellite, airborne, in situ 

platforms and citizen observatories provide great opportunities to identify the 

characteristics of, and changes in, LULC across different scales (Anderson et al. 2017). 

With the rapid development of sensors and devices, large quantities of very fine spatial 

resolution (VFSR) remotely sensed imagery are now commercially available with sub-

metre resolution, facilitating the acquisition of precise LULC information at fine spatial 

detail (Pesaresi et al. 2013, Zhao et al. 2016).  

Land cover (LC) classification using VFSR remotely sensed data can be a very 

complicated task due to the spectral and spatial complexity of the imagery. Land use 

(LU) classification, however, is even more challenging due to the indirect relationship 

between land use patterns and the spectral responses recorded in images. These land 

uses are typically defined in terms of functions or socioeconomic activities rather than 

physical forms of land covers, which can only be inferred in directly through the 

interpretation of tone, texture or shapes of the image features (Li et al. 2016). Often, 

the same land use types (e.g. residential areas) are characterised by distinctive physical 

properties or land cover materials (e.g. composed of different roof tiles, residential 

gardens, etc.), and different land use categories might exhibit the same or similar 

reflectance spectra and textures (e.g. tarmac roads and parking lots) (Pan et al. 2013). 

As a consequence, such spectral and spatial complexity and heterogeneity make 

automatic LC and LU classification using VFSR images an extremely challenging task. 

Over the past few decades, tremendous effort has been made in developing automatic 

LULC classification methods using VFSR remotely sensed data. These methods, 

particularly in terms of land cover settings, are designed primarily on the basis of 

spectral features reflected by the physical properties of the ground surface. Many per-
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pixel classification approaches (e.g. Multilayer Perceptron (MLP), Support Vector 

Machine (SVM) and Random Forest (RF), etc.) have been developed to learn the non-

linear spectral feature space at the pixel level irrespective of its statistical properties 

(Pacifici et al. 2009, Zhang et al. 2015). However, these pixel-based methods cannot 

guarantee high classification accuracy, particularly at fine spatial resolution, due to the 

fact that single fine pixels can lose their thematic meanings and discriminative 

efficiency to separate different types of land covers (Xia et al. 2017). Object-based 

methods, under the framework of object-based image analysis (OBIA), have dominated 

in land cover classification using VFSR imagery over the last decade (Blaschke et al. 

2014). Many studies applied OBIA approaches to obtain urban land cover information 

from VFSR images, by exploiting the use of spectral, textural, and geometrical 

information of image objects that are composed of relatively homogeneous 

neighbouring pixels (Myint et al. 2011). The major challenges of these object-based 

approaches, however, are the choice of segmentation scales to obtain objects that 

correspond to specific land cover types, in which over-segmentation and under-

segmentation commonly exist within the same image (Ming et al. 2015). So far, existing 

techniques remain inadequate to analyse the data properly, and no effective solution 

has been proposed for land cover classification using VFSR remotely sensed imagery.  

Land use (LU) classification, in comparison with land cover (LC) classification, is less 

explored due to the complexity in spatial composition and configuration, where the land 

use patterns are formed by high-level semantics or functions. For example, land cover 

objects can be recognised as buildings, grassland, woodland etc. based on the low-level 

feature descriptors (spectra, texture, shape etc.), whereas land use features are 

characterised as functional types with high-level semantics, such as residential, 

commercial, and industrial areas (Bratasanu et al. 2011, Zhong et al. 2015, Liu et al. 
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2017). Such disparity has resulted in a semantic gap between the ‘information’ coming 

from the data itself and the ‘knowledge’ specific to users and applications (Bratasanu 

et al. 2011). To bridge such a semantic gap, many researches have attempted to 

incorporate expert knowledge or ancillary data as spatial context for land use feature 

extraction. They have generally developed as two-step pipelines, in which object-based 

land covers were extracted initially, followed by aggregating these land cover objects 

using spatial contextual descriptive indicators defined on land use units, such as 

cadastral fields or street blocks (Hermosilla et al. 2012). Yet, the ancillary geographic 

data for specifying the land use units might not be available for some regions (Li et al. 

2016), and the spatial contexts are often hard to describe and characterise as a set of 

“rules”, even though the complex structures or patterns might be recognisable and 

distinguishable for human experts (Oliva-Santos et al. 2014). 

1.4      Deep Learning in Remote Sensing 

Recent advances in AI and machine learning, especially the emerging field of deep 

learning, have changed the way we process, analyse and manipulate geospatial sensor 

data. This is largely driven by the wave of excitement in deep machine learning, as a 

new frontier of AI, where the most representative and discriminative features are learnt 

end-to-end, hierarchically (Arel et al. 2010). Deep learning methods have achieved 

huge success not only in classical computer vision tasks, such as target detection, visual 

recognition, and robotics, but also in many other practical applications (Hu et al. 2015, 

Nogueira et al. 2017). They have made considerable improvements beyond the state-

of-the-art records in a variety of domains, and have attracted great interest in both 

academia and industrial communities.  
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The essence of deep learning is about representation learning or feature learning, where 

the most representative and discriminative features are learnt end-to-end, hierarchically 

(Chen et al. 2016). Unlike their shallow counterparts, such as support vector machine 

and multi-layer perceptron, deep learning methods do not rely on the prior feature 

extractions or human feature design, but rather learn the higher-level feature 

representations through models themselves to enhance the generalisation capabilities 

(Arel et al. 2010). In addition, the deep layers of representations have great potential to 

characterise robust features with complex patterns and semantics, such as land use, 

functional sites etc. One typical example is the railway station that is comprised of long 

thin platforms and long thin roofs together with a set of objects that surround it (e.g. 

railway lines, car park and multiple roads) (Tang et al. 2016). Deep learning methods 

are naturally a good fit to capture such kinds of feature representations with high-level 

semantics (Nogueira et al. 2017). 

Over the past few years, deep learning and, in particular, deep convolutional neural 

networks (CNNs), have gained significant attention in the image analysis community 

(Krizhevsky et al. 2012, Yang et al. 2015). They were originally devised for image 

categorisation, where an image is assigned to a specific semantic category according to 

its content, such as natural scenes used in computer vision applications or remotely 

sensed land-use scenes, such as ‘airport’, ‘residential’ or ‘commercial’ (Maggiori et al. 

2017). These scene-level land use classifications, however, do not meet the actual 

requirement of land use image classification, which expects all pixels in an entire image 

to be identified and labelled into land use categories.  

In summary, although deep learning methods have their intrinsic advantages for 

learning hierarchical feature representations, their feasibility and actual utility in both 
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LC and LU image classification have not been explored until now, and the LU image 

classification, in particular, has not yet been solved due to the huge intra-class 

heterogeneity and inter-class similarity of land use features. In addition, both land cover 

and land use classifications are essentially the abstractions or generalisations of the real-

world landscape. The classification systems are presented at different levels, nested 

within each other hierarchically over the same geographical space.  Different ground 

features occur across different scales, and their mapping objectives are strongly 

dependent upon the applications of interest (Heydari and Mountrakis 2018). Until now, 

it is still an open question how to appropriately adopt or develop CNN-based methods 

to solve the complex LC and LU classification tasks using VFSR remotely sensed 

imagery.  

1.5      Research Objectives and Questions 

The main objective of this PhD thesis was to produce the most accurate land cover and 

land use maps that are most suitable for meeting the potential customer requirements 

from Ordnance Survey, such as to identify and understand land use changes in a fast 

changing urban environment. To reach this aim, the following specific objectives and 

questions are posed. 

1) Develop a deep learning method for land cover classification using VFSR 

remotely sensed images. 

Research question: Can a novel method be developed based on CNNs to solve 

complex land cover classification using VFSR remotely sensed images? 

 

2) Model the uncertainty in deep learning for VFSR land cover image 

classification. 

Research question: Can a novel method be developed to quantify and model 

the uncertainty within the VFSR land cover classification using deep CNNs? 
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3) Develop a deep learning method to solve the complex land use classification 

using VFSR remotely sensed imagery. 

Research question: Can a novel method be developed based on CNNs to solve 

complex land use image classification problems using VFSR remotely sensed 

imagery? 

 

4) Develop a novel method for joint land cover and land use classification using 

VFSR remotely sensed imagery. 

Research question: Can the complex hierarchical relationship between land 

cover and land use be modelled jointly? 

Research question: Can a novel method be developed for joint land cover and 

land use classification using VFSR remotely sensed imagery? 

 

1.6      Thesis Structure 

This thesis is based on a number of journal articles, either already published or prepared 

for publication (Chapters 3-6): 

Chapter 1 gives the general introduction of this thesis. It comes with commercial and 

academic needs and towards deep learning as the state-of-the-art methods, focusing on 

the challenges and opportunities for land cover and land use classification using VFSR 

remotely sensed imagery. 

Chapter 2 provides a concise review of the traditional and deep learning based methods 

in land use and land cover classification using VFSR imagery, and discusses the pros 

and cons as well as future research directions. 

Chapter 3 presents a hybrid MLP-CNN classifier for land cover image classification 

by using a rule-based fusion decision strategy. It was designed to solve the blurred 
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boundary issues in standard pixel-wise CNN methods by fusing with a pixel-based 

multilayer perceptron (MLP) classifier. 

Chapter 4 presents uncertainty modelling for CNN-based land cover classification 

using rough set theory. A variable precision rough set (VPRS) model was proposed to 

quantify the uncertainty within the CNN classification map, and the uncertain regions 

were rectified by using a Markov random field (MRF) through precise segmentation 

and spectral differentiation. 

Chapter 5 presents an object-based CNN (OCNN) for complex urban land use 

classification. The OCNN method was proposed to analyse a group of pixels as an 

object with geometry, and incorporate spatial context to classify different urban land 

use classes with high accuracy and efficiency. 

Chapter 6 presents a Joint Deep Learning (JDL) for land cover and land use 

classification. Both land cover and land use classifications formulate a hierarchical 

ontology within the same geographical space, and such representations are modelled by 

their joint distribution as a Markov process, in which land cover and land use are 

classified simultaneously through iteration. 

Chapter 7 summarises the results obtained from Chapters 3 – 6, and answers the 

research questions in Chapter 1, followed by reflections and future recommendations 

as well as concluding remarks of this thesis.  
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Chapter 2      Literature Review 

The last decades have seen a constellation of sensors borne by diverse Earth observation 

platforms, including satellites, aerial systems and unmanned aerial vehicles (Othman et 

al. 2017). Such technological advances have resulted in significant growth in the 

availability of very fine spatial resolution (VFSR) imagery on a daily basis (Yao et al. 

2016). Those VFSR images provide unprecedented spatial detail, which facilitate many 

practical applications, such as precision agriculture (Ozdarici-Ok et al. 2015), traffic 

monitoring (Larsen et al. 2013), and urban planning (Caccetta et al. 2016). Land cover 

(LC) and land use (LU) classifications are widely used to extract meaningful 

information for these purposes (Malinverni et al. 2011). However, LC classification 

from VFSR remotely sensed imagery is very complex, due to the huge within-class 

spectral heterogeneity caused by the differences in age, level of maintenance and 

composition as well as illumination conditions (Demarchi et al. 2014), which might be 

further complicated by the scattering of peripheral ground objects (Chen et al. 2014). 

Classification of land use (LU) is even more challenging, because of its indirect 

relationship with the physical characteristics of the Earth surface recorded by the VFSR 

images (Pan et al. 2013). LU refers to functions or human activities, which cannot be 

interpreted by using tone, texture or shapes of image features (Li et al. 2016). Indeed, 

the classification of LC and LU from VFSR remotely sensed images is still an open and 

unsolved task in the remote sensing community. 
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2.1      Traditional LC and LU Classification Approaches 

Over the past decade, tremendous effort has been made in developing automatic LU 

and LC classification methods using VFSR remotely sensed imagery. For LC, 

traditional classification approaches can be divided broadly into pixel-based and object-

based methods depending on the basic processing units, either per-pixel or per-object 

(Salehi et al. 2012). Pixel-based methods are used widely to classify individual pixels 

into particular land cover categories purely based on spectral reflectance, without taking 

consideration of neighbouring pixels (Verburg et al. 2011). These methods are often 

limited in classification performance due to the speckle and increased inter-class 

variance in comparison with coarse or medium spatial resolution remotely sensed data. 

To overcome the weakness of pixel-based approaches, some post-classification 

approaches have been introduced (e.g. Hester et al. 2008, McRoberts 2013). However, 

these techniques could eliminate small classes with few pixels or single family classes 

such as houses or small scrubland areas. Object-based methods, under the framework 

of object-based image analysis (OBIA), have dominated in land cover classification 

using VFSR imagery over the last decade (Blaschke et al. 2014). These OBIA 

approaches are built upon relatively homogeneous objects that are composed of pixel 

values across the image, for the identification of land covers through physical properties 

(such as spectra, texture, and shape) of ground components. The major challenges in 

applying these object-based approaches are the selection of segmentation scales to 

obtain objects that correspond to specific land cover types, in which over-segmentation 

and under-segmentation commonly exist within the same image (Ming et al. 2015). As 

a result, the LC classification task is very challenging, especially for urban areas, which 

exhibit high intra-class variation with huge diversity of land cover objects (e.g. 

buildings with different roof tiles), and low inter-class disparity with similar visual 
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characteristics for different land cover types (e.g. buildings and roads). Meanwhile, 

these fine-structured objects often interact with each other through occlusions and cast 

shadows, which poses additional challenges to identify them precisely and accurately. 

To date, no effective solution has been proposed for land cover classification using 

VFSR remotely sensed imagery. 

Similar to land cover classification, traditional land use classification methods using 

VFSR data can generally be categorised into three types, including pixels, moving 

windows, and objects. The pixel-level approaches that rely purely upon spectral 

characteristics are suitable for classifying land cover, but are insufficient to distinguish 

land uses that are typically composed of multiple land covers, and such problems are 

particularly significant in urban settings (Zhao et al. 2016). Spatial information, that is, 

texture (Myint 2001, Herold et al. 2003) or context (Wu et al. 2009), was incorporated 

to analyse land use patterns through moving kernel windows (Niemeyer et al. 2014). 

However, it could be argued that both pixel-based and moving window-based methods 

require predefinition of arbitrary image structures, whereas actual objects and regions 

might be irregularly shaped in the real world (Herold et al. 2003). Therefore, the OBIA 

framework has been used to characterise land use based on spatial context. Typically, 

two kinds of information within a spatial partition were utilised, namely, the within-

object information (e.g. spectral, texture, shape) and the between-object information 

(e.g. connectivity, contiguity, distances, and direction amongst adjacent objects). Many 

studies applied OBIA for land use classification using within-object information with a 

set of low-level features (such as spectra, texture, shape) of the land features (e.g. 

Blaschke 2010, Hu and Wang 2013, Blaschke et al. 2014). These OBIA methods, 

however, might overlook semantic functions or spatial configurations due to the 

inability to use low-level features in semantic feature representation. In this context, 
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researchers have developed a two-step pipeline, where object-based land covers were 

extracted initially, followed by aggregating the objects using spatial contextual 

descriptive indicators on well-defined land use units, such as cadastral fields or street 

blocks. Those descriptive indicators were commonly derived by means of spatial 

metrics to quantify their morphological properties (Yoshida and Omae 2005) or graph-

based methods that model the spatial relationships (Barr and Barnsley 1997, Walde et 

al. 2014). Nevertheless, the ancillary geographic data for specifying the land use units 

might not be available for some regions, and the spatial contexts are often hard to 

describe and characterise as a set of “rules”, even though the complex structures or 

patterns might be recognizable and distinguishable for human experts (Oliva-Santos et 

al. 2014). 

2.2      Problems in Traditional LC and LU Classification Approaches 

Most traditional classification methods for both LC and LU, are hand engineered in 

feature design coupled with classifiers in shallow structure and architecture. They 

typically involve two separate but complementary steps for feature extraction and 

classification (Volpi and Tuia 2017). Feature extraction is implemented by specific 

operators on local portions of the image (e.g. image patches, super-pixels or regions, 

objects etc.), to transform the original spectral feature space into compact and/or 

abstract representations that are amenable to being readily separated by a classifier (Sun 

et al. 2014). Such transformed spatial features are thereafter used together with original 

spectra to train some sort of supervised classifiers (e.g. Support Vector Machine), in 

order to recognise the semantic content of the input imagery (Chen et al. 2016). The 

performance of any classifier used is heavily affected by the used transformations and 

the consequent spatial features. Common examples of such operators include texture 
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descriptors (Reis and Tasdemir 2011), mathematical morphology (Pingel et al. 2013), 

and oriented gradients (Cheng et al. 2013). The process of hand-engineering features, 

however, often involves a tedious trial-and-error procedure for feature extraction and 

selection (Volpi and Tuia 2017). Those hand-coded features are often task-specific and 

might be useful for a particular region and/or problem. Moreover, the used low-level 

features followed by shallow architectures of the classifiers, are insufficient to mine the 

underlying semantics or functions due to the lack of higher-level feature representations 

(Liu et al. 2017). Thus, limited classification performance has been achieved to-date 

using VFSR images that are spectrally and structurally complicated. 

2.3      An Overview of Deep Learning in Remote Sensing 

Deep learning offers a different outlook on feature learning and representations, where 

robust, abstract and invariant features are learnt end-to-end, hierarchically, from raw 

data (e.g. image pixels) to semantic labels, which is a key advantage in comparison with 

previous state-of-the-art methods (Nogueira et al. 2017). Many deep learning-based 

methods have been proposed, including deep belief networks (DBNs) (Chen et al. 

2015), deep Boltzmann machines (DBMs) (Qin et al. 2017), stacked autoencoder (SDE) 

(Yao et al. 2016), and deep convolutional neural networks (CNNs) (Maggiori et al. 

2017). Amongst them, the CNN model represents the most well-established method, 

with impressive performance and great success in the field of computer vision and 

pattern recognition (Schmidhuber 2015), such as for visual recognition (Krizhevsky et 

al. 2012, Farabet et al. 2013), image retrieval (Yang et al. 2015) and scene annotation 

(Othman et al. 2016).  

Deep learning is taking off in the field of remote sensing (Zhu et al. 2017). Figure 2-1 

illustrates the number of papers published on the related topic since 2014. Clearly, the 
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exponential increase from only 3 in 2014 up to projected 200+ in 2018 demonstrates 

the rapid surge of interest in deep learning within the remote sensing community. These 

publications show huge potential and practical utility in several remote sensing tasks, 

such as object detection (Zhao et al. 2017), semantic segmentation (Fu et al. 2017), road 

extraction (Wei, et al. 2017), and land use scene classification (Liu, et al. 2018).  

 

Figure 2-1: The statistics for published papers related to deep learning in remote sensing. 

Table 2-1 - Summary of the deep learning for solving remote sensing tasks with the 

number of papers and example sources.  

 

Remote sensing tasks 
No of 

papers 
Source (examples) 

Target detection 22 Chen et al. 2014, Zhang et al. 2016, Long et al. 2017, Pei et al. 2018 

Road extraction 6 Wang et al. 2015, Panboonyuen et al. 2017, Wei et al. 2017 

Image processing 4 (Masi et al. 2016, Wei, Yuan, et al. 2017, Wang et al. 2018) 

Semantic segmentation 49 Paisitkriangkrai et al. 2016, Maggiori et al. 2017, Wu et al. 2018 

Land cover image classification 8 Kussul et al. 2017, Pan and Zhao 2017, Zhang et al. 2018 

Land use scene classification 72 Hu et al. 2015, Othman et al. 2016, Nogueira et al. 2017, Liu et al. 2018 

Change detection 5 Zhang et al. 2016, Gong et al. 2017, Su et al. 2017 

Table 2-1 summarises various remotely sensed applications using deep learning based 

methods. From the table, it can be seen that, there are seven types of major applications 
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in the remote sensing domain: target detection, road extraction, image processing, 

semantic segmentation, land cover image classification, land use scene classification 

and change detection. Among the seven applications, the land use scene classification 

(72 papers), semantic segmentation (49 papers) and target detection (22 papers) 

constitute the majority cases, whereas others are less researched so far. These previous 

works represent the research focus and hot topics of deep learning in the remote sensing 

domain. Note, while this section covers the most important contributions in the 

literature; it will not provide a comprehensive review of deep learning in remote sensing 

(Zhang et al. 2016, Zhu et al. 2017). Instead, the purpose is to provide a concise 

overview of deep learning methods for classifying LC and LU using VFSR remotely 

sensed imagery. We focus on deep convolutional neural networks (CNN), as they are 

the most typical and well-established deep learning method that has been adopted in 

the remote sensing domain.  

Deep CNNs are a variant of multilayer neural networks that are specifically designed 

to process large-scale images or sensory data in the form of multiple arrays by 

considering local and global stationary properties (LeCun et al. 2015). The essential 

characteristic of CNNs is their translational invariance through a patch-based 

procedure, in which a higher-level object within an image patch can be recognised even 

if the pixels comprising the object are shifted or distorted. Deep CNNs were originally 

designed to solve the image categorisation task, i.e. to assign the entire image into a 

semantic class such as a digit (LeCun et al. 1998) or an object category (Krizhevsky et 

al. 2012). In the remote sensing domain, the equivalent problem is to solve the remotely 

sensed scene classification task, in which an image patch is assigned to a specific 

category, such as ‘airport’, ‘residential’, ‘commercial’. These sorts of land use scene 

classification tasks are closely related to object detection (Zhang et al. 2016) and 
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localisation (Long et al. 2017), where the translational invariance is the key advantage 

of the CNN to detect the object with higher order features, such as land use or functional 

sites. However, this characteristic becomes a major weakness in LC and LU 

classification for pixel-level differentiation, from which blurred boundaries are 

produced between ground surface objects. Here, we review the classification of both 

LC and LU using CNNs to elaborate these challenges in detail and identify the research 

gaps. 

2.4      Deep CNN for LC Classification 

Land cover (LC) classification using CNN models can be divided broadly into two 

categories based on processing units, including patch-based and pixel-based 

procedures. The patch-based processes for LC classification involve an image patch 

passing through the entire image pixel-by-pixel, with densely overlapping patches used 

for land cover predictions (Fu et al. 2017). In this context, researchers have made some 

progress using patch-based CNN models. For example, Mnih (2013) proposed a patch-

based CNN architecture to learn large-scale contextual features for aerial image 

labelling. The model produced a dense classification patch, instead of outputting a 

single value image category, in which spatial contextual features were learnt to better 

distinguish the land cover classes. Längkvist et al. (2016) used the standard pixel-wise 

CNN with densely overlapping patches to classify the image into five land cover classes 

(vegetation, ground, road, building, and water), outperforming the existing 

classification approaches. Sharma et al. (2017) extracted image patches for all possible 

locations within medium-resolution remotely sensed data, and classified them into LC 

categories respectively. However, such a patch-wise procedure has the disadvantage of 

introducing artefacts at the border of the classified patches, and the use of the 
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overlapped patches introduces too much redundant computations, thus, severely 

restricting the actual utility of the method for large-scale land cover classification (Fu 

et al. 2017, Maggiori et al. 2017). Recent research has shifted the focus on patch-based 

CNN for land cover classification towards designing pixel-level architectures for pixel 

labelling using VFSR remotely sensed imagery (Volpi and Tuia 2017). Particularly, the 

fully convolutional networks (FCN) and their extensions (Paisitkriangkrai et al. 2016, 

Wang et al. 2017, Zhao et al. 2017) were proposed for the task of semantic segmentation 

to classify a set of low-level land cover semantics, such as building, grassland and cars 

(Liu et al. 2017). These FCN-based methods involve convolution and down-sampling 

together with subsequent up-sampling to maintain the resolution of output map to be 

the same as the original input image, where the class likelihoods for an entire image 

were produced for pixel-wise semantic segmentation (Chen et al. 2016). However, the 

convolution utilises the neighbourhood information as context, and there is a trade-off 

between strong down-sampling, which allows the network to see a large context, but 

loses fine spatial details for precise boundary delineation (Marmanis et al. 2018). 

Besides, the up-sampling layers are performed in a sense of interpolation at the pixel 

level that tends to over-smooth the object with insufficient spatial information during 

the inference stage (Liu et al. 2017). As a consequence, the FCN models still face 

challenges in pixel-wise dense labelling.  

Some other research has attempted to mitigate the blurring of boundaries due to down-

sampling and up-sampling, either by using the “atrous” convolution (dilated 

convolution) to increase the density of the predicted class labels, or by adding skip 

connections within the network architectures, so that the fine resolution details were re-

introduced after up-sampling (Marmanis et al. 2018). Still, these extension methods 

resulted in blurred boundary delineations when applied to VFSR remotely sensed 
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imagery with many small objects nested within each other. Others took the CNN as a 

rough classifier for object localisation, and further rectified the edges during the post-

classification process by using the original image as the guidance for precise 

segmentation (Maggiori et al. 2017). For example, Längkvist et al. (2016) merged the 

standard pixel-wise CNN with segmented regions to smooth the classification results 

through average post-processing. Zhao et al. (2017) proposed a contour-preserving 

CNN method for semantic segmentation, and smoothed the classification results 

through post-processing using a conditional random field (CRF). Similarly, Fu et al. 

(2017) used FCN-based approaches for dense classification, and then performed the 

CRF method as a post-processing to refine the region boundaries. Marmanis et al. 

(2018) applied a special structure of FCN (SegNet), and smoothed the results using 

CRF for semantic segmentation. However, these post-processing procedures (either by 

averaging over segmented regions or using a CRF approach) can only partially address 

the boundary issues caused by CNN models by smoothing the outputs at the price of 

losing fine spatial detail. Often, some small features with linearly shaped objects, such 

as canal, railway, were easily eliminated through post-processing processes, which is 

undesirable in the case of VFSR remotely sensed image classification. 

2.5      Deep CNN for LU Classification 

Land use (LU) classification from VFSR remotely sensed data using CNN models has 

been undertaken in the form of land-use scene classification, which aims to assign a 

semantic label (e.g. tennis court, parking lot, etc.) to an image according to its content 

(Chen et al., 2016; Nogueira et al., 2017). There are broadly two strategies to exploit 

the CNN models for remotely sensed scene classification, namely; i) pre-trained or fine-

tuned CNN, and ii) fully-trained CNN from scratch. Many researchers used the first 
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strategy primarily because the sample size in remote sensing tends to be small (up to 

several thousands), and sometimes cannot support the parameterisation of a deep 

network, such as AlexNet with 8 layers (Krizhevsky et al. 2012), visual geometry group 

network (VGG-Net) with 16 layers (Simonyan and Zisserman 2015), GoogLeNet with 

22 layers (Szegedy et al. 2015), deep residual network with 34 or 50 layers (He et al. 

2016). They normally pre-trained a deep CNN network on a natural image dataset such 

as ImageNet (Krizhevsky et al. 2012), and transferred this to the scene classification 

problem in the remote sensing domain, which was demonstrated to be empirically 

useful for the classification of land use scenes. For example, Hu et al. (2015) 

investigated the problem of transferring features from CNN models that are pre-trained 

on a large auxiliary labelled dataset. Marmanis et al. (2016) used the pre-trained 

AlexNet model as a feature extractor, and then transferred this into a supervised CNN 

for scene classification. Chaib et al. (2017) extracted deep features from a pre-trained 

VGG-Net, and fine-tuned on remotely sensed scene datasets, including the UC Merced 

(Yang and Newsam 2010), WHU-RS (Shao et al. 2013) and AID datasets (Xia et al. 

2017). Nogueira et al. (2017) thoroughly discussed three strategies for exploiting the 

power of CNNs, including fully trained, pre-trained with fine-tuning, and using CNN 

directly as feature extractor. The empirical results demonstrate that the “pre-trained 

with fine-tuning” strategy tends to be more accurate than others given the limited 

training sample size. However, it requires three input channels derived from natural 

images with RGB only, whereas the multispectral remotely sensed imagery often 

involves the near infrared band, and such a distinction restricts the utility of pre-trained 

CNN networks. Alternatively, the (ii) fully-trained CNN strategy gives full control over 

the network architecture and parameters, which brings greater flexibility and 

expandability (Chen et al. 2016). Previous researchers have explored the feasibility of 
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the fully-trained approaches in building CNN models for scene level land-use 

classification. For example, Luus et al. (2015) proposed a multi-view CNN with multi-

scale input strategies to address the issue of land use scene classification and its scale-

dependent characteristics. Othman et al. (2016) used convolutional features and a sparse 

auto-encoder for scene-level land-use image classification, which further demonstrated 

the superiority of CNNs in feature learning and representation. Zhang et al. (2016) 

proposed a gradient boosting CNN model that outperformed other classical machine 

learning methods for remotely sensed scene classification. Liu et al. (2018) developed 

a deep random-scale stretched CNN for fine resolution remotely sensed scene 

classification, with patches of random scales used as inputs to strengthen the robustness 

of the CNN to scale variation. Experimental results demonstrated that the proposed 

CNN with random-scale stretched patches outperformed both classical machine 

learning methods and other off-the-shelf deep learning methods. 

Although great success has been achieved in land use scene classification based on 

CNN models, they are essentially different from remotely sensed image classification, 

which requires all pixels in an entire image to be identified and labelled into land use 

categories (i.e., producing a LU thematic map). In such a context, a dense pixel-wise 

semantic labelling is required, and the spatial resolution should be preserved to 

precisely locate the object boundaries (Maggiori et al. 2017). This is not straightforward 

to implement, because the well-known trade-off between recognition with translation 

invariance and localisation without translation invariance. Due to the characteristic of 

translation invariance, CNNs demonstrate a structural limitation to perform fine-

grained classification at the pixel level. Indeed, in VFSR remotely sensed imagery, even 

if few pixels were moved, the label would change abruptly when passing through the 

object boundaries. Therefore, it is of paramount importance to design specific deep 
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architectures to overcome the structural issues in terms of losing resolution and to solve 

the challenging problem of land use image classification. 

Let us remark that the existing CNN models, either patch-based or pixel-based 

architectures, are not well designed and cannot be directly transferred to the problem of 

dense LC and LU image classification, which forms the research gap to be solved in 

this thesis. Based on the classification hierarchies, the previous work for pixel-wise 

classification using CNNs were all designed to address land cover classification tasks. 

For example, the well-known ISPRS semantic labelling dataset considers six land 

covers to be classified, including buildings, impervious surface, low vegetation, trees, 

cars, and clutters (Wang et al. 2017). Whereas land use image classification, which 

expects to classify each pixel into a specific land use, such as residential, commercial, 

industrial etc., has not been explored through the CNN based methods. The key thing 

is the context in a sense that a building cannot be identified as a commercial area 

without understanding the spatial and hierarchical relationships in a wide context (e.g. 

supermarkets, parking lots, and surrounding residential areas). However, as discussed 

beforehand, there is a strong trade-off between contextual information and the spatial 

precision. Essentially, a fine resolution thematic map is required for land use image 

classification that characterises the higher level functional representations and semantic 

meanings.  
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Table 2-2 - Summary of the state-of-the-art LC/LU classification methods with their typical input data, LC/LU classes as well as accuracy ranges.

LC/LU Classification Method Source (Examples) Typical Input Data LC/LU Classes Accuracy Range 

Pixel-based MLP 
Atkinson and Tatnall 1997, Del Frate et 
al. 2007, Hu and Weng 2009, Pacifici et 

al. 2009, Jiang et al. 2018 

Landsat 5, SPOT 5, IKNOS, 
QuickBird satellite imagery 

Land cover/use 
depends on specific 
applications (urban 

fabric extraction, forest 
canopy mapping, crop 

classification, ecological 
habitat mapping, et al.) 

75.62% - 81.04% 

Pixel-based SVM 
Foody and Mathur 2004, Mountrakis et 
al. 2011, Ok 2013, Dragozi et al. 2014, 

Ozdarici-Ok et al. 2015, Zhang et al. 2015 

Landsat 5, SPOT 5, IKNOS, 
QuickBird satellite imagery 

74.85% - 81.96% 

Pixel-based RF 
Sesnie et al. 2010, Guo et al. 2011, 

Bechtel and Daneke 2012, Naidoo et al. 
2012, Ahmed et al. 2015 

Landsat 5, SPOT 5, IKNOS, 
QuickBird satellite imagery 

74.56% - 82.42% 

Object-based OBIA SVM 
Conchedda et al. 2008, Li et al. 2010, 
2015, Duro et al. 2012, Vetrivel et al. 

2015 

SPOT 5, IKNOS, QuickBird, 
WorldView-2, WorldView-3, 

GeoEye satellite imagery 
80.28% - 83.86% 

Patch-based CNN 
Romero et al. 2016, Zhao and Du 2016, 
Pan and Zhao 2017, Sharma et al. 2017 

WorldView-2 satellite imagery 
(Beijing Dataset), Landsat 8 

imagery 

Vegetation, ground, 
road, building, water 

80.12% - 84.53% 

CNN with segmented object averaging 
Längkvist et al. 2016, Paisitkriangkrai et 

al. 2016, Zhao et al. 2017 

Aerial imagery (Vaihingen 
Dataset), WorldView-2 
satellite image (Beijing 

Dataset) 

Building, Impervious 
Surface, Tree, Low 

Vegetation, Car 
82.03% - 85.81% 

CNN + Conditional Random Field 
(CRF) 

Panboonyuen et al. 2017, Zhao et al. 
2017, Pan and Zhao 2018, Wei et al. 2018 

Aerial imagery (Vaihingen 
Dataset and Potsdam Dataset) 

Building, Impervious 
Surface, Tree, Low 

Vegetation, Car 
84.06% - 86.64%  

SegNet 
Cheng et al. 2017, Volpi and Tuia 2017, 
Arief et al. 2018, Audebert et al. 2018 

Aerial imagery (Vaihingen 
Dataset and Potsdam Dataset) 

and DSM 

Building, Impervious 
Surface, Tree, Low 

Vegetation, Car 
83.79% - 86.75% 

Fully convolutional network (FCN) + 
CRF 

Fu et al. 2017, Maggiori et al. 2017, Wang 
et al. 2017, Marmanis et al. 2018 

Aerial imagery (Vaihingen 
Dataset and Potsdam Dataset) 

and DSM 

Building, Impervious 
Surface, Tree, Low 

Vegetation, Car 
84.92% - 86.80% 
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2.6      Summary of LC and LU Classification methods 

To synthesis the literature review in a systematic fashion, the LC and LU classification 

methods developed so far are summarised in Table 2-2. The reviewed classification 

methods start with pixel-based machine learning methods (MLP, SVM, RF), follow by 

object-based SVM as the OBIA paradigm, and reach the existing deep learning methods 

(patch-based CNN, CNN with segmented object averaging, CNN with CRF, and FCN 

with CRF). These classification methods take satellite and aerial imagery as their input 

data sources, which are classified into several land cover/use classes (primarily simple 

land covers), such as buildings, roads, trees etc. The pixel-based MLP has an accuracy 

range of (75.62% - 81.04%), similar to the pixel-based SVM (74.85% - 81.96%), and 

the pixel-based RF (74.56% - 82.42%). Compared with pixel-based approaches, 

Object-based SVM achieves a slightly higher accuracy (80.28% - 83.86%), owing to 

its consideration of spatial context. However, these traditional methods rely on hand 

coded features or rules that are hard to be designed and subject to user knowledge and 

expertise. Deep learning based methods have been actively studied as they can 

automatically learn the feature representations other than human designed features, 

with promising performance being demonstrated over the past few years. The patch-

based CNN has an increased accuracy range compared with other traditional methods 

(80.12% - 84.53%), but at the price of losing spatial resolution and blurring the edges 

of ground features. Recent development in deep learning methods have made some 

progresses in addressing these problems through post-processing. For example, the 

CNN integrates with segmented object averaging at the post-classification process 

acquires an accuracy range of (82.03% - 85.81%). The patch-based CNNs together with 

conditional random field (CRF) are proposed to further enhance the accuracy range 
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using the class specific probability distribution along the boundaries (84.06% - 

86.64%). A special deep architecture (SegNet) gains popular interest in remote sensing 

community for pixel-wise semantic labelling, leading to an accuracy range of (83.79% 

- 86.75%). Such networks are generalised as fully convolutional networks (FCN) with 

various extensions (e.g. via dilated convolution or through CRF post-processing) for 

semantic segmentation. The typical accuracy range for FCN with CRF is up to 84.92% 

- 86.80%, with an accuracy of 85% in average. 

To summarise, the traditional pixel-based machine learning methods and the object-

based methods have an average classification accuracy of 80%, whereas most of the 

reviewed deep learning methods achieve around 85% classification accuracy. However, 

all the existing methods have different kinds of problems and challenges outlined in 2.3 

– 2.5. The aim of this thesis is to develop novel deep learning methods that can push 

the boundary of classification accuracy towards the most accurate LC and LU 

classification approaches. 
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Chapter 3      A hybrid MLP-CNN classifier for very 
fine resolution remotely sensed image 
classification1 

                                                 
1 This chapter is based on the published paper: Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., Atkinson, 

P.M., 2018a, A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS 

Journal of Photogrammetry and Remote Sensing, 140: 133-144. https://doi.org/10.1016/j.isprsjprs.2017.07.014. 
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Abstract 

The contextual-based convolutional neural network (CNN) with deep architecture and 

pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized 

neural network algorithms, representing the state-of-the-art deep learning method and 

the classical non-parametric machine learning approach, respectively. The two 

algorithms, which have very different behaviours, were integrated in a concise and 

effective way using a rule-based decision fusion approach for the classification of very 

fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, 

designed primarily based on the classification confidence of the CNN, reflect the 

generally complementary patterns of the individual classifiers. In consequence, the 

proposed ensemble classifier MLP-CNN harvests the complementary results acquired 

from the CNN based on deep spatial feature representation and from the MLP based on 

spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of 

convolutional filters such as the uncertainty in object boundary partition and loss of 

useful fine spatial resolution detail were compensated. The effectiveness of the 

ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial 

photography together with an additional satellite sensor dataset.  The MLP-CNN 

classifier achieved promising performance, consistently outperforming the pixel-based 

MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of 

classification accuracy. This research paves the way to effectively address the 

complicated problem of VFSR image classification. 

