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Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabri-

cated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated.

Resonance frequencies of the fundamental mode were measured at a temperature of 20mK for nanowires of

various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the

estimates obtained from the Euler-Bernoulli theory. The measured internal quality factor of the 5µm-long res-

onator, 3.62×104, exceeds the corresponding values of similar resonators investigated at higher temperatures.

The structures presented can be used as mass sensors with an expected sensitivity ∼ 6× 10−20 gHz−1/2.

INTRODUCTION

Nanoelectromechanical systems have been widely

used in the fundamental and applied physics research

[1–4], due to the rapid development of technology in

recent years. Various microelectromechanical systems

have become an integral part of our daily lives. Such

structures are present almost everywhere, be it a phone

or a car, in the form of various micron-scale accelerom-

eters, gyroscopes, etc. Today, when electronic devices

make use of the properties of individual atoms and

molecules [5–7], applications of nanoelectromechanical

systems include ultrasensitive detection of mass, down

to the mass of single molecules [8, 9], force [10], pres-

sure [11] and displacement [12,13]. By coupling nanome-

chanical resonators with optical and electronic trans-

ducers, it became possible to explore various quantum

effects [14–16]. Also, small-size mechanical resonators

are effective tools in understanding properties of super-

fluids [17].

The operation principle of nanoelectromechanical

mass sensors is based on the phenomenon of mechan-

ical resonance that occurs when oscillations are excited,

for example, in beams clamped at both ends, with a sub-

micron cross-sectional area. The eigenfrequency of the

resonator depends on its geometry and material, and

increases when the resonator dimensions get smaller. It

was shown [18] that the quality factor of resonators de-

pends on their surface-to-volume ratio, and is also af-

fected by the surface quality of the fabricated structure.

The change of the resonator mass leads to the shift of its
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resonance frequency. The minimum detectable change

of the mass is given by the expression [19]:

δm = −2
0.735m

f0
δf0, (1)

where m is the initial nanowire mass, δm is the change

of the mass, f0 is the resonance frequency, and δf0
is the minimum detectable frequency shift determined

by the internal noise of the resonator and noise of the

measurement system. Thus, to build an ultra-sensitive

mass sensor, it is desirable to reduce the effective mass

of the resonator and increase its resonance frequency,

while simultaneously increasing its quality factor in or-

der to resolve as small frequency shift as possible. Up to

now, the record value reported for the quality factor of

silicon resonators with a sub-micron cross-section was

∼ 1.8× 104 [20].

In the past decade, silicon-on-insulator (SOI) be-

came a commonly used material for the fabrication of

silicon nanoelectromechanical systems [21]. It comes

as a three-layer wafer, in which the upper thin layer

of single-crystal silicon is separated from the base sub-

strate by a thin inter-layer of the silicon oxide. This ma-

terial is used for the fabrication of field-effect transistors

with a nanowire channel [22,23], which became the basis

of biosensors for detecting molecules and viruses [24], as

well as for nanoscale field charge sensors of an atomic

force microscope for monitoring charge dynamics in var-

ious structures [25].

In this Letter, we briefly describe a technology for

fabricating nanomechanical resonators from silicon-on-

insulator based on the standard microelectronics pro-

cesses, only. The main parameters of the resonators,

viz., its eigenfrequencies and quality factors were deter-
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mined experimentally. The dynamics of resonators in

the linear and nonlinear regimes was investigated.

OSCILLATION PROPERTIES OF NANOWIRES

The design of the most common types of nanome-

chanical resonators is based on a suspended beam

clamped at one or both ends. Such resonators have

different vibration modes of bending, twisting, defor-

mation, etc. The bending mode is the most interest-

ing, since it produces the maximum response to an ex-

ternal drive. This mode is easier to excite and detect

by converting mechanical vibrations into an electrical

signal. The oscillation dynamics of a suspended dou-

bly clamped beam is generally described by the Euler-

Bernoulli theory and well approximated by the motion

of a simple harmonic oscillator with small damping [26].

