
1 

Alarms-related wind turbine fault detection based on Kernel 

Support Vector Machines 

Yueqi Wu, Xiandong Ma  

Engineering Department, Lancaster University, Lancaster, LA1 4YW, United Kingdom,  

Email: y.wu31@lancaster.ac.uk, xiandong.ma@lancaster.ac.uk 

 

 

Keywords: Wind turbine, Condition monitoring, Kernel 

Principal Components Analysis (KPCA), Kernel Support 

Vector Machine (KSVM), Supervisory Control and Data 

Acquisition (SCADA). 

Abstract 

Wind power is playing an increasingly significant role in our 

daily life. However, wind farms are usually far away from 

cities especially for offshore wind farms, which brought 

inconvenience for maintenance activities. Two conventional 

maintenance strategies, namely corrective maintenance and 

preventive maintenance, cannot provide a condition-based 

maintenance to identify potential anomalies and predicts 

turbines’ future operation trend. In this paper, a model based 

data-driven condition monitoring method is proposed for fault 

detection of the wind turbines with SCADA data acquired from 

an operational wind farm. Due to the nature of the alarm 

signals, the alarm data can be used as an intermedium to link 

the normal data and fault data. First, KPCA is employed to 

select principal components to retain the dominant information 

from original dataset in order to reduce the computation load 

for further modelling. Then the selected principal components 

are processed for normal-abnormal condition classification to 

extract those abnormal condition data that are classified further 

into false alarms and true alarms related to the faults. This two-

stage classification approach is implemented based on the 

KSVM algorithm. The results demonstrate that the two-stage 

fault detection method can identify the normal, alarm and fault 

conditions of the wind turbines accurately and effectively.  

 

1 Introduction 

With the increasing of electricity usage, wind power has 

become the world’s fastest-growing renewable energy source. 

The wind turbines (WTs) installed capacity has been rising 

exponentially in past decades. From 2001 to 2017, the 

worldwide wind power installed capacity has increased from 

23,900 MW to 539,581 MW, and new installed capacity in 

2017 was 52,573 MW [1]. Due to the rich and stronger winds 

in the offshore areas, the installation of the wind turbines has 

been moved from onshore to offshore. The location of WTs, 

especially for offshore WTs, drives the operation and 

maintenance (O&M) cost to rise significantly. For an offshore 

WT which has a 20-year lifelong time, the O&M costs can be 

about 25% to 30% of the overall energy generation or 75% to 

90% of the investment cost on O&M [2, 3]. Besides, the harsh 

operating environment will bring more difficulties for 

maintenance. There are two conventional maintenance 

strategies for the WTs, namely corrective maintenance and 

preventive maintenance [4]. However, the O&M costs from 

these two conventional strategies tend to be high when either 

little failures or a large number of failures occur. Hence, 

development of a condition-based and intelligent maintenance 

strategy for wind turbines would be significant and necessary 

to ensure a reliable, safe and cost-effective operation of the 

wind power systems. 

  

This paper presents research results of a model-based data- 

driven WT fault detection method, which creates a relationship 

to identify the false alarms and true alarms related to the faults. 

The model is performed using the KSVM incorporating the 

KPCA based on the historical SCADA data. The alarm of WT 

system can be triggered when key component signals exceed 

the pre-defined threshold limits usually due to design defects, 

changing of WT running states and components malfunction 

[5]. Since the alarms could reveal the working conditions of the 

turbine’s components, it can be regarded as a significant index 

to indicate an early warning of the vital faults. Firstly, the 

computation load can be reduced by choosing specific 

principal components (PCs).  Secondly, the chosen PCs are 

used to build normal-abnormal classification model.  Finally, a 

classification model based on the extracted abnormal data is 

built to classify the alarms and faults. 

2 Methodology 

2.1 Principal Components Analysis (PCA) 

The PCA transforms a set of correlated variables into a set of 

linearly uncorrelated variables, which are the principal 

components of the original dataset. It has been widely used to 

visualize relatedness and genetic distance between variables. 