Keywords: convolutional neural network; multilayer perceptron; VFSR remotely 

sensed imagery; fusion decision; feature representation 
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3.1      Introduction 

With the rapid development of modern remote sensing technologies, a large quantity of 

very fine spatial resolution (VFSR) images is now commercially available. These 

VFSR images, typically acquired at sub-metre spatial resolution, have opened up many 

opportunities for new applications (Zhong et al. 2014), for example, urban land use 

retrieval , precision agriculture (Zhang and Kovacs 2012, Ozdarici-Ok et al. 2015), and 

tree crown delineation (Ardila et al. 2011, Yin et al. 2015). However, despite the 

presence of a rich spatial data content (Huang et al. 2014), the information conveyed 

by the imagery is conditional upon the quality of the processing (Längkvist et al. 2016). 

With fewer spectral channels in comparison with coarse or medium spatial resolution 

remotely sensed data, it can be challenging to differentiate subtle differences amongst 

similar land cover types (Powers et al. 2015). Meanwhile, objects of the same class may 

exhibit strong spectral heterogeneity due to differences in age, level of maintenance and 

composition as well as illumination conditions (Demarchi et al. 2014), which might be 

further complicated by the scattering of peripheral ground objects (Chen et al. 2014). 

As a consequence, such high intra-class variability and low inter-class disparity make 

automatic classification of VFSR images a challenging task. 

Ever since the advent of VFSR imagery, tremendous efforts have been made to develop 

robust and accurate, automatic image classification methods. Among these, machine 

learning is currently considered as the most promising and evolving approach (Zhang 

et al. 2015). Popular pixel-based machine learning algorithms, such as Multilayer 

Perceptron (MLP), Support Vector Machine (SVM) and Random Forest (RF), have 

drawn considerable attention in the remote sensing community (Yang et al. 2012, 

Attarchi and Gloaguen 2014, Zhang et al. 2015). The MLP, as a typical non-parametric 
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neural network classifier, is designed to learn the nonlinear spectral feature space at the 

pixel level irrespective of its statistical properties (Atkinson and Tatnall 1997, Foody 

and Arora 1997, Mas and Flores 2008). The MLP has been used widely in remote 

sensing applications, including VFSR-based land cover classification (e.g. Del Frate et 

al. (2007), Pacifici et al. (2009)). The MLP algorithm is mathematically complicated 

yet can be simple in model architecture (e.g., a shallow classifier with one or two feature 

representation levels). At the same time, a pixel-based MLP classifier does not consider, 

or make use of, the spatial patterns implicit in images, especially for VFSR imagery 

with unprecedented spatial detail. In essence, the MLP (and related algorithms, e.g. 

SVM, RF, etc.) is a pixel-based classifier with shallow structure (one or two layers) 

(Chen et al. 2016), where the membership association of a pixel for each class is 

predicted.  

Recent advances in neuroscience have shown that deep feature representations can be 

learned hierarchically from simple concepts such as oriented edges to higher-level 

complex patterns such as textures, segments, parts and objects (Arel et al. 2010). This 

discovery motivated the breakthrough of the so-called “deep learning” methods that 

represent the state-of-the-art in a variety of domains, including target detection (Chen 

et al. 2016, Tang et al. 2015), image recognition (Krizhevsky et al. 2012, Farabet et al. 

2013) and robotics (Yu et al. 2013, Bezak et al. 2014, Lenz et al. 2015), amongst others. 

The convolutional neural network (CNN), a well-established deep learning approach, 

has produced excellent results in the field of computer vision and pattern recognition 

(Schmidhuber 2015), such as for visual recognition (Krizhevsky et al. 2012, Farabet et 

al. 2013), image retrieval (Yang et al. 2015) and scene annotation (Othman et al. 2016).  
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In the remote sensing domain, CNNs have been studied actively and shown to produce 

state-of-the-art results over the past few years, focusing primarily on object detection 

(Dong et al. 2015) or scene classification (Hu et al. 2015, Zhang et al. 2016). Recent 

studies further explored the feasibility of CNNs for the task of remotely sensed image 

classification. For example, Yue et al. (2016) utilized spatial pyramid pooling to learn 

multi-scale spatial features from hyperspectral data, Chen et al. (2016) introduced a 3D 

CNN to jointly extract spectral–spatial features, thus, making full use of the continuous 

hyperspectral and spatial spaces. In terms of the classification of multi- and 

hyperspectral imagery, a deep CNN model was formulated through a greedy layer-wise 

unsupervised pre-training strategy (Romero et al. 2016), whereas an image pyramid 

was built up through upscaling the original image to capture the contextual information 

at multiple scales (Zhao and Du 2016). For VFSR image classification, CNN models 

with varying contextual input size were constructed to learn multi-scale features while 

preserving the original fine resolution information (Längkvist et al. 2016). All of the 

above-mentioned work applied CNNs with contextual patches as their inputs, and 

demonstrated the robustness and effectiveness in spatial feature representations with 

excellent classification performance. However, the benefits and shortcomings of the 

CNN as a classifier itself have not been studied thoroughly. In particular, the CNN, as 

a contextual classifier with deep structures (Szegedy et al. 2015), explores the complex 

spatial patterns hidden in the image that are not seen by representation in its shallow 

counterparts, whereas it may overlook certain information in spectral space observed 

by pixel-based classifiers. Moreover, uncertainties may appear in object boundaries due 

to the usage of convolutional filters of the CNN. These issues deserve further 

investigation. 
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Any single set of features (e.g., spectral only) or a specific classifier (e.g., pixel-based 

only) is unlikely to achieve the highest classification accuracies for VFSR imagery 

because the result is conditional upon both spectral and spatial information. In this 

context, two categories of spectral and spatial information were fused for classification 

or handled with a classifier ensemble. Information fusion can be realized by stacking 

the spatial and spectral information as feature bands. However, this does not allow the 

specification of the relative influence of the extracted features (Wang et al. 2016). 

Others proposed integrative algorithms considering the spatial and spectral features at 

the same time. For example, Fauvel et al. (2012) proposed a composite kernel-based 

SVM with spectral and spatial kernels applied simultaneously. However, the spatial 

kernel summarizes only basic information (e.g. median) of the spatial neighbourhood 

(Wang et al. 2016).  

In terms of classifier ensemble technology, two strategies, namely “multiple classifier 

systems” (Benediktsson 2009) and “decision fusion” (Fauvel et al. 2006) are employed. 

Multiple classifier systems are based on the manipulation of training sample sets, 

including boosting (Freund et al. 2003) and bagging (Breiman 1996). This ensemble 

approach, however, usually requires a relatively large sample size and the 

computational complexity tends to be high. An alternative classifier ensemble is 

derived from decision fusion of the outputs of different classification algorithms 

according to a certain combination of approaches (Du et al. 2012, Löw et al. 2015). 

This decision fusion-based ensemble approach is preferable where the individual 

classifiers demonstrate complementary behaviour. For instance, different non-

parametric classifiers are sometimes accurate in different locations in a classification 

map, thus, producing complementary results from the ensemble (Clinton et al. 2015, 

Löw et al. 2015). However, all the aforementioned fusion strategies are conducted using 
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pixel-based classifiers with shallow structures, whose complementary behaviours are 

insufficient to address the challenges of VFSR image classification. 

In this chapter, a hybrid classification system was proposed that combines the CNN (a 

contextual-based classifier with deep architectures) and MLP (a pixel-based classifier 

with shallow structures) using a rule-based decision fusion strategy. The hypothesis is 

that both MLP and CNN classifiers can provide different views or feature 

representations with strong complementarity. Thus, the classifier ensemble has the 

potential to enhance the final classification performance. The decision fusion rules were 

built up at the post-classification stage, primarily based on the confidence distribution 

of the contextual-based CNN classifier, such that the classified pixels with low 

confidence can be rectified by the MLP at the pixel level. The effectiveness of the 

proposed method was tested on images of both an urban scene and a rural area.  A 

benchmark comparison was provided by the standard pixel-based MLP, spectral-

texture based MLP as well as contextual-based CNN classifiers. 

3.2      Methodology 

3.2.1  Brief review of multilayer perceptron (MLP) 

A multilayer perceptron (MLP) is a network that maps sets of input data onto a set of 

outputs in a feedforward manner (Atkinson and Tatnall 1997). The typical structure is 

that the MLP is composed of interconnected nodes in multiple layers (input, hidden and 

output layers), with each layer fully connected to the preceding layer as well as the 

succeeding layer (Del Frate et al. 2007). The outputs of each node are weighted units 

followed by a nonlinear activation function to distinguish the data that are not linearly 

separable (Pacifici et al. 2009). Formally, the output activation 
)1( la  at layer l+1 is 

derived by the input activation
)(la : 
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 )( )()()()1( llll bawa    (3-1) 

where l corresponds to a specific layer, 
)(lw  and 

)(lb  denote the weight and bias at layer 

l, and  represents the nonlinear activation operation (e.g. sigmoid, hyperbolic 

tangent, rectified linear units) function. For an m layer multilayer perceptron, the first 

input layer is xa )1(
 while the last output layer is:  

 
)(

, )( m

bw axh   (3-2) 

The weights  and bias  in equation (3-2) are learned by supervised training using 

a backpropagation algorithm to approximate an unknown input-output relation (Del 

Frate et al. 2007). The objective function is to minimize the difference between the 

predicted outputs and the desired outputs: 

 
2
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2

1
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3.2.2  Brief review of Convolutional Neural Networks (CNN) 

A Convolutional Neural Network (CNN), is a variant of the multilayer feed forward 

neural networks, and is designed specifically to process large scale images or sensory 

data in the form of multiple arrays by considering local and global stationary properties 

(LeCun et al. 2015). Similar to the MLP, the CNN is a network stacked into a number 

of layers, where the output of the previous layer is connected sequentially to the input 

of the next one by a set of learnable weights and biases (Romero et al. 2016). The major 

difference is that each layer is represented as input and output feature maps by capturing 

different perspectives on features through the operation of convolution. 



w b
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The CNN basically consists of three major operations: convolution, nonlinearity and 

pooling/subsampling (Schmidhuber 2015). The convolutional and pooling layers are 

stacked together alternatively in the CNN framework, until obtaining the high-level 

features on which a fully connected classification is performed (LeCun et al. 2015). In 

addition, several feature maps may exist in each convolutional layer and the weights of 

convolutional nodes in the same map are shared. This setting enables the network to 

learn different features while keeping the number of parameters tractable. 

Mathematically, the output feature map 
)(

,

l

jiy  at convolutional layer l is calculated as: 

  
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where the 
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,
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mnw  denotes the convolutional filter with size k×k at layer l, and the 
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
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l

mjnix  represents the spatial position of the corresponding feature map at the 

preceding layer l-1. The algorithm passes the convolutional filter throughout the input 

feature map using the dot product  between them with an addition of a bias unit 
)(lb  

(Arel et al. 2010). Moreover, a nonlinear activation function 
)(l  at layer l is taken 

outside the dot product to strengthen the nonlinearity (Strigl et al. 2010).  

The pooling/subsampling layer can generalize the convolved features through down-

sampling and thereby reduce the computational complexity during the training process 

(Zhao and Du 2016). Given a pooling/subsampling layer q, the feature output 
qF  can 

be derived from the preceding layer )1( qf  through 
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where  is the size of the local spatial region, and pnmji /)1(,1  , here the 

m refers to the size of input feature map, while n corresponds to the size of filter   

)(
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(Längkvist et al. 2016). The  simply summarizes the input features within local 

spatial region using the maximum value (Figure 3-1: Pooling). By doing this, the learnt 

features become robust and abstract with certain sparseness and translation invariance.  

Once the higher level features are extracted, the output feature maps are flattened into 

a one-dimensional vector, followed by a fully connected output layer (Figure 3-1: fully 

connect). This operation is exactly a simple logistic regression, which is equivalent to 

the standard MLP discussed in section 2.1, but without any hidden layer. 

 

Figure 3-1: A schematic illustration of the three core layers within the CNN architecture, 

including the convolutional layer (convolution), pooling layer (pooling) and fully 

connected layer (fully connect). 

3.2.3  Hybrid MLP-CNN Classification Approach 

Suppose the predictive outputs of the MLP and CNN at each pixel are n-dimensional 

vectors ),...,,( 21 ncccC  , where n represents the number of classes and each dimension 

],1[ ni  corresponds to the probability of a specific class (i-th class) with certain 

membership association. Ideally, the probability of the classification prediction would 

be 1 for the target class and 0 for the others. However, due to the uncertainty in the 

process of remotely sensed image classification, the probability value c is denoted as

)},...,2,1(|{)( nxcxf x  , where ]1,0[xc  and 
n

xc
1

1 . The classification model 

max
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simply takes the maximum membership association as the predicted output label 

(denoted as class(C)): 

 
)}),...,2,1(|)(max({arg)( nxcxfCclass x 

 (3-6) 

The confidence conf  of such membership association is defined here as: 

 
)()( CMeanCMaxconf 

 (3-7) 

In equation (3-7), Max(C) represents the maximum value of vector C, while Mean(C) 

denotes the average of all the values of C. The conf, quantified by the difference 

between Max(C) and Mean(C), measures the confidence or reliability of the class 

membership allocation (i.e. classification confidence map). Since the CNN takes 

contextual image patches as its inputs instead of image pixels, it has the following 

properties: 

(1). If the input image patch is located at the central homogeneous region, its class 

purity is relatively high with large difference between the membership association of 

the predicted class and those of the other classes, and the conf tends to be large (White 

regions in Figure 3-2(c)). 

(2). If the image patch contains other land cover classes as contextual information, the 

resulting distinction between the membership association of prediction and those of the 

others is relatively low, and the conf tends to be small (Dark regions in Figure 3-2(c)). 

However, the MLP (spectral feature only) is based on per-pixel spectral information, 

thereby ruling out the difference of membership association between central and 

boundary regions of the classified objects (Figure 3-1(b)). According to the 

aforementioned properties, the fusion decision rules are constructed primarily based on 
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CNN confidence. To be more specific, the fusion output gives credit to the CNN when 

its confidence is larger than a predefined threshold (α1), while the MLP is trusted given 

that the CNN confidence is lower than another threshold (α2); once the confidence of 

the CNN lies in-between the two thresholds ( ),( 21 αα ), the fusion output chooses the 

CNN or MLP classification result with a larger confidence. Therefore, for a given image 

pixel at location ),( vh , a rule-based decision fusion approach to determining the class 

label ( ),( vhclass ) of the corresponding pixel is formulated as follows:  
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where the mlpclass  and cnnclass  represent the classification results of the MLP and CNN 

respectively; the mlpconf  and cnnconf  denote the classification confidence of the MLP 

and CNN accordingly. 

Estimation of the two thresholds (α1,α2) is conducted using grid search with cross-

validation (Min and Lee 2005, Zhang et al. 2015) based on the CNN classification 

confidence map (as illustrated by Figure 3-2(c)). Specifically, the α1 was searched from 

0.1 to 0.5 to detect those regions with low confidence as predicted by the CNN, while 

the α2 was chosen from 0.5 to 0.9 to discover the high confidence regions. By initially 

fixing α1 as 0.1, α2 was tuned with step size of 0.05 (i.e. α2=0.5, 0.55, 0.6, ..., 0.9) to 

cross-validate the classification accuracy influenced by the selected thresholds; α1 was 

then increased to further tune α2 in a similar way until the optimal α1 and α2 were found 

with the best classification accuracy. 



Chapter 3: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification 

 

 

61 

 

Figure 3-2: A subset of the original imagery (a) with RGB spectral bands, (b) the 

classification confidence of the MLP and (c) the classification confidence of the CNN. The 

dark pixels represent low confidence, while white pixels signify high confidence. 

3.3      Experiment 

3.3.1  Study area and data source 

For this study, the city of Southampton, UK and its surrounding environment, which 

lies on the south coast of England, was chosen as a case study area (Figure 3-3). The 

urban and suburban areas in Southampton are strongly heterogeneous with a mixture of 

anthropogenic urban surface (e.g. roof materials, asphalt, concrete) and semi-natural 

environment (e.g. vegetation, bare soil), thereby representing a good test for 

classification algorithms.  

A scene of aerial imagery of Southampton was captured on 22 July 2012 using a Vexcel 

UltraCam Xp digital aerial camera with 50 cm spatial resolution and four multispectral 

bands (Red, Green, Blue and Near Infrared). Two study sites S1 (3087×2750 pixels) 

and S2 (2022×1672 pixels) were selected to investigate the effectiveness of the 

proposed algorithm. S1 is located in the city centre of Southampton, which consists of 

eight dominant land cover classes, including Clay roof, Concrete roof, Metal roof, 

Asphalt, Grassland, Trees, Bare soil and Shadow, with detailed descriptions listed in 

Table 3-1. S2, on the other hand, is situated in a suburban and rural area of Southampton 
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comprised of large patches of forest, grassland and bare soil speckled with small 

buildings and roads. There are six land cover categories in this study site, namely, 

Buildings, Road-or-track, Grassland, Trees, Bare soil and Shadow (Table 3-1).  

 

Figure 3-3: Southampton, UK Location of study area and aerial imagery with two study 

sites S1 and S2. 

Sample points were collected using a stratified random scheme from ground data 

provided by local surveyors at Southampton, and split into 50% training samples and 

50% testing samples for each class (Table 3-1). Field land cover survey was conducted 

throughout the study area on July 2012 to further check the validity and precision of 

the selected samples. In addition, a highly detailed vector map from Ordnance Survey, 

namely the MasterMap Topographic Layer (Regnauld and Mackaness 2006), was fully 

consulted and cross-referenced to gain a comprehensive appreciation of the land cover 

and land use within the study area. 

To further test the applicability of the proposed method, another scene of Worldview-

2 satellite sensor imagery was acquired on 24 July 2013 in the same region of 

Southampton with urban (S1’) and rural (S2’) study sites close to the Northwest of S1 

and S2. The Worldview-2 image was geometrically and atmospherically corrected, and 

pan-sharpened at 50 cm spatial resolution to be consistent with the aerial imagery. 
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Figure 3-4 demonstrates the WorldView-2 satellite sensor image together with two 

subsets S1’ and S2’.  

 

Figure 3-4: Additional WorldView-2 satellite sensor image covering the same region of 

Southampton with the S1’ and S2’ study sites to the northwest of S1 and S2, respectively. 

Table 3-1 - Detailed description of land covers at two study sites with training and 

testing sample size per class. 

Study 

Sites 
Class Train Test Description 

S1 

Clay roof 144 144 Predominantly residential buildings in red clay tiles 

Concrete roof 132 132 Predominantly residential buildings in grey clay tiles 

Metal roof 134 134 Predominantly industrial buildings in white metal panels 

Asphalt 136 136 Urban road or cark parks covered by asphalt 

Grassland 126 126 Areas of grass covering the urban park or lawn 

Trees 137 137 Patches of tree species 

Bare soil 118 118 Open areas covered by bare soil 

Shadow 123 123 Areas of shadow cast from buildings and trees 

S2 

Building 82 82 Predominantly small buildings at rural areas 

Road-or-track 85 85 Asphalt road or small path 

Grassland 86 86 Large areas of wild grass or lawn 

Trees 98 98 Large patches of deciduous trees 

Bare soil 84 84 Open areas covered by bare soil 

Shadow 86 86 Areas of shadow cast from buildings and trees 
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3.3.2  Model input variables and parameters 

Model inputs: the standard pixel-based MLP (hereafter, MLP) and CNN take only the 

four spectral bands as their input variables, whereas the pixel-based texture MLP based 

on the standard Grey Level Co-occurrence Matrix (hereafter, GLCM-MLP) 

simultaneously makes use of both the four spectral bands and the texture features 

derived from GLCM textural features including the Mean, Variance, Homogeneity, 

Contrast, Dis-similarity, Entropy, Second moment and Correlation (Haralick et al. 

1973, Zhang et al. 2003, Xia et al. 2010, Rodriguez-Galiano et al. 2012). Three window 

sizes for each spectral band, including 3×3 (1.5×1.5 m), 5×5 (2.5×2.5 m), and 7×7 

(3.5×3.5 m), were optimally chosen to perform multi-scale texture feature 

representation, thus generating 96 GLCM texture features in total. It should be noted 

that both the MLP and the CNN as well as the GLCM-MLP were trained to predict all 

pixels within the images. Although the CNN was designed to predict a single label from 

a small image patch, the sliding window was densely overlapping to cover the entire 

image at the inference phase. 

Both the MLP (also including GLCM-MLP) and CNN models require a series of 

predefined parameters to optimize the learning accuracy and generalization capability. 

Following the recommendations of Mas and Flores (2008), the MLPs with one, two and 

three hidden layers were tested, using a varying number of {4, 8, 12, 16, 20, and 24} 

nodes in each layer. The learning rate was chosen optimally as 0.2 and the momentum 

factor was set as 0.7. In addition, the number of iterations was set as 1000 to fully 

converge to a stable state. Through cross-validation with different numbers of nodes 

and hidden layers, the best predicting MLP was found using two hidden layers with 8 

nodes in each layer. Similar parameters were also set for the GLCM-MLP, except that 
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two hidden layers with 20 nodes in each layer were found to be the optimal solution in 

this case. 

For the CNN, a range of parameters including the number of layers, the input image 

patch size, the number and size of convolutional filter, as well as other predefined 

parameters, such as the learning rate and number of epochs (iterations), need to be tuned 

(Romero et al. 2016). Following the discussion by Längkvist et al. (2016), the input 

image size was chosen from {8×8, 10×10, 12×12, 14×14, 16×16, 18×18, 20×20, 22×22 

and 24×24} to evaluate the influence of context area on classification performance. In 

general, a small-sized contextual area results in overfitting of the model, whereas a 

large one often leads to under-segmentation. In consideration of the image object size 

and contextual relationship coupled with a small amount of trial and error, the optimal 

input image patch size was set to 16×16 in this research. Besides, as discussed by Chen 

et al., (2014) and Längkvist et al. (2016), the depth plays a key role in classification 

accuracy because the quality of learnt feature is highly influenced by the level of 

abstraction and representation. As suggested by Chen et al. (2016), the number of CNN 

layers was chosen as four to balance the network complexity and robustness. Other 

parameters were set based on standard practice in the field of computer vision. For 

example, the filter size was set to 5×5 for the first convolution layer and 3×3 for the 

rest with stride of 1, and the number of the filters was set to 24 to extract multiple 

convolutional features at each level. The fully connected layer was tuned as 12 nodes 

followed by a softmax classification. The learning rate was set to 0.01 and the number 

of epochs (iterations) was chosen as 600 to fully learn the features through 

backpropagation. The detailed architecture of the CNN and its parameter configurations 

is illustrated in Figure 3-5. 
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Figure 3-5: The architecture of the CNN and its configurations. 

3.3.3  Decision Fusion Parameter Setting and analysis 

A rule-based decision fusion approach was implemented based on the classification 

confidence maps of the CNN (e.g. Figure 3-2(b)) and MLP (e.g. Figure 3-2(c)). The 

parameters of decision fusion, including two thresholds α1 and α2, were determined by 

grid search with cross-validation using 10% of the randomly chosen samples. In this 

study, the optimal thresholds α1=0.4 and α2=0.6 were found that reported the greatest 

classification accuracy. 

For the sake of visual interpretation, the confidence distribution of the CNN and MLP 

influenced by the chosen thresholds is shown in Figure 3-6. Clearly, the CNN and MLP 

demonstrated individually consistent, but mutually converse distribution patterns in the 

two study sites: along with the increase in the CNN’s confidence, the MLP inversely 

exhibited a decreasing trend. Specifically, for low CNN confidence (<0.4), the MLP 

confidence was around 0.75, significantly higher than that of the CNN, thus outputting 

the results of MLP in the final decision; once the CNN confidence ranged from 0.4 to 

0.6, no significant difference was shown between the two classifiers, thereby, optimally 

choosing the classification results based on the competitive “winner-takes-all” 

approach; while for large CNN confidence (>0.6), the MLP was, in contrast, much less 

reliable (<0.45), thus, taking the classification results of the CNN only in this situation.  
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Figure 3-6: Classification confidence distributions of the CNN and MLP at two study sites 

(S1 and S2) under different fusion thresholds. 

3.3.4  Classification results and analysis 

3.3.4.1 Classification results and visual assessment 

By integrating the classification results of the MLP and CNN using the above-

mentioned fusion parameters, the final classification of the proposed MLP-CNN was 

obtained at both study sites, S1 (city centre with complex urban scene) and S2 (rural 

areas with natural phenomena). To provide a better visualization, Figure 3-7 (three 

subsets of S1) and Figure 3-8 (three subsets of S2) highlights the correct or incorrect 

classification results of different classifiers marked in yellow or red circles, 

respectively.  

From Figure 3-7, it can be seen that the MLP classification results consist of undesirable 

noise (marked in red circle), such as a severe salt-and-pepper effect in Figure 3-7(a) 

and 3-7(b), and linear noisy textures in Figure 3-8(c). Besides, Trees and Grassland are 

seriously confused with each other as illustrated by Figure 3-7(c) and Figure 3-8(a) and 

3-8(b). However, as shown by Figure 3-7(b), the MLP has certain advantages over CNN 

in identifying the Clay roof class with spectrally distinctive features (marked in yellow 

circle). With the addition of the GLCM textures, the GLCM-MLP achieved certain 

improvements in both spectral and spatial pattern differentiation. For example, Trees 
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and Grassland are better distinguished to some extent compared with the pixel-based 

MLP results, as illustrated in Figure 3-7(c) and Figure 3-8(b). Besides, the clear linear 

noisy textures in Figure 3-8(c) are much reduced, and primarily turned into small 

speckles due to the introduction of texture features. Yet, the GLCM-MLP falsely 

identifies some edges or boundaries as Clay Roof, as shown in Figure 3-7(c) and Figure 

3-8(a) and 3-8(b) (marked in red circle). Additionally, some geometrical distortions of 

building roof tops, e.g. the Metal Roof and Concrete Roof in Figure 3-7(b), are shown 

in the GLCM-MLP classification results caused by the GLCM texture filters. 

In contrast to the pixel-based MLP and the GLCM-MLP, the classification results of 

the CNN in both study sites exhibit smoothed visual effects with the least speckle noise 

as shown by Figure 3-7 and 3-8. Additionally, the classes of green vegetation including 

Grassland and Trees are accurately distinguished as demonstrated by the yellow circles 

in Figure 3-7(c) and Figure 3-8(a) and 3-8(b) in spite of their spectral similarity. 

Moreover, the CNN is able to discriminate the Concrete roof from Asphalt with a 

moderate accuracy, as highlighted by the yellow circle in Figure 3-7(a). Nevertheless, 

the CNN delivers some uncertainties in partitioning object boundaries. For example, 

the regular shapes of some buildings (e.g. the geometries of some Clay roof and 

Concrete roof areas) are distorted with false boundary partitions, as marked by the red 

circle in Figure 3-7(b). In addition, small or linear features are either merged into a 

large object or discarded by over-smoothness. For instance, some Clay roof buildings 

(small objects) are falsely connected together, while Asphalt is sometimes misclassified 

as Clay roof (Figure 3-7(c)) and the small paths covered by Bare soil are discarded 

(Figure 3-8(b)).  

With respect to the results of the MLP-CNN, all of the aforementioned 

misclassifications produced by MLP or CNN are resolved with a higher resulting 



Chapter 3: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification 

 

 

69 

accuracy. Thus, the incorrect classifications (marked by red circles) which appeared in 

Figure 3-7 and 3-8 are revised accordingly, with no red circles appearing in the 

classification results of MLP-CNN. The MLP-CNN modifies the classification errors 

of the CNN for Asphalt, as illustrated by the red circles in Figure 3-7(c) and Figure 3-

8(b), thanks to the correct classification results of the MLP. Moreover, the linear-shaped 

Bare Soil area missed by the CNN in Figure 3-8(a) is brought back correctly without 

losing useful information. In addition, the original shapes of the Clay roof and Concrete 

roof areas shown in Figure 3-7(b) are accurately restored. Most importantly, some 

mutual misclassifications between the MLP and CNN are successfully rectified. For 

example, the MLP-CNN correctly differentiates some Asphalt (with spectrally 

distinctive but spatially confusing characteristics) and Concrete roof (distinctive in 

texture and geometry but vague in spectrum) areas that are mutually misclassified by 

the MLP and CNN respectively (see the regions marked by red circles in Figure 3-7(a)). 

3.3.4.2 Classification accuracy assessment 

The classification performance of the proposed MLP-CNN approach was further 

investigated through benchmark comparison with the MLP, GLCM-MLP and the CNN. 

Table 3-2 lists the classification accuracy assessment, including the overall accuracy 

(OA), Kappa coefficient (κ), and the class-wise mapping accuracy. From the table, it 

can be seen that the decision fusion approach (MLP-CNN) consistently reports the best 

classification OA with up to 90.93% for S1 and 89.64% for S2, higher than that of the 

CNN (85.39% and 86.56%, respectively) and GLCM-MLP (83.12% and 82.63%, 

respectively) as well as MLP (81.62% and 80.73%, respectively) (Table 3-2). 

Moreover, a Kappa z-test for pair-wise comparison also shows that a significant 

increase in classification accuracy has been achieved by the proposed MLP-CNN 

classifier over the MLP, GLCM-MLP and CNN in S1, with z-value=3.68, 3.12 and 
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2.25, respectively. For S2, the MLP-CNN also revealed a significant increase over the 

MLP with z-value=3.71 as well as GLCM-MLP with z-value=3.18, but no significant 

difference in comparison with the CNN (z = 1.59, smaller than 1.96 at 95% confidence 

level) (Congalton 1991), despite the obvious improvement shown in Table 3-2.  

The increase in classification accuracy was also checked by class-wise accuracy 

assessment (Table 3-3). As illustrated by the table, MLP-CNN outperforms CNN for 

all classes at both study sites in terms of classification accuracy. The largest increase is 

up to 9.77% for the class of Concrete roof in S1 and 7.16% for the class of Road-or-

track in S2. Similar patterns were found such that the MLP-CNN was constantly 

superior to GLCM-MLP at the class-wise level, where the greatest increase in accuracy 

was shown up to 11.56% for the class of Concrete Roof in S1 and 11.74% for the class 

of Grassland in S2. When compared with the MLP, most classes in the two sites except 

for Asphalt and Shadow in S1 are classified with higher accuracy by the MLP-CNN. 

Here, Grassland exhibits the highest increase in classification accuracy, up to 33.51% 

and 18.83% for S1 and S2, respectively. For the classes of Asphalt and Shadow, the 

accuracy of the MLP is slightly larger than that of the MLP-CNN, but without a 

statistically significant difference. Thus, they can be regarded as similar to each other. 

With respect to the three benchmark classifiers themselves (i.e. MLP, GLCM-MLP and 

CNN), it can be seen from Table 3-2 that their classification accuracies are ordered as: 

MLP <GLCM-MLP < CNN. While the accuracy of CNN is remarkably higher (3%-

5%) than that of the MLP and GLCM-MLP, the GLCM-MLP is just slightly higher 

(<2%) than the MLP. The Kappa z-tests (Table 3-3) further demonstrate that the CNN 

is statistically significantly more accurate than MLP and GLCM-MLP in both urban 

and rural areas, whereas a significant increase in accuracy of the GLCM-MLP over the 

MLP appears only in the rural area rather than the urban area. 
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Figure 3-7: Three typical image subsets (a, b and c) in study site S1 with their classification results. Columns from left to right represent the original 

images (R G B bands), the MLP classification, the GLCM-MLP classification, the CNN classification and the MLP-CNN classification correspondingly. The 

red and yellow circles denote incorrect and correct classification, respectively. 



Chapter 3: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification 

 

 

72 

 

Figure 3-8: Three typical image subsets (a, b and c) in study site S2 with their classification results. Columns from left to right represent the original 

images (R G B bands), the MLP classification, the GLCM-MLP classification, the CNN classification and the MLP-CNN classification correspondingly. The 

red and yellow circles denote incorrect and correct classification, respectively.
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Table 3-2 - Classification accuracy comparison amongst MLP, GLCM-MLP, CNN and 

the proposed MLP-CNN approach for study sites S1 and S2 using the per-class mapping 

accuracy, overall accuracy (OA) and Kappa coefficient (κ). The bold font highlights 

the greatest classification accuracy per row. 

Study Sites Class MLP 
GLCM-MLP 

(Benchmark) 
CNN MLP-CNN 

S1 

Clay roof 92.26% 91.43% 90.11% 95.03% 

Concrete roof 67.06% 62.44% 64.23% 74.00% 

Metal roof 91.13% 90.36% 94.19% 94.63% 

Asphalt 92.72% 88.67% 85.98% 91.26% 

Grassland 60.51% 82.58% 90.73% 94.02% 

Trees 63.88% 78.46% 82.28% 88.83% 

Bare soil 79.63% 83.05% 86.16% 92.49% 

Shadow 92.33% 91.06% 91.14% 91.52% 

Overall Accuracy (OA) 81.62% 83.12% 85.39% 90.93% 

Kappa Coefficient (κ) 0.78 0.81 0.84 0.89 

S2 

Building 82.83% 80.79% 83.08% 88.48% 

Road or track 83.02% 80.14% 82.42% 89.58% 

Grassland 71.11% 78.20% 88.34% 89.94% 

Trees 79.31% 84.55% 90.70% 92.86% 

Bare soil 74.07% 76.32% 81.36% 86.86% 

Shadow 89.41% 88.25% 88.37% 90.17% 

Overall Accuracy (OA) 80.73% 82.63% 86.56% 89.64% 

Kappa Coefficient (κ) 0.78 0.79 0.84 0.87 

The proposed MLP-CNN method and the other three benchmarks (MLP, GLCM-MLP 

and the CNN) were also validated using an additional WorldView-2 satellite sensor 

dataset at the S1’ and S2’ study sites. The OA and κ of both study sites are in accordance 

with the results of aerial photo classification, where the decision fusion approach (MLP-

CNN) acquires the largest OA of 90.56% at S1’ and 89.77% at S2’, consistently higher 

than the CNN (86.15% and 86.39%), the GLCM-MLP (83.26% and 82.52%) and the 

MLP (81.42% and 80.32%) (Table 3-4). Such coherency of classification results further 

demonstrates the wide applicability of the proposed method with different datasets. 
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Table 3-3 - Kappa z-test (p-value) comparing the performance of the three classifiers 

for two study sites S1 and S2. Significantly different accuracies with confidence of 95% 

(z-value > 1.96 with p-value < 0.05) are indicated by *. 

Study sites Classifiers 

 Kappa Z-test (p-value) 

MLP 
GLCM-MLP 

(Benchmark) 
CNN 

MLP-

CNN 

S1 

MLP —    

GLCM-MLP 1.56 (0.1188) —   

CNN 2.64* (0.0083) 2.44* (0.0147) —  

MLP-CNN 3.68* (0.0002) 3.12* (0.0018) 2.25* (0.0244) — 

S2 

MLP —    

GLCM-MLP 2.05* (0.0404) —   

CNN 2.51* (0.0121) 2.36* (0.0183) —  

MLP-CNN 3.71* (0.0002) 3.18* (0.0015) 1.59 (0.1118) — 

 

Table 3-4 - Classification accuracy comparison amongst MLP, GLCM-MLP 

(Benchmark), CNN and the proposed MLP-CNN approach for study sites S1’ and S2’ 

from the WorldView-2 satellite sensor image using overall accuracy (OA) and Kappa 

coefficient (κ). The bold font highlights the greatest classification accuracy per row. 

WorldView-2 Classification MLP 
GLCM-MLP 

(Benchmark) 
CNN MLP-CNN 

S1’ 

OA 81.42% 83.26% 86.15% 90.56% 

κ 0.77 0.80 0.82 0.89 

S2’ 

OA 80.32% 82.52% 86.39% 89.77% 

κ 0.77 0.79 0.83 0.87 

3.4      Discussion 

In this research, a rule-based decision fusion approach (MLP-CNN) was proposed to 

integrate classifiers of the pixel-based MLP with shallow structures and the contextual-

based CNN with deep architectures for the classification of VFSR remotely sensed 
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imagery. The MLP-CNN takes advantage of the merits of the two classifiers and 

overcomes their individual shortcomings as discussed below. 

