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ABSTRACT 

 

In recent years, the rapid development of low power consuming devices has resulted in 

a high demand for mobile energy harvesters. The main contribution of this thesis is to 

optimize the novel piezoelectric energy harvesting device called the piezoelectric flex 

transducer, which was developed by other researchers for the purpose of harvesting bio-

kinetic energy from human gait. The optimization uses both conventional and 

reliability-based optimization approaches in order to improve the electrical power 

generation from the device. First, the piezoelectric flex transducer is modeled by using 

the finite element method with the finite element analysis software ANSYS APDL. 

Seven geometric parameters of the piezoelectric energy harvester are considered as 

design variables. A set of designs with different design variables are generated by the 

Design of Experiment technique, the generated designs are analyzed by the finite 

element model and the surrogate models that representing the behavior of the FEM are 

built by these inputs and the results of the FEA. Conventional optimization, taking into 

consideration different safety factors, is driven by the von mises stress of the device 

and is then searched by a mathematical algorithm with the assistance of surrogate 

models. To improve the efficiency of the surrogate modeling, a multi-level surrogate 

modeling approach for fast convergence will be introduced and the method will be 

demonstrated by optimizing the PFT device. 

As the optimal design is subject to a low stress safety factor, which may be unreliable 

with the uncertainties of the real-world, the reliability and sensitivity of the optimal 
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design are analyzed. A Monte Carlo simulation is employed to analyse how the 

electrical power output has been affected by the input parameters with parametric 

uncertainties. The design parameters of a set of designs are perturbed around the 

optimal design parameters in order to imitate the optimal design under parametric 

uncertainties. The effects of parametric uncertainties are then evaluated by the 

constructed surrogate models. The method for improving the product reliability will 

be demonstrated. 
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Chapter 1  

Introduction 

 

1.1 Introduction 

In recent years, the rapid development of low power consuming devices, such as aircraft 

structural health monitoring devices [1] and portable communication devices [2], have 

resulted in high demands for mobile energy harvesters, whose primary function is to 

reduce the cost of battery replacement. Consequently, the energy conversion efficiency 

of energy harvesters has become a challenging topic for researchers because the low-

power output of the mobile energy harvesters cannot satisfy the high-power 

requirement of the devices.  

There are many energy resources that can be harvested from the ambient environment. 

According to Harb [3], micro-energy, which is produced on a small-scale from a low 

carbon source, can be mechanical, electromagnetic, thermal, electrical, solar or 

biological energy. Various micro energy harvesters have been designed to harvest 

energy from the ambient environment and to power mobile devices, such as the 

wearable thermoelectric generator (TEG) [4] and the cantilevered bimorphs 

piezoelectric vibration harvester [5]. The development and application of micro-scale 

energy harvesters, including thermoelectric, thermo-photovoltaic, piezoelectric, and 

microbial fuel cell energy harvesters, have been reviewed by Krishna and Mohamed 

[6]. Piezoelectric energy harvesting has been a topic of great interest since piezoelectric 

materials have beneficial electrical–mechanical coupling effects. There have been a 
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number of reviews specifically on piezoelectric energy harvesters and piezoelectric 

materials [7-9], which have evidenced the recent and rapid development of this special 

form of energy harvesters. 

 

1.2 Motivation for this research 

1.2.1 The PFT device 

In order to power the Bluetooth communication signal node by harvesting bio-kinetic 

energy from human footfall, Daniels [10] developed the piezoelectric energy harvester 

called Piezoelectric Flex Transducer (PFT). This novel piezoelectric harvester was 

developed from the fundamentals of Cymbal transducer. The concept of harvesting bio-

kinetic energy from human footfall is shown as Figure 1.1. The PFT is originally 

designed for specialised systems such as in defense, mountaineering or as part of a 

wearable health monitoring system [10]. The following paragraph will introduce the 

basic function and configuration of the Cymbal transducer. 

 

Figure 1.1 developed PFT energy harvester for scavenging bio-kinetic energy from 

human footfall [10]. 

The Cymbal transducer, which is capable of deforming the piezoelectric disk effectively 
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and has potential to harvest bio-kinetic energy, has been widely researched. The 

structure, function and application of the Cymbal device were reviewed by Newnham 

et al. [11]. The concept of endcaps and the piezoelectric disk was reported by Kim et al. 