The process can be achieved by calculating the eigenvalues of 

the covariance matrix or singular values of non-orthogonal 

matrix condition [6, 7]. PCA has shown its strong capability in 

dimension reduction and been verified by researches in 

different fields [8].By selecting first few PCs, the major 

information can be maintained and the dimension of the 

original dataset is then dramatically reduced. Hence, this 

technique has been widely applied in feature extraction and 

incorporated with various machine learning algorithms such 

artificial neuron network (ANN) to monitor and predict the 

performance of wind turbines [9].  

To obtain the PCs from a dataset X with n-by-p dimensions, 

where p is the number of the variables and n is the number of 
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the samples of each variable, Eigen-analysis for the covariance 

matrix M of original dataset X needs to be performed. First, the 

dataset X need to be standardised: 

𝑧𝑗 =
𝑥𝑗−𝑥𝑗̅̅ ̅

𝜎𝑥𝑗

            (𝑗 = 1,2, … , 𝑝)          (1) 

where 𝑥𝑗̅is the mean value of 𝑥𝑗, 𝜎𝑥𝑗
 is the standard deviation 

of 𝑥𝑗 and 𝒁 = [𝑧1, . . ,  𝑧𝑝] is denoted as the standardised dataset 

with n-by-p dimensions. The covariance matrix M of Z is 

defined as: 

𝑴𝑖,𝑗 = 𝑐𝑜𝑣(𝑍𝑖, 𝑍𝑗) = 𝐸[(𝑍𝑖 − 𝜇𝑖)(𝑍𝑗 − 𝜇𝑗)] 

                     = 𝐸[𝑍𝑖𝑍𝑗] − 𝜇𝑖𝜇𝑗                      (2) 

where 𝜇𝑖 = 𝐸(𝑍𝑖) is the mean value of  ith row of Z. The PCs 

can be derived from the covariance matrix by using singular 

value decomposition (SVD). The singular values of the matrix 

M can be calculated by 

𝑴 = 𝑼𝑺𝑾𝑻                                   (3) 

where S is an n-by-p rectangular matrix contains the ith 

singular values of M. U is an n-by-n matrix called the left 

singular vectors consists of the n largest eigenvalues of 𝑴𝑴𝑻 

and 𝑾𝑻  is a p-by-p matrix called right singular vectors 

associated with the orthonormalised eigenvectors of 𝑴𝑻𝑴 

[16]. By sorting the singular values in descending order and 

finding their corresponding singular vectors in the same order, 

the ith principal component can be obtained by following 

equation 

𝑌𝑖 = 𝑈𝑖1𝑧1 + 𝑈𝑖2𝑧2 + ⋯ + 𝑈𝑖𝑝𝑧𝑝       (𝑖 = 1,2, … , 𝑝)    (4) 

The singular values of 𝑴  are the variances of their 

corresponding PCs. Hence, the magnitudes of each singular 

value represent the weighted information contained in the 

original dataset. To select the number of PCs, the accumulated 

variance contributions from each principal component need to 

be calculated. The contribution 𝑎𝑖 of the variance 𝑠𝑖 for the ith 

principal component is defined as 

𝑎𝑖 =
𝑠𝑖

∑ 𝑠𝑖
𝑝
𝑖=1

                                  (5) 

To obtain the information from the original dataset, the 

selection of k PCs should be as large as possible while still 

satisfying k<p. However, the number of PCs must be 

compromised in order to achieve the dimension reduction. In 

our study, the accumulated variance contribution is selected no 

smaller than 85%. 

2.2 Support Vector Machine (SVM) 

The SVMs are set of supervised learning models that could be 

applied for regression and classification analysis with 

associated learning algorithms [10].  