3.4.1  Characteristics of MLP and GLCM-MLP classification 

In principle, the MLP builds the decision boundaries among classes in feature space 

based on per-pixel spectral information (Mokhtarzade and Zoej 2007). Such 

classification boundaries are very sensitive to the class with salient spectral properties 

that are spectrally distinctive from other classes (Berberoglu et al. 2000). For example, 

classes like Clay roof, Asphalt and Shadow in Site 1 are spectrally exclusive to other 

classes, leading to high classification accuracies, up to 92.26%, 92.72% and 92.33%, 

respectively (Table 3-2). However, the MLP relies on the pixel-based spectral 

information in the classification process without exploiting the abundant spatial 

information appearing in the VFSR imagery (e.g. texture, geometry or contextual 

relationship) (Wang et al. 2016). These limitations often result in unsatisfactory 

classification performance; for example, confusion and misclassification between the 

Trees and Grassland classes that are spectrally similar. Even for those correctly 

identified objects, severe salt and pepper effects still exist (Dark and Bram 2007), for 

example, the linear texture noise appearing for Bare soil in Figure 3-8(c). For these 

reasons, the classification accuracy of MLP is generally statistically significantly lower 

than that of the CNN and the proposed MLP-CNN. However, objects in VFSR imagery 

are mostly depicted by pure pixels, especially for human-made features with crisp 

boundaries, such as buildings, residential houses and cultivated land. The membership 

association of a pixel deduced by MLP is, therefore, not affected by its relative position 

(e.g. lying on or close to boundaries), as long as the corresponding spectral space is 

separable. 
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The inclusion of GLCM texture features in the GLCM-MLP classifier enables the 

model to process spectral and spatial information simultaneously. Those GLCM texture 

descriptors are handcrafted features that are designed to capture statistical co-

occurrence information (Xia et al. 2010). However, the GLCM textures are essentially 

first or second order feature transformations instead of feature learning. Such hand-

coded features might be effective for a particular region and/or season, but are often 

challenging to generalize to other domains and datasets. Besides, the addition of 96 

GLCM textures results in a dramatically increased number of input variables, which 

leads to a relatively high dimensional feature space. The so-called “curse of 

dimensionality” (Hughes 1968) and collinearity make the GLCM-MLP hard to 

parameterize and potentially leads to texture overfitting. That is why the GLCM-MLP 

cannot substantially increase the classification accuracy compared to the MLP. That is, 

the spectral and spatial information cannot be effectively exploited by the GLCM-MLP. 

For example, some spectrally different classes but with similar textures such as Clay 

Roof, Concrete Roof and Asphalt are confused to some degree. 

3.4.2  Characteristics of CNN classification 

Spatial features in remotely sensed data like VFSR imagery are intrinsically local 

(especially in lower layers) and spatially invariant (Masi et al. 2016). The MLP, 

however, assumes that the location of the data in the input is irrelevant to the model 

construction and it is, thus, incapable of learning spatial features of remote sensing data. 

In contrast, by using multiple convolution and pooling operations, CNN models the 

way that the human visual cortex works and enforces weight sharing with translation 

invariance that enables the extraction of high-level spatial features from image patches. 

It should be mentioned that the pooling operations play an important role in dimension 

reduction, thus, avoiding “the curse of dimensionality” present in the GLCM-MLP 
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classifier. Thanks to these superior characteristics, the CNN classifier outperforms the 

MLP and GLCM-MLP classifiers in both the urban scene and rural areas. Especially, 

classes like Concrete roof and Road-or-track that are difficult to distinguish from their 

backgrounds with only spectral or low-level features (e.g. distance between the 

prediction and the target class at spectral space), are identified with relatively high 

accuracies. In addition, classes with heavy spectral confusion in both study sites (e.g. 

Trees and Grassland), are accurately differentiated due to their obvious spatial pattern 

differences; for example, the texture of tree canopies is generally much rougher than 

for grassland. As a contextual classifier with deep architectures, the CNN could reveal 

the spatial patterns hidden in the image data that cannot be perceived by its shallow 

counterparts (e.g. MLP classifier or even the GLCM-MLP classifier). The higher layers 

in CNN models provide more semantically meaningful information concentrating on 

global semantics rather than local or pixel-level information, making the CNN 

classification work well for classes with spectral confusion (Hu et al. 2015a, Hu et al. 

2015b, Yang et al. 2015). Therefore, the CNN shows an impressive stability and 

effectiveness in spatial feature representation, which is crucial for VFSR image 

classification (Zhao and Du 2016).  

However, according to the “no free lunch” theorem (Wolpert and Macready 1997), any 

elevated performance in one aspect of a problem will be paid for through others, and 

the CNN is no exception. Using contextual image patches as inputs and learning deep 

spatial features, the CNN demonstrates power in spatial pattern recognition but also 

weakness in spatial partition. Boundary uncertainties (over-smoothness) often appear 

in the classified object and small useful features are erased,  somewhat  similar to 

morphological or Gabor filter methods  (Reis and Tasdemir 2011, Pingel et al. 2013). 

For example, the human-made objects in urban scenes like buildings and asphalt are 
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often geometrically enlarged with distortion to some degree (See Figure 3-7(b)). As for 

natural objects in rural areas (S2), edges or porosities of a landscape patch are simplified 

or ignored, and even worse, linear features like river channels or dams that are of 

ecological importance, are erroneously erased. One may argue that the reduction of 

image patch size might be able to detect small features by multiple CNNs by varying 

the contextual filter size as adopted in Längkvist et al. (2016). However, objects, 

whether large or small in size, all have boundaries, thus, retaining the problem of 

smoothing edges. In addition, the adoption of convolution and pooling operations 

intrinsically reduces the image contextual size but strengthens the spatial feature 

representation. Thus, a far too small initial image patch size can limit the network depth 

of a CNN model. In fact, the currently used 16×16 window size is close to the minimum 

requirements for a deep CNN with four hidden layers in total. Moreover, certain 

spectrally distinctive features without obvious spatial patterns are poorly differentiated. 

For example, some Asphalt pixels are wrongly identified as Concrete roofs as illustrated 

in Figure 3-7(a). This further demonstrates the necessity of introducing spectral features 

for VFSR image classification. 

3.4.3  fusion decision of MLP-CNN classification 

Huge uncertainty and inconsistency exists inherently in any remotely sensed data 

(including VFSR imagery), and this runs through the training and the testing samples. 

In fact, different classification algorithms vary in terms of remote sensing data 

processing strategies. Thus there is no ‘one-algorithm-fits-all’ solution (Löw et al. 

2015) to various applications of VFSR image classification, even for the powerful CNN 

classifier with deep spatial feature representations. It is therefore especially important 

to make use of the complementarities of different classifiers. It should be mentioned 

that, the more heterogeneous the classification algorithms’ behaviours, the more that 
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different places might be accurately classified by each individual classifier, and the 

more accurate the ensemble classifier might be (Löw et al. 2015). An ideal ensemble 

classifier, thereby, should be established using individual classifiers that are very 

differently behaved.  

The experimental results show that the pixel-based MLP classifier with shallow 

structures and the contextual-based CNN classifier with deep architectures can provide 

complementary information, leading to a more accurate classification result than either 

classifier alone. In addition to the elimination of heavy noise, the CNN can accurately 

identify classes with rich spatial information implicit in VFSR data. Such 

characteristics of the CNN emphasize the limitations of the MLP classifier for VFSR 

image classification. At the same time, the CNN might lose some useful details, and it 

has difficulties in utilizing spectral information and delineating object boundaries and 

is, thus, incapable of maintaining geometric fidelity. The MLP classifier, however, 

compensates directly with regard to the limitations of the CNN. The aforementioned 

complementary properties between the CNN and MLP are well reflected from the 

inverse confidence trends of the two classifiers (Figure 3-2). Specifically, in the case of 

the CNN with the highest confidence, the MLP has the least confidence and vice versa, 

which further indicates that the proposed MLP-CNN ensemble classifier can take 

advantage of the MLP and CNN.   

The proposed fusion decision rules were derived primarily on the basis of the CNN’s 

confidence distribution, in consideration of the superiority of CNN classification 

performance and the regularity of its confidence distribution. Such a decision fusion 

strategy captures the patterns of the complementarities between the two individual 

classifiers in general, thus, achieving a desirable classification result. At the same time, 
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the MLP-CNN classifier demonstrates great utility and wide applicability for both 

aerial photography and WorldView-2 satellite sensor imagery with consistent and 

competitive classification performance. However, in comparison with MLP, the 

classification accuracies of Asphalt and Shadow were slightly higher than for the 

proposed MLP-CNN. This means that there is still room for improvement of the 

decision fusion rules at the class-wise level for VFSR image classification. It might be 

better to incorporate the spectral separability differentiated by MLP to achieve the best 

classification performance at class level. Besides, no significant improvement was 

acquired for rural areas (S2) by the MLP-CNN compared with the CNN. This is mainly 

due to the ineffectiveness of the MLP in classifying natural features that dominate in 

the rural environment. This shortcoming might be overcome by the replacement of the 

MLP by other non-parametric machine learning classifiers (e.g. SVM, RF, etc.). 

Moreover, incorporating other data sources (e.g. digital surface model) might be needed 

to increase the accuracy of the MLP-CNN for both the CNN and MLP with very low 

confidence simultaneously. These aforementioned issues will be investigated in future 

research. 

3.5      Conclusion 

Due to its high intra-class variability and low inter-class disparity, VFSR image 

classification poses great challenges to any single machine learning algorithm, even for 

the powerful deep learning convolutional neural network (CNN). In this chapter, two 

neural network classifiers with strong heterogeneous behaviours (i.e. pixel-based MLP 

with shallow structures and contextual-based CNN with deep architectures), were 

integrated in a concise and effective way using a rule-based decision fusion strategy. 

The decision fusion rules, designed primarily on the basis of the classification 
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confidence of the CNN, reflect the general complementary patterns of both the MLP 

and CNN. In consequence, the proposed ensemble classifier MLP-CNN harvests the 

complementary results acquired from the CNN with deep spatial feature representations 

(CNN) and from the MLP based on spectral discrimination. Meanwhile, limitations of 

the CNN such as uncertainty in object boundary partition and loss of useful fine 

resolution detail were compensated. The effectiveness of the new MLP-CNN algorithm 

was tested in both urban and rural areas using aerial and satellite sensor images. The 

MLP-CNN algorithm consistently outperformed both of the individual classifiers (MLP 

and CNN) as well as the GLCM-MLP that includes the GLCM texture features, with a 

statistically significant difference in the majority of cases. This research paves the way 

to an effective solution to the complicated problem of automatic VFSR image 

classification. 
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Chapter 4      VPRS-based regional decision fusion 
of CNN and MRF classifications for very fine 
resolution remotely sensed images2 

  

                                                 
2 This chapter is based on the published paper: Zhang, C., Sargent, I., Pan, X., Gardiner, A., Hare, J., 

Atkinson, P.M., 2018b, VPRS-based regional decision fusion of CNN and MRF classifications for very 

fine resolution remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing, 56(8): 

4507-4521. https://doi.org/10.1109/TGRS.2018.2822783. 



Chapter 4: VPRS-based regional decision fusion of CNN and MRF classifications 

 84 

Abstract 

Recent advances in computer vision and pattern recognition have demonstrated the 

superiority of deep neural networks using spatial feature representation, such as 

convolutional neural networks (CNN), for image classification. However, any 

classifier, regardless of its model structure (deep or shallow), involves prediction 

uncertainty when classifying spatially and spectrally complicated very fine spatial 

resolution (VFSR) imagery. We propose here to characterise the uncertainty 

distribution of CNN classification and integrate it into a regional decision fusion to 

increase classification accuracy. Specifically, a variable precision rough set (VPRS) 

model is proposed to quantify the uncertainty within CNN classifications of VFSR 

imagery, and partition this uncertainty into positive regions (correct classifications) and 

non-positive regions (uncertain or incorrect classifications). Those “more correct” areas 

were trusted by the CNN, whereas the uncertain areas were rectified by a Multi-Layer 

Perceptron (MLP)-based Markov random field (MLP-MRF) classifier to provide crisp 

and accurate boundary delineation. The proposed MRF-CNN fusion decision strategy 

exploited the complementary characteristics of the two classifiers based on VPRS 

uncertainty description and classification integration. The effectiveness of the MRF-

CNN method was tested in both urban and rural areas of southern England as well as 

Semantic Labelling datasets. The MRF-CNN consistently outperformed the benchmark 

MLP, SVM, MLP-MRF and CNN and the baseline methods. This research provides a 

regional decision fusion framework within which to gain the advantages of model-

based CNN, while overcoming the problem of losing effective resolution and uncertain 

prediction at object boundaries, which is especially pertinent for complex VFSR image 

classification. 
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Keywords: rough set, convolutional neural network, Markov random field, uncertainty, 

regional fusion decision. 

4.1      Introduction 

Remote sensing technologies have evolved greatly since the launch of the first satellite 

sensors, with a significant change being the wide suite of very fine spatial resolution 

(VFSR) sensors borne by diverse platforms (satellite, manned aircraft or unmanned 

aerial vehicles UAV) (Benediktsson et al. 2012). These technical advances have 

resulted in immense growth in the available VFSR remotely sensed imagery typically 

acquired at sub-metre spatial resolution (Yao et al. 2016), such as QuickBird, GeoEye-

1, Pleiades-1, and WorldView-2, 3, and 4. The fine spatial detail presented in VFSR 

images offer huge opportunities for extracting a higher quality and larger quantity of 

information, which may underpin a wide array of geospatial applications, including 

urban land use change monitoring (Shi et al. 2015), precision agriculture (Ozdarici-Ok 

et al. 2015), and tree crown delineation (Ardila et al. 2011), to name but a few. One of 

the bases of these applications is image classification where information embedded at 

the pixel level is captured, processed and classified into different land cover classes 

(Zhang et al. 2016). Image classification applied to VFSR imagery, however, can be a 

very complicated task due to the large spectral variation that the same land cover class 

can produce, which increases the difficulty of discriminating complex and ambiguous 

image features (Lei et al. 2011). The increased spatial resolution, often in conjunction 

with a limited number of wavebands, can lead to reduced spectral separability amongst 

different classes. As a consequence, it is of prime concern to develop robust and 

accurate image classification methods to fully exploit and analyse such data effectively 

and to keep pace with the technological advances in remote sensors. 
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Over the last few decades, a vast array of computer-based image classification methods 

have been developed (Zhang et al. 2015), ranging from unsupervised methods such as 

K-means clustering, supervised statistical approaches such as maximum likelihood 

classification, and non-parametric machine learning algorithms, such as the multilayer 

perceptron (MLP), support vector machine (SVM) and random forest (RF), amongst 

others. Non-parametric machine learning is currently considered as the most promising 

and evolving approach (Pacifici et al. 2009). The MLP, as a typical non-parametric 

neural network classifier, is designed to learn the non-linear spectral feature space at 

the pixel level irrespective of its statistical properties. The MLP has been used widely 

in remote sensing applications, including VFSR-based land cover classification (e.g. 

Del Frate et al. 2007, Pacifici et al. 2009). However, a pixel-based MLP classifier does 

not make use of the spatial patterns implicit in images, especially for VFSR imagery 

with unprecedented spatial detail. Thus, limited classification performance can be 

obtained by the pixel-based MLP classifier (and related algorithms, e.g. SVM, RF, etc.)  

that purely relies on spectral differentiation.  

To better exploit the potential in VFSR remotely sensed imagery, many researchers 

proposed to incorporate spatial information to distinguish spatial features through 

context. These spatial features may be associated with a regular spatial organization 

specific to particular types of land cover (Regniers et al. 2016). For example, the 

juxtaposition of buildings and roads can create a specific spatial pattern. Similarly, the 

periodic row structure in cereals can be a useful cue in classifying VFSR image data. 

These spatial patterns can be captured directly through spatial contextual information 

in the classification process. A typical example of such is the Markov Random field 

(MRF) (Nishii 2003), that has been used widely in the field of remote sensing. The 

MRF models the conditional spatial dependencies within a pixel neighbourhood to 
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support prediction for the central pixel, to increase classification accuracy (Wang and 

Liu 1999). However, the contextual MRF often uses small neighbourhood windows to 

achieve the robustness as well as to balance the computational complexity, which might 

downgrade the performance for the classification of VFSR imagery that requires wider 

contexts to handle the rich spatial details. 

Recent advances in computer vision and machine learning have suggested that spatial 

feature representation can be learnt hierarchically at multiple levels through deep 

learning algorithms (Arel et al. 2010). These deep learning approaches learn the spatial 

contexts at higher levels through the models themselves to achieve enhanced 

generalization capabilities. The convolutional neural network (CNN), as a well-

established deep learning method, has produced state-of-the-art results for multiple 

domains, such as visual recognition (Krizhevsky et al. 2012), image retrieval (Yang et 

al. 2015) and scene annotation (Othman et al. 2016). CNNs have been introduced and 

actively investigated in the field of remote sensing over the past few years, focusing 

primarily on object detection (Dong et al. 2015) and scene classification (Zhang et al. 

2016). Recent work has demonstrated the feasibility of CNNs for remote sensing image 

classification, as here. For example, Zhao and Du (2016) used an image pyramid of 

hyperspectral imagery to learn deep features through the CNN at multiple scales. Chen 

et al. (2016) introduced a 3D CNN to jointly extract spectral–spatial features, thus, 

making full use of the continuous hyperspectral and spatial spaces. Längkvist et al. 

(2016) used a CNN model with different contextual sizes to classify and segment VFSR 

satellite images. Volpi and Tuia (2017) used deep CNNs to perform a patch-based 

semantic labelling of VFSR aerial imagery together with normalized DSMs. All of 

these works demonstrated the superiority of CNNs by using contextual patches as their 

inputs and the convolutional operations for spatial feature representation.  
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The contextual-based CNN classifiers, however, might introduce uncertainties along 

object boundaries, leading to over-smoothness to some degree (Zhang et al. 2018). 

Besides, objects with little spatial information are likely to be misclassified, even for 

those with distinctive spectral characteristics (Zhang et al. 2018). In fact, any classifier, 

regardless of its model structure, predicts with uncertainty when handling spatially and 

spectrally complex VFSR imagery. A key problem to be addressed is, thus, for a given 

classification map, which areas are correctly classified and which are not? This 

information is important for classification map producers who need to further increase 

classification accuracy. Information on uncertainty is also very useful for classification 

map users, because if it is available, at least in some generalised form, users can better 

target their attention and effort. Currently, classification model uncertainty is assessed 

mainly using measures such as the difference between the first and second largest class 

membership value (Olofsson et al. 2014), Shannon’s entropy (Wang and Shi 2013), α-

quadratic entropy (Giacco et al. 2010), and so on, but there is generally a lack of 

objective and automatic approaches to partition and label the correct and incorrect 

classification regions.  

The real problem with image classification, using a CNN or any other classifier, is, 

thus, how to reasonably describe and partition the geometric space given the inherent 

prediction uncertainties in a classification map. We previously proposed to create rules 

to threshold the classification results and deal with uncertainties through decision 

fusion (Zhang et al. 2018). This method, although having potential to achieve desirable 

classification results, involves a large amount of trial and error and prior knowledge of 

feature characteristics, thus was hard to be generalized and applied in an automatic 

fashion.  As a well-established mathematical tool, rough set theory is proposed here as 

a means of providing an uncertainty description with no need for prior knowledge, and 
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this can be applied to model uncertainties of classification results. 

Rough set theory, as proposed by Pawlak (1982), is an extension of conventional set 

theory that describes and models the vagueness and uncertainty in decision making (Pan 

et al. 2010). It has been applied in diverse domains such as pattern recognition 

(Swiniarski and Skowron 2003), machine learning (Chen et al. 2010), knowledge 

acquisition (Yu et al. 2014), and decision support systems (Zhan and Zhu 2017). Unlike 

other approaches that deal with vague concepts such as fuzzy set theory, rough set 

theory provides an objective form of analysis without any preliminary assumptions on 

membership association, thus, demonstrating power in information granulation (Qian 

et al. 2017) and uncertainty analysis (Chen et al. 2017). In the field of remote sensing 

and GIS, rough set theory has been applied in rule-based feature reduction and 

knowledge induction (Leung et al. 2008, Pan et al. 2010), land use spatial relationship 

extraction (Ge et al. 2011), spatio-temporal outlier detection (Albanese et al. 2014), and 

land cover classification and knowledge discovery (Sikder 2016). However, description 

of the uncertainty in remote sensing image classification results, as identified as a need 

and proposed here, has not been addressed through rough set theory, except for the 

pioneering work of Ge et al. (2009) on classification accuracy assessment. In fact, as 

one of the basic theories of granular computation, the predominant role of rough sets is 

to transform an original target granularity (i.e., continuous and intricate) into a simpler 

and more easily analysable variable. Thus, by using rough sets, the uncertainty of 

remote sensing classification can be simplified and the resulting data is more readily 

used to support decision-making. 

In this chapter, a variant of rough set theory, variable precision rough set (VPRS) (Pan 

et al. 2010), is introduced for the first time to model and quantify the uncertainties in 
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CNN classification of VFSR imagery with a certain level of error tolerance, which is 

more suitable for the remote sensing domain than standard rough set theory due to its 

complexity. Through the VPRS theory, these classification uncertainties are partitioned 

and labelled automatically into positive regions (correct classifications), negative 

regions (misclassifications) and boundary regions (uncertain areas), respectively. These 

labelled regions are then used to guide the regional decision fusion for final 

classification. Specifically, the positive regions are trusted directly by the CNN, 

whereas the non-positive regions (negative and boundary regions) with high uncertainty 

(often occurring along object edges) are rectified by the results of an MLP-based MRF 

(MLP-MRF). Such a region-based fusion decision strategy performs classification 

integration at the regional level, as distinct from the commonly used pixel-based 

strategies. The proposed VPRS-based MRF-CNN regional decision fusion aims to 

capture the mutual complementarity between the CNN in spatial feature representation 

and the MLP-MRF in spectral differentiation and boundary segmentation.  

The key innovations of this research can be summarized as: 1) a novel variable 

precision rough set model is proposed to quantify the uncertainties in CNN 

classification of VFSR imagery, and 2) a spatially explicit regional decision fusion 

strategy is introduced for the first time to improve the classification in uncertain regions 

using the distribution characteristics of the CNN classification map.  

The effectiveness of the proposed method was tested on images of both an urban scene 

and a rural area as well as semantic labelling datasets. A benchmark comparison was 

provided by pixel-based MLP and SVM, spectral-contextual based MLP-MRF as well 

as contextual-based CNN classifiers, together with mainstream baseline methods.  
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4.2      Methodology 

A novel VPRS-based method for regional decision fusion of CNN and MRF (MRF-

CNN) is proposed for the classification of VFSR remotely sensed imagery. The 

methodology consists of the following steps: 

1. perform CNN and MLP classification using a training sample set (T1) and validate 

them using a testing sample set (T3),  

2. estimate the uncertainty of the CNN classification result to achieve a CNN 

classification confidence map (CCM), and perform MLP-based MRF (MLP-MRF) 

classification,  

3. construct a VPRS fusion decision model to partition the CCM into positive regions 

and non-positive (i.e. boundary and negative) regions using a test sample set 

(denoted as T2), and  

4. obtain the final classification result by taking the classification results of the CNN 

for the positive regions and those of MLP-MRF for the non-positive regions.  

Principles and major workflows are detailed hereafter. 

 

Figure 4-1: A workflow illustrating the proposed MRF-CNN methodology. 
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4.2.1  Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a multi-layer feed-forward neural network 

that is designed specifically to process large scale images or sensory data in the form 

of multiple arrays by considering local and global stationary properties (LeCun et al. 

2015). The main building block of a CNN is typically composed of multiple layers 

interconnected to each other through a set of learnable weights and biases (Romero et 

al. 2016). Each of the layers is fed by small patches of the image that scan across the 

entire image to capture different perspectives of features at local and global scales. 

Those image patches are generalized through a convolutional layer and a 

pooling/subsampling layer alternatively within the CNN framework, until the high-

level features are obtained on which a fully connected classification is performed 

(LeCun et al. 2015). Additionally, several feature maps may exist in each convolutional 

layer and the weights of the convolutional nodes in the same map are shared. This 

setting enables the network to learn different features while keeping the number of 

parameters tractable. Moreover, a nonlinear activation (e.g. sigmoid, hyperbolic 

tangent, rectified linear units) function is taken outside the convolutional layer to 

strengthen the non-linearity (Strigl et al. 2010). Specifically, the major operations 

performed in the CNN can be summarized as: 

 ))(( 1 lll

p

l bWOpoolO    (4-1) 

where the 1lO  denotes the input feature map to the lth layer, the lW  and the lb  represent 

the weights and biases of the layer, respectively, that convolve the input feature map 

through linear convolution*, and the )(  indicates the non-linearity function outside 

the convolutional layer. These are often followed by a max-pooling operation with p×p 
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window size (poolp) to aggregate the statistics of the features within specific regions, 

which forms the output feature map lO   at the lth layer (Romero et al. 2016). 

4.2.2  Multilayer perceptron based Markov random field (MLP-MRF)  

A multilayer perceptron (MLP) is a classical neural network model that maps sets of 

input data onto a set of outputs in a feed-forward manner (Atkinson and Tatnall 1997). 

The typical structure of a MLP is cascaded by interconnected nodes at multiple layers 

(input, hidden and output layers), with each layer fully connected to the preceding layer 

as well as the succeeding layer (Del Frate et al. 2007). The outputs of each node are 

weighted units and biases followed by a non-linear activation function to distinguish 

the data that are not linearly separable (Pacifici et al. 2009). The weights and biases at 

each layer are learned by supervised training using a back-propagation algorithm to 

approximate an unknown input-output relation between the input feature vectors and 

the desired outputs (Del Frate et al. 2007).  

The predictive output of the MLP is the membership probability/likelihood to each class 

at the pixel level, which forms the conditional probability distribution function 

according to the Bayesian theorem (Foody 2000). The objective of Bayesian prediction 

is to achieve the maximum posterior probability by combining the prior and conditional 

probability distribution functions, so as to solve the classification problem effectively. 

The MRF classifier provides a convenient way to model the local properties of an image 

into positivity, Marknovianity and Homogeneity as its prior probability, together with 

the learnt likelihood from the MLP, which constitutes the MLP-MRF (Dunne and 

Campbell 1995, Tso and Mather 2009). Such local neighbourhood information can 

further be converted into its global equivalence of the Gibbs random field as an energy 

function based on the Hamersley-Clifford theorem (Wang and Liu 1999). The MLP-
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MRF is hence iteratively solved by minimizing the energy function to search for the 

global minima. See Tso and Mather (2009) and Li (2009) for more theoretical concepts 

on MLP-based MRF and its application to image classification. 

4.2.3  VPRS based decision fusion between CNN and MRF 

4.2.3.1 Introduction to variable precision rough set theory 

 

In rough set theory (Pawlak 1982), a dataset is represented as a table, which is called 

an information system, denoted as S = (U, A), where U is a non-empty finite set of 

objects known as the universe of discourse, and A is a non-empty finite set of attributes, 

such that U→Va exists for each aA. The set Va denotes the set of attribute values that 

a may take. A decision table is an information system in the form of S = (U, A∪{d}), 

where d  A is the decision attribute. For any attribute set AP  , there is an 

indiscernible relation R between two objects x and y: 

 )}()(,|),{( 2 yaxaPaUyxR   (4-2) 

where R explains that the x and y are indiscernible by the attributes from P (i.e. both x 

and y share the same attribute values). 

The equivalence classes of the indiscernible relation based on R can be defined as: 

 }),(|{][ RyxUyx R   (4-3) 

Given a target set UX  , X can then be approximated by using the equivalence classes 

of the indiscernible relation R, including a R-lower approximation: }][|{ XxxXR R 

and a R-upper approximation: }][|{  XxxXR R
. If XRXR  , then the tuple 

),( XRXR  forms a rough set. The positive (POSR(X)), negative (NEGR(X)) and boundary 
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(BNDR(X)) regions can be defined as: 

 XRXPOS R )(  (4-4) 

 ( )RNEG X U RX   (4-5) 

 )()( XPOSXRXBND RR   (4-6) 

 

Figure 4-2: An illustration of the standard rough set with positive, boundary and negative 

regions. 

However, the above standard definition of the set inclusion relation is too rigorous to 

represent any “almost” complete set inclusion (Ziarko 1993) (i.e., equation (4-4) is 

difficult to be satisfied strictly). Thus, a variable precision rough set (VPRS) model was 

proposed to allow a certain number of inclusion errors. Let X and Y be two non-empty 

subsets of a finite universe U, the degree (or level) of inclusion error of Y within X can 

be defined as (Chen et al. 2017):  

 
)(

)(
1),(

YCard

XYCard
XYe


 , )( Y  (4-7) 

where the )(Card  denotes the cardinality of a set. The 0),( XYe  if and only if XY 

, that is, the case of standard rough set theory (Figure 4-2). Suppose 0),( XYe , then a 

level of inclusion error β is introduced to tolerate a certain level of inclusion. Given a 
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level of inclusion error β, Y being included by X can be defined as:  

 10,),(   XYeiffXY  (4-8) 

Having defined the relative inclusion error β, the β-lower approximation and the β-

upper approximation can be characterized as:  

 }),]([|{   XxeUxXR R
 (4-9) 

 }1),]([|{   XxeUxXR R
 (4-10) 

Given equations (4-9) and (4-10), the positive (POSR,β (X)), negative (NEGR,β (X)) and 

boundary (BNDR,β (X)) regions with a level of inclusion error β can be inferred as:  

 XRXPOSR  )(,  (4-11) 

 
, ( )RNEG X U R X    (4-12) 

 )()( ,, XPOSXRXBND RR    (4-13) 

4.2.3.2 VPRS-based MRF-CNN fusion decision 

Suppose the membership prediction of the CNN at each pixel is an n-dimensional vector 

),...,,( 21 ncccC  , where n represents the number of classes, while each dimension 

]),1[( nici   corresponds to the pixel’s probability of a specific (i-th) class with certain 

membership association. Ideally, the probability value of the classification prediction 

is 1 for the target class but 0 for the other classes, which is usually unobtainable due to 

the extensive uncertainty in the process of remotely sensed image classification. The 

probability value C is, therefore, denoted as:  

 )},...,2,1(|{)( nzczf z   
n

zz cc
1

1],1,0[  (4-14) 
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By default, the classification model simply takes the maximum membership association 

as the predicted output label (denoted as class(C)):  

 ( ) argmax({ ( ) | (1,2,..., )})z
z

class C f z c z n    (4-15) 

The confidence of being determined as class(C) is derived from one minus the 

normalized Shannon Entropy (Ge et al. 2009):  

 

minmax

n

z
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minmax

i

E-E

zfzf

E-E
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))((log)(

1 
 

1 1

2





 (4-16) 

where, 



n

z

iii zfzfE
1

2 ))((log)(  denotes the entropy value of the ith pixel, whereas the Emax 

and the Emin refer to the maximum and minimum entropy values, respectively, of the 

entire classification map. When the entropy of a pixel is maximized (i.e., Emax in 

equation (4-16)), f(z) approximates a uniform probability distribution, representing that 

there is a strong possibility that the pixel is wrongly classified, and therefore the 

confidence value conf tends to be small (i.e., the level of the corresponding uncertainty 

tends to be higher) and vice versa. Therefore, the conf ])1,0[(  is inversely correlated 

with the normalized entropy.  

Given a CNN classification map, the confidence value of an object is spatially 

heterogeneous: the central region is often accurately classified, but the boundary region 

is likely to be misclassified (Zhang et al. 2018). The two regions (i.e., patch centre and 

patch boundary) can then be described theoretically by using rough set theory (Pan et 

al. 2010). That is, the correctness, incorrectness and uncertainty of image classification 

can be modelled via the positive (equation (4-4)), negative (equation (4-5)) and 
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boundary (equation (4-6)) regions, respectively. 

The decision attribute {d} of the rough set model, commonly referred to as the attribute 

for the identification of a specific land cover class, is used here to describe whether a 

test sample is correctly classified (i.e., a strength and weakness analysis on the 

classification results of the region corresponding to the sample). The confidence value 

(conf) of any two samples within this region should belong to the same indiscernible 

relation, of which they should be treated simultaneously. For the confidence map of 

CNN classification (i.e., the image with a conf value at each pixel), it can, therefore, be 

partitioned into a series of intervals, each of which represents a particular indiscernible 

relation:  

 ]1),/([),...,2,[),,0[ stepconffloorstepstepstepstep   (4-17) 

where, step is the atomic granule representing the least unit of indiscernible relation. 

Each interval forms an indiscernible region (denoted as INDArea) on the CNN 

classification map. By checking the consistency of the classification results with respect 

to the test samples (T2), the partitions can then be characterized as: the positive region 

(the negative region, respectively) where the entirety of T2 lying in the region are 

correctly (incorrectly, respectively) classified, and the boundary region in which the T2 

are partially correctly classified. 

There exists extensive uncertainty and inconsistency in remotely sensed image 

classification, especially for VFSR imagery. A small amount of error (even with only 

one misclassified sample) could inevitably turn a positive region into a boundary 

region. Thus, equation (4-4) is too restrictive and might not be sufficiently satisfied. 

Therefore, the introduction of the VPRS model with a relative classification error β is 
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necessary to allow for some degree of misclassification in the largely correct 

classification. Based on the VPRS model, the CNN classification confidence map can 

be partitioned into indiscernible regions (i.e. INDArea). The accuracy of each region is 

evaluated further using the test sample sets (T2) to quantify the ratio of the labelled 

samples that are consistent or inconsistent to the categories of the classification results. 

Those indiscernible regions that meet the accuracy requirements of (equation (4-11)) 

are labelled as positive regions, whereas those fitting equations (4-12) and (4-13) are 

characterised as non-positive regions. 

As illustrated by equation (4-7), the real level of inclusion error (denoted as error) in a 

specific INDArea is essentially the classification error of the test sample (T2), that is, the 

ratio between the number of misclassified samples and the total number of the samples 

within the region. The INDArea can then be identified either as a positive region or a 

non-positive region based on the relative inclusion error β:  

 









βerrorve regionnon-positi

βerroregionpositive r
INDArea

 (4-18) 

The final classification results of all pixels within the region can then be determined by 

using either the results (classcnn) of CNN (in the case of positive region), or the results 

(classmlp-mrf) of MLP-MRF (in the case of non-positive region). The positive region and 

the non-positive region are, therefore, allocating priority to the CNN and the MLP-

MRF accordingly.  

Following the strategy mentioned above, the VPRS-based decision fusion algorithm for 

remotely sensed image classification is illustrated using pseudo-code in Table 4-1:  
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Table 4-1 - Detailed description of the VPRS-based regional decision fusion algorithm 

for remotely sensed image classification 

VPRS-Based Regional Decision Fusion Algorithm 

Input: remotely sensed (RS) image, level of inclusion error β, training sample set T1, rough set 

test sample set T2, atomic granule step 

Output: classification result resultImg 

1. Modelcnn = The CNN model trained by sample set T1 

2. Modelmlp-mrf  = The MLP-MRF model trained by sample set T1 

3. fuzzyMatrix = The RS image classified by using Modelcnn to obtain decision vector 

4. conf = The uncertain level within fuzzyMatrix (1 – Normalized Entropy)  

6. For each region INDArea partitioned from conf using an atomic granule step 

7.       using error (derived from T2) and β to determine INDArea (18) 

8.       If     error ≤ β then INDArea belongs to positive region 

9. resultPixels = each pixel within INDArea is classified by CNN (classcnn) 

10.        Else INDArea belongs to non-positive region 

11. resultPixels = each pixel within INDArea is classified by MLP-MRF (classmlp-mrf) 

12.       End if 

13.       resultImg = resultImg ∪ resultPixels 

14. End for  

15. Return resultImg 

16. End 

 

4.3      Experimental Results and Analysis 

4.3.1  Data description and experimental design 

Experiment 1: The city of Bournemouth, UK and its surrounding environment, located 

on the southern coast of England, was selected as a case study area (Figure 4-3). The 

urban area of Bournemouth city is very developed with a high density of anthropogenic 

structures such as residential houses, commercial buildings, roads and railways. In the 

contrast, the suburban and rural areas near Bournemouth are less densely populated, 

predominantly covered by natural and semi-natural environments. 

An aerial image was captured on 20 April 2015 using a Vexcel UltraCam Xp digital 
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aerial camera with 25 cm spatial resolution and four multispectral bands (Red, Green, 

Blue and Near Infrared), referenced to the British National Grid coordinate system 

(Figure 4-3). Two subsets of the imagery with different environmental settings, 

including S1 (2772×2515 pixels) within Bournemouth city centre and S2 (2639×2407 

pixels) in the rural and suburban area were chosen to test the classification algorithms. 

S1 consists mainly of nine dominant land cover classes, including Clay roof, Concrete 

roof, Metal roof, Asphalt, Railway, Grassland, Trees, Bare soil and Shadow, listed in 

Table 4-2. S2 includes Queen’s Park Golf Course and is comprised of large patches of 

woodland, grassland and bare soil speckled with small buildings and roads. There are 

seven land cover categories in this study site, namely, Clay roof, Concrete roof, Road-

or-track, Grassland, Trees, Bare soil and Shadow (Table 4-2). 

 

Figure 4-3: Location of study area at Bournemouth within the UK, and aerial imagery 

showing zooms of the two study sites S1 and S2. 