For the fundamental mode, the equation of motion of

the midpoint of the beam excited by an external force

has the following form:

ẍ+ γẋ+ ω2
0x = f(t), (2)

where x is the displacement of the beam midpoint from

the equilibrium position (in the absence of an external

force), γ is the resonator damping constant, ω0 = 2πf0
is the angular resonance frequency, and f(t) is the ex-

ternal force.

For oscillations parallel to the plane of the substrate,

the resonance frequency of the fundamental bending

mode is expressed by the following expression [26]:

f0 = 1.03

√
E

ρ

w

L2
, (3)

where E and ρ are the Young’s modulus and density of

the substrate material, respectively, and w and L are

the width and length of the suspended nanowire. This

equation is valid in the absence of the nanowire ten-

sion, which in principle can arise when the sample is

cooled down because of the difference of the coefficients

of thermal expansion of the materials used.

The resonator remains in the linear regime at small

mechanical displacements, however, at a higher driv-

ing force, the resonator can enter the nonlinear regime,

which is accounted for by adding an extra term ∝ x3 to

the left-hand side of Eq. (2). In the nonlinear regime,

the response curve becomes asymmetric [27–30]. De-

pending on the configuration of the resonant system,

the resonance frequency may increase (the resonator

becomes “harder”) or decrease (the resonator becomes

“softer”), which is taken into account by the sign of the

cubic term. The resonator becomes a nonlinear system

at oscillation amplitudes exceeding the critical ampli-

tude ac expressed as [27]:

ac = 2f0
L2

π

√
ρ
√

3

EQ
, (4)

where Q is the quality factor of the resonator.

To study such resonators, the magnetomotive

method is commonly employed [20, 31]: the resonator

is placed in a constant uniform magnetic field directed

perpendicular to the main axis of the nanowire (to

the substrate) and an RF current is passed through

the nanowire. As a result, under the Lorentz force,

the nanowire starts to bend perpendicular to the

direction of the magnetic field and the direction of

the current flow. The resonance frequencies of the

system can be found from the frequency dependence

of the transmission coefficient of the RF signal. Only

odd modes can be detected by this method since the

induced emf vanishes for even modes due to the sym-

metry of the system. The fundamental bending mode

corresponding to the half of the oscillation wavelength

has the maximum displacement amplitude hence the

largest induced response.

SAMPLE FABRICATION

Conventional SOI wafers with a thickness of the

upper silicon layer of 110 nm, separated from the sili-

con substrate by a layer of the 200 nm-thick silicon ox-

ide were used for the sample fabrication. The fabrica-

Fig. 1: (color on-line) Fabrication stages of a silicon

nanomechanical resonator: (a) aluminum mask formed

on top of the SOI wafer; (b) nanowire structure in the

top silicon layer after reactive ion etching; (c) suspended

structure of the nanowire after removal of the silicon ox-

ide layer; (d) final structure after metallization with a

20 nm-thick layer of aluminum.
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Fig. 2: (Color online) False color image of a structure of

four nanowires in a scanning electron microscope. Blue

color denotes the silicon support substrate; magenta –

an insulating layer of silicon oxide; light-yellow – silicon

nanowires and wiring electrodes covered with a layer of

aluminum, as well as parasitic shadows on the substrate

formed after aluminum deposition at three different an-

gles. The estimated resonators dimensions are (length

× width) 5µm× 115 nm, 3µm× 90 nm, 2µm× 85 nm,

1µm× 80 nm.

tion process is similar to that used for sensors based

on the field-effect transistors with a nanowire chan-

nel [23, 25, 32] and involved three stages of electron-

beam lithography with a positive resist and also reactive

ion and wet etchings. The main fabrication stages are

shown in Fig. 1.