 

Because the original problem might be in a finite dimensional 

space and might not be linearly separable in that space, it needs 

to be mapped into a much higher-dimensional space in order to 

make the separation much easier. An n-by-k training dataset Y 

can be considered as n points in k dimensions, implying each 

point 𝑌𝑖 (i=1, 2,…, n) contains k PCs. The training process for 

𝑌𝑖 and its pre-defined class 𝑐𝑖 are given in the form below 

(𝑌1, 𝑐1), … , (𝑌𝑛 , 𝑐𝑛),         𝑐 ∈ {−1,1}          (6) 

where  𝑐𝑖 is either -1 or 1, indicating the class of the point 𝑌𝑖. If 

any alarms are triggered at time instant i, the class of the 𝑌𝑖 is 

assigned to 𝑐𝑖 =-1; otherwise 𝑐𝑖 = 1. A hyperplane needs to be 

found in order to divide the overall samples into two classes. 

To satisfy this condition, the hyperplane should follow: 

w ∙ 𝑌𝑖  + 𝑏 ≥ 1   if 𝑐𝑖 = 1 

 w ∙ 𝑌𝑖  + 𝑏 ≤ −1   if 𝑐𝑖 = −1                   (7) 

The inequality (7) can be also written as 

𝑐𝑖( w ∙ 𝑌𝑖  + 𝑏) ≥ 1                             (8) 

where 𝑤 is weight to the hyperplane and b is the bias. Points 

𝑌0  for which 𝑐𝑖( w ∙ 𝑌0  + 𝑏) = 1 are named support vectors 

[10]. Therefore, the optimal hyperplane is described as 

𝑤0Y + 𝑏0 = 0                                   (9) 

This hyperplane is unique that separates the training data with 

a maximal margin. The distance 𝜌(𝑤, 𝑏)  between the 

projections of the training vectors of two different classes is 

thus given by 

𝜌(𝑤, 𝑏) =
𝑚𝑖𝑛

{𝑌: 𝑐 = 1}
𝑌∙𝑤

|𝑤|
−

𝑚𝑎𝑥
{𝑌: 𝑐 = −1}

𝑌∙𝑤

|𝑤|
     (10) 

The optimal hyperplane ( 𝑤0, 𝑏0 ) is the arguments that 

maximise the distance. It follows: 

𝜌(𝑤0, 𝑏0) =
2

|𝑤|
=

2

√𝑤0∙𝑤0
                        (11) 

The w needs to be minimised in order to satisfy the constraint 

defined by eq. (11). The weights 𝑤0 for the optimal hyperplane 

in the feature space can be written as linear combination of 

support vectors 

𝑤0 = ∑ 𝑐𝑖
𝑛
𝑖=1 𝛼𝑖

0𝑌0                             (12) 

where 𝛼𝑖
0is Largrangian multiplier, which is to be described in 

eq. (14). 

Thus, classification of an unknown vector Y is made by 

transforming a vector to the feature space (Y→ 𝜙(𝑌)) and then 

classified by the sign function: 

𝑓(𝑌) = 𝑤 ∙ 𝜙(𝑌) + 𝑏                         (13) 

To satisfy the constraints (8), the Lagrangian multiplier is 

constructed as a standard optimisation technique 

𝐿(𝑤, 𝑏, Λ) =
1

2
𝑤 ∙ 𝑤 − ∑ 𝛼𝑖[𝑐𝑖( w ∙ 𝑌0  + 𝑏) − 1]𝑛

𝑖=1  (14) 

where Λ𝑇 = (𝛼1, … , 𝛼𝑛)  is the vector of non-negative 

Lagrange multipliers which satisfy the constraints defined by 

eq. (8). 