Sample points were collected using a stratified random scheme from ground data 

provided by local surveyors in Bournemouth, and split into 50% training samples 

(Training Sample T1 at Table 4-2) and 50% testing samples (Testing Sample T3 at 

Table 4-2) for each class. In addition, a set of test samples (Test Sample T2, see Table 
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4-2) with which to construct the variable precision rough set (VPRS) model were 

stratified randomly collected throughout the imagery and manually labelled into 

different land cover classes. The sample labelling was based on expert knowledge and 

historical references provided by local surveyors and photogrammetrists. Field survey 

was conducted on April 2015 to further check the validity and precision of the selected 

samples. Moreover, a highly detailed vector map from the Ordnance Survey, namely 

the MasterMap Topography Layer (Regnauld and Mackaness 2006), was fully 

consulted and cross-referenced to gain a comprehensive appreciation of the land cover 

and land use within the study area. 

Table 4-2 - Land cover classes at two study sites with training and testing sample size 

per class. training sample T1 and testing sample T3 were used for model construction 

and accuracy validation, while test sample T2 was used for building the variable 

precision rough set. 

Study Sites Class Training Sample T1 Test Sample T2 Testing Sample T3 

S1 

Clay roof 110 156 110 

Concrete roof 107 148 107 

Metal roof 103 139 103 

Asphalt 107 148 107 

Grassland 114 162 114 

Trees 104 141 104 

Bare soil 103 139 103 

Shadow 103 139 103 

Railway 102 137 102 

S2 

Clay roof 82 104 82 

Concrete roof 90 115 90 

Road-or-track 85 108 85 

Grassland 86 110 86 

Trees 98 124 98 

Bare soil 84 106 84 

Shadow 86 110 86 
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Experiment 2: Two well-known semantic labelling datasets, the Vaihingen dataset and 

the Potsdam dataset, were used to further evaluate the effectiveness of the proposed 

method.  

The Vaihingen dataset contains 33 true orthophoto tiles with a spatial resolution of 9 

cm. For each tile, four channels are provided, namely near-infrared (NIR), red (R) and 

green (G), together with digital surface models (DSMs). Six semantic categories were 

manually classified by ISPRS, including impervious surfaces, building, low vegetation, 

tree, car, and clutter/background. As previously with other authors (e.g. Kampffmeyer 

et al. 2016, Volpi and Tuia 2017), the clutter/background class (mainly involving water 

bodies, background and others) was not considered in the experiments since it accounts 

only for 0.88% of the total number of pixels.  

Following the same training and testing procedures set by FCN (Kampffmeyer et al. 

2016) and SegNet (Volpi and Tuia 2017), we used the sixteen annotated tiles in our 

experiments. Eleven tiles (areas: 1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37) were selected for 

training, while the other five tiles (areas: 11, 15, 28, 30, 34) were reserved for testing.  

The Potsdam 2D segmentation dataset includes 38 tiles of fine spatial resolution remote 

sensing images. All of them feature a spatial resolution of 5 cm and have a uniform 

resolution of 6000×6000 pixels. Twenty-four tiles are provided with Ground Reference 

pixel labels, using the same five classes as in the Vaihingen dataset without the 

clutter/background class. In the experiments, Following the practice in (Kampffmeyer 

et al. 2016), six tiles (02_12, 03_12, 04_12, 05_12, 06_12, 07_12) were selected as the 

testing set, while the other eighteen among the annotated tiles were used for training. 

Sample points for both datasets were acquired using a stratified random scheme from 

the Ground Reference with a stride of 300 pixels to ensure the adequacy of GPU 
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memory, and these were partitioned into 30%, 40% and 30% sets for Training Sample 

T1, Test Sample T2 and the Testing Sample T3. SVM and other mainstream methods, 

such as FCN (Kampffmeyer et al. 2016), SegNet (Volpi and Tuia 2017) and Deeplab-

v2 (Chen et al. 2016), were applied as benchmarks. 

4.3.2  Model Architectures and Parameter Settings  

Since the MRF used in this research was based on the probabilistic output from a pixel-

based MLP, good choices for the model architectures and parameter settings of the 

MLP and CNN are essential for the proposed MRF-CNN approach. To make a fair 

comparison, both CNN and MLP models were assigned the same parameters for the 

learning rate as 0.1, the momentum factor as 0.7, the logistic non-linearity function, and 

the maximum iteration number of 1000 to allow the networks to fully converge to a 

stable state through back-propagation. In the MLP, the numbers of nodes and hidden 

layers were tuned with 1-, 2-, and 3-hidden layers through cross-validation, and the best 

predicting MLP was found using two hidden layers with 20 nodes in each layer. For the 

CNN, a range of parameters including the number of hidden layers, the input image 

patch size, the number and size of convolutional filter, need to be tuned (Romero et al. 

2016). Following the discussion by Längkvist et al. (2016), the input patch size was 

chosen from {12×12, 14×14, 16×16, 18×18, 20×20, 22×22, 24×24} to evaluate the 

influence of context area on classification performance. In general, a small-sized 

contextual area results in overfitting of the model, whereas a large one often leads to 

under-segmentation. In consideration of the image object size and contextual 

relationship coupled with a small amount of trial and error, the optimal input image 

patch size was set to 16×16 in this research. Besides, as discussed by Chen et al. (2014) 

and Längkvist et al. (2016), the depth plays a key role in classification accuracy because 

the quality of learnt feature is highly influenced by the level of abstraction and 
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representation. As suggested by Längkvist et al. (2016), the number of CNN hidden 

layers was chosen as four to balance the network complexity and robustness. Other 

parameters were tuned empirically based on cross-validation accuracy, for example, the 

kernel size of the convolutional filters within the CNN was set as 3×3 and the number 

of filters was tuned as 24 at each convolutional layer.  

The MLP-MRF requires to predefine a fixed size of neighbourhood and a parameter γ 

that controls the smoothness level. The window size of the neighbourhood in the MLP-

MRF model was chosen optimally as 7×7 in consideration of the spatial context and the 

fidelity maintained in the classification output. Due to the fine spatial detail contained 

in the VFSR imagery, the parameter γ controlling the level of smoothness was set as 

0.7 to achieve an increasing level of smoothness in terms of the MRF. The simulated 

annealing optimization using a Gibbs sampler (Berthod et al. 1996) was employed in 

MLP-MRF to maximize the posterior probability through iteration. 

An SVM classifier was further used as a benchmark comparator to test the classification 

performance. The SVM model involves a penalty value C and a kernel width σ that 

needs to be parameterised. Following the recommendation by Zhang et al. (2015), a 

grid search with 5-fold cross-validation was implemented to exhaustively search within 

a wide parameter space (C and σ within [2-10, 210]). Such parameter settings would lead 

to high validation accuracy using support vectors to formulate an optimal classification 

hyperplane.  

4.3.3  Decision Fusion Parameter Setting and Analysis 

The decision fusion between the MLP-MRF and the CNN, namely, the MRF-CNN, 

based on the VPRS model, involves parameters β (the level of inclusion error) and step 

(the atomic granule). The two parameters were optimized through grid search with 
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cross-validation using Training Sample 2 (Listed in Table 4-2). Specifically, β was 

varied from 0 to 1 with incremental steps of 0.01, while the step was tuned between 0 

to 0.5 through a small step of 0.025 (i.e. with a wider parameter searching space) to 

obtain a higher validation accuracy. By doing so, β and step were chosen optimally as 

0.1 and 0.075, respectively.  

 

Figure 4-4: The CNN classification confidence value and the overall accuracy influenced by 

the fusion decision parameter setting (in the form of the non-positive to positive ratio). 

Both of the fusion decision parameters (β and step) jointly determined the partition of 

the positive and non-positive regions. As shown in Figure 4-4, these parameter settings, 

reflected by variation between the ratios of VPRS non-positive and positive regions 

(horizontal axis coordinates ranging from 0 to 1), have an impact on the CNN 

classification confidence values (blue dots) and the overall accuracies (boxplots). From 

the figure, it can be seen that along with the increase of the non-positive ratio, the CNN 

classification confidence decreases constantly, except for the non-positive ratio from 

0.3 to 0.55; whereas the overall accuracy initially increases from around 0.86 to around 

0.9 and then decreases constantly until around 0.81. Another observation is that the 

boxplot tends to be wider as the ratio of non-positive to positive region becomes larger, 



Chapter 4: VPRS-based regional decision fusion of CNN and MRF classifications 

 107 

with more credits being given from the CNN to the MLP-MRF. The optimal non-

positive ratio (determined by decision fusion parameter setting) was found to be 0.3 

(marked by the red dotted line in Figure 4-4).  

4.3.4  Classification Results and Analysis 

Experiment 1: The classification performance of the MRF-CNN and the other 

benchmark methods, including the MLP, SVM, MLP-MRF and the CNN, were 

compared using the Testing samples of Bournemouth dataset. Table 4-3 lists the 

detailed accuracy assessment of both S1 for Bournemouth city centre and S2 for the 

rural and suburban areas with overall accuracy (OA), Kappa coefficient (κ) as well as 

per-class mapping accuracy. Clearly, the MRF-CNN achieved the best overall accuracy 

of 90.96% for S1 and 89.76% for S2 with Kappa coefficients of 0.89 and 0.88 

respectively, consistently higher than the CNN (85.37% and 86.39% OA with κ of 0.84 

and 0.83, respectively), the MLP-MRF (83.76% and 84.52% with corresponding κ of 

0.79 and 0.80), the SVM (81.65% and 81.24% with corresponding κ of 0.77 and 0.78), 

and the MLP (81.52% and 80.32% with the same κ of 0.77) (Table 4-3). In addition, a 

McNemar z-test that accounts for the pair-wise classification comparison further 

demonstrates that a statistically significant increase has been achieved by the MRF-

CNN over the MLP, SVM, MLP-MRF and the CNN, with z-value = 3.27, 3.02, 2.74 

and 2.02 in S1 and z-value = 3.89, 3.51, 3.06 and 2.05 in S2 respectively, greater than 

1.96 at 95% confidence level (Table 4-4). Moreover, the class-wise classification 

accuracy of MRF-CNN constantly reports the most accurate results highlighted by the 

bold font in Table 4-3, except for the trees in S2 (89.32%) for which accuracy is slightly 

lower than for the CNN (90.42%). In particular, the mapping accuracies of most land 

covers classified by the MRF-CNN were higher than 90%, with the greatest accuracy 

achieved in grassland at both study sites S1 and S2, up to 93.57% and 92.94%, 
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respectively.  

With respect to the four benchmark classifiers themselves (i.e., MLP, SVM, MLP-MRF 

and CNN), it can be seen from Table 4-3 that their classification accuracies are ordered 

as: MLP < SVM < MLP-MRF < CNN. For the urban area at S1, the accuracy of the 

MLP-MRF and the SVM is closer to the MLP (<2%), but with larger difference (>3%) 

from the CNN. This is further demonstrated by the McNemar z-test in Table 4-4 where 

the CNN is significantly different from the MLP, the SVM and the MLP-MRF (z = 

3.12, 2.85 and 2.14, respectively), but the increase of the MLP-MRF is not significant 

compared with the MLP (z = 1.57) and the SVM (z = 1.68). In the rural area at S2, on 

the contrary, the accuracy of the MLP-MRF is remarkably higher (>4%) than that of 

the MLP and SVM with statistical significance (z = 2.12 and 2.04), and only slightly 

lower than that of the CNN (<2%) without significant difference (z = 1.59).  

Figure 4-5 and 4-6 demonstrate visual comparisons of the five classification results 

using three subset images at each study site (S1 and S2).  For the Concrete roof class, 

from the upper right of Figure 4-5(a), it is clear that the MLP and SVM classification 

results maintain the rectangular geometry of the building, but at the same time present 

very noisy information with salt-and-pepper effects in white throughout the Concrete 

roof (see the red circles at the figure). Such noise has been largely reduced by the MLP-

MRF but still not yet completely eliminated (shown by red circle). The noise has been 

erased thoroughly by the CNN. However, some serious mistakes have been introduced 

by misclassifying the asphalt on top of the Concrete roof (highlighted by red circle). 

Fortunately, the MRF-CNN removed all of the noise while keeping the correctness of 

the semantic segmentation (yellow circle). A similar pattern was found in the middle 

of Figure 4-5(b), where the MLP-MRF is less noisy than the MLP and the SVM (red 
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circles), and the CNN obtains the smoothest classification result, but tends to be under-

segmented along the object boundaries (highlighted by red circle). The MRF-CNN, in 

contrast, keeps the central regions smooth while preserving the precise boundary 

information (e.g. the rectangularity of the concrete roofs and the shadow next to them; 

shown in yellow circle). Similar situations are found in the Clay roof, as shown in 

Figure 4-6(a) and 4-6(c), where the MLP, SVM and MLP-MRF introduced some noise 

in the central region, whereas the CNN eradicated them but with obvious geometric 

distortions. The MRF-CNN, surprisingly, removes all the noise while keeping the crisp 

boundaries with accuracy. In terms of the railway class illustrated in the middle of 

Figure 4-5(a), it was noisily classified by the MLP, the SVM and the MLP-MRF (red 

circles). This noise was eliminated by the CNN as well as the MRF-CNN (yellow 

circles). Moreover, some small Road-or-tracks exemplified by Figure 4-6(a) and 4-6(b) 

were successfully maintained by the MLP, SVM, MLP-MRF as well as MRF-CNN, 

yet omitted by CNN due to the convolutional operations.  

For the natural land cover classes, the grassland patch shown in Figure 4-5(b) is shaped 

approximately square (see the original image in Figure 4-5(b)). The MLP and SVM 

produced noisy results confused with the surrounding tree species (shown in red 

circles). A similar pattern was found in the result of the MLP-MRF but with less noise 

(marked by red circle). The CNN and the MRF-CNN did not show any noise in the 

classification map. However, the CNN did not maintain the squared shape of the 

grassland (shown in red circle), whereas the MRF-CNN successfully kept the geometric 

fidelity as a square shaped object (highlighted by yellow circle). With regard to the 

Trees indicated in Figure 4-6(a) and 4-6(b), the MLP, SVM and MLP-MRF produce 

different noise: the MLP tends to misclassify the trees as grassland (shown in red 

circle), whereas the SVM and MLP-MRF sometimes falsely considers the leaf-off trees 
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or the shade of trees as the shaded Clay roof (marked by red circle). All these 

misclassifications are rectified by the CNN and the MRF-CNN (in yellow circle).  

Table 4-3 - Classification accuracy comparison amongst MLP, SVM, MLP-MRF, CNN 

and the proposed MRF-CNN approach for Bournemouth city centre (S1) and the 

suburban area (S2) using the per-class mapping accuracy, overall accuracy (OA) and 

kappa coefficient (κ). the bold font highlights the greatest classification accuracy per 

row. 

Study Sites Class MLP SVM MLP-MRF CNN MRF-CNN 

S1 

Clay roof 91.37% 91.45% 90.58% 88.56% 92.68% 

Concrete roof 68.52% 68.74% 72.23% 74.37% 78.25% 

Metal roof 89.75% 89.52% 90.12% 91.42% 92.23% 

Asphalt 88.59% 88.55% 88.67% 85.98% 91.26% 

Grassland 73.51% 74.28% 76.42% 88.63% 93.57% 

Trees 65.68% 65.79% 72.28% 82.28% 88.53% 

Bare soil 80.46% 80.51% 80.82% 85.23% 90.24% 

Shadow 91.56% 91.23% 91.23% 90.14% 92.16% 

Railway 82.14% 82.35% 83.57% 90.23% 91.56% 

OA 81.52% 81.65% 83.26% 86.37% 90.96% 

κ 0.77 0.77 0.79 0.84 0.89 

S2 

Clay roof 88.56% 88.27% 86.75% 82.37% 90.16% 

Concrete roof 79.84% 79.62% 81.26% 84.17% 88.27% 

Road-or-track 83.02% 83.36% 83.17% 86.54% 92.38% 

Grassland 72.11% 73.64% 80.57% 88.58% 92.94% 

Trees 79.31% 79.24% 85.26% 90.42% 89.32% 

Bare soil 76.18% 76.42% 78.25% 81.36% 88.75% 

Shadow 89.42% 89.56% 89.42% 88.25% 89.58% 

OA 80.32% 81.24% 84.52% 86.39% 89.76% 

κ 0.77 0.78 0.80 0.83 0.88 
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As for the other land cover classes (e.g., bare soil and shadow) the four classification 

methods do not show significant differences, although some increases in classification 

accuracy were still obtained by the MRF-CNN. For example, the bare soil shown in 

Figure 4-6(c) is highly influenced by the cars and other small objects, which results in 

over-segmented noise by the MLP and the SVM (shown in red circles) or false 

identification into Clay roof by the CNN (marked in red circle). The MLP-MRF and 

the proposed MRF-CNN, fortunately, addressed those challenges with smooth yet 

semantically accurate geometric results (in yellow circle).  

Table 4-4 - McNemar Z-test comparing the performance of the four classifiers for two 

study sites s1 and s2. significantly different accuracies with confidence of 95% (z-value 

> 1.96) are indicated by *. 

Study 

sites 
Classifiers 

McNemar Z-test 

MLP SVM MLP-MRF CNN MRF-CNN 

S1 

MLP —     

SVM 1.32 —    

MLP-MRF 1.57 1.68 —   

CNN 3.12* 2.85* 2.14* —  

MRF-CNN 3.27* 3.02* 2.74* 2.02* — 

S2 

MLP —     

SVM 1.66 —    

MLP-MRF 2.12* 2.04* —   

CNN 2.42* 2.15* 1.59 —  

MRF-CNN 3.89* 3.51* 3.06* 2.05* — 
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Figure 4-5: Three typical image subsets (a, b and c) in study site S1 with their classification results. Columns from left to right represent the original 

images (R G B bands), the MLP, the SVM, the MLP-MRF, the CNN, and the MRF-CNN classification results. The red and yellow circles denote incorrect and 

correct classification, respectively. 
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Figure 4-6: Three typical image subsets (a, b and c) in study site S2 with their classification results. Columns from left to right represent the original 

images (R G B bands), the MLP, the SVM, the MLP-MRF, the CNN, and the MRF-CNN classification results. The red and yellow circles denote incorrect and 

correct classification, respectively. 
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Experiment 2: The proposed MRF-CNN and its sub-modules (MLP, MLP-MRF and 

CNN) as well as other benchmark methods were validated on the Vaihingen and 

Potsdam semantic segmentation datasets. Table 4-5 and 4-6 present the classification 

accuracies of all four methods together with the four benchmark methods (SVM, FCN, 

SegNet and Deeplab-v2). The MRF-CNN achieved the largest OA of 88.4% and 89.4% 

for the two datasets, larger than its sub-modules (86.2% and 86.5%, 82.1% and 83.7%, 

and 81.4% and 82.1% OA of CNN, MLP-MRF and the MLP, respectively). The MRF-

CNN also demonstrates greater accuracy than the benchmarks, including the Deeplab-

v2 with an OA of 86.7% and 88.2%, the FCN with an OA of 85.9% and 86.2% 

(Kampffmeyer et al. 2016), the SegNet with an OA of 82.8% and 83.6% (Volpi and 

Tuia 2017), and the SVM with an OA of 81.7% and 82.4%. 

The per-class mapping accuracy (Table 4-5 and 4-6) shows the effectiveness of the 

proposed MRF-CNN for the majority of classes. Significant increases in accuracy are 

realized for the classes of Impervious surfaces, Low vegetation, Building and Car 

relative to the individual classifier CNN and MLP-MRF, with an average large margin 

of 3.9%, 4%, 5.55% and 8.75%, respectively. The Tree class accuracy, however, was 

less significantly increased compared to the CNN, with small margins of 0.8% and 

0.6%. In terms of benchmark methods, the MRF-CNN demonstrates higher accuracy 

for the majority of classes, except for the Car class (79.6% and 80.3%), for which the 

accuracy is less than for the state-of-the-art Deeplab-v2 (84.7% and 83.9%).  

Figure 4-7 and 4-8 illustrate full tile predictions of Vaihingen dataset (No. 30) and 

Potsdam dataset (No. 05_12), with red and dashed circles highlighting broadly incorrect 

and correct classifications, respectively. Both MLP and SVM classifications result in 

salt-and-pepper effects due to pixel-level differentiation with subtle differences 
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between them (e.g. red circles shown in Figure 4-7(d) and 4-7(e)). The MLP-MRF 

(Figure 4-7(f) and 4-8(f)) improves on the MLP (Figure 4-7(d) and 4-8(d)) with 

homogeneous blocks and crisp boundary differentiation. This can be seen at the lower 

right side of the Building that has reduced salt-and-pepper effect (dashed circle in 

Figure 4-7(d) and 4-8(d)). The CNN acquires the greatest smoothness (Figure 4-7(g) 

and 4-8(g)) thanks to higher-level spatial feature representation. However, it makes 

some blunders by misclassifying Building as Car (red circles in Figure 4-7(g) or falsely 

producing some building edge artefacts as Impervious Surface (the red circle in Figure 

4-8(g)). The MRF-CNN (Figure 4-7(h) and 4-8(h)), solved the aforementioned 

problems (all dashed circles) by taking advantage of the rough set uncertainty partition 

as well as the subsequent decision fusion. 

Table 4-5 - Per-class accuracy and overall accuracy (OA) for the MLP, SVM, MLP-

MRF, CNN and the proposed MRF-CNN approach, as well as baseline methods, for 

the Vaihingen dataset. the bold font highlights the largest classification accuracy per 

row. 

Method Imp Surf Building Low Veg Tree Car OA 

MLP 83.5% 82.1% 68.3% 86.1% 64.2% 81.4% 

SVM 82.7% 82.4% 69.2% 84.3% 66.5% 81.7% 

MLP-MRF 84.3% 83.6% 72.7% 83.9% 71.7% 82.1% 

CNN 86.2% 89.2% 76.9% 86.9% 69.7% 86.2% 

FCN 87.1% 91.8% 75.2% 86.1% 63.8% 85.9% 

SegNet 82.7% 89.1% 66.3% 83.9% 55.7% 82.8% 

Deeplab-v2 88.5% 93.3% 73.9% 86.9% 84.7% 86.7% 

MRF-CNN 89.7% 93.8% 80.1% 87.7% 79.6% 88.4% 
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Figure 4-7: Full tile prediction for No. 30. Legend on the Vaihingen dataset: 

white=impervious surface; blue=buildings; cyan=low vegetation; green=trees; yellow=cars. 

(a) True Orthophoto; (b) Normalised DSM; (c) Ground Reference, ground reference 

labelling; (d, e, f, g) the inference result from MLP, SVM, MLP-MRF, CNN, respectively; (f) 

the proposed MRF-CNN classification result. The red and dashed circles denote incorrect 

and correct classification, respectively. 

Table 4-6 - Per-class accuracy and overall accuracy (OA) for the MLP, SVM, MLP-

MRF, CNN and the proposed MRF-CNN approach, as well as baseline methods, for 

the Potsdam dataset. the bold font highlights the largest classification accuracy per row. 

Method Imp Surf Building Low Veg Tree Car OA 

MLP 84.3% 81.3% 71.5% 85.6% 70.4% 82.1% 

SVM 83.6% 81.8% 72.2% 84.3% 70.9% 82.4% 

MLP-MRF 85.8% 83.6% 73.4% 84.8% 72.3% 83.7% 

CNN 86.5% 88.7% 76.7% 87.6% 72.7% 86.5% 

FCN 85.5% 90.6% 75.8% 86.1% 69.8% 86.2% 

SegNet 82.9% 89.5% 73.1% 84.3% 70.5% 83.6% 

Deeplab-v2 88.7% 93.6% 77.2% 86.5% 83.9% 88.2% 

MRF-CNN 90.8% 95.2% 81.5% 88.2% 80.3% 89.4% 
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Figure 4-8: Full tile prediction for No. 05_12. Legend on the Potsdam dataset: 

white=impervious surface; blue=buildings; cyan=low vegetation; green=trees; yellow=cars. 

(a) True Orthophoto; (b) Normalised DSM; (c) Ground Reference, ground reference 

labelling; (d, e, f, g) the inference result from MLP, SVM, MLP-MRF, CNN, respectively; (f) 

the proposed MRF-CNN classification result. The red and dashed circles denote incorrect 

and correct classification, respectively. 

4.3.5  Function of the VPRS fusion decision parameter β and step 

The VPRS fusion decision parameters (β and step) were analysed separately to 

investigate each of their contributions in describing and integrating the classification 

results. As illustrated by Figure 4-9(a) and 4-9(b), relations between the fused 

classification accuracy and each of the parameters (while fixing the other) can be 

plotted. Generally, there are similar trends in terms of the influence of two parameters 

on classification accuracy: the accuracy increases initially until reaching the maximum 

accuracy at β = 0.1 and step around 0.075-0.1, and then decreases constantly, along 

with further increases of the inclusion error β (Figure 4-9(a)) and the atomic granule 

step (Figure 4-9(b)) respectively. This means that both β and step can impact the 
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accuracy. However, compared with the step, the change in accuracy caused by β is 

greater accompanied by greater accuracy variation, indicating that β is the crucial factor 

for VPRS parameter setting. It can be imagined that a large value of β can wrongly take 

the CNN’s problematic boundary information as positive regions, whereas the “should-

be” positive regions can be eliminated by too small a value of β. In terms of step, the 

smaller its value (i.e. a finer information granularity), the larger the test samples for the 

VPRS will be required, to provide enough samples within each information granularity 

level. An atomic granularity should, therefore, ideally match with the sampling density 

level; otherwise, it will reduce the classification accuracy (Figure 4-9(b)). 

 

Figure 4-9: Accuracies of VPRS (a) influenced by β when fixing the step as 0.075, (b) 

influenced by step when fixing the β as 0.1. 

4.4      Discussion 

Due to the spatial and spectral complexity within VFSR imagery, any classification 

model prediction is inherently uncertain, including the advanced CNN classifier. Thus, 

for the integration of classifiers, it would be of paramount importance to discriminate 

the less uncertain and more uncertain results of each individual classification. A VPRS 

based regional fusion decision strategy was, thus, proposed to integrate the spectral-

contextual-based MLP-MRF classifier with precise boundary partitions and the CNN 
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classifier with spatial feature representations for high accuracy classification of VFSR 

remotely sensed imagery. The proposed MRF-CNN regional decision fusion method 

takes advantage of the merits of the two individual classifiers and overcomes their 

respective shortcomings as discussed below. 

4.4.1  Characteristics of MLP-MRF classification 

The MLP-MRF classifier is constructed based on the pixel-based MLP as its 

conditional probability and models the prior probability using its contextual 

neighbourhood information to achieve a certain amount of smoothness (Wang and Liu 

1999). That is, the MLP-MRF depends primarily on the spectral feature differentiation 

from the MLP with consideration of its spatial connectivity/smoothness (Wang et al. 

2013). Such characteristics result in similar classification performance to the result of 

MLP but with less salt and pepper effect. One positive attribute of the MLP-MRF, 

inherited from the non-parametric learning classifier MLP, is the ability to maintain 

precise boundaries of some objects with high accuracy and fidelity. In particular, the 

classification accuracy of a pixel in the MLP model is not affected by the relative 

position (e.g. lying on or close to boundaries) of the object it belongs to, as long as the 

corresponding spectral space is separable. Some land cover classes (e.g. Clay roof, 

Metal roof and Shadow), with salient spectral properties that are spectrally exclusive to 

other classes, are therefore not only accurately classified with high classification 

accuracies (>90% overall accuracy), but also with less noise in comparison with the 

standard MLP and SVM classification results. At the same time, the MLP-MRF can 

elaborately identify some components of an object, for example, the VeluxTM windows 

of a building (shown by yellow circle in Figure 4-6(c)), indicating that the object and 

its sub-objects might be possibly mapped accurately in future. However, the 

classification accuracy increase of the MLP-MRF over the MLP is not substantial or 
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less remarkable, with just a 2-3% accuracy increase (see Table 4-3 in experiment 1 and 

Table 4-5 in experiment 2). In comparison with the CNN, the MLP-MRF usually 

demonstrates a much larger intra-class variation, which can be demonstrated by the fact 

that the boxplots of confidence values are larger when gradually trusting the MLP-MRF 

(Figure 4-4). This is mainly because the MLP-MRF utilizes the spectral information in 

the classification process without fully exploiting the abundant spatial information 

appearing in the VFSR imagery (e.g. texture, geometry or spatial arrangement) (Wang 

et al. 2016). Such deficiencies often lead to unsatisfactory classification performance 

in classes with spectrally mixed but spatially distinctive characteristics (e.g., the 

confusion and misclassification between Trees and Grassland or Low Vegetation that 

are spectrally similar, the severe salt and pepper effects on railway with linear textures, 

etc.). 

4.4.2  Characteristics of CNN classification 

Spatial features in remotely sensed data like VFSR imagery are intrinsically local and 

stationary that represent a coherent spatial pattern (Masi et al. 2016). The presence of 

such spatial features are detected by the convolutional filters within the CNN, and well 

generalized into increasingly abstract and robust features through hierarchical feature 

representations. Therefore, the CNN shows an impressive stability and effectiveness in 

VFSR image classification (Zhao and Du 2016). Especially, classes like Concrete roof 

and Road-or-track that are difficult to distinguish from their backgrounds with only 

spectral features at pixel level, are identified with relatively high accuracies. In addition, 

classes with heavy spectral confusion in both study sites (e.g. Trees and Grassland), are 

accurately differentiated due to their obvious spatial pattern differences; for example, 

the texture of tree canopies is generally rougher than that of grassland, which is captured 

by the CNN through spatial feature representations. Moreover, the convolutional filters 
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applied at each layer within the CNN framework remove all of the noise that is smaller 

than the size of the image patch, which leads to the smoothest classification results 

compared with the MLP, the SVM and the MLP-MRF (see Figure 4-5 - Figure 4-8). 

This is also demonstrated by Figure 4-4, where the boxplots of the CNN are much 

narrower than those of the MLP-MRF.  

As discussed above, the CNN classifier demonstrates obvious superiority over the 

spectral-contextual based MLP-MRF (and the pixel-based MLP and SVM classifiers) 

for the classification of the spatially and spectrally complex VFSR remotely sensed 

imagery. However, according to the “no free lunch” theorem (Wolpert and Macready 

1997), any elevated performance in one aspect of a problem will be paid for through 

others, and the CNN is no exception. the CNN also demonstrates some deficiencies for 

boundary partition and small feature identification, which is essential for VFSR image 

classification with unprecedented spatial detail. Such a weakness occurs mainly 

because of over-smoothness that leads to boundary uncertainties with small useful 

features being falsely erased, somehow similar to morphological or Gabor filter 

methods (Reis and Tasdemir 2011, Pingel et al. 2013). For example, the human-made 

objects in urban scenes like buildings and asphalt are often geometrically enlarged with 

distortion to some degree (See Figure 4-5(b) and 4-6(c)), and the impervious surfaces 

and the building are confused with cars being enlarged or misclassified (Figure 4-7(e)). 

As for natural objects in rural areas (S2), edges or porosities of a landscape patch are 

simplified or ignored, and even worse, linear features like river channels or dams that 

are of ecological importance, are erroneously erased (e.g. Figure 4-5(b)). Besides, 

certain spectrally distinctive features without obvious spatial patterns are poorly 

differentiated. For example, some Concrete roofs are wrongly identified as Asphalt as 

illustrated in Figure 4-5(c). Previous work also found that the CNN was inferior to some 



Chapter 4: VPRS-based regional decision fusion of CNN and MRF classifications 

 122 

global low level feature descriptors like Border/ Interior Pixel Classification when 

dealing with a remote sensing image that has abundant spectral but lacks spatial 

information (Nogueira et al. 2017). However, the uncertainties in the CNN 

classification demonstrate regional distribution characteristics, either along the object 

boundaries (e.g. Figure 4-5(b)) or entire objects (e.g. Figure 4-5(c)). These provide the 

justification of regional decision fusion to further improve the CNN for VFSR image 

classification. 

4.4.3  The VPRS based MRF-CNN fusion decision 

This chapter proposed to explore rough set theory for region-based uncertainty 

description and classification decision fusion using VFSR remotely sensed imagery. 

The classification uncertainties in the CNN results were quantified at a regional level, 

with each region determined as positive or non-positive (boundary and negative) 

regions by matching the correctness of a group of samples in the Test Sample T2. 

Nevertheless, in the standard rough set, most of the actual positive regions are occupied 

by boundary (i.e. non-positive) regions due to the huge uncertainty and inconsistency 

in VFSR image classification results. Such issues limit the practical application of the 

standard rough set because of its ignorance of the desired positive regions. A variable 

precision rough set (VPRS) is proposed for uncertainty description and classification 

integration by incorporating a small level of inclusion error (i.e. parameter β). The 

VPRS theory is used here as a spatially explicit framework for regional decision fusion, 

where the non-positive regions in this research represent the spatial uncertainties in the 

CNN classification result. For those positive regions of CNN classifications, including 

the very close to 100% correct classifications, are identified and utilized; whereas the 

rest (i.e. the non-positive) regions are replaced by the MLP-MRF results with crisp and 

accurate boundary delineation.  
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To integrate the CNN and the MLP-MRF classifier, the CNN was served as the base 

classifier to derive the classification confidence, considering its superiority in terms of 

classification accuracy and the regional homogeneity of classification results. 

Therefore, the regional decision fusion process is based on the CNN classification 

results, and the MLP-MRF is only trusted at the regions where the CNN is less 

believable (i.e. the non-positive regions). Such a fusion decision strategy achieves an 

accurate and stable result with the least variation in accuracy, as illustrated by the 

narrow box in Figure 4-4. The complete correctness of the MLP-MRF results at the 

non-positive regions are not guaranteed, but one thing is certain: the corresponding 

MLP-MRF results are much more accurate than those of the CNN. In fact, while the 

CNN accurately classifies the interiors of objects with spatial feature representations, 

the MLP-MRF could provide a smooth, but also crisp boundary segmentation with high 

fidelity (Wang et al. 2013). These supplementary characteristics inherent in the MLP-

MRF and CNN, are captured well by the proposed VPRS-based MRF-CNN regional 

decision fusion approach. As shown by Figure 4-4, although the values of the CNN 

confidence map decrease gradually from the centre to its boundary (i.e. the edge 

between the positive and non-positive regions, at 0.3 marked by the red vertical line), 

the classification accuracies rise constantly until reaching the maximum accuracy. For 

these MLP-MRF results in the non-positive regions, the corresponding non-positive 

regions (i.e. the problematic areas of the final fusion decision results) can be further 

clarified. Moreover, additional improvement might be obtained by means of imposing 

extra expert knowledge and/or combining other advanced classifiers (e.g. SVM, 

Random Forest, etc.). 

In summary, the proposed method for classification data description and integration is, 

in fact, a general framework extensively applicable to any classification algorithms (not 
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just for the mentioned individual classifiers), and to any remote sensing images (not 

just for the VFSR remotely sensed imagery). The general approach, thus, addresses the 

complex problem of remote sensing image classification in a flexible, automatic and 

active manner. 

The proposed MRF-CNN relies on an efficient and relatively limited CNN network 

with just four layers (c.f. state-of-the-art networks, such as Deeplab-v2, built on 

extremely deep ResNet-101). Nevertheless, it still achieves comparable and promising 

classification performance with the largest accuracy overall. This demonstrates that the 

proposed method has practical utility, especially when facing the problems of limited 

computational power with insufficient training data, which are commonly encountered 

in the remote sensing domain when building a deep CNN network.  

4.5      Conclusion 

Spatial uncertainty is always a key concern in remote sensing image classification, 

which is essential when facing the spatially and spectrally complex VFSR remotely 

sensed imagery. Characterising the spatial distribution of uncertainties has great 

potential for practical application of the data. In this chapter, a novel variable precision 

rough set (VPRS) based regional fusion decision between CNN and MRF was 

presented for the classification of VFSR remotely sensed imagery. The VPRS model 

quantified the uncertainties in CNN classification of VFSR imagery by partitioning the 

result into spatially explicit granularities that represent positive regions (correct 

classifications) and non-positive regions (uncertain or incorrect classifications). Such a 

region-based fusion decision approach reflects the regional homogeneity of the CNN 

classification map. The positive regions were directly trusted by the CNN, whereas non-

positive regions were rectified by the MLP-MRF in consideration of their 
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complementary behaviour in spatial representation. The proposed regional fusion of 

MRF-CNN classifiers consistently outperformed the standard pixel-based MLP and 

SVM, spectral-contextual based MLP-MRF as well as contextual-based CNN 

classifiers, and increased classification accuracy above state-of-the-art methods when 

applied to the ISPRS Semantic Labelling datasets. Therefore, this VPRS-based regional 

classification integration of CNN and MRF classification results provides a framework 

to achieve fully automatic and effective VFSR image classification. 
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Chapter 5      An object-based convolutional 
neural network (OCNN) for urban land use 
classification 3 

  

                                                 
3 This chapter is based on the published paper: Ce Zhang, Isabel Sargent, Xin Pan, Huapeng Li, Andy 

Gardiner, Jonathon Hare, Peter M. Atkinson, 2018c, An object-based convolutional neural networks 

(OCNN) for urban land use classification. Remote Sensing of Environment, 216:57-70. 
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Abstract 

Urban land use information is essential for a variety of urban-related applications such 

as urban planning and regional administration. The extraction of urban land use from 

very fine spatial resolution (VFSR) remotely sensed imagery has, therefore, drawn 

much attention in the remote sensing community. Nevertheless, classifying urban land 

use from VFSR images remains a challenging task, due to the extreme difficulties in 

differentiating complex spatial patterns to derive high-level semantic labels. Deep 

convolutional neural networks (CNNs) offer great potential to extract high-level spatial 

features, thanks to its hierarchical nature with multiple levels of abstraction. However, 

blurred object boundaries and geometric distortion, as well as huge computational 

redundancy, severely restrict the potential application of CNN for the classification of 

urban land use. In this chapter, a novel object-based convolutional neural network 

(OCNN) is proposed for urban land use classification using VFSR images. Rather than 

pixel-wise convolutional processes, the OCNN relies on segmented objects as its 

functional units, and CNN networks are used to analyse and label objects such as to 

partition within-object and between-object variation. Two CNN networks with different 

model structures and window sizes are developed to predict linearly shaped objects (e.g. 