[12]. They found that the power output increased by 40 times compared to the use of a 

piezoelectric disk alone. However, the traditional Cymbal transducer was unable to 

stand more than 50N which means it cannot harvest the bio-kinetic energy from human 

footfall. In order to develop the Cymbal device for the purpose of bio-kinetic energy 

harvesting, Daniels [10] first set up the coupled piezoelectric-circuit finite element 

model (CPC-FEM) for the Cymbal device by using ANSYS Parametric Design 

Language (APDL) (Version 13) [13]. APDL is the multi-physics FEA software to 

investigate how the geometric parameters affect the electric output of the Cymbal 

energy harvester. The developed CPC-FEM of Cymbal is shown in Figure 1.2. 

 

Figure 1.2 FEM of Cymbal device [10]. 

 

The CPC-FEM of Cymbal device has been validated by comparison between 

simulations and experimental results. One of the results is given in Figure 1.3, the 
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simulation and experimental output average electric powers (Pavg) of both load 

frequencies of 2Hz and 5Hz along the varying resistor load from 0MΩ to 7MΩ have 

been plotted. These results show that the developed CPC-FEM closely correlated with 

experimental results. The average electric power for the harmonic analysis is calculated 

by: 

 𝑃𝑎𝑣𝑔 =
𝑉𝑟𝑚𝑠

2

𝑅
=

𝑉2

2𝑅
 (1.1) 

where 𝑉𝑟𝑚𝑠 is the root mean square voltage of the harmonic analysis and R is the load 

resistance. 

 

 

Figure 1.3 Comparison of simulation and experimental results for electrical power at 

5Hz and 2Hz. [10] 

 

Based on the validated CPC-FEM, the model of Piezoelectric Flex Transducer (PFT) is 

developed by reducing the stress when the load from the endcaps transfers to the 

piezoelectric material. In order to achieve this, the area of the vulnerable adhesive 

interface between the endcap and the piezo disk is enlarged and substrate layers are 

added. The piezoelectric flex transducer is made into a rectangular shape to retrofit into 

a shoe and can stand more than 1kN so that it can harvest the bio-kinetic energy from 
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R 

footfall. The design of PFT is shown as Figure 1.4 with its design variables.  

 

Figure 1.4 Geometric design variables of PFT in previous research [10]. 

The CPC-FEM of PFT is created for the analysis of electrical power output. It is 

composed of the top endcap, bottom endcap, substrate layers and piezoelectric material 

as shown in Figure 1.5. In this FE model, SOLID226 is selected as the element type for 

the piezoelectric disk, which is a couple field hexahedral element type consisting of 20 

nodes. It is able to analyse either piezoelectric structural performance or irregular 

shapes. SOLID95 is selected as the element type for endcaps which is also a hexahedral 

element type with 20 nodes. CIRCU94 is used for the resistor and is connected between 

the positive and negative electrodes. In the previous research, the material and 

geometric parameters are selected by employing the traditional varying one variable a 

time method in order to improve the power output of the PFT energy harvester. For the 

material selection, the study varied each design variables a time while remaining other 

parameters and the optimal value of each parameter were collected, finally, the optimal 

values were used to compared with the existing materials’ properties for material 

selection. By comparing 5 metal materials and 20 piezoelectric materials, Austenitic 

stainless steel 304 is used for endcaps and substrate layers while DeL Piezo DL-53HD 
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which is one of the soft piezoelectric ceramics (manufactured by DeL Piezo Specialties 

LLC, USA) is a selected piezoelectric material.  

 

Figure 1.5 Design of Piezoelectric flex transducer. 

 

1.2.2 Optimization of PFT 

The PFT had been optimized by the previous researcher using the traditional one-factor-

a-time methodology. The optimization procedure explains as follows:  

First, 9 geometric parameters and 6 material properties are selected as design variables. 

Geometric design variables are shown in Figure 1.4 with the 2-D view of PFT device, 

they are: total length (D), cavity length (Dc), width (w), apex length (Da), height (H), 

caps thickness (tc), thickness of the piezoelectric material (tp), joint length (J) and angle 

of the endcap (θ). All design variables including geometric parameters and material 

properties are listed in Table 1.1, the material properties selected as design variables in 

previous research are: elastic compliance (s11), piezoelectric strain constant (d11), 

piezoelectric voltage constant (g11), relative dielectric constant (𝜀𝑟33
𝑇

), piezoelectric 

coupling coefficient (k31) and FOM (d31
2/𝜀𝑟33

𝑇
). 
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Table 1.1 List of design variables of PFT in previous research. 