Four resonant structures of different lengths con-

nected in parallel were formed on the chip. With this

layout, it is possible to measure all resonators in one

cooldown, since the resonators do not affect each other

due to the significant difference in their resonance fre-

quencies. The disadvantage of this layout is that the in-

coming RF current is distributed among all resonators,

which does not allow to estimate of the absolute value

of the magnitude of the external force. A scanning elec-

tron microscope image of the final structure with the

designed lengths of 1, 2, 3 and 5µm, is shown in Fig. 2.

EXPERIMENTAL RESULTS AND DISCUSSION

Resonance characteristics of the fabricated struc-

tures were investigated in a vacuum, in a magnetic field

up to 5 T at a temperature of 20 mK. The used fre-

quency range was up to 500 MHz with a 200 Hz mea-

surement bandwidth. RF signal from the network vec-

tor analyzer was attenuated by 35 dB at cryogenic tem-

peratures and applied to the structure. The transmitted

Fig. 3: (Color online) Dependence of the signal trans-

mission coefficient of the RF signal on the frequency for

a suspended 5µm nanowire (black) and the approxima-

tion of experimental data by the Lorentz function (red).

signal was amplified by 40 dB at room temperature and

detected. The power values in the article correspond to

the power applied to the measured structure. The shape

of the frequency characteristic of the signal transmission

coefficient is caused by the negative emf during the mo-

tion of a conductor in a magnetic field, has a character-

istic minimum at the resonant frequency as it shown in

Fig. 3. The symmetry of this dependence indicates the

linear regime of the resonator under the small external

driving force. By approximating the experimental data

by the Lorentz function, the resonance frequency and

Q-factor of the resonators are determined. The mea-

sured values of the resonance frequencies for the 5, 3

and 2µm-long nanowires were found to be 32.46, 71.99

and 150.25 MHz, respectively. This agrees within the

2% error with the theoretical estimates obtained from

Eq. (3). The estimated value of the resonance frequency

for the 1µm-long nanowire is outside of the measured

frequency range.

The mass of the resonator ∼ 1.2 × 10−13 g is esti-

mated from its geometric dimensions. The minimum

detectable frequency noise ∼ 8 Hz Hz−1/2 is determined

from the magnitude of the signal transmission coefficient

fluctuations 10−3 a.u.Hz−1/2 and the greatest value of

the response gradient 125×10−6 a.u.Hz−1. By plugging

these numbers into Eq. (1) one can estimate the mass

sensitivity in the linear regime ∼ 6 × 10−20 g Hz−1/2,

which is comparable with the values of mass sensitivity

obtained by other groups [19]. The minimum detectable

mass is ∼ 8.5×10−19 g, which corresponds, for example,

to a silicon sphere of radius 4.4 nm. When the sensor
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Fig. 4: (a) Dependence of the oscillation amplitude of

5µm on the square of the magnetic field strength and

its linear approximation (straight line). (b) Dependence

of the inverse Q-factor values of the resonator on the

square of the magnetic field strength and its linear ap-

proximation.

operates in the nonlinear regime, its mass sensitivity can

be significantly improved [33].

As shown in [34], when a mechanical resonator

is excited by a magnetomotive method in the linear

regime, the displacement amplitude is proportional to

the square of the magnetic field and to the amplitude

of the RF current, I ∝ P 1/2, where P is the RF power.

Figure 4(a) shows the dependence of the oscillation am-

plitude of the 5µm-long resonator on the square of the

magnetic field B. In magnetic fields up to 3.5 T the ex-

perimental data are well approximated by the expected

linear dependence of the amplitude of mechanical os-

cillations on the magnitude of the magnetic induction.

With an increase in the magnetic field above 3.5 T, the

resonator begins to enter the nonlinear regime and the

amplitude increase becomes weaker.