With the eq. (12), the classification function 𝑓(𝑌)  for an 

unknown vector Y can be extended to 

𝒇(𝒀) = 𝒘 ∙ 𝝓(𝒀) + 𝒃 = ∑ 𝒄𝒊𝜶𝒊𝝓(𝒀)𝝓(𝒀𝟎) + 𝒃𝒏
𝒊=𝟏    (15) 

2.3 KPCA and KSVM 

Both PCA and SVM could only solve linear separable 

problems. Hence, to solve a larger dataset with a linear 

inseparable problem, kernel function is introduced. By using 

kernel, the linear operations of PCA are performed in a 

reproducing kernel Hilbert space. Therefore, the linear 

inseparable problem can be solved by using kernel function 

projecting to a higher dimension. 

 

KPCA is an extension version of the PCA using the kernel 

function to perform the originally linear operations in a 

reproducing kernel Hilbert space. As introduced above, the 

calculation of PCA can be transferred into the Eigen-analysis. 

By mapping the original data into the feature space using the 

RBF (Radial Basis Function) kernel. It is defined as:  
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𝐾(𝒁) = 𝐾(𝒁, 𝒁𝑻) = 𝑒(−𝛾|𝒁−𝒁𝑻|
2

)                     (16) 

where 𝒁 is the original input dataset and 𝒁𝑻 is its transpose [2].  

|𝒁 − 𝒁𝑻|2 is considered as the squared Euclidean distance 

between them. The 𝛾 is the width of the kernel, which cannot 

be predicted precisely and has to be constrained by the model 

or defined by the user [11].   

 

By replacing the original dataset with the kernel, the 

covariance matrix of eq. (2) can be rewritten as 

𝑪 =
1

𝑛
∑ (𝐾(𝑧𝑖) − 𝐾)(𝐾(𝑧𝑖) − 𝐾)𝑇𝑛

𝑖=1        (17) 

𝐾 =
1

𝑛
 ∑ 𝐾(𝑧𝑖)

𝑛
𝑖=1                         (18) 

Then, following the same procedures as described by equations 

(3) and (4), the singular values and vectors, the kernelised PCs 

can be obtained.   

 

Similar with the KPCA, the solution of KSVM also involves 

transformation of the input dataset. In this case, the selected 

PCs are employed, and the kernelised classification function, 

as derived from eq.(15) can be written as 

𝑓(𝒀) = ∑ 𝑐𝑖𝛼𝑖
𝑛
𝑖=1 𝐾(𝒀, 𝒀0) = ∑ 𝑐𝑖𝛼𝑖

𝑛
𝑖=1 𝑒(−𝛾|𝑌−𝑌0|2) (19) 

where Y is the input data, which needs to be classified and 𝒀𝟎 

are the support vectors.  

3 SCADA data 

The SCADA system is a data acquisition and control system 

that is used for high-level supervisory management through 

computers, graphical user interfaces and network data 

communications [12]. The SCADA data used in this paper 

were acquired from an operational wind farm which consists 

of 26 turbines over a period of 12 months. To test and validate 

the proposed classification model, it is necessary to use 

historical data from an operational wind farm. Unlike the high-

frequency condition monitoring data, SCADA data have a low 

sampling rate usually at 10 minutes/sample in order to reduce 

data storage amount while still maintaining the vital 

information about the operation and performance of the wind 

turbines [4]. The monitoring variables for each turbine consist 

of 128 readings among various types of physical and electrical 

signals, such as temperatures, pressures, power outputs and 

control signals. Pre-processing to the data is essential for 

further analysis due to the occasions that the turbines are in 

inactive during the periods of low and high speeds. Besides, 

the digital and constant data need to be removed to prevent 

inferences to the processing [13, 14]. 

 

As the examples, Figures 1-3 show the wind power curve of 

three different turbines. For wind turbines, the S-curve refers 

to the relationship between the output power and wind speed 

[15]. The output power would often be reduced when the fault 

occurs in order to prevent the fault being developed into the 

detrimental one. The dashed box indicates the fault area. As 

can be observed from the figures, the turbine with generator 

winding fault has a shorter time period of fault exposure 

compared to the turbine with gearbox bearing fault.  