Highway, Canal) and general (other non-linearly shaped) objects. Then a class-specific 

decision fusion is performed to integrate the classification results. The effectiveness of 

the proposed OCNN method was tested on aerial photography of two large urban scenes 

in Southampton and Manchester in Great Britain. The OCNN combined with large and 

small window sizes achieved excellent classification accuracy and computational 

efficiency, consistently outperforming its sub-modules, as well as other benchmark 

comparators, including the pixel-wise CNN, contextual-based MRF and object-based 
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OBIA-SVM methods. The proposed method provides the first object-based CNN 

framework to effectively and efficiently address the complicated problem of urban land 

use classification from VFSR images. 

Keywords: convolutional neural network; OBIA; urban land use classification; VFSR 

remotely sensed imagery; high-level feature representations 

5.1      Introduction 

Urban land use information, reflecting socio-economic functions or activities, is 

essential for urban planning and management. It also provides a key input to urban and 

transportation models, and is essential to understanding the complex interactions 

between human activities and environmental change (Patino and Duque 2013). With 

the rapid development of modern remote sensing technologies, a huge amount of very 

fine spatial resolution (VFSR) remotely sensed imagery is now commercially available, 

opening new opportunities to extract urban land use information at a very detailed level 

(Pesaresi et al. 2013). However, urban land features captured by these VFSR images 

are highly complex and heterogeneous, comprising the juxtaposition of a mixture of 

anthropogenic urban and semi-natural surfaces. Often, the same urban land use types 

(e.g. residential areas) are characterized by distinctive physical properties or land cover 

materials (e.g. composed of different roof tiles), and different land use categories may 

exhibit the same or similar reflectance spectra and textures (e.g. asphalt roads and 

parking lots) (Pan et al. 2013). Meanwhile, information on urban land use within VFSR 

imagery is presented implicitly as patterns or high-level semantic functions, in which 

some identical low-level ground features or object classes are frequently shared 

amongst different land use categories. This complexity and diversity of spatial and 

structural patterns in urban areas makes its classification into land use classes a 
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challenging task (Hu et al. 2015a). Therefore, it is important to develop robust and 

accurate urban land use classification techniques by effectively representing the spatial 

patterns or structures lying in VFSR remotely sensed data. 

Over the past few decades, tremendous effort has been made in developing automatic 

urban land use classification methods. These methods can be categorized broadly into 

four classes based on the spatial unit of representation (i.e. pixels, moving windows, 

objects and scenes) (Liu et al. 2016). The pixel-level approaches that rely purely upon 

spectral characteristics are able to classify land cover, but are insufficient to distinguish 

land uses that are typically composed of multiple land covers, and such problems are 

particularly significant in urban settings (Zhao et al. 2016). Spatial information, that is, 

texture (Myint 2001, Herold et al. 2003) or context (Wu et al. 2009), was incorporated 

to analyse urban land use patterns through moving kernel windows (Niemeyer et al. 

2014).  However, it could be argued that both pixel-based and moving window-based 

methods require to predefine arbitrary image structures, whereas actual objects and 

regions might be irregularly shaped in the real world (Herold et al. 2003). Therefore, 

object-based image analysis (OBIA) that is built upon automatically segmented objects 

from remotely sensed imagery is preferable (Blaschke 2010), and has been considered 

as the dominant paradigm over the last decade (Blaschke et al. 2014). Those image 

objects, as the base units of OBIA, offer two kinds of information with a spatial 

partition, specifically; within-object information (e.g. spectral, texture, shape) and 

between-object information (e.g. connectivity, contiguity, distances, and direction 

amongst adjacent objects). Many studies applied OBIA for urban land use classification 

using within-object information with a set of low-level features (such as spectra, 

texture, shape) of the ground features (e.g. Blaschke 2010, Blaschke et al. 2014, Hu and 

Wang, 2013). These OBIA approaches, however, might overlook semantic functions or 
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spatial configurations due to the inability to use low-level features in semantic feature 

representation. In this context, researchers have attempted to incorporate between-

object information by aggregating objects using spatial contextual descriptive 

indicators on well-defined land use units, such as cadastral fields or street blocks. Those 

descriptive indicators were commonly derived by means of spatial metrics to quantify 

their morphological properties (Yoshida and Omae 2005) or graph-based methods that 

model the spatial relationships (Barr and Barnsley 1997, Walde et al. 2014). However, 

the ancillary geographic data for specifying the land use units might not be available 

for some regions, and the spatial contexts are often hard to describe and characterise as 

a set of “rules”, even though the complex structures or patterns might be recognizable 

and distinguishable by human experts (Oliva-Santos et al. 2014). Thus, advanced data-

driven approaches are highly desirable to learn land use semantics automatically 

through high-level feature representations. 

Recently, deep learning has become the new hot topic in machine learning and pattern 

recognition, where the most representative and discriminative features are learnt end-

to-end, hierarchically (Chen et al. 2016). This breakthrough was triggered by a revival 

of interest in the use of multi-layer neural networks to model higher-level feature 

representations without human-designed features or rules. Convolutional neural 

networks (CNNs), as a well-established and popular deep learning method, has 

produced state-of-the-art results for multiple domains, such as visual recognition 

(Krizhevsky et al. 2012), image retrieval (Yang et al. 2015) and scene annotation 

(Othman et al. 2016). Owing to its superiority in higher-level feature representation and 

scene understanding, the CNN has demonstrated great potential in many remote sensing 

tasks such as vehicle detection (Chen et al. 2014, Dong et al. 2015), road network 

extraction (Cheng, Wang, et al. 2017), remotely sensed scene classification (Othman et 
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al. 2016, Sargent et al. 2017), and semantic segmentation (Zhao et al. 2017). Interested 

readers are referred to a comprehensive review of deep learning in remote sensing (Zhu 

et al. 2017).  

Land use information extraction from remotely sensed data using CNN models has been 

undertaken in the form of land-use scene classification, which aims to assign a semantic 

label (e.g. tennis court, parking lot, etc.) to an image according to its content (Chen et 

al. 2016, Nogueira et al. 2017). There are broadly two strategies to exploit the CNN 

models for scene-level land use classification, namely; i) pre-trained or fine-tuned 

CNN, and ii) fully-trained CNN from scratch. The first strategy relies on pre-trained 

CNN networks transferred from an auxiliary domain with natural images, which has 

been demonstrated empirically to be useful for land-use scene classification (Hu et al. 

2015b, Nogueira et al. 2017). However, it requires three input channels derived from 

natural images with RGB only, whereas the multispectral remotely sensed imagery 

often involves the near infrared band, and such a distinction restricts the utility of pre-

trained CNN networks. Alternatively, the (ii) fully-trained CNN strategy gives full 

control over the network architecture and parameters, which brings greater flexibility 

and expandability (Chen et al. 2016). Previous researchers have explored the feasibility 

of the fully-trained strategy in building CNN models for scene level land-use 

classification. For example, Luus et al. (2015) proposed a multi-view CNN with multi-

scale input strategies to address the issue of land use scene classification and its scale-

dependent characteristics. Othman et al. (2016) used convolutional features and a sparse 

auto-encoder for scene-level land-use image classification, which further demonstrated 

the superiority of CNNs in feature learning and representation. Xia et al. (2017) even 

constructed a large-scale aerial scene classification dataset (AID) for performance 

evaluation among various CNN models and architectures developed by both strategies. 
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However, the goal of these land use scene classifications is essentially image 

categorization, where a small patch extracted from the original remote sensing image 

is labelled into a semantic category, such as ‘airport’, ‘residential’ or ‘commercial’ 

(Maggiori et al. 2017). Land-use scene classification, therefore, does not meet the actual 

requirement of remotely sensed land use image classification, which requires all pixels 

in an entire image to be identified and labelled into land use categories (i.e., producing 

a thematic map). 

With the intrinsic advantages of hierarchical feature representation, the patch-based 

CNN models provide great potential to extract higher-level land use semantic 

information. However, this patch-wise procedure introduces artefacts on the border of 

the classified patches and often produces blurred boundaries between ground surface 

objects (Zhang et al. 2018a, 2018b), thus, introducing uncertainty in the classification. 

In addition, to obtain a full resolution classification map, pixel-wise densely overlapped 

patches were used at the model inference phase, which inevitably led to extremely 

redundant computation.  As an alternative, Fully Convolutional Networks (FCN) and 

its extensions have been introduced into remotely sensed sematic segmentation to 

address the pixel-level classification problem (e.g. Liu et al. 2017; Paisitkriangkrai et 

al. 2016; Volpi and Tuia, 2017). These FCN-based methods are, however, mostly 

developed to solve low-level semantic (i.e. land cover) classification tasks, due to the 

insufficient spatial information in the inference phase and the lack of contextual 

information at up-sampling layers (Liu et al. 2017). In short, we argue that the existing 

CNN models, including both patch-based and pixel-level approaches, are not well 

designed in terms of accuracy and/or computational efficiency to cope with the 

complicated problem of urban land use classification using VFSR remotely sensed 

imagery.  
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In this chapter, we propose an innovative object-based CNN (OCNN) method to 

address the complex urban land-use classification task using VFSR imagery. 

Specifically, object-based segmentation was initially employed to characterize the 

urban landscape into functional units, which consist of two geometrically different 

objects, namely linearly shaped objects (e.g. Highway, Railway, Canal) and other (non-

linearly shaped) general objects. Two CNNs with different model structures and 

window sizes were applied to analyse and label these two kinds of objects, and a rule-

based decision fusion was undertaken to integrate the models for urban land use 

classification. The innovations of this research can be summarised as 1) to develop and 

exploit the role of CNNs under the framework of OBIA, where both within-object 

information and between-object information is used jointly to fully characterise objects 

and their spatial context. 2) to design the CNN networks and position them 

appropriately with respect to object size and geometry, and integrate the models in a 

class-specific manner to obtain an effective and efficient urban land use classification 

output (i.e., a thematic map). The effectiveness and the computational efficiency of the 

proposed method were tested on two complex urban scenes in Great Britain. 

The remainder of this chapter is organized as follows: Section 5.2 introduces the general 

workflow and the key components of the proposed methods. Section 5.3 describes the 

study area and data sources. The results are presented in section 5.4, followed by a 

discussion in section 5.5. The conclusions are drawn in the last section. 

5.2      Methodology 

5.2.1  Convolutional Neural Networks (CNN) 

A Convolutional Neural Network (CNN) is a multi-layer feed-forward neural network 

that is designed specifically to process large scale images or sensory data in the form 
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of multiple arrays by considering local and global stationary properties (LeCun et al. 

2015). The main building block of a CNN is typically composed of multiple layers 

interconnected to each other through a set of learnable weights and biases (Romero et 

al. 2016). Each of the layers is fed by small patches of the image that scan across the 

entire image to capture different characteristics of features at local and global scales. 

Those image patches are generalized through alternative convolutional and 

pooling/subsampling layers within the CNN framework, until the high-level features 

are obtained on which a fully connected classification is performed (Schmidhuber 

2015). Additionally, several feature maps may exist in each convolutional layer and the 

weights of the convolutional nodes in the same map are shared. This setting enables the 

network to learn different features while keeping the number of parameters tractable. 

Moreover, a nonlinear activation (e.g. sigmoid, hyperbolic tangent, rectified linear 

units) function is taken outside the convolutional layer to strengthen the non-linearity 

(Strigl et al. 2010). Specifically, the major operations performed in the CNN can be 

summarized as: 

 ))(( 1 lll

p

l bWOpoolO    (5-1) 

where the 
1lO  denotes the input feature map to the lth layer, the 

lW  and the 
lb  represent 

the weights and biases of the layer, respectively, that convolve the input feature map 

through linear convolution*, and the )(  indicates the non-linearity function outside 

the convolutional layer. These are often followed by a max-pooling operation with p×p 

window size (poolp) to aggregate the statistics of the features within specific regions, 

which forms the output feature map lO  at the lth layer (Romero et al. 2016).  



Chapter 5: An object-based convolutional neural network for urban land use classification 

136 

 

5.2.2  Object-based CNN (OCNN) 

An object-based CNN (OCNN) is proposed for the urban land use classification using 

VFSR remotely sensed imagery. The OCNN is trained as the standard CNN models 

with labelled image patches, whereas the model prediction is to label each segmented 

object derived from image segmentation. The segmented objects are generally 

composed of two distinctive objects in geometry, including linearly shaped objects (LS-

objects) (e.g. Highway, Railway and Canal) and other (non-linearly shaped) general 

objects (G-objects). To accurately predict the land use membership association of a G-

object, a large spatial context (i.e. a large image patch) is required when using the CNN 

model. Such a large image patch, however, often may lead to a large uncertainty in the 

prediction of LS-objects due to narrow linear features being ignored throughout the 

convolutional process. Thus, a large input window CNN (LIW-CNN) and a range of 

small input window CNNs (SIW-CNN) were thereafter trained to predict the G-object 

and the LS-object, respectively, where the appropriate convolutional positions of both 

models were derived from a novel object convolutional position analysis (OCPA). The 

final classification results were determined by the decision fusion of the LIW-CNN and 

the SIW-CNN.  As illustrated by Figure 5-1, the general workflow of the proposed 

OCNN consists of five major steps, including (A) image segmentation, (B) OCPA, (C) 

LIW-CNN and SIW-CNN model training, (D) LIW-CNN and SIW-CNN model 

inference, and (E) Decision fusion of LIW-CNN and SIW-CNN. Each of these steps is 

elaborated in the following section.  
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Figure 5-1: Flowchart of the proposed object-based CNN (OCNN) method with five major 

steps: (A) image segmentation, (B) object convolutional position analysis (OCPA), (C) LIW-

CNN and SIW-CNN model training, (D) LIW-CNN and SIW-CNN model inference, and (E) 

fusion decision of LIW-CNN and SIW-CNN. 

5.2.2.1 Image segmentation 

The proposed method starts with an initial image segmentation to achieve an object-

based image representation. Mean-shift segmentation (Comaniciu and Meer 2002), as 

a nonparametric clustering approach, was used to partition the image into objects with 

homogeneous spectral and spatial information. Four multispectral bands (Red, Green, 

Blue, and Near Infrared) together with a digital surface model (DSM), useful for 

differentiating urban objects with height information (Niemeyer et al. 2014), were 

incorporated as multiple input data sources for the image segmentation (Figure 5-1(A)). 

A slight over-segmentation rather than under-segmentation was produced to highlight 

the importance of spectral similarity, and all the image objects were transformed into 

GIS vector polygons with distinctive geometric shapes. 

5.2.2.2 Object convolutional position analysis (OCPA) 

The object convolutional position analysis (OCPA) is employed based on the moment 

bounding (MB) box of each object to identify the position of LIW-CNN and those of 

SIW-CNNs.  The MB box, proposed by Zhang and Atkinson (2016), refers to the 
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minimum bounding rectangle built upon the moment orientation (the orientation of the 

major axis) of a polygon (i.e. an object), derived from planar characteristics defined by 

mechanics (Zhang et al. 2006, Zhang and Atkinson 2016). The MB box theory is briefly 

described hereafter.  

Suppose that (x, y) is a point within a planar polygon (S) (Figure 5-2), whose centroid 

is ),( yxC . The moment of inertia about the x-axis ( xxI  ) and y-axis (
yyI ), and the 

product of inertia (
xyI ) are expressed by equations (5-2), (5-3) and (5-4), respectively.  

  dAyI xx

2                                                  (5-2) 

  dAxI yy

2                                                  (5-3) 

  xydAI xy                                                  (5-4) 

Note, dA(= dydx  ) refers to the differential area of point (x, y) (Timoshenko and Gere 

1972).  

 

Figure 5-2: A patch (S) with centroid C ( yx, ), dA is the differential area of point (x, y), Oxy 

is the geographic coordinate system. 
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As illustrated by Figure 5-3, two orthogonal axes (MN and PQ), the major and minor 

axes, pass through the centroid (C), with the minimum and maximum moment of inertia 

about the major and minor axes, respectively. The moment orientation MB (i.e. the 

orientation of the major axis) is calculated by equations (5-5) and (5-6) (Gere and 

Timoshenko 1972).  

                                                     
xxyy

xy

MB
II

I




2
2tan                                               (5-5) 
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(tan
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1 1

xxyy

xy

MB
II

I


                                          (5-6) 

The moment bounding (MB) box (the rectangle in red shown in Figure 5-3) that 

minimally encloses the polygon, S, is then constructed by taking MB as the orientation 

of the long side of the box, and EF is the perpendicular bisector of the MB box with 

respect to its long side. 

The discrete forms of equations (5-2) - (5-6) suitable for patch computation, are further 

deduced by associating the value of a line integral to that of a double integral using 

Green’s theorem (see Zhang et al. (2006) for theoretical details). 

 

Figure 5-3: Moment bounding (MB) box and the CNN convolutional positions of a polygon 

S. 
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The CNN convolutional positions are determined by the minor axis (PQ) and the 

bisector of the MB box (EF) to approximate the central region of the polygon (S). For 

the LIW-CNN, the central point (the red point U) of the line segment (AB) intersected 

by PQ and polygon S is assigned as the convolutional position. As for the SIW-CNN, 

a distance parameter (d) (a user defined constant) is used to determine the number of 

SIW-CNN sampled along the polygon. Given the length of a MB box as l, the number 

(n) of SIW-CNNs is derived as:  

 
d

dl
n


                                                     (5-7) 

The convolutional positions of the SIW-CNN are assigned to the intersection between 

the centre of the bisector (EF) as well as its parallel lines and the polygon S. The points 

(G1, G2, …, G5) in Figure 5-3 illustrate the convolutional positions of SIW-CNN for 

the case of n = 5.  

5.2.2.3 LIW-CNN and SIW-CNN model training 

Both the LIW-CNN and SIW-CNN models are trained using image patches with labels 

as input feature maps. The parameters and model structures of these two models are 

empirically tuned as demonstrated in the Experimental Results and Analysis sections. 

Those trained CNN models are used for model inference in the next stage. 

5.2.2.4 LIW-CNN and SIW-CNN model inference 

After the above steps, the trained LIW-CNN and SIW-CNN models, and the 

convolutional position of LIW-CNN and those of SIW-CNN for each object are 

available. For a specific object, its land use category can be predicted by the LIW-CNN 

at the derived convolutional position within the VFSR imagery; at the same time, the 

predictions on the land use membership associations of the object can also be obtained 
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by employing SIW-CNN models at the corresponding convolutional positions. Thus 

each object is predicted by both LIW-CNN and SIW-CNN models. 

 

5.2.2.5 Fusion decision of LIW-CNN and SIW-CNN 

Given an object, the two LIW-CNN and SIW-CNN model predictions might be 

inconsistent between each other, and the distinction might also occur within those of 

the SIW-CNN models. Therefore, a simple majority voting strategy is applied to 

achieve the final decision of the SIW-CNN model. A fusion decision between the LIW-

CNN and the SIW-CNN is then conducted to give priority to the SIW-CNN model for 

LS-objects, such as roads, railways etc.; otherwise, the prediction of the LIW-CNN is 

chosen as the final result.  

5.2.3  Accuracy assessment 

Both pixel-based and object-based methods were adopted to comprehensively test the 

classification performance using the testing sample set through five-fold cross 

validation. The pixel-based approach was assessed based on the overall accuracy and 

Kappa coefficient as well as per-class mapping accuracy computed from a confusion 

matrix. The object-based assessment was based on geometry (Clinton et al. 2010, Li et 

al. 2015, Radoux and Bogaert 2017). Specifically, suppose that a classified object Mi 

overlaps a set of reference objects Oij, where j = 1, 2, ⋯ r, r refers to the total number 

of reference objects overlapped by Mi. For each pair of objects (Mi, Oij), a weight 

parameter deduced by the ratio between the area of a reference object (area (Oij)) and 

the total area of reference objects  

r

j ijO
1

)(area was introduced to calculate over-

classification OC(Mi) and under-classification UC(Mi) error indices as: 

                  
1

1
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The total classification error (TCE) of Mi is designed to integrate the over-classification 

and under-classification error as: 

                                 
2 2( ) ( )

( )
2

i i
i

OC M UC M
TCE M


                                        (5-10) 

All three indices (i.e. OC, UC, and TCE) represent the average of all the classified 

objects for each land use category in the classification map to formulate the final 

validation results. 

5.3      Experimental Results and Analysis 

5.3.1  Study area and data sources 

In this research, two UK cities, Southampton (S1) and Manchester (S2), lying on the 

Southern coast and in North West England, respectively, were chosen as our case study 

sites (Figure 5-4). Both of the study areas are highly heterogeneous and distinctive from 

each other in land use characteristics, and are thereby suitable for testing the 

generalization capability of the proposed land use classification algorithm.  

Aerial photos of S1 and S2 were captured using Vexcel UltraCam Xp digital aerial 

cameras on 22/07/2012 and 20/04/2016, respectively. The images have four 

multispectral bands (Red, Green, Blue and Near Infrared) with a spatial resolution of 

50 cm. The study sites were subset into the city centres and their surrounding regions 

with spatial extents of 5802×4850 pixels for S1 and 5875×4500 pixels for S2, 

respectively.  Land use categories of the study areas were defined according to the 

official land use classification system provided by the UK government Department for 
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Communities and Local Government (DCLG). Detailed descriptions of each land use 

class and its corresponding sub-classes in S1 and S2 are listed in Tables 5-1 and 5-2, 

respectively. 10 dominant land use classes were identified within S1, including high-

density residential, commercial, industrial, medium-density residential, highway, 

railway, park and recreational area, parking lot, redeveloped area, and harbour and 

sea water. In S2, nine land use categories were found, including residential, 

commercial, industrial, highway, railway, park and recreational area, parking lot, 

redeveloped area, and canal.  

 

Figure 5-4: The two study areas of urban scenes: S1 (Southampton) and S2 (Manchester). 

Table 5-1 - The land use classes in S1 (Southampton) and the corresponding sub-class 

components. 

Land Use Class Train Test Sub-class Components 

High-density residential 1026 684 Residential houses, terraces, a small coverage of green space 

Medium-density residential 984 656 Residential flats with a large green space and parking lots 

Commercial 972 648 Commercial services with complex buildings, and parking lots 

Industrial 986 657 Marine transportation, car factories 

Highway 1054 703 Asphalt road, lane, cars 

Railway 1008 672 Rail tracks, gravel, sometimes covered by trains 

Parking lot 982 655 Asphalt road, parking line, cars 

Park and recreational area 996 664 A large coverage of green space and vegetation, bare soil, lake 

Redeveloped area 1024 683 Bare soil, scattered vegetation, reconstructions 

Harbour and sea water 1048 698 Sea shore, ship, sea water 
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Table 5-2 - The land use classes in S2 (Manchester) and the corresponding sub-class 

components. 

Land Use Class Train Test Sub-class Components 

Residential 1009 673 Residential buildings, a small coverage of green space 

Commercial 1028 685 Shopping centre and commercial services with parking lots 

Industrial 1004 669 Digital services, science and technology, gas industry 

Highway 997 665 Asphalt road, lane, cars 

Railway 1024 683 Rail tracks, gravel, sometimes covered by trains 

Parking lot 1015 677 Asphalt road, parking line, cars 

Park and recreational area 993 662 A large coverage of green space, bare soil, lake 

Redeveloped area 1032 688 Bare soil, scattered vegetation, reconstructions 

Canal 994 662 Canal water 

 

 

 

Figure 5-5: Representative exemplars (image patches) of each land use category at the two 

study sites (S1 and S2). 
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In addition to the above-mentioned aerial photographs, Digital Surface Models (DSM) 

of the study sites with 50 cm spatial resolution were incorporated into the process of 

image segmentation. Moreover, other data sources, including Google Maps, Microsoft 

Bing Maps, and the MasterMap Topographic Layer (a highly detailed vector map from 

Ordnance Survey) (Regnauld and Mackaness 2006), were fully consulted and cross-

referenced to gain a comprehensive appreciation of the land cover and land use within 

the study sites. 

Sample points were collected using a stratified random scheme from ground data 

provided by local surveyors and photogrammetrists, and split into 60% training samples 

and 40% testing samples for each class. The training sample size was guaranteed above 

an average of 1,000 per class, which is sufficient for CNN networks, as recommended 

by Chen et al. (2016). In S1, a total of 10,080 training samples and 6,720 testing samples 

were obtained, and each category’s sample size together with its sub-class components 

are listed in Table 5-1. In S2, 9,096 training samples and 6,064 testing samples were 

acquired (see Table 5-2 for the detailed sample size per class and the corresponding 

sub-classes). Figure 5-5 demonstrates typical examples of the land use categories: note 

that they are highly heterogeneous and spectrally overlapping.  Field survey was 

conducted throughout the study areas in July 2016 to further check the validity and 

precision of the selected samples. 

5.3.2  Model structure and parameter settings 

The proposed method was implemented based on vector objects extracted by means of 

image segmentation. The objects were further classified through object-based CNN 

networks (OCNN). Detailed parameters and model structures optimised by S1 and 

directly generalised in S2 were clarified as follows. 
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5.3.2.1 Segmentation parameter settings 

The initial mean-shift segmentation algorithm was implemented using the Orfeo 

Toolbox open-source software. Two spatial and spectral bandwidth parameters, namely 

the spatial radius and the range (spectral) radius, were optimized as 15.5 and 20 through 

cross-validation coupled with a small amount of trial-and-error. In addition, the 

minimum region size (the scale parameter) was chosen as 80 to produce a small amount 

of over-segmentation and, thereby, mitigate salt and pepper effects simultaneously. 

 

Figure 5-6: An illustration of object convolutional position analysis with the moment box 

(yellow rectangle), the convolutional centre point (green star), and the convolutional input 

window (green rectangle), as well as the highlighted image object (in cyan). All the other 

segmented objects are demonstrated as red polygons. (A) demonstrates the large input 

window for a general object, and (B), (C) illustrate the small input windows for linearly 

shaped objects (highway and railway, respectively, in these exemplars).   

5.3.2.2 LIW-CNN and SIW-CNN model structures and parameters 

Within the two study sites, the highway, railway in S1 and the highway, railway, and 

canal in S2 belong to linearly shaped objects (LS-objects) in consideration of the 

elongated geometric characteristics (e.g. Figure 5-6(B), (C)), while all the other objects 
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belong to general objects (G-objects) (e.g. Figure 5-6(A)). The LIW-CNN with a large 

input window (Figure 5-6(A)), and SIW-CNNs with small input windows (Figure 5-

6(B), (C)) that are suitable for the prediction of G-objects and LS-objects, respectively, 

were designed here. Note, the other type of CNN models employed on each object, 

namely, the SIW-CNNs in Figure 5-6(A) and the LIW-CNN in both Figure 5-6(B) and 

5-6(C) were not presented in the figure to gain a better visual effect. The model 

structures and parameters of LIW-CNN and SIW-CNN are illustrated by Figure 5-7(a) 

and 5-7(b) and are detailed hereafter.  

 

Figure 5-7: The model architectures and structures of the large input window CNN (LIW-

CNN) with 128×128 input window size and eight-layer depth and small input window CNN 

(SIW-CNN) with 48×48 input window size and six-layer depth. 

The SIW-CNN (Figure 5-7(b)) with a small input window size (48×48) and six-layer 

depth is a simplified structure with similar parameters to the LIW-CNN network, except 

for the number of convolutional filters at each layer, which was reduced to 32 in order 

to avoid over-fitting the model. The input window size was cross-validated on linear 

objects with a range of small window sizes, including {24×24, 32×32, 40×40, 48×48, 

56×56, 64×64, 72×72}, and 48×48 was found to be optimal to capture the contextual 

information about land use for linear objects. 



Chapter 5: An object-based convolutional neural network for urban land use classification 

148 

 

All the other parameters for both CNN networks were optimized empirically based on 

standard computer vision. For example, the number of neurons for the fully connected 

layers was set as 24, and the output labels were predicted through softmax estimation 

with the same number of land use categories. The learning rate and the epoch were set 

as 0.01 and 600 to learn the deep features through backpropagation. 

5.3.2.3 OCNN parameter settings 

In the proposed OCNN method, the LIW-CNN and the SIW-CNN networks were 

integrated to predict the land use classes of general objects and linearly shaped objects 

at the model inference phase. Based on object convolutional position analysis (OCPA), 

the LIW-CNN with a 128×128 input window (denoted as OCNN128) was employed 

only once per object, and the SIW-CNNs with a 48×48 input window (denoted as 

OCNN48*, the 48* here represents multiple image patches sized 48×48) were used at 

multiple positions to predict the land use label of an object through majority voting (see 

section 2.2.2 for theoretical details). The parallel distance parameter d in OCPA that 

controls the convolutional locations and the number of small window size CNNs, was 

estimated by the length distribution of the moment box together with a trial-and-error 

procedure in a wide search space (0.5 m – 20 m) with a step of 0.5 m. The d was 

optimized as 5 m for the objects with moment box length (l) larger than or equal to 20 

m, and was estimated by l/4 for those objects with l less than 20 m (i.e. the minimum 

number of small window size CNNs was 3) to perform a statistical majority voting. The 

proposed method (OCNN128+48*) integrates both OCNN128 and OCNN48*, which is 

suitable for the prediction of urban land use semantics for any shaped objects.  

5.3.2.4 Other benchmark methods and their parameters 

To evaluate the classification performance of the proposed method, three existing 

benchmark methods (i.e. Markov Random Field (MRF), object-based image analysis 
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with support vector machine (OBIA-SVM), and the pixel-wise CNN) that each 

incorporate spatial context were compared comprehensively, as follows:  

MRF: The Markov Random Field, a spatial contextual classifier, was used as a 

benchmark comparator. The MRF was constructed by the conditional probability 

formulated by a support vector machine (SVM) at pixel level, which was parameterized 

through grid search with a 5-fold cross-validation. The spatial context was incorporated 

by a fixed size of neighbourhood window (7×7) and a parameter γ that controls the 

smoothness level, set as 0.7, to achieve an appropriate level of smoothness in the MRF. 

The simulated annealing optimization approach with a Gibbs sampler (Berthod et al. 

1996) was employed in the MRF to maximize the posterior probability through 

iteration.  

OBIA-SVM: The multi-resolution segmentation was implemented initially to segment 

objects through the image. A range of features was further extracted from these objects, 

including spectral features (mean and standard deviation), texture (grey-level co-

occurrence matrix) and geometry (e.g. perimeter-area ratio, shape index). In addition, 

the contextual pairwise similarity that measures the degree of similarity between an 

image object and its neighbouring objects was deduced to account for the spatial 

context. All these hand-coded features were fed into a parameterized SVM for object-

based classification.  

Pixel-wise CNN: The standard pixel-wise CNN was trained to predict all pixels within 

the images using densely overlapping image patches. The most important parameters 

that influence directly the classification performance of the pixel-wise CNN are the 

input image patch size and the number of layers (depth). Following the discussion by 

Längkvist et al., (2016), the input image size was chosen from {28×28, 32×32, 36×36, 
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40×40, 44×44, 48×48, 52×52 and 56×56} to evaluate the influence of contextual area 

on classification performance. The optimal input image patch size for the pixel-wise 

CNN was found to be 48×48 to leverage the training sample size and the computational 

resources (e.g. GPU memory). The depth configuration of the CNN network plays a 

key role in classification accuracy because the quality of the learnt features is highly 

influenced by the level of abstraction and representation. As suggested by Chen et al., 

(2016a), the number of CNN layers was chosen as six to balance the network 

complexity and robustness. Other CNN parameters were tuned empirically through 

cross-validation. For example, the filter size was set to 3×3 for the convolutional layer 

with a stride of 1, and the number of filters was set to 24 to extract multiple 

convolutional features at each level. The learning rate was set as 0.01 and the number 

of epochs was chosen as 600 to fully learn the features through backpropagation.  

5.3.3  Classification results and analysis 

The classification performance of the proposed OCNN128+48* method using the above-

mentioned parameters was investigated on both S1 (experiment 1) and S2 (experiment 

2). The proposed method was compared with OCNN128 and OCNN48* as well as the 

benchmark MRF, OBIA-SVM and the pixel-wise CNN. Visual inspection and 

quantitative accuracy assessment, including pixel-based overall accuracy (OA), Kappa 

coefficient (κ) and the per-class mapping accuracy as well as object-based accuracy 

assessment, were adopted to evaluate the classification results hereafter. 

Experiment 1:  A desirable classification result was obtained in S1 by using the 

proposed OCNN128+48*. To provide a useful visualization, three subsets of S1 classified 

by different approaches were presented in Figure 5-8, with the correct or incorrect 

classification results marked in yellow or red circles, respectively. In general, the 

proposed method achieved the smoothest visual results with precise boundary 
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information compared with other benchmark methods. Most importantly, the semantic 

contents of complex urban land uses (e.g. commercial, industrial etc.) were effectively 

characterized, and the linearly shaped features including highway and railway were 

identified with high geometric fidelity. As shown by Figure 5-8(a) and 5-8(c), the 

highway (a linear feature) was misclassified as a parking lot (red circles) by OCNN128, 

whereas the highway feature was accurately identified by the OCNN48* (yellow circles). 

However, OCNN48* was inferior to OCNN128 when identifying general objects, as 

demonstrated by Figure 5-8(b). Fortunately, these complementary behaviours of the 

two sub-modules were captured by the proposed OCNN128+48*, which was able to label 

the highway accurately (yellow circles in Figure 5-8(b)). The pixel-wise CNN 

demonstrated some capacity for extracting semantic functions for complex objects; for 

example, the commercial area in Figure 5-8(b) was correctly distinguished (yellow 

circle). However, classification errors along the edges or boundaries between objects 

were found. For example, the edges of the highway were misclassified as high-density 

residential as shown by Figure 5-8(a). For the OBIA-SVM, the simple land uses with 

less within-object variation (e.g. highway) were more accurately classified (yellow 

circle in Figure 5-8(a) and 5-8(c)), whereas, those highly complex land uses with great 

within-object variation (e.g. commercial, industrial etc.) were more likely to be 

misclassified (red circle in Figure 5-8(b)). In addition, the OBIA-SVM could also 

discover some sub-objects (e.g. balcony on the residential house) through the 

information context. The results of the MRF, in contrast to the other object-based 

approaches, were the least smooth even though local neighbourhood information was 

used. Nevertheless, there were still some benefits of the MRF: spectrally distinctive 

land uses, such as highway, park and recreational area, were classified with a relatively 

high accuracy.
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Figure 5-8: Three typical image subsets (a, b and c) in study site S1 with their classification results. Columns from left to right represent the original 

images (R G B bands only), and the MRF, OBIA-SVM, Pixel-wise CNN, OCNN48*, OCNN128, and the proposed OCNN128+48* results. The red and yellow circles 

denote incorrect and correct classification, respectively. 
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The effectiveness of the OCNN128+48* was also demonstrated by quantitative 

classification accuracy assessment. As shown in Table 5-2, the OCNN128+48* achieved 

the largest overall accuracy of 89.52% with a Kappa coefficient (κ) of 0.88, consistently 

larger than its sub-module OCNN128 (87.31% OA and κ of 0.86) and the OCNN48* (OA 

of 84.23% and κ of 0.82), respectively. The accuracy increase was much more dramatic 

in comparison with other benchmark methods, including the pixel-wise CNN (81.62% 

OA and κ of 0.80), the OBIA-SVM (79.54% OA and κ of 0.78), as well as the MRF 

(OA of 78.67% and κ of 0.76). The superiority of the proposed OCNN128+48* was further 

demonstrated by the per-class mapping accuracy (Table 5-3). From the table, it can be 

seen that the accuracies of highway and railway were increased significantly by 5.34% 

and 4.64% respectively, compared with the OCNN128. This was followed by a moderate 

increase of 3.24% for the parking lot class. Other land use classes (e.g. commercial, 

industrial, etc.) were slightly increased in terms of classification accuracy (less than 

1.5%) without statistical significance in comparison with OCNN128. When comparing 

with the OCNN48*, the accuracy increase of the proposed OCNN128+48* was remarkable 

for the majority of general object classes, with increases of up to 6.06%, 6.51%, 4.98%, 

4.7% and 4.68%, for the classes of commercial, industrial, redeveloped area, park and 

recreational area, and high-density residential, respectively; whereas the accuracies of 

the medium-density residential and the parking lot increased moderately, by 3.31% and 

3.81%, respectively. For linearly shaped objects, however, the OCNN128+48* was not 

substantially superior to the OCNN48*, with just a slight accuracy increase of 1.52% for 

highway and 2.41% for railway, respectively. For general objects with complex 

semantic functions, including commercial, industrial, redeveloped area, park and 

recreational area, and high-density residential, the increase in accuracy of the 
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OCNN128+48* was much more significant, by up to 6.06%, 6.51%, 4.98%, 4.7% and 

4.68%, respectively.  