The width of the resonant response ∆f is determined

by the losses both in the resonator itself – internal losses,

and in the measurement system – external losses. For

strong magnetic fields, the main ones are magnetomo-

tive losses which are proportional to the square of the

magnetic field, Q−1 ∝ ∆f ∝ B2. The measured qual-

ity factor increases from 6.0 × 103 at 5 T to 2.95 × 104

at 0.5 T. The experimental dependence of Q−1 on the

square of the magnitude of the magnetic field is shown in

Fig. 4(b). The linearity of this dependence indicates the

dominance of magnetomotive losses over internal ones.

Such dependence is preserved throughout the investi-

gated range of magnetic fields. The internal Q-factor

of the resonator is estimated to be 3.62 × 104 by the

extrapolation to zero magnetic field. Such Q-factor val-

ues exceed those obtained earlier in similar structures

made from SOI [35] and are comparable to the values

in structures made of silicon [36,37], silicon coated with

aluminum [38] and diamond [39]. It was confirmed in

the earlier experiments [36, 38, 39] that losses in res-

onators (which are proportional to the inverse Q-factor

values) decrease at temperatures below 1 K, but the na-

ture of this dependence has not been understood yet.

The development of a reliable physical model describing

losses in such systems at low temperatures is at present

the subject of scientific research. In our experiments,

measurements of the temperature dependence of the Q-

factor were not carried out, but it is obvious that the low

temperature is crucial for obtaining the high Q-factor of

nanomechanical resonators.

Figure 5 shows the dependence of the amplitude of

mechanical oscillations on the square root of the power

of the applied RF signal. The inset illustrates the fact

that at low powers the amplitude of the oscillations is

proportional to the oscillating force and the dynamics

of the resonator is described by the linear equation of

the harmonic oscillator, Eq. (2). A slower increase in

the amplitude of the oscillations with increasing driv-

ing force (P 1/2 > 0.1 a.u.) indicates that the resonator

becomes “harder”. This also affects the shape of the re-

sponse curve, which bends towards the higher frequen-

cies, as shown in Fig. 6. It is easy to show that adding a

cubic term ∝ x3 to Eq. (2) leads to a quadratic depen-

dence of the resonance frequency on the amplitude of

the mechanical displacement [27], which is observed in

our experiments. The transition to the nonlinear regime

corresponds to the critical amplitude ac ∼ 0.9 nm cal-

culated from Eq. (4). From this, the largest amplitude
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Fig. 5: Dependence of the oscillation amplitude of the

2µm-long resonator on the square root of the input

power. The inset shows the linear part of the entire

dependence at low RF signal powers up to 0.1 a.u..

Straight line is the linear approximation of experimental

data.

of the resonator oscillations ∼ 2.5 nm at the maximum

pumping power of [28] is found.

CONCLUSION

This Letter reports the resonance properties of the

doubly clamped silicon nanowires. By using the magne-

tomotive measurements scheme, we determined the res-

onance frequencies of the fundamental bending modes

of the nanowires in the range of 30 − 150 MHz. The

intrinsic Q-factor of the 5µm-long resonator was found

to be 3.62 × 104, which is record high for resonators of

similar dimensions fabricated from silicon-on-insulator.

The measured values of the resonance frequencies are

in good agreement with the estimates obtained from

the Euler-Bernoulli theory. The dynamics of the res-

onators is described qualitatively by the model of the

simple harmonic oscillator with a small dissipation and

nonlinearity under the external driving force. The fab-

rication method for resonant structures uses standard

silicon technological recipes only and can be used to

fabricate high-sensitivity mass, force and displacement

sensors. The mass sensitivity of the suspended 5µm-

long nanowire is estimated to be ∼ 6× 10−20 g Hz−1/2.
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Fig. 6: (Color online) A family of response curves of the

2µm-long resonator at high drive powers. When the

RF power is increased, the resonator becomes “harder”.

The resonance frequency increases with the amplitude of

the resonator oscillations. The position of the maxima

of the resonance curves is approximated by a parabola,

“backbone curve”, from which the frequency of oscilla-

tions of the resonator in the linear regime is determined.

Microscopy,” M. V. Lomonosov Moscow State Univer-

sity was used.
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