 

Figure 1 Power curve of the fault-free turbine 

 

Figure 2 Power curve of the turbine with generator winding 

fault  

Figure 3 Power curve of the turbine with gearbox bearing 

fault 
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Figure 4 Overall modelling procedures 

To detect the faulty condition of the wind turbine, a two-stage 

classification method is proposed, as illustrated in Figure 4. By 

checking time-series data, the original dataset includes data 

under the normal working condition and those alarm data. The 

alarm data also contain the fault data related to the alarms 

triggered during the fault period. Then abnormal data are 

further classified into the true positive signals, indicating the 

occurrence of a real fault, and false positive signals, which can 

be considered as a warning.  

 

Three normal data selection methods are used in our study. The 

first one is to choose first 5000 samples in the original dataset, 

which is referred as to the method 1. The second method is to 

choose 2500 samples before and after the fault respectively, 

which is referred as to the method 2. The last method is to 

choose 5000 samples randomly among the normal data, which 

is referred as to the method 3. The fault detection method is 

then applied to both faulty turbines, as shown in Figures 2 and 

3. The results given in the next section are based on the turbine 

with a gearbox bearing fault with the normal data being 

selected using method 3.  

4 Results and discussion 

4.1 Monitoring variable selection 

After pre-processing the original data by removing those 

control and DC signals, there are 78 variables in total 

remaining for further data dimension reduction. All the data 

samples relating to the fault are selected and processed with 

KPCA. To select the appropriate PCs, the variance contribution 

of each principal component needs to be calculated, as given in 

Table 1. 16 PCs are therefore selected in order to meet the 

requirement of achieving 85% accumulated variance 

contribution. 

 

 

 

 

 

 

 
PCs 1 2 3 4 5 6 

Contribution% 6.59 6.56 6.34 6.34 6.17 5.64 

PCs 7 8 9 10 11 12 

Contribution% 5.64 5.53 5.49 5.47 5.13 4.42 

PCs 13 14 15 16 … 78 

Contribution% 4.41 4.40 3.72 3.68 … 0.000975 

Table.1 Variance contribution of the principal components 

 

4.2 Normal-abnormal condition classification  

The selected PCs will be further processed by KSVM. Since 

KSVM is a supervised learning algorithm, the dataset needs to 

be divided into two groups, the data under normal conditions 

and the data under abnormal condition (formed by false alarms 

and true alarms related to the fault). Since it is impossible to 

plot 16 dimensional graph form the selected 16 PCs, all the 

results will be plotted in 2D space in relation to wind speed and 

active power.  

  
Figure 5 Power curve from normal and abnormal data 

Figure 5 gives an example of the data needing to be processed 

for normal-abnormal classification, where the blue dots 

represent the normal data and red crosses represent the 

abnormal data.  

 

As mentioned above, to process the data using KSVM 

algorithm, the linear inseparable data in a lower dimension can 

be projected into a higher dimension and thus differentiated by 

a hyperplane. As an example, Figure 6 shows the working 

principle of the KSVM, where the blue dots represent the 

normal data and red dots represent the abnormal data. The 

support vectors are labelled by green circles while the fitted 

hyperplane is demonstrated in gradient colour. The function of 

the fitted hyperplane is expressed as 

𝑧 = 51.68 + 1.382𝑥 − 41.55𝑦 − 4.574𝑥2 + 28.84𝑥𝑦 + 17.82y2    (16)                                                                                 

where x, y are the wind speed and active power respectively. 