Geometric parameter Material properties 

total length D elastic compliance S11 

cavity length Dc piezoelectric strain constant |d31| 

width Dw piezoelectric voltage constant |g31| 

apex length Da relatively dielectric constant 𝜀𝑟33

𝑇  

height H piezoelectric coupling 

coefficient 

k31 

caps thickness tc FOM d31
2/𝜀𝑟33

𝑇  

Piezo thickness tp  

joint length J  

angle of the endcap θ  

 

The optimization procedure was achieved by employing ANSYS Parametric Design 

Language (APDL), a finite element tool for the parameterized modeling of the PFT. 

Before the simulation was carried out, several boundary conditions were applied as 

follows: 

• A total uniformly distributed load of 1kN was applied on top of the device, shown 

as the force F in Figure 1.4.  

• A fixed base was applied on the bottom surface, which is the apex of the bottom 

endcap of the device. 

• 2 electrodes were applied on the top and bottom surface of the piezoelectric 

material. 

• The load resistor was connected between 2 electrodes. 

By varying one design variable at a time whilst holding the others as constant, the 

optimal solution for each design variable was chosen to maximize the power output of 
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the PFT device. Results showed that the optimal design successfully improved the 

power output of the PFT by 37.5%. However, the disadvantage of this methodology is 

that it ignores the interaction between design variables. For multivariable design 

problems, the changes of a single variable may change the optimal values of other 

variables since the optimal design is a combination of multiple variables. 

This research focuses on maximizing the electrical power output of PFT by using 

surrogate model assisted optimization approaches. The PFT device will first be modeled 

by Finite Element Model (FEM) and then analyzed by the Finite Element Analysis 

(FEA) in order to replace the prototype of the device for this research. Seven geometric 

parameters are considered as design variables in the optimization procedure. In order 

to find the relationship between input variables and the generated electrical power, 

surrogate models constructed by Genetic Programming (GP) are employed to represent 

the FEA of the device and to predict the optimal design. To demonstrate the advantage 

of this optimization method, firstly, a safety factor of 2.0 respect to the von mises stress 

which is employed in the previous research will be applied to find the optimal design. 

Then, the safety factor will be further reduced to improve the power output of the PFT 

energy harvester. 

1.2.3 Power requirement 

The original purpose of developing the novel PFT energy harvester is to power up the 

wireless communication signal node using bio-kinetic energy from human footfall in 

order to replace the use of battery. As mentioned by Daniels [10], the weight of batteries 

that a typical British army carried is 2.78 kg. The development of PFT device which 
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enable the electric power harvested from the footfall helps to reduce the fatigue of the 

soldier. 

As the recent development of MEMS, many MEMS devices with low power 

consumption are able to powered by mobile energy harvester such as the PFT device. 

Typical electronic applications with low-power consumption are list in Table 1.2. It is 

shown that the Bluetooth communication signal is able to operate under a power range 

of 0.005-0.018W. The PFT device optimal by previous researcher is able to generate a 

power of 5.6mW which is able to generate a sufficient power for the Bluetooth 

communication signal with poor quality of signal. This pool quality of signal may lead 

to some critical aspects, for example, for a soldier with personal role radio which is 

used to receive commands away from the base. It is dangerous if the radio operates with 

a pool signal in the volatile battle field.  

As a result, it is important for this research to improve the power output of the novel 

PFT in order to improve the quality of the communication signal, the PFT will need to 

be optimized so that a good-quality signal of Bluetooth communication signal can be 

power up by the energy harvested from human footfall. 

Table 1.2. Power requirements of some typical electronic applications. 

Application Power requirement (W) 

Low-power microcontroller chip [120] 0.001 

Bluetooth communication signal node [121] 0.005-0.018 

Embedded CPU board [120] 1 

Implantable pacemaker [121] 4.80 x 10-6 

Small portable FM radio [122] 0.03 

Low-end MP3 [121] 0.327 
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1.2.4 Reliability-based optimization 

Uncertainties exist in every manufacturing process in the real-world. The PFT device 

had been fabricated and tested by A. Daniels [10] following optimization by the single-

factor-a-time methodology, which is explained in Section 1.2.2. The product had been 

tested by subjecting 1kN load and 0.75kN load with the frequency of 2Hz, which has 

the same load condition as the FEA simulation. A comparison between the FEA result 

and the experimental test result is shown in Figure 1.6. 

 

Figure 1.6 Comparison of simulation and experimental results of PFT resistance 

spectrum response, for PFT under a force load at 2Hz over two different force loads 

1kN and 0.75kN. [10] 

 

The experimental results of the fabricated PFT device was showing a significant 

reduction on the power output compared to the FE simulation results. The main reasons 

for this phenomenon are: 

• The inaccuracy of the developed CPC-FEM model. The mesh of the FEM 

developed in the previous research for geometries and material selection is coarse. 