In terms of the pixel-wise CNN, effectiveness was observed for certain complex objects 

(e.g. the accuracy for the industrial land use was up to 80.23%). However, the simple 

and geometrically distinctive land use classes were not accurately mapped, with the 

largest accuracy difference up to 6.57% for the class highway compared with the 

OCNN128+48*. By contrast, the OBIA-SVM demonstrated some advantages on simple 

land use classes (e.g. the accuracy of railway up to 90.65%), but it failed to accurately 

identify more complex general objects (e.g. an accuracy as low as 71.87% for 

commercial land use). The MRF presented the smallest classification accuracy for most 

land use classes, especially the complex general land uses (e.g. 12.37% accuracy lower 

than the OCNN128+48* for commercial land use). 

Table 5-3 - Classification accuracy comparison amongst MRF, OBIA-SVM, Pixel-wise 

CNN, OCNN48*, OCNN128, and the proposed OCNN128+48* method for Southampton 

using the per-class mapping accuracy, overall accuracy (OA) and Kappa coefficient (κ). 

The bold font highlights the greatest classification accuracy per row. 

Class MRF OBIA-SVM Pixel-wise CNN OCNN48* OCNN128 OCNN128+48* 

commercial 70.09 72.87 73.26 76.4 81.13 82.46 

highway 77.23 78.04 76.12 78.17 74.35 79.69 

industrial 67.28 69.01 71.23 78.24 83.87 84.75 

high-density residential 81.52 80.59 80.05 81.75 85.35 86.43 

medium-density residential 82.74 84.42 85.27 87.28 90.34 90.59 

park and recreational area 91.05 93.14 92.34 92.59 96.41 97.09 

parking lot 80.09 83.17 84.76 86.02 85.59 88.83 

railway 88.07 90.65 86.57 89.51 87.28 91.92 

redeveloped area 89.13 90.02 89.26 89.71 94.57 94.69 

harbour and sea water 97.39 98.43 98.54 98.62 98.75 98.95 

Overall Accuracy (OA) 78.67% 79.54% 81.62% 84.23% 87.31% 89.52% 

Kappa Coefficient (κ) 0.76 0.78 0.8 0.82 0.86 0.88 
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An object-based accuracy assessment was implemented in S1 to validate the 

classification performance in terms of over-classification (OC), under-classification 

(UC), and total classification error (TCE). Three typical methods, including OBIA-

SVM (denoted as OBIA), pixel-wise CNN (denoted as CNN), and the proposed 

OCNN128+48* method (denoted as OCNN), were evaluated, with accuracy comparisons 

of each land use class listed in Table 5-4. Clearly, the proposed OCNN method 

produced the smallest OC, UC, and TCE errors, respectively (highlighted by bold font), 

constantly smaller than those of the CNN and OBIA. Generally, the UC errors are 

smaller than OC errors, demonstrating that a slight over-segmentation was produced. 

Specifically, the OCNN demonstrates excellent object-level classification, with the 

majority of classes less than 0.2 in TCE. Those complex land use classes, including 

commercial and industrial, can be segmented precisely and classified with small TCE 

of 0.22 and 0.20, less than those of CNN (0.29 and 0.27) and OBIA (0.39 and 0.38). 

The parking lot objects with complex land use patterns, were also recognised accurately 

with high fidelity (OC of 0.22, UC of 0.13, and TCE of 0.17), less than CNN (0.28, 

0.17, and 0.22) as well as OBIA (0.41, 0.32, and 0.37). For those LS-objects, the OCNN 

achieved promising accuracy in comparison with the other two benchmarks. For 

example, the TCEs of highway and railway produced by the OCNN were 0.17 and 0.09, 

smaller than those of the CNN (0.25 and 0.22) and OBIA (0.20 and 0.18). All the other 

land use categories demonstrate increased segmentation accuracy. For instance, the 

TCE of park and recreational area was 0.18 with the OCNN, less than for the CNN of 

0.24 and OBIA of 0.32.  
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Table 5-4 - Object-based accuracy assessment among OBIA-SVM (OBIA), Pixel-wise 

CNN (CNN), and the proposed OGC-CNN128+48* method (OCNN) for Southampton 

using error indices of OC, UC, and TCE. The bold font highlights the lowest 

classification error of a specific index per row. 

Class 
OC UC TCE 

OBIA CNN OCNN OBIA CNN OCNN OBIA CNN OCNN 

commercial 0.45 0.33 0.26 0.34 0.26 0.18 0.39 0.29 0.22 

highway 0.23 0.29 0.19 0.17 0.21 0.16 0.20 0.25 0.17 

industrial 0.42 0.31 0.23 0.36 0.24 0.17 0.38 0.27 0.20 

high-density residential 0.34 0.28 0.14 0.26 0.19 0.08 0.30 0.23 0.11 

medium-density residential 0.29 0.21 0.16 0.21 0.14 0.09 0.25 0.17 0.12 

park and recreational area 0.36 0.29 0.24 0.28 0.19 0.12 0.30 0.24 0.18 

parking lot 0.41 0.28 0.22 0.32 0.17 0.13 0.37 0.22 0.17 

railway 0.25 0.27 0.12 0.11 0.18 0.06 0.19 0.21 0.09 

redeveloped area 0.37 0.32 0.21 0.29 0.25 0.13 0.33 0.28 0.17 

harbour and sea water 0.18 0.19 0.14 0.07 0.11 0.06 0.12 0.15 0.09 

 

Experiment 2: The most accurate classification performance was also achieved in S2 

by the proposed method, as illustrated by the quantitative accuracy results in Table 5-

5. From the table, it can be seen that OCNN128+48* obtained the greatest overall accuracy 

(OA) of 90.87% with a Kappa coefficient (κ) of 0.88, significantly larger than the 

OCNN128 (OA of 88.74% and κ of 0.86), the OCNN48* (OA of 85.06% with κ of 0.83), 

the Pixel-wise CNN (OA of 82.39% and κ of 0.81), the OBIA-SVM (OA of 80.37% 

with κ of 0.79), and the MRF (OA of 78.52% with κ of 0.76). The effectiveness of the 

OCNN128+48* was also demonstrated by the per-class mapping accuracy. Compared 

with the OCNN128, the classes formed by linearly shaped objects, including the 

highway, railway and canal, had significantly increased accuracies of up to 5.36%, 

3.06% and 3.48%, respectively (Table 5-5). Such increases can also be noticed in Figure 

5-9 (a subset of S2), where the misclassifications of railway and highway shown in 
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Figure 5-9(g) were rectified in Figure 5-9(h) classified by the OCNN128+48*. At the same 

time, the parking lot land use class was moderately increased by 2.28%. Whereas, other 

land use classes had slightly increases in accuracy of less than 1% on average. In 

contrast, the OCNN128+48* led to no significant increases over the OCNN48* for the 

linear object classes, with accuracy increases for highway, railway and canal of 1.8%, 

0.42% and 1.22%, respectively. For the general classes, especially the complex land 

uses (e.g. commercial, industrial etc.), remarkable accuracy increases were achieved 

with an average up to 6.75%. Figure 5-9(f) (classified by OCNN48*) also showed the 

confusion between the commercial and industrial land use classes, which was revised 

in Figure 5-9(h). With respect to the benchmark comparators, the accuracy increase of 

OCNN128+48* was much more obvious for most of the land use classes, with the largest 

accuracy increase up to 12.39% for parking lot, 11.21% for industrial, and 8.56% for 

commercial, compared with the MRF, OBIA-SVM and Pixel-wise CNN, respectively. 

The undesirable visual effects and misclassifications can also be seen in Figure 5-9(c-

e), which were corrected in Figure 5-9(h).  

Similar to S1, the object-based accuracy assessment was conducted in S2 to investigate 

the over-, under-, and total classification errors of each class using the OCNN, CNN 

and OBIA methods (Table 5-6). The error indices in S2 (Table 5-6) present a similar 

trend with those in S1 (Table 5-4), although the geometric errors for S2 are smaller than 

for S1 due to the relatively regular land use structures and configurations in Manchester 

city centre. The proposed OCNN yielded the greatest classification accuracy with the 

smallest error indices (highlighted by bold font), smaller than those of the CNN and 

OBIA. The OCNN accurately differentiated the complex land use classes, with a TCE 

of 0.20, 0.17, and 0.15 for the classes of commercial, industrial and parking lot, 

respectively (Table 5-6), significantly smaller than for the CNN (0.27, 0.26, and 0.24), 
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and OBIA (0.37, 0.35, and 0.32). Those linearly shaped objects, including highway, 

railway, and canal, were precisely characterised by the OCNN method, with a TCE of 

0.16, 0.09, and 0.08, significantly smaller than for the CNN (0.22, 0.21, and 0.14) and 

OBIA (0.18, 0.19, and 0.12). The residential land use was also clearly improved with a 

very small TCE of 0.10, smaller than for the CNN (0.22) and OBIA (0.26). Other land 

use classes, such as the park and recreational area and the redeveloped area, were also 

better distinguished by the OCNN (0.16 and 0.15 in terms of TCE), smaller than for the 

CNN (0.21 and 0.25) and OBIA (0.28 and 0.30). 

Table 5-5 - Classification accuracy comparison amongst MRF, OBIA-SVM, Pixel-wise 

CNN, OCNN48*, OCNN128, and the proposed OCNN128+48* method for Manchester, 

using the per-class mapping accuracy, overall accuracy (OA) and Kappa coefficient (κ). 

The bold font highlights the greatest classification accuracy per row. 

Class MRF OBIA-SVM Pixel-wise CNN OCNN48* OCNN128 OCNN128+48* 

commercial 71.11 72.47 74.16 76. 27 82.43 82.72 

highway 80.43 79.26 80.59 82.57 79.01 84.37 

industrial 73.52 72.05 74.84 76.22 82.19 83.26 

residential 78.41 80.45 80.56 83.09 84.75 84.99 

parking lot 79.63 82.06 84.37 87.86 89.74 92.02 

railway 85.94 88.14 88.32 91.06 88.42 91.48 

park and recreational area 88.42 89.54 90.76 91.34 94.38 94.59 

redeveloped area 82.07 84.15 87.04 88.83 93.16 93.75 

canal 90.02 92.28 94.18 97.52 95.26 98.74 

Overall Accuracy (OA) 78.52% 80.37% 82.39% 85.06% 88.74% 90.87% 

Kappa Coefficient (κ) 0.76 0.79 0.81 0.83 0.86 0.88 
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Figure 5-9: Classification results in study site S2, with (a) an image subset (R G B bands only), (b) the ground reference, (c) MRF classification, (d) OBIA-

SVM classification, (e) Pixel-wise CNN classification, (f) OCNN48* classification, (g) OCNN128 classification, and (h) OCNN128+48* classification 
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Table 5-6 - Object-based accuracy assessment among OBIA-SVM (OBIA), Pixel-wise 

CNN (CNN), and the proposed OGC-CNN128+48* method (OCNN) for Manchester 

using error indices of OC, UC, and TCE. The bold font highlights the lowest 

classification error of a specific index per row. 

Class 

OC UC TCE 

OBIA CNN OCNN OBIA CNN OCNN OBIA CNN OCNN 

commercial 0.41 0.32 0.24 0.32 0.23 0.16 0.37 0.27 0.20 

highway 0.22 0.27 0.18 0.15 0.19 0.15 0.18 0.23 0.16 

industrial 0.39 0.31 0.20 0.31 0.22 0.14 0.35 0.26 0.17 

residential 0.30 0.24 0.12 0.22 0.20 0.09 0.26 0.22 0.10 

parking lot 0.37 0.26 0.19 0.28 0.22 0.12 0.32 0.24 0.15 

railway 0.22 0.25 0.10 0.14 0.19 0.07 0.18 0.22 0.09 

park and recreational area 0.31 0.25 0.21 0.26 0.17 0.10 0.28 0.21 0.16 

redeveloped area 0.34 0.29 0.18 0.26 0.22 0.12 0.30 0.25 0.15 

canal 0.16 0.17 0.12 0.08 0.12 0.05 0.12 0.14 0.08 

A sensitivity analysis was conducted to further investigate the effect of different input 

window sizes on the overall accuracy of urban land use classification (see Figure 5-10). 

The window sizes varied from 16×16 to 144×144 with a step size of 16. From Figure 

5-10, it can be seen that both S1 and S2 demonstrated similar trends for the proposed 

OCNN and the pixel-wise CNN (CNN).  With window sizes smaller than 48×48 (i.e. 

relatively small windows), the classification accuracy of OCNN is lower than that of 

CNN, but the accuracy difference decreases with an increase of window size. Once the 

window size is larger than 48×48 (i.e. relatively large windows), the overall accuracy 

of the OCNN increases steadily until the window is as large as 128×128 (up to around 

90%), and outperforms the CNN which has a generally decreasing trend in both study 

sites. However, an even larger window size (e.g. 144×144) in OCNN could result in 

over-smooth results, thus reducing the classification accuracy. 
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Figure 5-10: The influence of CNN window size on the overall accuracy of pixel-wise CNN 

and the proposed OCNN method for both study sites S1 and S2. 

5.3.4  Computational efficiency 

The computational efficiency of the proposed method was evaluated and compared with 

the other methods listed in Table 5-7. The classification experiments were implemented 

using Keras/Tensorflow under a Python environment with a laptop of NVIDIA 940M 

GPU and 12.0 GB memory. As shown in Table 5-7, the training time of the Pixel-wise 

CNN, OCNN48*, OCNN128 and the proposed OCNN128+48* were similar in both 

experiments, with an average time of 4.27 h, 4.36 h, 4.74 h, and 4.78 h, respectively. 

The prediction time for the Pixel-wise CNN was the longest compared with other 

OCNN-based approaches with 321.07 h on average, about 100 times longer than those 

of the OCNN-based approaches. Among the three OCNN methods, the OCNN128 and 

the OCNN128+48* were similar in computational efficiency with average of 2.81 h and 

2.9 h, respectively, longer than that of the OCNN48* (1.78 h on average) for the two 

experiments. The benchmark methods, the MRF and OBIA-SVM, spent much less time 

on the training and prediction phases than the CNN-based methods, with an average of 



Chapter 5: An object-based convolutional neural network for urban land use classification 

162 

 

1.4 h and 1.2 h for the two experiments, about 20 times and 3 times less than the pixel-

wise CNN and the OCNN-based approaches, respectively. 

Table 5-7 - Comparison of computational times amongst MRF, OBIA-SVM, Pixel-wise 

CNN, OCNN48*, OCNN128, and the proposed OCNN128+48* approach in S1 and S2. 

  

Study 

area 

No. of 

object 

Mean 

Area (m2) 

Computation time (h) 

MRF 

OBIA-

SVM 

Pixel-wise 

CNN 

OCNN48* OCNN128 OCNN128+48* 

Train 

S1 6328 25.37 1.42 0.58 4.45 4.45 4.88 4.92 

S2 6145 25.92 1.37 0.44 4.08 4.27 4.59 4.64 

Predict 

S1 61 921 26.61 1.52 1.76 326.78 1.82 2.83 2.94 

S2 58 408 25.75 1.33 1.55 315.36 1.74 2.78 2.86 

5.4      Discussion 

Urban land use captured in VFSR remotely sensed imagery is highly complex and 

heterogeneous, with spatial patterns presented that imply a hierarchical or nested class 

structure. Classifying urban land use requires not only a precise characterisation of 

image objects as functional units, but also an accurate and robust representation of 

spatial context.  A novel object-based CNN method for urban land use classification 

using VFSR remotely sensed imagery was, therefore, proposed, in which the functional 

units are derived at object levels and the spatial patterns are learned through CNN 

networks with hierarchical feature representation. The OCNN method is fundamentally 

different from the work proposed by Zhao et al. (2017) in multiple aspects, including: 

(1) the realisation of an object-based CNN for land use classification under the OBIA 

framework using geometric characterisations to guide the choice of sizes and locations 

of image patches; (2) the use of within-object and between-object information learnt by 

the OCNN model to represent the spatial and hierarchical relationships; (3) the high 
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computational efficiency achieved with targeted sampling at the object level to avoid a 

pixel-wise (i.e., densely overlapping) convolutional process.  

5.4.1  CNN for urban land use feature representation 

Urban land use information is characterised as high-level spatial features in VFSR 

remotely sensed data, which are an abstraction of the observed spatial structures or 

patterns. Convolutional neural networks (CNN) are designed to learn such complex 

feature representations effectively from raw imagery, end-to-end, by cascading 

multiple layers of nonlinear processing units.  As shown in Table 5-3, the pixel-wise 

CNN achieved greater classification accuracy than the traditional MRF and OBIA-

SVM methods on complex land use categories, such as Commercial, Industrial, and 

Parking lot, owing to its capacity for complex spatial contextual feature representation. 

Nevertheless, the pixel-wise CNN is essentially designed to predict image patches, 

whereas urban land use classification requires each pixel of the remotely sensed 

imagery to be labelled as a particular land use class to create a thematic map. The 

boundary information of the land use is often weakened by the pixel-wise convolutional 

process with image patches, where blurred boundaries occur between the classified 

objects with a loss of small useful land features, somewhat similar to morphological or 

Gabor filter methods (Reis and Tasdemir 2011, Pingel et al. 2013). This problem is 

exacerbated when trying to extract high-level land use semantics using deep CNN 

networks with large input window sizes (see the declining trend of overall accuracy for 

large window sizes as illustrated by Figure 5-10 due to the over-smoothness). These 

demonstrate the need for innovation through adaptation of the CNNs for urban land use 

classification using appropriate functional units and convolutional processes. 
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5.4.2  Object-based CNN (OCNN) for urban land use classification 

The proposed object-based CNN (OCNN) is built upon segmented objects with 

spectrally homogeneous characteristics as the functional units, in which the precise 

boundary information is characterised at the object level. Unlike the standard pixel-

wise CNN with image patches that are densely overlapping throughout the image, the 

OCNN method analyses and labels objects using CNN networks by incorporating the 

objects and their spatial context within image patches. This provides a new perspective 

for object description and feature characterisation, where both within-object 

information and between-object information are jointly learned inside the model. Since 

each segmented object is labelled with a single land use as a whole, the homogeneity 

of each object is crucial to achieving high land use classification accuracy. To produce 

a set of such objects with local homogeneity, a slight over-segmentation was adopted 

in this research, as suggested by previous studies (e.g. Hofmann et al. 2011, Li et al. 

2015). In short, the OCNN method, as a combination of CNN and OBIA, demonstrates 

strong capacity for classifying complex urban land uses through deep feature 

representations, while maintaining the fine spatial details using regional partition and 

boundary delineation.  

Each segmented object has its distinctive geometric characteristics with respect to the 

specific land use category. Representations of objects using OCNN should be scale-

dependent with appropriate window sizes and convolutional positions to match the 

geometric distributions, especially when dealing with the two types of objects with 

geometrically distinctive characteristics, namely, general objects (G-objects) and 

linearly-shaped objects (LS-objects). For those G-objects with complex urban land use, 

a deep CNN network (eight-layers) with a large input image patch (128×128) was used 

to accurately identify an object with a large extent of contextual information. Such an 
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image patch could reflect the real dimension of G-objects and their wide context 

(64m×64m in geographical space). The convolutional position of the CNN network was 

theoretically derived close to the central region of a moment box, where both object 

geometry and spatial anisotropy were characterised. In this way, the within-object (at 

the centre of the image patch) and between-object (surrounding context within the 

image patch) information are used simultaneously to learn the objects and the 

surrounding complex spatial structures or patterns, with the largest overall accuracy at 

large context (Figure 5-10). The LS-objects, such as Highway, Railway and Canal, were 

sampled along the objects using a range of less deep CNNs (six-layers) with small 

window size (48×48) (or 24m×24m geographically) and were classified through 

majority voting. These small window size CNNs focus on the within-object 

information, which often includes homogeneous characteristics within objects (e.g. rail 

tracks, asphalt road), and avoid the great variation between adjacent objects (e.g. trees, 

residential buildings, bare land etc. alongside the Highway). Moreover, the small 

contextual image patches with less deep networks cover the elongated objects 

sufficiently, without losing useful within-object information through the convolutional 

process. To integrate the two classification models for G-objects and LS-objects, a 

simple rule-based classification integration was employed conditional upon model 

predictions, in which the majority of the classification results were derived from the 

CNNs with large window size, whereas the predictions of Highway, Railway and Canal 

were trusted by the voting results of small window CNNs alone. Thus, the type of object 

(either as a G-object or a LS-object) is determined through CNN model predictions and 

rule-based classification integration. Such a decision fusion approach provides a 

pragmatic and effective manner to combine the two models by considering the object 

geometry and class-specific adaptations. Overall, the proposed OCNN method with 
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large and small window size feature representations is a feasible solution for the 

complex urban land use classification problem using VFSR remotely sensed imagery, 

with massive generalisation capability for a broad range of applications. 

5.4.3  Computational complexity and efficiency 

Throughout the computational process, the model inference of the pixel-wise CNN is 

the most time-consuming stage for urban land use classification using VFSR remotely 

sensed imagery. The prediction of the CNN model over the entire image with densely 

overlapping image patches gives rise to a time complexity of O(N), where N represents 

the total number of pixels of the image. Such a time complexity could be huge when 

classifying a large image coupled with relatively large image patches as input feature 

maps. In contrast, the time complexity of the proposed OCNN method is remarkably 

reduced from O(N) at pixel level to O(M) at object level with M segmented objects, 

where a significant time decrease of up to N/M times (N/M here denotes the average 

object size in pixels) can be achieved. The time reductions for both S1 and S2 are 

around 100 times, approximating to those of the mean object sizes (Table 5-7), thus, 

being more acceptable than the standard pixel-wise CNN. Such a high computational 

efficiency demonstrates the practical utility of the proposed OCNN method to general 

users with limited computational resources.  

5.4.4  Future research 

The proposed OCNN method provides a very high accuracy and efficiency for urban 

land use classification using VFSR remotely sensed imagery. The image objects are 

identified through decision fusion between a large input window CNN with a deep 

network and several small input window CNNs with less deep networks, to account for 

typical distinctive object sizes and geometries. However, such two-scale feature 
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representation might be insufficient to characterise some complex geometric 

characteristics. Therefore, a range of CNNs with different input patch sizes will be 

adopted in the future to adapt to the diverse sizes and shapes of the urban objects 

through weighted decision fusion. In addition, urban land use classification was 

undertaken at a generalized spatial and semantic level (e.g., residential area, 

commercial area and industrial area), without identifying smaller functional sites (e.g., 

supermarkets, hospitals and playgrounds etc.). This issue might be addressed by 

incorporating multi-source geospatial data, for example, those classified commercial 

areas might be further differentiated as supermarkets, retail outlets, and café areas 

through indoor human activities. Future research will, therefore, mine the semantic 

information from GPS trajectories, transportation networks and social media data to 

characterise these smaller functional units in a hierarchical way, as well as 

socioeconomic activities and population dynamics. 

5.5      Conclusion 

Urban land use classification using VFSR remotely sensed imagery remains a 

challenging task, due to the indirect relationship between the desired high-level land 

use categories and the recorded spectral reflectance. A precise partition of functional 

units as image objects together with an accurate and robust representation of spatial 

context are, therefore, needed to characterise urban land use structures and patterns into 

high-level feature thematic maps.  This chapter proposed a novel object-based CNN 

(OCNN) method for urban land use classification from VFSR imagery. In the OCNN, 

segmented objects consisting of linearly shaped objects (LS-objects) and other general 

objects (G-objects), were utilized as functional units. The G-objects were precisely 

identified and labelled through a single large input window (128×128) CNN with a 
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deep (eight-layer) network to perform a contextual object-based classification. Whereas 

the LS-objects were each distinguished accurately using a range of small input window 

(48×48) CNNs with less deep (six-layer) networks along the objects’ lengths through 

majority voting. The locations of the input image patches for both CNN networks were 

determined by considering both object geometry and its spatial anisotropy, such as to 

accurately classify the objects into urban land use classes. Experimental results on two 

distinctive urban scenes demonstrated that the proposed OCNN method significantly 

increased the urban land use classification accuracy for all land use categories. The 

proposed OCNN method with large and small window size CNNs produced the most 

accurate classification results in comparison with the sub-modules and other 

contextual-based and object-based benchmark methods. Moreover, the OCNN method 

demonstrated a high computational efficiency with much more acceptable time 

requirements than the standard pixel-wise CNN method in the process of model 

inference. We conclude that the proposed OCNN is an effective and efficient method 

for urban land use classification from VFSR imagery. Meanwhile, the OCNN method 

exhibited an excellent generalisation capability on distinctive urban land use settings 

with great potential for a broad range of applications. 
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Chapter 6      Joint Deep Learning for land cover 
and land use classification4 

  

                                                 
4 This chapter is based on the paper under 2nd round review: Zhang, C., Sargent, I., Pan, X., Li, Andy 

Gardiner, Jonathon Hare, Peter M. Atkinson *, 2018d, Joint Deep Learning for land cover and land use 

classification. Remote Sensing of Environment. (Under 2nd Round Review) 
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Abstract 

Land cover (LC) and land use (LU) have commonly been classified separately from 

remotely sensed imagery, without considering the intrinsically hierarchical and nested 

relationships between them. In this chapter, for the first time, a highly novel joint deep 

learning framework is proposed and demonstrated for LC and LU classification. The 

proposed Joint Deep Learning (JDL) model incorporates a multilayer perceptron (MLP) 

and convolutional neural network (CNN), and is implemented via a Markov process 

involving iterative updating. In the JDL, LU classification conducted by the CNN is 

made conditional upon the LC probabilities predicted by the MLP. In turn, those LU 

probabilities together with the original imagery are re-used as inputs to the MLP to 

strengthen the spatial and spectral feature representations. This process of updating the 

MLP and CNN forms a joint distribution, where both LC and LU are classified 

simultaneously through iteration. The proposed JDL method provides a general 

framework within which the pixel-based MLP and the patch-based CNN provide 

mutually complementary information to each other, such that both are refined in the 

classification process through iteration. Given the well-known complexities associated 

with the classification of very fine spatial resolution (VFSR) imagery, the effectiveness 

of the proposed JDL was tested on aerial photography of two large urban and suburban 

areas in Great Britain (Southampton and Manchester). The JDL consistently 

demonstrated greatly increasing accuracies with increasing iteration, not only for the 

LU classification, but for both the LC and LU classifications, achieving by far the 

greatest accuracies for each at around 10 iterations. The average overall classification 

accuracies were 90.24% for LC and 88.01% for LU for the two study sites, far higher 

than the initial accuracies and consistently outperforming benchmark comparators 
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(three each for LC and LU classification). This research, thus, proposes the first attempt 

to unify the remote sensing classification of LC (state; what is there?) and LU (function; 

what is going on there?), where previously each had been considered separately only. 

It, thus, has the potential to transform the way that LC and LU classification is 

undertaken in future. Moreover, it paves the way to address effectively the complex 

tasks of classifying LC and LU from VFSR remotely sensed imagery via joint 

reinforcement, and in an automatic manner. 

Keywords: multilayer perceptron; convolutional neural network; land cover and land 

use classification; VFSR remotely sensed imagery; object-based CNN  

6.1      Introduction 

Land cover and land use (LULC) information is essential for a variety of geospatial 

applications, such as urban planning, regional administration, and environmental 

management (Liu et al. 2017). It also serves as the basis for understanding the constant 

changes on the surface of the Earth and associated socio-ecological interactions 

(Cassidy et al. 2010, Patino and Duque 2013). Commensurate with the rapid 

development in sensor technologies, a huge amount of very fine spatial resolution 

(VFSR) remotely sensed imagery is now commercially available, opening new 

opportunities for LULC information extraction at a very detailed level (Pesaresi et al. 

2013, Zhao et al. 2016). However, classifying land cover (LC) from VFSR images 

remains a difficult task, due to the spectral and spatial complexity of the imagery. Land 

use (LU) classification is even more challenging due to the indirect relationship 

between LU patterns and the spectral responses recorded in images. This is further 

complicated by the heterogeneity presented in urban and suburban landscapes as 

patterns of high-level semantic functions, in which some identical low-level ground 
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features or LC classes are frequently shared amongst different LU categories (Zhang et 

al. 2018a). An example of the latter is the ability to identify a railway station from the 

character of the objects that comprise it (e.g. long thin platforms, long thin roofs) and 

the set of objects that surround it (e.g. railway lines, car park and multiple roads) (Tang 

et al. 2016). This complexity and diversity in LU characteristics cause huge gaps 

between identifiable low-level features and the desired high-level functional 

representations with semantic meaning. 

Over the past decade, tremendous effort has been made in developing automatic LU 

and LC classification methods using VFSR remotely sensed imagery. For LC, 

traditional classification approaches can broadly be divided into pixel-based and object-

based methods depending on the basic processing units, either per-pixel or per-object 

(Salehi et al. 2012). Pixel-based methods are used widely to classify individual pixels 

into particular LC categories based purely on spectral reflectance, without considering 

neighbouring pixels (Verburg et al. 2011). These methods often have limited 

classification accuracy due to speckle noise and increased inter-class variance in 

comparison with coarse or medium spatial resolution remotely sensed data. To 

overcome the weakness of pixel-based approaches, some post-classification approaches 

have been introduced (e.g. Hester et al., 2008; McRoberts, 2013). However, these 

techniques may eliminate small objects of a few pixels such as houses or small areas of 

vegetation. Object-based methods, under the framework of object-based image analysis 

(OBIA), have dominated in LC classification using VFSR imagery over the last decade 

(Blaschke et al. 2014). These OBIA approaches are built upon relatively homogeneous 

objects that are composed of similar pixel values across the image, for the identification 

of LCs through physical properties (such as spectra, texture, and shape) of ground 

components. The major challenges in applying these object-based approaches are the 
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selection of segmentation scales to obtain objects that correspond to specific LC types, 

in which over-segmentation and under-segmentation commonly exist within the same 

image (Ming et al. 2015). To date, no effective solution has been proposed for LC 

classification using VFSR remotely sensed imagery, where objects of the same LC may 

exhibit strong spectral heterogeneity due to differences in age, level of maintenance and 

composition as well as illumination conditions (Demarchi et al. 2014). 

Similar to LC classification, traditional LU classification methods using VFSR data can 

generally be categorised into three types; pixel-based, moving window-based, and 

object-based. The pixel-level approaches that rely purely upon spectral characteristics 

are able to classify LC, but are insufficient to distinguish LUs that are typically 

composed of multiple LCs, and this limitation is particularly significant in urban 

settings (Zhao et al. 2016). Spatial texture information (Myint 2001, Herold et al. 2003) 

or spatial context (Wu et al. 2009) have been incorporated to analyse LU patterns 

through moving windows or kernels (Niemeyer et al. 2014). However, it could be 

argued that both pixel-based and moving window-based methods are based on arbitrary 

image structures, whereas actual objects and regions might be irregularly shaped in the 

real world (Herold et al. 2003). Therefore, the OBIA framework has been used to 

characterise LU based on spatial context. Typically, two kinds of information within a 

spatial partition are utilised, namely, within-object information (e.g. spectra, texture, 

shape) and between-object information (e.g. connectivity, contiguity, distances, and 

direction amongst adjacent objects). Many studies applied OBIA for LU classification 

using within-object information with a set of low-level features (such as spectra, 

texture, shape) of the land features (e.g. Blaschke, 2010; Blaschke et al., 2014; Hu and 

Wang, 2013). These OBIA methods, however, might overlook semantic functions or 

spatial configurations due to the inability to use low-level features in semantic feature 
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representation. In this context, researchers have developed a two-step pipeline, where 

object-based LCs were initially extracted, followed by aggregating the objects using 

spatial contextual descriptive indicators on well-defined LU units, such as cadastral 

fields or street blocks. Those descriptive indicators are commonly derived by means of 

spatial metrics to quantify their morphological properties (Yoshida and Omae 2005) or 

graph-based methods that model the spatial relationships (Barr and Barnsley 1997, 

Walde et al. 2014). Yet, the ancillary geographic data for specifying the LU units might 

not be available for some regions, and the spatial contexts are often hard to describe 

and characterise as a set of “rules”, even though the complex structures or patterns 

might be recognisable and distinguishable by human experts (Oliva-Santos et al. 2014). 

The major issue of the above-mentioned methods is the adoption of shallow structured 

classification models with hand-crafted features that are domain-specific and require a 

huge amount of effort in feature engineering. Recent advances in machine learning and 

pattern recognition have demonstrated a resurgence in the use of multi-layer neural 

networks to model higher-level feature representations without human-designed 

features or rules. This is largely driven by the wave of excitement in deep learning, 

where the most representative and discriminative features are learnt end-to-end, and 

hierarchically (Arel et al. 2010). Deep learning methods have achieved huge success 

not only in classical computer vision tasks, such as target detection, visual recognition 

and robotics, but also in many other practical applications (Hu et al. 2015b, Nogueira 

et al. 2017). Convolutional neural networks (CNNs), as a well-established and popular 

deep learning method, have made considerable improvements beyond the state-of-the-

art records in image analysis, and have attracted great interest in both academia and 

industrial communities (Krizhevsky et al. 2012, Yang et al. 2015). Owing to its 

superiority in higher-level feature representation, the CNN has demonstrated great 
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potential in many remote sensing tasks such as vehicle detection (Chen et al. 2014, 

Dong et al. 2015), road network extraction (Cheng, Wang, et al. 2017), remotely sensed 

scene classification (Othman et al. 2016, Sargent et al. 2017), and semantic 

segmentation (Zhao et al. 2017).  

The essential characteristic of CNNs is their translational invariance through a patch-

wise procedure, in which a higher-level object within an image patch can be recognised 

even if the pixels comprising the object are shifted or distorted. Such translational 

invariance can help detect objects with higher order features, such as LU or functional 

sites. However, this characteristic becomes a major weakness in LC and LU 

classification for pixel-level differentiation, which introduces artefacts on the border of 

the classified patches and often produces blurred boundaries between ground surface 

objects (Zhang et al. 2018a, Zhang et al. 2018b), thus, introducing uncertainty into the 

LC/LU classification. Previous research has, therefore, developed improved techniques 

for adapting CNN models to the LU/LC classification task. For example, Zhang et al. 

(2018a) fused deep CNN networks with the pixel-based multilayer perceptron (MLP) 

method to solve LC classification with spatial feature representation and pixel-level 

differentiation; Zhang et al. (2018b) proposed a regional fusion decision strategy based 

on rough set theory to model the uncertainties in LC classification of the CNN, and 

further guide data integration with other algorithms for targeted adjustment; Pan and 

Zhao, (2017) developed a central-point-enhanced CNN network to enhance the weight 

of the central pixels within image patches to strengthen the LC classification with 

precise land-cover boundaries. Besides, a range of research has explored the pixel-level 

Fully Convolutional Networks (FCN) and its extensions for remotely sensed semantic 

segmentations (e.g. Maggiori et al., 2017; Paisitkriangkrai et al., 2016; Volpi and Tuia, 

2017), in which low-level LC classes, such as buildings, grassland, and cars, are 
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classified with relatively high accuracy, although boundary distortions still exist due to 

the insufficient contextual information at up-sampling layers (Fu et al. 2017).  With 

respect to LU classification, Zhang et al. (2018c) recently proposed a novel object-

based CNN (OCNN) model that combines the OBIA and CNN techniques to learn LU 

objects through within-object and between-object information, where the semantic 

functions were characterised with precise boundary delineations. However, these 

pioneering efforts in CNN classification can only classify the image at a single, specific 

level, either LC or LU, whereas the landscape can be interpreted at different semantic 

levels simultaneously in a landscape hierarchy. At its most basic level this hierarchy 

simultaneously comprises LC at a lower, state level (what is there?) and LU at a higher, 

functional level (what is going on there?). Thus, both LC and LU cover the same 

geographical space, and are nested with each other hierarchically. The LUs often 

consist of multiple LC classes, and different spatial configurations of LC could lead to 

different LU classes. These two classification hierarchies are, thus, intrinsically 

correlated and are realised at different semantic levels.  

The fundamental conceptual contribution of this chapter is the realisation that the 

spatial and hierarchical relationships between LC (defined as a low-order state) and LU 

(defined as a higher-order semantic representation capturing function) might be learnt 

by characterising both representations at different levels with a joint distribution. In this 

chapter, the first joint deep learning framework is proposed and demonstrated for LC 

and LU classification. Specifically, an MLP and Object-based CNN were applied 

iteratively and conditionally dependently to classify LC and LU simultaneously. The 

effectiveness of the proposed method was tested on two complex urban and suburban 

scenes in Great Britain.  



Chapter 6: Joint Deep Learning for land cover and land use classification 

177 

 

The remainder of this chapter is organised as follows: Section 6.2 introduces the general 

workflow and the key components of the proposed methods. Section 6.3 describes the 

study area and data sources. The results are presented in section 6.4, followed by a 

discussion in section 6.5. The conclusions are drawn in the last section.  

6.2      Methodology 

6.2.1  multilayer perceptron (MLP) 

A multilayer perceptron (MLP) is a network that maps from input data to output 

representations through a feedforward manner (Atkinson and Tatnall 1997). The 

fundamental component of a MLP involves a set of computational nodes with weights 

and biases at multiple layers (input, hidden, and output layers) that are fully connected 

(Del Frate et al. 2007). The weights and biases within the network are learned through 

backpropagation to approximate the complex relationship between the input features 

and the output characteristics. The learning objective is to minimise the difference 

between the predictions and the desired outputs by using a specific cost function. 