The coefficient of determination 𝑟2  is used to evaluate the 

accuracy of the fitting and the value of this fitted plane is 

0.8605.  
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Figure 6 Normal-abnormal data classification using KSVM in 

the hyper dimension 

During this process, 70% of the data were used as the training 

set and 30% of the data were used for validation. The validation 

result is displayed in Figures 7 and 8. In Figure 7, the normal 

data classified as normal are shown in blue dots while the 

normal data classified as alarm are shown in blue crosses; the 

alarm data classified as alarm are shown in red dots and alarm 

data classified as normal data are shown in red crosses. Figure 

8 shows the confusion map of the normal-alarm classification 

result, which is used to evaluate the performance of the 

algorithm. The white areas show rates of both normal and 

alarm data were predicted correctly and the yellow areas show 

the misclassified data. As can be observed from the figure, the 

predicted normal data has reached 99.9% true and alarm data 

has reached 90.9% true, leading to a total accuracy of 99.4%. 

 
Figure 7 Normal-abnormal classification result 

 

 
Figure 8 Confusion map of normal-abnormal classification 

result 

 

4.3 Alarm-fault classification  

After the procedure of normal-alarm classification, the alarm-

fault classification is then processed.  

  
Figure 9 Alarm-fault classification using KSVM in hyper 

dimension 

Figure 9 shows the alarm-fault classification in the relationship 

between wind speed and active power. The blue dots represent 

alarm signals and red dots represent for fault signals. The 

support vectors are labelled in the green circle and the 

classification hyperplane is fitted as 

𝑧 = 68.2 + 14.47𝑥 − 16.24𝑦 + 6.274𝑥2 + 8.044𝑥𝑦 − 8.719y2          (17) 

where x, y are the wind speed and active power. The 𝑟2 of the 

fitted plane is 0.7639.  
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Figure.10 Alarm-fault classification result 

 

Figure.11 Confusion map of alarm-fault classification result 

Figure 10 and 11 give the validation result of the alarm-fault 

classification model. The accuracy of alarm-fault classification 

model is also evaluated by the confusion map. It can be seen 

from the figure that it acheives 100.0% accuracy on alarm 

signal classification and 95.4% accuracy on fault signal 

classification. The total accuracy on alarm-fault classification 

has reached 99.3%. 

 

 

 

 

 

 

 

 Normal-

abnormal 

classification 

Alarm-fault 

classification 

Gearbox bearing fualt 

turbine with method 1 

99.7% 96.3% 

Gearbox bearing fualt 

turbine with method 2 

99.8% 98.6% 

Generator winding 

fault turbine with 

method 1 

96.9% 93.1% 

Generator winding 

fault turbine with 

method 2 

97.3% 76.2% 

Generator winding 

fault turbine with  

method 3 

93.6% 85.7% 

Table 2 Classification results for the faulty turbines based on 

three different data selection methods 

In order to examine the robustness of the proposed methods, 

more turbines are tested with different SCADA data selection 

methods. It can be observed from the Table 2 that the 

performances of the turbine with generator winding fault are 

not as good as the turbine with gearbox bearing fault. This 

might be due to the insufficient samples acquired from alarm 

and fault signals. It can be believed that if the amount of 

abnormal data increases, the classification model accuracy can 

be improved further. 

5 Conclusion 

With these alarm signals being identified, the fault can be 

warned at an early stage, which leaves sufficient time for 

maintenance scheduling. According to the results, several 

conclusions are drawn as follows. 

 

 To select principal components of the monitoring 

variables, the accumulated variance of the PCs can be 

regarded as the most significant factor. However, to 

maintain the most information of the original dataset, 

the computation load needs to be compromised.  

 

 Compared with other machine learning algorithms, 

the SVM has its strength on solving the two-group 

classification problem. Compared with the decision 

tree and discriminant analysis algorithms, the SVM 

demonstrates more accurate results. 

 

 In terms of sample data selection, the turbine, which 

has large amount of abnormal data, shows a better 

classification performance, indicating the influence of 

the sample selection.  

 

 The KPCA can reduce the dimension in an acceptable 

range while the KSVM demonstrates excellent results 

for the two-stage classification.   
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Further work will be focused on examination of the proposed 

approach incorporating with deep learning algorithms and 

verification of the results with more data from both simulations 

and physical test rig.  
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