This is because the FEM with coarse mesh can be used to analysis with less 
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computational time but reduced accuracy.  

• Inappropriate equipment used in the experiments. As mentioned by the previous 

researcher, the experiment used a 20kN loading machine to operate the 1kN load. 

This may lead to some non-negligible error on the experimental results. 

• The uncertainties of the fabrication procedure. The PFT may subjected to 

parameter uncertainties during the fabrication, since the uncertainties exist in the 

real world. The optimal parameters may be different due to the uncertainties, as a 

result, there will be an error between the FEM simulation and the experiment 

results. 

In this research, the focus will be the first and last of these reasons. Firstly, the accuracy 

of the developed CPC-FEM model will be investigated and the FEM will be further 

developed to improve the accuracy of representing the behaviors of the PFT energy 

harvester. Then, the sensitivity and reliability of the optimal design under parametric 

uncertainties will be investigated. The Monte Carlo Simulation (MCS) will be 

employed to analyze the sensitivity and the reliability of the optimal design, and finally, 

a reliability-based optimization will be demonstrated to improve the reliability of the 

design within the uncertainties of the real-world.  

 

1.3 Aim  

The aim of this research is to improve the power generation of the novel piezoelectric 

energy harvesting device called PFT in order to obtain a higher electric output in 

order to power the Bluetooth communication node from human gait. The sensitivity 
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and reliability of the optimal design will be considered to reduce the effects of 

parametric uncertainties which exist in the real-world so that the power output can be 

further improved by reducing the stress safety factor. 

 

1.4 Objectives  

1. To improve the accuracy of the developed CPC-FEM for the PFT energy 

harvester so that it can represent the behavior of the PFT and can be used to 

accurately predict the optimal design. 

2. To develop surrogate models that represent the relation between input and output 

parameters of PFT device. The surrogate models are to be used to replace the 

FEA of the PFT device. 

3. To find the optimal design of PFT by using mathematical algorithms to search for 

the solution within the surrogate model subject to different safety factors. 

4. To develop a multi-level surrogate modeling approach for the optimization of 

PFT in order to construct surrogate models with a high converge rate so that the 

optimal design can be found efficiently. 

5. To analyze the sensitivity and reliability of the optimal design and improve the 

design by reducing the effects of parametric uncertainties. 

 

1.5 Thesis structure  

Chapter 1 introduces the background, motivation and the objectives of this research, 
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including a brief introduction of the developed novel piezoelectric energy harvester 

PFT which are optimized in this research. 

Chapter 2 presents a literature review, in which the relevant history of piezoelectricity 

and the application of piezoelectric materials are discussed. An overview of 

piezoelectric energy harvester is then introduced as well as the fundamentals and the 

development of the PFT energy harvester. The optimization techniques which are 

employed in this research to maximize the generated electric output of the PFT device 

are introduced, including the Design of Experiment, Genetic Programming, Sequential 

Quadratic Programming, Genetic Algorithm, etc. 

Chapter 3 presents a further advancement of the developed CPC-FEM of the PFT 

energy harvester. The convergence of the original FEM is analyzed in order to 

investigate its accuracy. In order to receive a more accurate FEM in this research, a 

trade-off between the computational time and the accuracy of the FE model will be 

discussed. 

Chapter 4 presents the procedure for optimizing the PFT energy harvester that 

employed surrogate model assisted optimization method. In this study, the design space 

including 7 design variables of the PFT will be sampled by the Optimal Latin 

Hypercube DoE technique. The generated samples will be analyzed by FEA and the 

data will be collected for constructing surrogate models using the Genetic Programming. 

The surrogate models representing the relation between input and output parameters of 

PFT are then used to find the optimal design of the PFT subject to the safety factor of 

2.0. This study finds the optimal design by using the Sequential Quadratic 
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Programming and the optimal design will be validated by FEM. 

Chapter 5 presents a global/local multi-level surrogate modeling method to construct 

the surrogate models and to find the global optimal design of the PFT device efficiently. 

This multi-level surrogate modeling method employs the Latin Hypercube DoE to 

sample the global design space using limited sampling points and find the vicinity of 

the optimal design. The extended Optimal Latin Hypercube DoE is then employed to 

exploit the vicinity. In this study, the global optimal design is found using Genetic 

Algorithm. The optimal design obtained by different optimization methods is compared 

and discussed to illustrate the advantage of the multi-level surrogate modeling method. 