6.2.2  Convolutional Neural Networks (CNN) 

As one of the most representative deep neural networks, convolutional neural network 

(CNN) is designed to process and analyse large scale sensory data or images in 

consideration of their stationary characteristics at local and global scales (LeCun et al. 

2015). Within the CNN network, convolutional layers and pooling layers are connected 

alternatively to generalise the features towards deep and abstract representations. 

Typically, the convolutional layers are composed of weights and biases that are learnt 

through a set of image patches across the image (Romero et al. 2016). Those weights 

are shared by different feature maps, in which multiple features are learnt with a 
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reduced amount of parameters, and an activation function (e.g. rectified linear units) is 

followed to strengthen the non-linearity of the convolutional operations (Strigl et al. 

2010). The pooling layer involves max-pooling or average-pooling, where the summary 

statistics of local regions are derived to further enhance the generalisation capability. 

6.2.3  Object-based Convolutional Neural Networks (OCNN) 

An object-based CNN (OCNN) was proposed recently for the urban LU classification 

using remotely sensed imagery (Zhang et al. 2018). The OCNN is trained as for the 

standard CNN model with labelled image patches, whereas the model prediction labels 

each segmented object derived from image segmentation. For each image object 

(polygon), a minimum moment bounding box was constructed by anisotropy with 

major and minor axes (Zhang and Atkinson 2016). The centre point intersected with 

the polygon and the bisector of the major axis was used to approximate the central 

location of each image patch, where the convolutional process is implemented once per 

object. Interested readers are referred to a theoretical description on convolutional 

position analysis for targeted sampling on the centre point of image objects (Zhang et 

al. 2018). The size of the image patch was tuned empirically to be sufficiently large, so 

that the object and spatial context were captured jointly by the CNN network. The 

OCNN was trained on the LU classes, in which the semantic information of LU was 

learnt through the deep network, while the boundaries of the objects were retained 

through the process of segmentation. The CNN model prediction was recorded as the 

predicted label of the image object to formulate a LU thematic map. Here, the 

predictions of each object are assigned to all of its pixels.  
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6.2.4  LC-LU Joint Deep Learning Model 

The assumption of the LC – LU Joint deep learning (LC-LU JDL) model is that both 

LC and LU are manifested over same geographical space and are nested with each other 

in a hierarchical manner. The LC and LU representations are considered as two random 

variables, where the probabilistic relationship between them can be modelled through 

a joint probability distribution. In this way, the conditional dependencies between these 

two random variables are captured via an undirected graph through iteration (i.e. 

formulating a Markov process). The joint distribution is, thus, factorised as a product 

of the individual density functions, conditional upon their parent variables as  

                                                ( )
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where xv represents a specific random variable, that is, either LC or LU class, and the 

xpa(v) denotes the parent variable of xv. For example, xv represents the LC class, and the 

xpa(v) in this case corresponds to the LU class.  

Specifically, let CLC = {CLC1, CLC2, …, CLCi …, CLCm} ( ],1[ mi ), where CLCi denotes  

the set of LC samples of the ith class, and m represents the number of LC classes; CLU 

= { CLU1, CLU2, …, CLUj …, CLCn}( [1, ]j n ), where CLUj denotes the set of LU samples 

of the jth class and n indicates the number of LU classes. Both LC and LU 

classifications rely on a set of feature vectors F to represent the input evidence, and the 

predicted LC/LU categories are assigned based on the maximum a posteriori (MAP) 

criterion. Thus, the classification output of m LC classes or n LU classes is derived by  
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                                                 (6-2) 
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where i corresponds to the specific LC/LU class during iteration. 

Through the Bayes’ theorem 
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The classification result C* is obtained as 
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where p(F) is the same for all possible states of Ci. 

The p(Ci) models the prior probability distribution of different LC/LU classes. In this 

research, we do not consider any specific priors for the classification, meaning that the 

joint distribution is equivalent to the modelled conditional distribution. The conditional 

probability p(F | Ci) for the LC is initially estimated by the probabilistic MLP at the 

pixel level representing the membership association. Those LC conditional 

probabilities are then fed into the OCNN model to learn and classify each LU category. 

The estimated LU probabilities together with the original images are then re-used as 

input layers for LC classification using MLP in the next iteration. This iterative process 

can obtain both LC and LU classification results simultaneously at each iteration. 

Figure 6-1 illustrates the general workflow of the proposed LC and LU joint deep 

learning (LC-LU JDL) model, with key components including the JDL inputs, the 

Markov Process to learn the joint distribution, and the classification outputs of LC and 

LU at each iteration. Detailed explanation is given as follows. 



Chapter 6: Joint Deep Learning for land cover and land use classification 

181 

 

Figure 6-1: The general workflow of the land cover (LC) and land use (LU) joint deep 

learning (JDL). 

JDL input involves LC samples with pixel locations and the corresponding land cover 

labels, LU samples with image patches representing specific land use categories, 

together with the remotely sensed imagery, and the object-based segmentation results 

with unique identity for each segment. These four elements were used to infer the 

hierarchical relationships between LC and LU, and to obtain LC and LU classification 

results through iteration. 

Markov Process models the joint probability distribution between LC and LU through 

iteration, in which the joint distributions of the ith iteration are conditional upon the 

probability distribution of LC and LU derived from the previous iteration (i-1): 

     )LandUse,LandCover|LandUse,LandCover()LandUse,LandCover( 11  iiiiii PP      (6-5) 

where the LandCoveri and LandUsei at each iteration update each other to approximate 

a complex hierarchical relationship between LC and LU.  

Assume the complex relationship formulates a function f, equation (6-9) can be 

expressed as: 
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   1 1(LandCover ,LandUse ) (LandCover ,LandUse ,Image,SegmentImage, , )i i i i

LC LUP f C C     (6-6) 

where the LandCoveri-1 and LandUsei-1 are the LC and LU classification outputs at the 

previous iteration (i-1). The LandUse0 is an empty image with null value. Image here 

represents the original remotely sensed imagery, and SegmentImage is the label image 

derived from object-based segmentations with the same ID for each pixel within a 

segmented object. The CLC and CLU are LC and LU samples that record the locations in 

the image with corresponding class categories. All these six elements form the input 

parameters of the f function. Whereas the predictions of the f function are the joint 

distribution of LandCoveri and LandUsei as the classification results of the ith iteration. 

Within each iteration, the MLP and OCNN are used to derive the conditional 

probabilities of LC and LU, respectively. The input evidence for the LC classification 

using MLP is the original image together with the LU conditional probabilities derived 

from the previous iteration, whereas the LU classification using OCNN only takes the 

LC conditional probabilities as input variables to learn the complex relationship 

between LC and LU. The LC and LU conditional probabilities and classification results 

are elaborated as follows. 

Land cover (LC) conditional probabilities are derived as: 

                           1(LandCover ) (LandCover | LandUse )i i iP P                                  (6-7) 

where the MLP model is trained to solve the equation (6-11) as: 

                1( (LandUse , Image), )i i
LCMLPModel TrainMLP concat C                         (6-8) 
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The function concat here integrates LU conditional probabilities and the original 

images, and the LC samples CLC are used to train the MLP model. The LC classification 

results are predicted by the MAP likelihood as: 

           1.  (  (LandUse , Image)i i iLandCover MLPModel predict concate                     (6-9) 

Land use (LU) conditional probabilities are deduced as: 

                 )LandCover|LandUse()LandUse( iii PP                                              (6-10) 

where the OCNN model is built to solve equation (6-14) as: 

                   (LandCover , )i i
LUOCNNModel TrainCNN C                                        (6-11) 

The OCNN model is based on the LC conditional probabilities derived from MLP as 

its input evidence. The CLU is used as the training sample sites of LU, where each 

sample site is used as the centre point to crop an image patch as the input feature map 

for CNN model training. The trained CNN model can then be used to predict the LU 

association as: 

       . (cast(LandCover ,SegmentImage)i i iLandUse CNNModel predict                    (6-12) 

where the function cast denotes the cropped image patch with LC probabilities derived 

from LandCoveri, and the predicted LU category for each object was recorded in 

SegmentImage, in which the same label was assigned for all pixels of an object. 

Essentially, the Joint Deep Learning (JDL) model has four key advantages: 
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1. The JDL is designed for joint land cover and land use classification in an 

automatic fashion, whereas previous methods can only classify a single, specific 

level of representation. 

2. The JDL jointly increases the accuracy of both the land cover and land use 

classifications through mutual complementarity and reinforcement.  

3. The JDL accounts explicitly for the spatial and hierarchical relationships 

between land cover and land use that are manifested over the same geographical 

space at different levels.  

4. The JDL increases model robustness and generalisation capability, which 

supports incorporation of deep learning models (e.g. CNNs) with a small 

training sample size. 

6.3      Experimental Results and Analysis 

6.3.1  Study area and data sources 

In this research, two study areas in the UK were selected, namely Southampton (S1) 

and Manchester (S2) and their surrounding regions, lying on the Southern coast and in 

North West England, respectively (Figure 6-2). Both study areas involve urban and 

rural areas that are highly heterogeneous and distinctive from each other in LC and LU 

characteristics and are, therefore, suitable for testing the generalisation capability of the 

joint deep learning approach. 
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Figure 6-2: The two study areas: S1 (Southampton) and S2 (Manchester) with highlighted 

regions representing the majority of land use categories. 

Aerial photos of S1 and S2 were captured using Vexcel UltraCam Xp digital aerial 

cameras on 22/07/2012 and 20/04/2016, respectively. The images have four 

multispectral bands (Red, Green, Blue and Near Infrared) with a spatial resolution of 

50 cm. The study sites were subset into the city centres and their surrounding regions 

with spatial extents of 23250×17500 pixels for S1 and 19620×15450 pixels for S2, 

respectively. Besides, digital surface model (DSM) data of S1 and S2 with the same 

spatial resolution as the imagery were also acquired, and used for image segmentation 

only. 10 dominant LC classes were identified in both S1 and S2, including clay roof, 

concrete roof, metal roof, asphalt, rail, bare soil, woodland, grassland, crops, and 

water (Table 6-1). These LCs represent the physical properties of the ground surface 

recorded by the spectral reflectance of the aerial images. On the contrary, the LU 

categories within the study areas were characterised based on human-induced 

functional utilisations. 11 dominant LU classes were recognised in S1, including high-
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density residential, commercial, industrial, medium-density residential, highway, 

railway, park and recreational area, agricultural area, parking lot, redeveloped area, 

and harbour and sea water. In S2, 10 LU categories were found, including residential, 

commercial, industrial, highway, railway, park and recreational area, agricultural 

area, parking lot, redeveloped area, and canal (Table 6-1). The majority of LU types 

for both study sites are highlighted and exemplified in Figure 6-2. These LC and LU 

classes were defined based on the Urban Atlas and CORINE land cover products 

coordinated by the European Environment Agency (https://land.copernicus.eu/), as 

well as the official land use classification system designed by the Ministry of Housing, 

Communities and Local Government (MHCLG) of the UK government. Detailed 

descriptions for LU and the corresponding sub-classes together with the major LC 

components in both study sites are summarised in Table 6-1. 

Table 6-1 - The land use (LU) classes with their sub-class descriptions, and the 

associated major land cover (LC) components across the two study sites (S1 and S2).  

LU Study site Sub-class descriptions Major LC 

(High-density) residential S1, S2 Residential houses, terraces, green space Buildings, Grassland, Woodland 

Medium-density residential S1 Residential flats, green space, parking lots Buildings, Grassland, Asphalt 

Commercial S1, S2 Shopping centre, retail parks, commercial services Buildings, Asphalt 

Industrial S1, S2 Marine transportation, car factories, gas industry Buildings, Asphalt 

Highway S1, S2 Asphalt road, lane, cars Asphalt 

Railway S1, S2 Rail tracks, gravel, sometimes covered by trains Rail, Bare soil, Woodland 

Parking lot S1, S2 Asphalt road, parking line, cars Asphalt 

Park and recreational area S1, S2 Green space and vegetation, bare soil, lake Grassland, Woodland 

Agricultural area S1, S2 Pastures, arable land, and permanent crops  Crops, Grassland 

Redeveloped area S1, S2 Bare soil, scattered vegetation, reconstructions Bare soil, Grassland 

Harbour and sea water S1 Sea shore, harbour, estuaries, sea water Water, Asphalt, Bare soil  

Canal S2 Water drainage channels, canal water Water, Asphalt 
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The ground reference data for both LC and LU are polygons that are collected by local 

surveyors and digitised manually by photogrammetrists in the UK. These reference 

polygons with well-defined labelling protocols specified in Table 6-1 served as the 

basis for probability-based sample design. A stratified random sampling scheme was 

used to generate unbiased sample points for each class proportional upon the size of 

every individual reference polygon, the sample points were further split into 60% 

training samples and 40% testing samples at each class. The training sample size for 

LCs was approximately 600 per class to allow the MLP to learn the spectral 

characteristics over the relatively large sample size. The LU classes consist of over 

1000 training sample sites per class, in which deep CNN networks could sufficiently 

distinguish the patterns through data representations. These LU and LC sample sets 

were checked and cross referenced with the MasterMap Topographic Layer produced 

by Ordnance Survey (Regnauld and Mackaness 2006), and Open Street Maps, together 

with field survey to ensure the precision and validity of the sample sets. The sampling 

probability distribution was further incorporated into the accuracy assessment statistics 

(e.g. overall accuracy) to ensure statistically unbiased validation (Olofsson et al. 2014).  

6.3.2  Model structure and parameter settings 

The model structures and parameters were optimised in S1 through cross validation and 

directly generalised into S2 to test the robustness and the transferability of the proposed 

methods in different experimental environments. Within the Joint Deep Learning 

approach, both MLP and OCNN require a series of predefined parameters to optimise 

the learning accuracy and generalisation capability. Detailed model structures and 

parameters were clarified as below.  

6.3.2.1 MLP Model structure and parameters 
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The initial input of the MLP classifier is the four multi-spectral bands at the pixel level, 

where the prediction is the LC class that each pixel belongs to. Following the 

recommendations of Mas and Flores (2008), MLPs with one, two and three hidden 

layers were tested, using a varying number of {4, 8, 12, 16, 20, and 24} nodes in each 

layer. The learning rate was chosen optimally as 0.2 and the momentum factor was set 

as 0.7. In addition, the number of iterations was set as 800 to fully converge to a stable 

state. Through cross validation with different numbers of nodes and hidden layers, the 

optimal MLP parameter setting was found using two hidden layers with 16 nodes in 

each layer.  

6.3.2.2 Object-based Segmentation parameter settings 

The Object-based Convolutional Neural Network (OCNN) requires the input image to 

be pre-processing into segmented objects through object-based segmentation. A 

hierarchical step-wise region growing segmentation algorithm was implemented 

through the Object Analyst Module in PCI Geomatics 2017. A series of image 

segmentations was performed by varying the scale parameter from 10 to 100, while 

other parameters (shape and compactness) were fixed as default. Through cross 

validation coupled with a small amount of trial-and-error, the scale parameter was 

optimised as 40 to produce a small amount of over-segmentation and, thereby, mitigate 

salt and pepper effects simultaneously. A total of 61,922 and 58,408 objects were 

obtained from segmentation for S1 and S2, respectively. All these segmented objects 

were stored as both vector polygons in an ArcGIS Geodatabase and raster datasets with 

the same ID for all pixels in each object. 

6.3.2.3 OCNN model structure and parameters 

For each segmented object, the centre point of the object was taken as the centre of the 

input image patch, where a standard CNN was trained to classify the object into a 
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specific LU category. In other words, a targeted sampling was conducted once per 

object, which is different from the standard pixel-wise CNNs that apply the 

convolutional filters at locations evenly spaced across the image. The model structure 

of the OCNN was designed similar to the AlexNet (Krizhevsky et al. 2012) with eight 

hidden layers (Figure 6-3) using a large input window size (96×96), but with small 

convolutional filters (3×3) for the majority of layers except for the first one (which was 

5×5). The input window size was determined through cross validation on a range of 

window sizes, including {32×32, 48×48, 64×64, 80×80, 96×96, 112×112, 128×128, 

144×144} to sufficiently cover the contextual information of objects relevant to their 

LU semantics. The number of filters was tuned to 64 to extract deep convolutional 

features effectively at each level. The CNN network involved alternating convolutional 

(conv) and pooling layers (pool) as shown in Figure 6-3, where the maximum pooling 

within a 2×2 window was used to generalise the feature and keep the parameters 

tractable.  

Figure 6-3: Model architectures and structures of the CNN with 96×96 input window size 

and eight-layer depth. 

All the other parameters were optimised empirically based on standard practice in deep 

network modelling. For example, the number of neurons for the fully connected layers 

was set as 24, and the output labels were predicted through softmax estimation with the 

same number of LU categories. The learning rate and the epoch were set as 0.01 and 

600 to learn the deep features through backpropagation. 

6.3.2.4 Benchmark approaches and parameter settings 
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To validate the classification performance of the proposed Joint Deep Learning for LC 

and LU classification, three existing methods (i.e. multilayer perceptron (MLP), 

support vector machine (SVM), and Markov Random Field (MRF)) were used as 

benchmarks for LC classification, and three methods, MRF, object-based image 

analysis with support vector machine (OBIA-SVM), and the pixel-wise CNN (CNN), 

were used for benchmark evaluation of the LU classification. Detailed descriptions and 

parameters are provided as follows: 

MLP: The model structures and parameters for the multilayer perceptron were kept the 

same as the MLP model within the proposed Joint Deep Learning, with two hidden 

layers with 16 nodes in each layer. Such consistency in parameter setting makes the 

baseline results comparable. 

SVM: The SVM model involves a penalty value C and a kernel width σ that needs to 

be parameterised. Following the recommendation by Zhang et al. (2015), a grid search 

with 5-fold cross validation was implemented to search exhaustively within a wide 

parameter space (C and σ within [2-10, 210]). Such parameter settings should lead to high 

validation accuracy using support vectors to formulate an optimal classification 

hyperplane. 

MRF: The Markov Random Field, a spatial contextual classifier, was used as a 

benchmark comparator for both the LC and LU classifications. The MRF was 

constructed by the conditional probability formulated by a support vector machine 

(SVM) at the pixel level, which was parameterised through grid search with a 5-fold 

cross validation. Spatial context was incorporated by a fixed size of neighbourhood 

window (7×7) and a parameter γ that controls the smoothness level was set as 0.7 to 

achieve an appropriate level of smoothness in the MRF. The simulated annealing 
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optimization approach with a Gibbs sampler (Berthod et al. 1996) was employed in the 

MRF to maximise the posterior probability through iteration.  

OBIA-SVM: Multi-resolution segmentation was implemented initially to segment 

objects through the image. A range of features were further extracted from these 

objects, including spectral features (mean and standard deviation), texture (grey-level 

co-occurrence matrix) and geometry (e.g. perimeter-area ratio, shape index). In 

addition, the contextual pairwise similarity that measures the degree of similarity 

between an image object and its neighbouring objects was deduced to account for the 

spatial context. All these hand-coded features were fed into a parameterised SVM for 

object-based classification.  

Pixel-wise CNN: The standard pixel-wise CNN was trained to predict all pixels within 

the images using densely overlapping image patches. The most crucial parameters that 

influence directly the classification performance of the pixel-wise CNN are the input 

image patch size and the number of layers (depth). Following the discussion by 

Längkvist et al., (2016), the input image size was chosen from {28×28, 32×32, 36×36, 

40×40, 44×44, 48×48, 52×52 and 56×56} to evaluate the influence of contextual area 

on classification performance. The optimal input image patch size for the pixel-wise 

CNN was found to be 48×48 to leverage the training sample size and the computational 

resources (e.g. GPU memory). The depth configuration of the CNN network plays a 

key role in classification accuracy because the quality of the learnt features is highly 

influenced by the level of abstraction and representation. As suggested by Chen et al. 

(2016), the number of CNN layers was chosen as six with three convolutional layers 

and three pooling layers to balance the network complexity and robustness. Other CNN 

parameters were tuned empirically through cross validation. For example, the filter size 
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was set to 3×3 for the convolutional layer with a stride of 1, and the number of filters 

was set to 24 to extract multiple convolutional features at each level. The learning rate 

was set as 0.01 and the number of epochs was chosen as 600 to fully learn the features 

through backpropagation.  

6.3.3  Classification results and analysis 

The classification performance of the proposed Joint Deep Learning using the above-

mentioned parameters was investigated in both S1 (experiment 1) and S2 (experiment 

2). The LC classification results (JDL-LC) were compared with benchmarks, including 

the multilayer perceptron (MLP), support vector machine (SVM) and Markov Random 

Field (MRF); whereas, the LU classification results (JDL-LU), were benchmarked with 

MRF, Object-based image analysis with SVM (OBIA-SVM), and standard pixel-wise 

CNN. Visual inspection and quantitative accuracy assessment, including overall 

accuracy (OA) and the per-class mapping accuracy, were adopted to evaluate the 

classification results. In addition, two recently proposed indices, including quantity 

disagreement and allocation disagreement, instead of the Kappa coefficient, were used 

to summarise comprehensively the confusion matrix of the classification results 

(Pontius and Millones 2011). 

6.3.3.1 LC-LU JDL Classification Iteration 

The proposed LC-LU JDL was implemented through iteration. For each iteration, the 

LC and LU classifications were implemented 10 times with 60% training and 40% 

testing sample sets split randomly using the Monte Carlo method, and the average 

overall accuracy (OA) was reported for each iteration. Figure 6-4 demonstrates the 

average OA of both S1 and S2 through accuracy curves from iteration 1 to 15. It can be 

seen that the accuracies of LC classified by MLP in both S1 and S2 start from around 

81%, and gradually increase along the process until iteration 10 with a tendency of 
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being closer to each other, and reach the highest OA up to around 90% for both sites. 

After iteration 10 (i.e. from iteration 10 to 15), the OA tends to be stable (i.e. around 

90%). A similar trend is found in LU classifications in the iterative process, with a 

lower accuracy than the LC classification at each iteration. Specifically, the OAs in S1 

and S2 start from around 77% and 78.3% at iteration 1, and keep increasing and getting 

closer at each iteration, until reaching the highest (around 87%) accuracy at iteration 10 

for both study sites, and demonstrate convergence at later iterations (i.e. being stable 

from iteration 10 to 15). Therefore, iteration 10 was found to provide the optimal 

solution for the joint deep learning model between LC and LU. 

 

Figure 6-4: The overall accuracy curves for the Joint Deep Learning iteration of land cover 

(LC) and land use (LU) classification results in S1 and S2. The red dash line indicates the 

optimal accuracy for the LC and LU classification at iteration 10.  

6.3.3.2 JDL Land cover (JDL-LC) classification iteration 

LC classification results in S1 and S2, obtained by the JDL – Land cover (JDL-LC) 

through iteration, are demonstrated in Figures 6-5 and 6-6, respectively, with the 

optimal classification outcome (at iteration 10) marked by blue boxes. In Figure 6-5, 

four subsets of S1 at different iterations (1, 2, 4, 6, 8, and 10) are presented to provide 

better visualisation, with red and yellow circles highlighting incorrect and correct 

classification, respectively. The classification in iteration 1 was affected by the shadow 

cast in the images. For example, the shadows of the woodland on top of grassland 
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demonstrated in Figure 6-5(a) (the red circle on the right side) were misclassified as 

Rail due to the influence of illumination conditions and shadow contaminations in the 

imagery. Also, misclassification between bare soil and asphalt appeared in the result of 

iteration 1, caused by within-class variation in the spectral reflectance of bare land (red 

circles in Figure 6-5(a) and 6-5(c)). Further, salt and pepper effects were found in 

iteration 1 with obvious confusion between different roof tiles and asphalt, particularly 

the misclassification between Concrete roof and Asphalt (red circles in Figure 6-5(b)), 

due to the huge spectral similarity between different physical materials and 

characteristics. Besides, the noisy effects were also witnessed in rural areas, such as the 

severe confusion between Woodland and Grassland, and the misclassifications between 

Crops and Grassland in agricultural areas (Figure 6-5(d)). These problems were 

gradually solved by the introduction of spatial information at iteration 2 and thereafter, 

where the relationship between LC and LU was modelled using a joint probability 

distribution which helped to introduce spatial context, and the misclassification was 

reduced through iteration. Clearly, the shadow (red circles in Figure 6-5(a)) was 

successively modified and reduced throughout the process (iteration 2 – 8) with the 

incorporation of contextual information, and was completely eliminated in iteration 10 

(yellow circle in Figure 6-5(a)). At the same time, the classifications demonstrated 

obvious salt-and-pepper effects in the early iterations (red circles in iteration 2 – 8 of 

Figure 6-5(b)), but the final result appeared to be reasonably smooth with accurate 

characterisation of asphalt road and clay roof (yellow circles in Figure 6-5(b) of 

iteration 10). In addition, confusion between metal roof and concrete roof (iteration 1 – 

8 with red circles in Figure 6-5(c)) was rectified step-by-step through iteration, with the 

entire building successfully classified as metal roof at iteration 10 (yellow circle in 

Figure 6-5(c)). Moreover, the crops within Figure 6-5(d) was smoothed gradually from 
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severe salt-and-pepper effects in iteration 1 (red circles in Figure 6-5(d)) to sufficiently 

smoothed representations in iteration 10 (yellow circle in Figure 6-5(d)). In short, a 

desirable result was achieved at iteration 10, where the LC classification was not only 

free from the influence of shadows and illuminations, but also demonstrated 

smoothness while keeping key land features well maintained (yellow circles in Figure 

6-5(a-d)). For example, the small path within the park was retained and classified as 

asphalt at iteration 10, and the grassland and woodland were distinguished with high 

accuracy (yellow circle in Figure 6-5(d)).  

In S2, the LC classification results demonstrated a similar trend as for S1, where 

iteration 10 achieved the classification outputs with highest overall accuracy (Figure 6-

4) and best visual appeal (Figure 6-6). The lowest classification accuracy was achieved 

in iteration 1, with obvious misclassification caused by the highly mixed spectral 

reflectance and the scattering of peripheral ground objects, together with salt-and-

pepper effects throughout the classification results (Figure 6-6(c)). Such problems were 

tackled with increasing iteration (Figure 6-6(d-h)), where spatial context was gradually 

incorporated into the LC classification. The greatest improvement demonstrated with 

increasing iteration was the removal of misclassified shadows within the classified 

maps. For example, the shadows of the buildings were falsely identified as water due 

to the similar dark spectral reflectance (Figure 6-6(c)). Such shadow effects were 

gradually reduced in Figure 6-6(d-g) and completely eliminated in Figure 6-6(h) at 

iteration 10, which was highlighted by blue box as the best classification result in JDL-

LC (Figure 6-6(h)). Other improvements included the clear identification of Rail and 

Asphalt through iteration and the reduced noisy effects, for example, the misclassified 

scatter (asphalt) in the central region of bare soil was successfully removed in iteration 

10. 
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Figure 6-5: Four subset land cover classification results in S1 using Joint Deep Learning – Land cover (JDL-LC), the best results at iteration 10 were 

highlighted with blue box. The red and yellow circles denote incorrect and correct classification, respectively. 
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Figure 6-6: The land cover classification results in S2 using Joint Deep Learning – Land cover (JDL-LC), the best results at (h) iteration 10 were 

highlighted with blue box. 
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6.3.3.3 JDL – Land use (JDL-LU) classification Iteration  

LU classifications from the JDL – Land use (JDL-LU) are demonstrated in Figures 6-

7 and 6-8 for S1 (four subsets) and S2 (one subset), respectively, for iterations 1, 2, 4, 

6, 8, and 10. Overall, the LU classifications in iteration 10 for both S1 and S2 are the 

optimal results with precise and accurate LU objects characterised through the joint 

distributions (in blue boxes), and the iterations illustrate a continuous increase in overall 

accuracy until reaching the optimum as shown by the dashed red line in Figure 6-4. 

Specifically, in S1, several remarkable improvements have been achieved with 

increasing iteration, as marked by the yellow circles in iteration 10. The most obvious 

performance improvement is the differentiation between parking lot and highway. For 

example, a highway was misclassified as parking lot in iterations 1 to 4 (red circles in 

Figure 6-7(a)), and was gradually refined through the joint distribution modelling 

process with the incorporation of more accurate LC information (yellow circles in 

iteration 6-10). Such improvements can also be seen in Figure 6-7(c), where the 

misclassified parking lot was allocated to highway in iterations 1 to 8 (red circles), and 

was surprisingly rectified in iteration 10 (yellow circle). Another significant 

modification gained from the iteration process is the differentiation between 

agricultural areas and redeveloped areas, particularly for the fallow or harvested areas 

without pasture or crops. Figure 6-7(d) demonstrates the misclassified redeveloped area 

within the agricultural area from iterations 1 to 8 (highlighted by red circles), which 

was completely rectified as a smoothed agricultural field in iteration 10. In addition, 

the adjacent high-density residential areas and highway were differentiated throughout 

the iterative process. For instance, the misclassifications of residential and highway 

shown in iteration 1-6 (red circles in Figure 6-7(b)) were mostly rectified in iteration 8 

and were completely distinguished in iteration 10 with high accuracy ((yellow circles 
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in Figure 6-7(b)). Besides, the mixtures between complex objects, such as commercial 

and industrial, were modified throughout the classification process. For example, 

confusion between commercial and industrial in iterations 1 to 8 (red circles in Figure 

6-7(a)) were rectified in iteration 10 (yellow circle in Figure 6-7(a)), with precise LU 

semantics being captured through object identification and classification. Moreover, 

some small objects falsely identified as park and recreational areas at iterations 1 to 6, 

such as the high-density residential or railway within the park (red circles in Figure 6-

7(a) and 6-7(c)), were accurately removed either at iteration 8 (yellow circle in Figure 

6-7(a)) or at iteration 10 (yellow circle in Figure 6-7(c)).  

In S2, the iterative process also exhibits similar improvements with iteration. For 

example, the mixture of commercial areas and industrial areas in S2 (Figure 6-8(c)) was 

gradually reduced through the process (Figure 6-8(d-g)), and was surprisingly resolved 

at iteration 10 (Figure 6-8(h)), with the precise boundaries of commercial buildings and 

industrial buildings as well as the surrounding configurations identified accurately. 

Besides, the misclassification of parking lot as highway or redeveloped area was 

rectified through iteration. As illustrated in Figure 6-8(c-g), parts of the highway and 

redeveloped area were falsely identified as parking lot, but were accurately 

distinguished at iteration 10 (Figure 6-8(h)). Moreover, a narrow highway that was 

spatially adjacent to the railway, that was not identified at iteration 1 (Figure 6-8(c)), 

was identified at iteration 10 (Figure 6-8(h)), demonstrating the ability of the proposed 

JDL method to differentiate small linear features.  
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Figure 6-7: Four subset land use classification results in S1 using Joint Deep Learning – Land use (JDL-LU), the best results at iteration 10 were 

highlighted with blue box. The red and yellow circles denote incorrect and correct classification, respectively. 
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Figure 6-8: The land use classification results in S2 using Joint Deep Learning – Land use (JDL-LU), the best results at (h) iteration 10 were highlighted 

with blue box. 
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6.3.3.4 Benchmark comparison for LC and LU classification 

To further evaluate the LC and LU classification performance of the proposed JDL 

method with the best results at iteration 10, a range of benchmark comparisons were 

presented. For the LC classification, a multilayer perceptron (MLP), support vector 

machine (SVM) and Markov Random Field (MRF) were benchmarked for both S1 and 

S2; whereas the LU classification took the Markov Random Field (MRF), Object-based 

image analysis with SVM classifier (OBIA-SVM) and a standard pixel-wise 

convolutional neural network (CNN) as benchmark comparators. The benchmark 

comparison results for overall accuracies (OA) of LC and LU classifications were 

demonstrated in Figure 6-9(a) and Figure 6-9(b), respectively. As shown by Figure 6-

9(a), the HDLJDL-LC achieved the largest OA of up to 89.72% and 90.76% for the S1 

and S2, larger than the MRF of 84.88% and 84.46%, the SVM of 82.46% and 82.33%, 

and the MLP of 81.35% and 82.24%, respectively. For the LU classification in Figure 

6-9(b), the proposed HDLJDL-LU achieved 87.63% and 88.39% for S1 and S2, higher 

than those of CNN (84.12% and 83.36%), OBIA-SVM (80.36% and 80.48%), and MRF 

(79.44% and 79.34%) respectively. 

In addition to the OA, the proposed JDL method achieved consistently the smallest 

values for both Quantity and Allocation Disagreement, respectively. From Table 6-2 

and 6-3, the JDL-LC has the smallest disagreement in terms of LC classification, with 

an average of 6.87% and 6.75% for S1 and S2 accordingly, which is far smaller than 

for any of the three benchmarks. Similar patterns were found in LU classification (Table 

6-4 and 6-5), where the JDL-LU acquired the smallest average disagreement in S1 and 

S2 (9.94% and 9.14%), much smaller than for the MRF (20.28% and 19.08%), OBIA-

SVM (18.55% and 16.77%), and CNN (14.20% and 13.96%). 
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Figure 6-9: Overall accuracy comparisons among the MLP, SVM, MRF, and the proposed 

JDL-LC for land cover classification, and the MRF, OBIA-SVM, CNN, and the proposed JDL-

LU for land use classification. 

Per-class mapping accuracies of the two study sites (S1 and S2) were listed to provide 

detailed comparison of each LC (Table 6-2 and Table 6-3) and LU (Table 6-4 and Table 

6-5) category. Both the proposed JDL-LC and the JDL-LU constantly report the most 

accurate results in terms of class-wise classification accuracy highlighted in bold font 

within the four tables.  

For the LC classification (Table 6-2 and Table 6-3), the mapping accuracies of Clay 

roof, Metal roof, Grassland, Asphalt and Water are higher than 90%, with the greatest 

accuracy achieved in water at both S1 and S2, up to 98.37% and 98.42%, respectively. 

The most remarkable increase in accuracy can be seen in Grassland with an accuracy 

of up to 90.12% and 90.65%, respectively, much higher than for the other three 

benchmarks, including the MRF (75.62% and 75.42%), the SVM (73.23% and 

73.59%), and the MLP (71.26% and 70.36%). Another significant increase in accuracy 

was found in Woodland through JDL-LC with the mapping accuracy of 88.43% (S1) 

and 88.24% (S2), dramatically higher than for the MRF of 76.09% and 75.39%, SVM 

of 70.28% and 70.16%, and MLP of 68.59% and 69.45%, respectively. Likewise, the 

Concrete roof also demonstrated an obvious increase in accuracy from just 69.43% and 
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70.54% classified by the MLP to 79.52% and 79.25% in S1 and S2, respectively, even 

though the mapping accuracy of the Concrete roof is still relatively low (less than 80%). 

In addition, moderate accuracy increases have been achieved for the classes of Rail and 

Bare soil with an average increase of 5.25% and 5.46%, respectively. Other LC classes 

(e.g. Clay roof, Metal roof, and Water) demonstrate only slight increases using the JDL-

LC method in comparison with other benchmark approaches, with an average of 1% to 

3% accuracy increases among them. 

With respect to the LU classification, the proposed JDL-LU achieved excellent 

classification accuracy for the majority of LU classes at both S1 (Table 6-4) and S2 

(Table 6-5). Five LU classes, including Park and recreational area, Parking lot, Railway, 

Redeveloped area in both study sites, as well as Harbour and sea water in S1 and Canal 

in S2, achieved very high accuracy using the proposed JDL-LU method (larger than 

90% mapping accuracy), with up to 98.42% for Harbour and sea water, 98.74% for 

Canal, and an average of 95.84% for the Park and recreational area. In comparison with 

other benchmarks, significant increases were achieved for complex LU classes using 

the proposed JDL-LU method, with an increase in accuracy of 12.37% and 11.61% for 

the commercial areas, 17.47% and 10.74% for industrial areas, and 13.74% and 12.39% 

for the parking lot in S1 and S2, respectively. Besides, a moderate increase in accuracy 

was obtained for the class of park and recreational areas and the residential areas (either 

high-density or medium-density), with around 6% increase in accuracy for both S1 and 

S2. Other LU classes with relatively simple structures, including highway, railway, and 

redeveloped area, demonstrate no significant increase with the proposed JDL-LU 

method, with less than 3% accuracy increase relative to other benchmark comparators.  
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Table 6-2 - Per-class and overall land cover accuracy comparison between MRF, 

OBIA-SVM, Pixel-wise CNN, and the proposed JDL-LC method for S1. The quantity 

disagreement and allocation disagreement are also shown. The largest classification 

accuracy and the smallest disagreement are highlighted in bold font. 

Land Cover Class (S1) MLP SVM MRF JDL-LC 

Clay roof 89.52% 89.45% 89.14% 92.43% 

Concrete roof 69.43% 69.82% 73.27% 79.52% 

Metal roof 90.28% 90.93% 90.23% 91.65% 

Woodland 68.59% 70.28% 76.09% 88.43% 

Grassland 71.26% 73.23% 75.62% 90.12% 

Asphalt 88.54% 88.37% 89.46% 91.24% 

Rail 82.18% 82.35% 83.58% 87.29% 

Bare soil 80.07% 80.15% 82.57% 85.64% 

Crops 84.28% 84.75% 86.52% 89.58% 

Water 97.32% 97.43% 98.48% 98.62% 

Overall Accuracy (OA) 81.35% 82.46% 84.88% 89.72% 

Quantity Disagreement 17.15% 16.88% 11.26% 7.56% 

Allocation Disagreement 16.23% 16.34% 13.42% 6.18% 

 

Table 6-3 - Per-class and overall land cover accuracy comparison between MRF, 

OBIA-SVM, Pixel-wise CNN, and the proposed JDL-LC method for S2. The quantity 

disagreement and allocation disagreement are also shown. The largest classification 

accuracy and the smallest disagreement are highlighted in bold font. 

Land Cover Class (S2) MLP SVM MRF JDL-LC 

Clay roof 90.12% 90.28% 89.58% 92.87% 

Concrete roof 70.54% 70.43% 74.23% 79.25% 

Metal roof 90.17% 90.91% 90.02% 91.34% 

Woodland 69.45% 70.16% 75.39% 88.24% 

Grassland 72.36% 73.59% 75.42% 90.65% 

Asphalt 89.42% 89.58% 89.45% 91.68% 

Rail 83.21% 83.15% 84.26% 88.54% 

Bare soil 80.23% 80.34% 82.27% 85.59% 

Crops 85.04% 85.32% 87.86% 90.74% 

Water 97.58% 97.23% 98.07% 98.37% 

Overall Accuracy (OA) 82.24% 82.33% 84.46% 90.76% 

Quantity Disagreement 16.28% 16.37% 11.36% 7.26% 

Allocation Disagreement 15.76% 15.89% 12.18% 6.25% 
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Table 6-4 - Per-class and overall land use accuracy comparison between MRF, OBIA-

SVM, Pixel-wise CNN, and the proposed JDL-LU method for S1. The quantity 

disagreement and allocation disagreement are also shown. The largest classification 

accuracy and the smallest disagreement are highlighted in bold font. 

Land Use Class (S1) MRF OBIA-SVM CNN JDL-LU 

Commercial 70.09% 72.87% 73.26% 82.46% 

Highway 77.23% 78.04% 76.12% 79.69% 

Industrial 67.28% 69.01% 71.23% 84.75% 

High-density residential 81.52% 80.59% 80.05% 86.43% 

Medium-density residential 82.74% 84.42% 85.27% 88.59% 

Park and recreational area 91.05% 93.14% 92.34% 97.09% 

Agricultural area 85.07% 88.59% 87.42% 90.96% 

Parking lot 78.09% 80.17% 83.76% 91.83% 

Railway 88.07% 90.65% 86.57% 91.92% 

Redeveloped area 89.13% 90.02% 89.26% 90.69% 

Harbour and sea water 97.39% 98.43% 98.54% 98.42% 

Overall Accuracy (OA) 79.44% 80.36% 84.12% 87.63% 

Quantity Disagreement 20.64% 18.32% 14.36% 10.26% 

Allocation Disagreement 19.92% 18.78% 14.05% 9.62% 

 

Table 6-5 - Per-class and overall land use accuracy comparison between MRF, OBIA-

SVM, Pixel-wise CNN, and the proposed JDL-LU method for S2. The quantity 

disagreement and allocation disagreement are also shown. The largest classification 

accuracy and the smallest disagreement are highlighted in bold font. 

Land Use Class (S2) MRF OBIA-SVM CNN JDL-LU 

Commercial 71.11% 72.47% 74.16% 82.72% 

Highway 81.43% 79.26% 80.59% 84.37% 

Industrial 72.52% 72.05% 74.84% 83.26% 

Residential 78.41% 80.45% 80.56% 84.99% 

Parking lot 79.63% 82.06% 84.37% 92.02% 

Railway 85.94% 88.14% 88.32% 91.48% 

Park and recreational area 88.42% 89.54% 90.76% 94.59% 

Agricultural area 84.64% 87.13% 86.58% 91.42% 

Redeveloped area 82.57% 84.15% 87.04% 93.75% 

Canal 90.63% 92.28% 94.18% 98.74% 

Overall Accuracy (OA) 79.34% 80.48% 83.36% 88.39% 

Quantity Disagreement 19.42% 17.03% 14.28% 9.82% 

Allocation Disagreement 18.74% 16.52% 13.65% 8.46% 
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6.3.3.5 Model Robustness with Respect to Sample Size 

To further assess the model robustness and generalisation capability, the overall 

accuracies for both LC and LU classifications at S1 and S2 were tested using reduced 

sample sizes of 10%, 30%, and 50% (Figure 6-10).  Similar patterns in reduction in 

accuracy as a function of sample size reduction were observed for S1 and S2. From 

Figure 6-10, it is clear that JDL-LC and JDL-LU are the least sensitive methods to 

reduced sample size, with no significant decrease in terms of overall accuracies while 

50% of the training samples were used. Thus, the proposed JDL method demonstrates 

the greatest model robustness and the least sample size requirement in comparison with 

other benchmark approaches (Figure 6-10). 

 

Figure 6-10: The effect of reducing sample size (50%, 30%, and 10% of the total amount of 

samples) on the accuracy of (a) land cover classification (JDL-LC) and (b) land use 

classification (JDL-LU), and their respective benchmark comparators at study sites S1 and 

S2. 



Chapter 6: Joint Deep Learning for land cover and land use classification 

208 

 

For the LC classification (Figure 6-10(a)), the accuracy distributions of the MLP and 

SVM were similar, although the SVM was slightly less sensitive to sample size 

reduction, with about 2% higher accuracy with a 50% reduction than for the MLP. The 

MRF was the most sensitive method to LC sample reduction, with decreases of up to 

30% and 28% in accuracy for S1 and S2, respectively. The JDL-LC was the least 

sensitive to a reduction in training sample size, with less than 10% accuracy reduction 

for 30% reduced sample size and less than 20% decreased accuracy for 50% sample 

size reduction, outperforming the benchmarks in terms of model robustness.  

In terms of the LU classification (Figure 6-10(b)), the CNN was most sensitive to 

sample size reduction, particularly the 50% sample size reduction, where significantly 

decreased accuracy was observed (with 40% and 32% decreases in accuracy in S1 and 

S2, respectively). MRF and OBIA-SVM were less sensitive to sample size reduction 

than the CNN, with around a 30% decrease in accuracy while reducing the sample size 

to 50%. The JDL-LU, however, demonstrated the most stable performance with respect 

to sample size reduction, with less than a 20% decrease in accuracy when 50% of the 

training samples were used.  

6.4      Discussion 

This chapter proposed a Joint Deep Learning (JDL) model to characterise the spatial 

and hierarchical relationship between LC and LU. The complex, nonlinear relationship 

between two classification schemes was fitted through a joint probability distribution 

such that the predictions were used to update each other iteratively to approximate the 

optimal solutions, in which both LC and LU classification results were obtained with 

the highest classification accuracies (iteration 10 in our experiments) for the two study 

sites. This JDL method provides a general framework to jointly classify LC and LU 
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from remotely sensed imagery in an automatic fashion without formulating any ‘expert 

rules’ or domain knowledge.  

6.4.1  Joint deep learning model 

The joint deep learning was designed to model the joint distributions between LC and 

LU, in which different feature representations were bridged to characterise the same 

reality. Figure 6-11(a) illustrates the distributions of LC (in red) and LU (in blue) 

classifications, with the conditional dependency captured through joint distribution 

modelling (in green) to infer the underlying causal relationships. The probability 

distribution of the LC within the JDL framework was derived by a pixel-based MLP 

classifier as P(CLC|LU-Result, Image); that is, the LC classification was conditional 

upon the LU results together with the original remotely sensed images. In contrast, the 

distribution of LU deduced by the CNN model (object-based CNN) was represented as 

a conditional probability, P(CLU|LC-Result), associated with the LU classification and 

the conditional probabilities of the LC result. The JDL method was developed based on 

Bayesian statistics and inference to model the spatial dependency over geographical 

space. We do not consider any prior knowledge relative to the joint probability 

distribution, and the conditional probabilities were deduced by MLP and CNN for joint 

model predictions and decision-making. Increasing trends were demonstrated for the 

classification accuracy of both LC and LU in the two distinctive study sites at each 

iteration (Figure 6-4), demonstrating the statistical fine-tuning process of the proposed 

JDL. To the best of our knowledge, the joint deep learning between LC and LU 

developed in this research is completely novel in the remote sensing community and is 

a profound contribution that has implications for the way that LU-LC classification 

should be performed in remote sensing and potentially in other fields. Previously in 

remote sensing only a single classification hierarchy (either LC or LU) was modelled 
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and predicted, such as via the Markov Random Field with Gibbs joint distribution for 

LC characterisation (e.g. Schindler 2012, Zheng and Wang 2015, Hedhli et al. 2016). 

They are essentially designed to fit a model that can link the land cover labels x to the 

observations y (e.g. satellite data) by considering the spatial contextual information 

(through a local neighbourhood) (Hedhli et al. 2016). Our model follows the same 

principle of Markov theory, but aims to capture the latent relationships between LC 

classification (y1) and LU classification (y2) through their joint distribution. The JDL 

model was applied at the pixel level and classification map level to connect effectively 

the ontological knowledge at the different levels (e.g. LC and LU in this case). 

6.4.2  Mutual Benefit for MLP and CNN Classification 

The pixel-based multilayer perceptron (MLP) has the capacity to identify pixel-level 

LC class purely from spectral characteristics, in which the boundary information can 

be precisely delineated with spectral differentiation. However, such a pixel-based 

method cannot guarantee high classification accuracy, particularly with fine spatial 

resolution, where single pixels quickly lose their thematic meaning and discriminative 

efficiency to separate different types of LCs (Xia et al. 2017). Spatial information from 

a contextual neighbourhood is essential to boost classification performance. Deep 

convolutional neural networks (CNN), as a contextual-based classifier, integrate image 

patches as input feature maps, with high-level spatial characteristics derived through 

hierarchical feature representations, which are directly associated with LU with 

complex spatial structures and patterns. However, CNN models are essentially patch-

wise models applied across the entire image and are dependent upon the specific scale 

of representation, in which boundaries and small linear features may be either blurred 

or completely omitted throughout the convolutional processes. Therefore, both the 
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pixel-based MLP and patch-based CNN exhibit pros and cons in LC and LU 

classification.  

Figure 6-11: Joint deep learning with joint distribution modelling (a) through iterative 

process for pixel-level land cover (LC) and patch-based land use (LU) extraction and 

decision-making (b). 

The major breakthrough of the proposed JDL framework is the interaction between the 

pixel-based LC and patch-based LU classifications, realised by borrowing information 

from each other in the iterative updating process. Within the JDL, the pixel-based MLP 

was used for spectral differentiation amongst distinctive LCs, and the CNN model was 

used to identify different LU objects through spatial feature representations. Their 

complementary information was captured and shared through joint distribution 

modelling to refine each prediction through iteration, ultimately to increase 

classification accuracy at both levels. This iterative process is illustrated in Figure 6-

11(b) as a cyclic graph between pixel-level LC and patch-based LU extractions and 

decision-making. The method starts with pixel-based classification using MLP applied 

to the original image to obtain the pixel-level characteristics (LC). Then this 

information (LC conditional probabilities) was fed into the LU classification using the 

CNN model as part of modelling the joint distributions between LC and LU, and to 

infer LU categories through patch-based contextual neighbourhoods. Those LU 

conditional probabilities learnt by the CNN and the original image were re-used for LC 
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classification through the MLP classifier with spectral and spatial representations. Such 

refinement processes are mutually beneficial for both classification levels. For the LU 

classes predicted by the CNN model, the JDL is a bottom-up procedure respecting 

certain hierarchical relationships which allows gradual generalisation towards more 

abstract feature representations within the image patches. This leads to strong 

invariance in terms of semantic content, with the increasing capability to represent 

complex LU patterns. For example, the parking lot was differentiated from the highway 

step-by-step with increasing iteration, and the commercial and industrial LUs with 

complex structures were distinguished through the process. However, such deep feature 

representations are often at the cost of pixel-level characteristics, which give rise to 

uncertainties along the boundaries of objects and small linear features, such as small 

paths. The pixel-based MLP classifier was used here to offer the pixel-level information 

for the LC classification within the neighbourhood to reduce such uncertainties. The 

MLP within the JDL incorporated both spectral (original image) and the contextual 

information (learnt from the LU hierarchy) through iteration to strengthen the spatial-

spectral LC classification and produce a very high accuracy. For example, the 

misclassified shadows in the image were gradually removed with increasing iteration 

via contextual information, and the huge spectral confusion amongst different LCs, 

such as between concrete roof and asphalt, was successively reduced through the JDL. 

Meanwhile, an increasingly accurate LC classification via increasing iteration was 

(re)introduced into the CNN model, which re-focused the starting point of the CNN 

within the Joint Deep Learning back to the pixel level before convolving with small 

convolutional filters (3×3). As a consequence, ground features with diverse scales of 

representations were characterised, in which small features and boundary information 
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were preserved in the LU classification. For example, the canal (a linear feature) was 

clearly identified in S2 (Figure 6-8). 

From an AI perspective, the JDL mimics the human visual interpretation, combining 

information from different levels to increase semantic meaning via joint and automatic 

reinforcement. Such joint reinforcement through iteration has demonstrated reduced 

sample size requirement and enhanced model robustness compared with standard CNN 

models (Figure 6-10), which has great generalisation capability and practical utility. 

There are some other techniques such as Generative Adversarial Networks (GANs) that 

are developed for continuous adversarial learning to enhance the capability of deep 

learning models, but in a competitive fashion. Therefore, the joint reinforcement in JDL 

has great potential to influence the future development of AI and machine learning, and 

the further application in machine vision. 

6.5      Conclusion 

Land cover (LC) and land use (LU) are intrinsically hierarchical representing different 

semantic levels and different scales, but covering the same continuous geographical 

space. In this chapter, a novel joint deep learning (JDL) framework, that involves both 

the MLP and CNN classification models, was proposed for joint LC and LU 

classification. In the implementation of this JDL, the spatial and hierarchical 

relationships between LC and LU were modelled via a Markov process using iteration. 

The proposed JDL framework represents a new paradigm in remote sensing 

classification in which the previously separate goals of LC (state; what is there?) and 

LU (function; what is going on there?) are brought together in a single unifying 

framework. In this JDL, the pixel-based MLP low-order representation and the patch-

based CNN higher-order representation interact and update each other iteratively, 
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allowing the refinement of both the LC and LU classifications with mutual 

complementarity and joint improvement.  

The classification of LC and LU from VFSR remotely sensed imagery remains a 

challenging task due to high spectral and spatial complexity of both. Experimental 

results in two distinctive urban and suburban environments, Southampton and 

Manchester, demonstrated that the JDL achieved by far the most accurate 

classifications for both LC and LU, and consistently outperformed the benchmark 

comparators, which is a striking result. In particular, complex LC classes covered by 

shadows that were extremely difficult to characterise were distinguished precisely, and 

complex LU patterns (e.g. parking lots) were recognised accurately. This research 

paves the way to effectively address the complex LC and LU classification task using 

VFSR remotely sensed imagery in a joint and automatic manner. 

The MLP- and CNN-based JDL provides a general framework to jointly learn 

hierarchical representations at a range of levels and scales, not just at the two levels 

associated with LC and LU. For example, it is well known that LC can be defined at 

multiple levels as a set of states nested within each other (e.g. woodland can be split 

into deciduous and coniferous woodland). Likewise, and perhaps more interestingly, 

LU can be defined at multiple levels nested within each other to some degree. For 

example, a golf course is a higher-order and larger area representation than a golf shop 

and golf club house, both of which are LUs but nest within the golf course. The JDL 

proposed here should be readily generalisable to these more complex ontologies. In the 

future, we also aim to expand the JDL framework to other data sources (e.g. 

Hyperspectral, SAR, and LiDAR data) and to further test the generalisation capability 

and model transferability to other regions. It is also of interest to place the JDL 
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framework in a time-series setting for LC and LU change detection and simulation. 

These topics will be the subject of future research. 
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Chapter 7      Discussion and Conclusion 

Fully automated land cover (LC) and land use (LU) classification of remotely sensed 

imagery, especially VFSR imagery, is an extremely challenging task that is constantly 

pushing the envelope of AI and machine learning. The major challenges in classifying 

these VFSR remotely sensed images are their spectral and spatial complexity due to the 

increased intra-class variation and the reduced inter-class disparity, relative to fixed 

objects of interest, coupled with varied illumination conditions and shadow that interact 

between adjacent ground objects. Indeed, existing techniques remain inadequate to 

analyse VFSR data effectively and efficiently, which calls for the development of 

advanced methodologies to accelerate innovation in fully automatic image 

classification.  

Deep learning, as a new frontier of AI, holds great promise to fulfil the challenging 

needs of VFSR remotely sensed image classification. The idea of deep learning 

methods is to perform human-like reasoning and to extract high-level and abstract 

features that represent the semantics of input images. The process is greatly inspired by 

human visual cognition, in which hierarchical structures are learnt through multiple 

levels of feature representations. Typically, the high-level features (e.g. patterns and 

associations) are composed of a set of low-level characteristics (e.g. edges, textures, 

and shape), and are often indirectly correlated to the recorded spectral reflectance. Deep 

learning based methods have strong capabilities to characterise and differentiate the 

semantics of LC and LU by extracting the most expressive and discriminative features 

end-to-end, hierarchically. Therefore, introducing deep learning methods has great 

potential to obtain better feature representations in identifying unique characteristics of 
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VFSR imagery, and to keep pace with the advances in sensor technologies through 

automation. 

This thesis developed a set of novel deep learning methods for land cover and land use 

classification using VFSR remotely sensed imagery. The mapping objective started 

with land cover classification (e.g. buildings, asphalt, grassland, woodland etc.) and 

reached complex land use classification (e.g. residential, commercial, industrial etc.). 

These challenging land features were extracted and classified by innovating deep 

learning methods, in particular, convolutional neural networks (CNN) as an example 

(i.e., developing entirely new methods based on the CNN). Experimental results 

demonstrated several difficulties in applying the standard pixel-wise CNN for remotely 

sensed image classification, including geometric distortions, boundary uncertainties 

and huge computational redundancy. Essentially, the problem of producing LC/LU 

thematic maps using patch-based CNN networks is an inherent tension between “what” 

from deep layers as semantics and “where” from shallow layer to provide the details, 

and there is a strong trade-off between high-level semantic recognition and low-level 

boundary delineation (Sun and Wang 2018).  These technological and technical 

challenges were addressed systematically in this thesis through methodological 

innovations. In addition, the learning process was further extended into a hierarchical 

and iterative procedure rather than finding a one-off solution. This is similar to human 

interpretations on aerial imagery using a wide range of real-world knowledge and 

expertise through repetition. In summary, the major contributions of this thesis involve:  

(1) Developing novel deep learning methods or architectures as a learning process 

towards human interpretation on VFSR remotely sensed imagery;  
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(2) Solving complex LC and LU image classification with a set of innovations through 

technological integrations and model iterations;  

(3)  Understanding the classification hierarchies and their intrinsic relationships across 

different mapping objectives, from simple land covers to complex land use feature 

representations. 

This chapter discusses the key research findings from the four published papers in 

chapter 3 – 6 by answering the raised research questions, followed by future 

recommendations. 

7.1      Research Findings and Conclusions 

This section presents the research findings and conclusions with respect to each 

research objective as described in section 1.5. 

 Objective 1: Develop a deep learning method for land cover classification using 

VFSR remotely sensed images. 

A hybrid MLP-CNN method was proposed for land cover classification using 

VFSR images. The MLP-CNN was designed to integrate the contextual-based 

convolutional neural network (CNN) with deep architecture and pixel-based 

multilayer perceptron (MLP) with shallow structure using a rule-based fusion 

decision strategy. The decision fusion rules, designed primarily based on the 

classification confidence of the CNN, reflect the generally complementary patterns 

of the individual classifiers with different behaviours, in which the CNN based on 

deep spatial feature representation and the MLP based on spectral discrimination 

were integrated to differentiate land cover objects from VFSR remotely sensed 

imagery. The effectiveness of the ensemble MLP-CNN classifier was tested in both 
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urban and rural areas using aerial photography and the WorldView-2 satellite 

imagery with sub-metre spatial resolution. The MLP-CNN classifier achieved 

promising performance, consistently outperforming the pixel-based MLP, spectral 

and textural-based MLP, and the contextual-based CNN in terms of classification 

accuracy. 

This study concluded that the fusion of the patch-based CNN and the pixel-based 

MLP is an effective solution for land cover classification using VFSR remotely 

sensed imagery. The complementarity acquired by the CNN for deep spatial feature 

representation and MLP in spectral discrimination can rectify the blurred 

boundaries and the loss of fine spatial details reduced through the convolutional 

process using the fusion decision strategy. This research provides an effective 

solution to well balance the trade-off between feature recognition and localisation, 

and paves the way to address complex land cover image classification tasks using 

VFSR imagery. 

 Objective 2: Model the uncertainty in deep learning for VFSR land cover 

image classification. 

A variable precision rough set (VPRS) model was proposed to quantify the 

uncertainties in the deep learning based method, and a spatially explicit regional 

decision fusion strategy was introduced to further improve the CNN-based VFSR 

image classification through the fusion of a Markov random field (MRF). The 

VPRS model, based on rough set theory, was developed to partition the 

classification confidence map derived from CNN-based classifications into the 

positive regions (correct classifications) and the non-positive regions (uncertain or 

incorrect classifications).  Those “more correct” areas were trusted by the CNN, 

whereas the uncertain areas were rectified by a multi-layer perceptron (MLP)-based 
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Markov random field (MLP-MRF) classifier to provide crisp and accurate boundary 

delineation. The proposed MRF-CNN fusion decision strategy exploited the 

complementary characteristics of the two classifiers based on VPRS uncertainty 

description and classification integration. The effectiveness of the MRF-CNN 

method was tested in both urban and rural areas of southern England as well as with 

Semantic Labelling datasets. The MRF-CNN consistently outperformed the 

standard pixel-based MLP and SVM, spectral-contextual based MLP-MRF as well 

as contextual-based CNN classifiers, and state-of-the-art baseline methods for 

semantic segmentation. 

This study concluded that the proposed VPRS-based regional fusion decision 

between CNN and MRF was an effective framework for land cover classification 

using VFSR remotely sensed imagery. The VPRS model quantified the 

uncertainties in CNN classification of VFSR imagery by partitioning the result into 

spatially explicit granularities that represent positive regions and non-positive 

regions, respectively. The positive regions were trusted directly by the CNN, 

whereas non-positive regions were rectified by the MLP-MRF in consideration of 

their complementary behaviour in spatial representations. The proposed regional 

fusion of MRF-CNN classifiers achieved the highest classification accuracy 

compared with the benchmark approaches. Therefore, this VPRS-based uncertainty 

description and classification integration between CNN and MRF provides a 

general framework to achieve fully automatic and effective VFSR land cover image 

classification. 

 Objective 3: Develop a deep learning method to solve the complex land use 

classification using VFSR remotely sensed imagery. 
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A novel object-based convolutional neural network (OCNN) was proposed for 

urban land use classification using VFSR images. Rather than pixel-wise 

convolutional processes, the OCNN relies on segmented objects as its functional 

units, and CNN networks are applied to characterise objects and their spatial context 

by using within-object and between-object information. Specifically, two CNN 

networks with different model structures (six layers and eight layers) and different 

window sizes (48×48 and 128×128) were developed to predict linearly shaped 

objects (e.g. Highway, Railway, Canal) and general objects (other non-linearly 

shaped). Multiple small window size CNNs were sampled along each object based 

on geometric characteristics, and integrated through statistical majority voting, 

whereas the large window size CNN was used only once per object for prediction 

using a wide spatial context. A rule-based decision fusion was designed to integrate 

the class-specific classification results conditional upon these two CNN models, in 

which the prediction of a linearly shaped object from the small window size CNNs 

was given priority, whereas the large window size CNN was trusted in any other 

cases. The effectiveness of the proposed OCNN method was tested on aerial 

photography of two large urban scenes in Southampton and Manchester of Great 

Britain for land use image classification. The OCNN combined with large and small 

window sizes achieved excellent classification accuracy and computational 

efficiency, constantly outperforming its sub-modules, as well as other benchmark 

comparators, including the pixel-wise CNN, contextual-based MRF and object-

based OBIA-SVM.  

This study concluded that the object-based CNN (OCNN) method was an effective 

solution for complex land use classification using VFSR imagery. The proposed 

OCNN method with two CNN networks is designed to sample specific locations 
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that are defined by size and geometry of image objects, and integrate them in a 

class-specific manner to obtain an effective and efficient urban land use 

classification output (i.e., a thematic map). This OCNN method with large and small 

window size CNNs produced the most accurate classification results in comparison 

with the sub-modules and other contextual-based and object-based benchmark 

methods. Moreover, a high computational efficiency was achieved with much more 

acceptable time requirements than the standard pixel-wise CNN method in the 

process of model inference. Therefore, the proposed OCNN method is effective and 

efficient in urban land use classification using VFSR imagery with great potential 

for a broad range of applications. 

 Objective 4: Develop a novel method for joint land cover and land use 

classification using VFSR remotely sensed imagery. 

A novel MLP-CNN based Joint Deep Learning (JDL) method that incorporates 

multilayer perceptron (MLP) and deep convolutional neutral networks (CNN), was 

proposed for joint land cover (LC) and land use (LU) classifications through 

iteration. Specifically, LU classifications conducted by the patch-based CNNs for 

object characterisations were made conditional upon the land cover probabilities 

derived from the pixel-based MLP using the original imagery. Then the land use 

probabilities inferred by the CNN together with the original image were re-used as 

inputs to the MLP to strengthen the spatial and spectral feature representations. 

Such an iterative process between the MLP and CNN is formulated as a Markov 

process through joint distribution modelling, in which both the LC and LU are 

classified simultaneously through an iterative procedure. The effectiveness of the 

proposed MLP and CNN JDL method was tested on aerial photography of two large 

urban and suburban scenes (Southampton and Manchester) in Great Britain. The 
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JDL demonstrated a consistently increasing trend in accuracies for both LC and LU 

classifications, achieving the best classification accuracies at iteration 10, with the 

average overall accuracies up to 90.24% for LC and 88.01% for LU for the two 

study sites, constantly outperforming various benchmark comparators for LC and 

LU classifications. In particular, complex land cover classes cast by shadows that 

are extremely difficult to be handled were distinguished precisely, and the complex 

land use patterns (e.g. parking lots) were recognised accurately. 

This study concluded that the MLP-CNN JDL is an effective method to address the 

complex land cover and land use classification tasks using VFSR remotely sensed 

imagery in a joint and automatic manner. The proposed method provides a general 

framework, within which the pixel-based MLP and the patch-based CNN models 

were mutually complementary between the pixel-level and neighbourhood 

characteristics, refining each other throughout the classification process with 

iteration. To the best of our knowledge, this joint LC and LU classification is the 

first research to jointly model the spatial and hierarchical relationships between land 

cover and land use, in which pixel-level and neighbourhood information was 

interacted and updated iteratively, enabling the accurate classifications of LC and 

LU at both levels simultaneously.  

7.2      Reflections 

This paper-based thesis is composed of four peer-reviewed journal papers in Chapters 

3 – 6. Although the research objectives of these four chapters are completely different, 

they exhibit strong links among each other and form a logical story. Essentially, the 

logic in this thesis is from simple land cover classification to complex land use 
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classification, from pixel-based methods to object-based methods, and from single end-

to-end model to joint models through iteration. Detailed links are presented as follows: 

Chapter 3 and 4 are strongly linked for solving the land cover classification tasks using 

VFSR remotely sensed imagery. The fundamental challenge for adapting deep learning 

based methods for land cover classification is the dilemma between pixel-level spectral 

differentiation and the patch-based spatial feature representations, where the standard 

pixel-wise CNNs pose several challenges in land cover classification, including 

geometric distortions, boundary uncertainties and the loss of fine spatial details through 

convolutional processes. Chapter 3 proposed to create rules to threshold the 

classification results and deal with uncertainties through a fusion decision strategy, in 

which the MLP and CNN were fused to harvest their complementarity between spectral 

differentiation and spatial feature characterisation. This method, although having 

potential to achieve desirable classification results, involves a large amount of trial and 

error and prior knowledge of feature characteristics and, thus, was hard to generalise 

and apply in an automatic fashion.  Chapter 4 proposed a VPRS-based approach to 

model and partition the uncertainty within the CNN-based land cover classification map 

automatically. Those uncertain regions are further improved by MLP-MRF for spectral 

differentiation and boundary segmentation. Such regional fusion decision approaches 

provide a general framework within which to gain the advantages of the model-based 

CNN, while overcoming the problem of losing effective resolution and uncertain 

prediction at object boundaries, which is especially pertinent for complex VFSR image 

classification. 

While Chapters 3 and 4 extracted ground objects with physical properties (i.e. land 

cover), Chapter 5 focused on predicting land use using higher-order feature 
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representations, which is closely related to Chapter 6 for joint land cover and land use 

classification. In Chapter 5, an object-based CNN method was developed to learn both 

within-object and between-object information, such that the spatial and hierarchical 

relationships are used to characterise urban land use. A range of small window size 

CNNs were designed to recognise linearly shaped objects that are often misclassified 

or ignored by large window size CNNs, and the two contextual windows are used at 

different scales to represent the classes that are linearly shaped and other general land 

use classes with complex patterns. Chapter 6, on the other hand, aimed to learn the 

spatial hierarchies between land cover and land use through iteration, and to jointly 

classify LC and LU simultaneously. The conditional dependencies between the two 

classification levels were learnt through the joint deep learning model, and refined each 

other with mutual complementarity and joint improvement. Such iterative processes are 

able to use existing knowledge, recall past experience, and consider context and 

physical phenomena, which are similar to the learning processes for human visual 

interpretation. Essentially deep learning aims to build a “machine” that can successfully 

perform (virtually) any tasks a human can. Although we are arguably far from creating 

such a machine, the iterative process proposed here could potentially mimic the human 

operators to perform visual interpretation through repetition. 

There are clear linkages between each of the analytical chapter and they have 

progressed from each other significantly. One of the key advances along the chapters 

is the mitigation of shadow artefacts within aerial images. The shadow appears 

extensively on images, directly affecting the performance of LC and LU classification. 

In Chapter 3 (Figure 3-7 and 3-8) and Chapter 4 (Figure 4-5 and 4-6), the shadow was 

included as a specific land cover class, which was completely eliminated in Chapter 5 

(Figure 5-8 and 5-9) and Chapter 6 (Figure 6-5, 6-6, 6-7, and 6-8). Such improvement 
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is non-trivial for both scientific contribution as the shadow artefacts are huge challenges 

for LC/LU classification to be dealt with, and for practical applications within 

Ordnance Survey, in which shadow is of less interest for practitioners and map users.  

Besides, the study extents in Chapter 3 (pilot study sites in Southampton, UK) and 

Chapter 4 (case studies in Bournemouth, UK) were relatively small, which were 

designed to proof the concept for adapting the deep learning based methods for LC 

classification. While in Chapter 5, large urban scenes of Great Britain, including City 

of Southampton and Great Manchester, are used for testing the proposed OCNN 

method for LU classification. These study areas are further expanded to include rural 

areas (agricultural and crop areas) in Chapter 6 for comprehensive LC and LU 

classification through the novel JDL method. Moreover, the technical skills (e.g. 

programming) progress throughout the chapters as a learning process. An old Deep 

Learning Toolbox based on MATLAB platform was used in Chapter 3 and 4 for LC 

classifications, which is currently outdated and no longer maintained. The deep learning 

methods in Chapter 5 and 6 were developed by using the state-of-the-art Keras backend 

with Tensorflow under Python platform, and coupled with GPU, the methods have the 

capabilities to process large scenes of imagery through parallel computing. And most 

importantly, the research focus was shifted from pixel-based LC classification (Chapter 

3 and 4) to higher-order LU representations (Chapter 5), where the CNN is considered 

as the most appropriate approach for higher-order LU classification (up to 90% 

accuracy), and such hierarchical representations between LC and LU were further 

modelled in JDL through joint distribution modelling (Chapter 6). 

In summary, the developed deep learning based methods represent by far the most 

accurate LC and LU classification, with approximately 90% accuracy, ~5% 

improvement over the existing deep learning methods, and ~10% higher than the 
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traditional methods as listed in Table 2-2. Such highly accurate classification 

techniques make a significant contribution to the field of LC/LU classification, and 

have great potential for a wide range of geospatial applications. 

7.3      Recommendations 

This thesis developed deep learning methods for land cover and land use classification 

using VFSR remotely sensed imagery. Many aspects of the proposed methods have not 

yet been fully addressed and explored, and further investigations are needed. In 

particular, the major limitation of this research is the lack of testing on transferability 

of the developed approaches. Within the thesis, only Chapter 4 tested the transferability 

using the Vaihingen and Potsdam semantic segmentation datasets, where the training 

was conducted at some annotated tiles and the testing was done on the rest of the image 

tiles that were not used for training purpose. However, the majority of research here 

took the training and testing samples from the same study area, and the methods were 

only validated at specific regions without transferring to other unseen regions. Future 

work would, therefore, devote to testing the transferability of the methods at wider 

geographical areas, in order to ensure the developed techniques highly robust, 

transferable and scalable. These techniques will be prototyped and integrated into the 

commercial image processing pipeline, which will set out the route towards developing 

an operational system in collaboration with Ordnance Survey. 

Apart from developing transferable systems discussed beforehand, the proposed deep 

learning methods could be developed further at multiple perspectives, including data 

sources, techniques and applications. Detailed recommendations are made as follows: 

1. Data Sources 
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The thesis focused on land cover and land use classification using VFSR imagery. 

However, many other data sources exist in the field of remote sensing, such as 

hyperspectral, synthetic aperture radar (SAR), and LiDAR, which have not been used 

in this research, and the fusion of these multiple data sources by designing novel deep 

architectures would be a potential future direction. In addition, the urban land use 

classification in this thesis was undertaken at a generalised spatial and semantic level 

(e.g., residential, commercial and industrial area), without identifying smaller 

functional sites (e.g., supermarkets, hospitals and playgrounds etc.). This issue might 

be addressed by incorporating multi-source geospatial data, for example, those 

classified commercial areas might be further differentiated as supermarkets, retail 

outlets, and café areas through indoor human activities. Future research will, therefore, 

mine the semantic information from GPS trajectories, transportation networks and 

social media data to characterise these smaller functional units in a hierarchical way, as 

well as socioeconomic activities and population dynamics. 

2. Techniques 

Many techniques proposed in this thesis could be developed further into real 

applications. For example, Chapter 5 proposed two-scale representations for urban land 

use, which might be insufficient to characterise some complex geometric 

characteristics. Land use features extracted in urban areas are essentially scale-

dependent, and manifest across different scales. Therefore, a range of CNNs with 

different input patch sizes will be adopted in the future to adapt to the diverse sizes and 

shapes of urban objects through weighted decision fusion. In addition, Chapter 6 

considered only the classification of land cover and land use. Such a two-level 

classification system could be extended to a structured classification hierarchy, from 
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land cover to land use and to higher order functions. Such hierarchical representations 

require to develop the Joint Deep Learning framework further to incorporate more deep 

learning models within the iterative process, and might strengthen each other through 

active learning and optimisation. Moreover, deep learning methods developed in this 

research provide point estimates (fixed values) for land cover and land use predictions. 

Hence, future work will refer to probabilistic methods (in a Bayesian interpretation) to 

estimate uncertainty associated with the predictions of these models. Chapter 4 

explored the uncertainty modelling based on rough set theory, which could be 

developed further to incorporate prior probabilities under a Bayesian inference 

framework for uncertainty quantification. 

3. Applications 

There are many potential applications to demonstrate the developed techniques with 

real-world impact. One possible direction is to explore land cover and land use change 

detections in fast-growing urban environments, in which many stakeholders, including 

government, local authorities, and small and medium enterprises need to support their 

decision-making. Other deep learning techniques, such as recurrent neural networks 

(RNN) and long short term memory (LSTM), can be developed to model the land cover 

and land use dynamics through time-series analysis. Additionally, the land use in this 

research focused on urban areas such as residential, commercial, and industrial etc.. 

Future work will develop the deep learning models for rural areas and agricultural land 

uses, to differentiate functional uses between large-scale and small-holder agriculture 

through higher-order feature representations.  
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7.4      Conclusions 

This thesis developed a set of novel deep learning methods for land cover and land use 

classification. Both land cover (e.g. buildings, asphalt, grassland, woodland etc.) and 

land use objects (e.g. residential, commercial, industrial etc.) were classified and 

mapped with high accuracy and computational efficiency. Below are the main 

conclusions emerging from this research. 

 Land cover classification was solved by deep learning methods through a rule-

based decision fusion and a rough set based uncertainty modelling, in which 

technical challenges in geometric distortions and boundary uncertainties were 

successfully tackled with innovations. 

 Land use classification was addressed by developing a novel object-based 

convolutional neural networks (OCNN), where a group of pixels was used as 

an object for target sampling, and further incorporated the spatial context with 

high accuracy and computational efficiency. Substantial progress in developing 

a prototype method for extracting urban land use information from remotely 

sensed data has been made to-date.  

 Joint Deep Learning (JDL) was proposed for joint land cover and land use 

classification to learn a hierarchical representation through iteration. This JDL 

framework is the major solution of this research, and has great potential to be 

the most important contribution to land use and land cover classification over 

the last decade. 
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