Chapter 6 investigates the effects of real-world uncertainties to the optimal PFT design. 

Uncertainties considered in this study are the parameter perturbations of the predefined 

design variables during the manufacturing process. Monte Carlo Simulation method is 

employed to observe the sensitivity and reliability of the optimal design under 

uncertainties. A set of designs that the design variables normally distributed around the 

optimal values are used to imitate the parametric uncertainties of the real-world product, 

the effects of the uncertainties is then observed by evaluating the set of designs with the 

constructed surrogate models. As the optimal design of PFT subjected to a low safety 

factor is unreliable under the real-world uncertainties, a method for improving the 

reliability of the PFT is also introduced and demonstrated in this chapter. 

Chapter 7 discusses the results of different optimization techniques for the PFT and 

forms a conclusion based on the findings. Suggestions for future research are outlined.  
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Chapter 2  

Literature review 

 
This chapter provides a background to this research. First, the literature review 

describes the importance of alternate energy sources to replace the traditional fossil fuel 

products and the higher power density of piezoelectric energy harvesting technique 

compared to other alternative energy sources. Following a brief history of 

piezoelectricity, including the fundamentals and an overview of its development, 

applications of piezoelectric are introduced and the piezoelectric energy harvesting 

device is reviewed. In order to harvest bio-kinetic energy from human motion, the high 

magnitude low-frequency piezoelectric energy harvest device is raised and details of 

the novel Piezoelectric Flex Transducer (PFT) are given. 

In the second part of the literature review, an overview of different optimization 

techniques for piezoelectric energy harvesting device are given and work carried out by 

other researchers is discussed. As the surrogate model assisted optimization approach 

is employed in this research, mathematical optimization techniques relating to the 

approach are introduced, including Design of Experiments, surrogate modeling and 

mathematical optimization techniques. 

 

2.1 Energy harvesting 

Energy is one of the essential requirements for human beings in the modern world. 

Currently fossil fuels, such as oil, coal, and natural gas, are the most commonly used 
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fuel to generate power. These are non-renewable resources. As the world population is 

increasing rapidly, satisfying the energy requirements of human beings has become a 

significant problem. Additionally generating energy using non-renewable fossil fuel 

products, which cause a high emission of carbon dioxide (CO2) to the atmosphere 

leading to global warming, is not a sustainable plan. According to Kathryn [14], oil will 

run out between 2025 to 2070 and natural gas will run out in 50 years. As a result, 

researchers have started looking for alternative resources to replace fossil fuels, such as 

bioenergy, solar energy and ocean energy [15]. 

As micro electromechanical system (MEMS) devices continue to develop over time, 

the power supply to these devices becomes a concern. In recent years the most 

commonly used power supply for MEMS devices is the electrochemical battery [16]. 

One of the disadvantages of using batteries is that they need replacing frequently during 

the device life-cycle, which is costly. For those devices that are hidden in a concealed 

place, for example the aircraft structural health monitoring devices and medical implant 

devices [19] [20], the power supplies are difficult to replace. Another significant 

disadvantage of using batteries as the power supply is that the waste materials need to 

be recycled to avoid environmental pollution. To overcome these disadvantages, 

devices autonomic with microscale energy harvester become a popular topic of research. 

Low power consuming devices have been developed and energy resources, such as bio-

kinetic energy and thermal energy, have been investigated in order to satisfy the power 

requirement of low power consuming devices. Commercial micro-scale energy 

harvesters for autonomous sensors were reviewed by Penella and Gasulla [17]. They 
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reviewed them by dividing them into three groups, which are radiant energy harvesters, 

mechanical energy harvesters, and thermal energy harvesters. Selvan and Ali [18] 

conducted a comprehensive survey for the last decade on four types of micro-scale 

energy harvesters (including thermoelectric, thermo-photovoltaic, piezoelectric, and 

microbial fuel cell renewable power generators), in which both performance and 

applications were documented. Lu et al. [21] compared different commercial micro-

scale energy harvesting techniques with their power output density. According to the 

literature [3, 21-23], piezoelectric energy harvesting has a higher power output density 

compared to most of micro-scale energy harvesting sources. One significant 

comparative study by Raghunathan et al. [24] (listed in Table 2.1) indicates that a solar 

cell has the highest power density of 15mW/cm3 and among these commonly used are 

micro energy harvesting techniques. Piezoelectric has 330μW/cm3 and is listed as the 

second. In fact, the power output of piezoelectric energy harvesting from a vibration 

source (shoe inserts in this study) will be more stable than a solar cell since the energy 

harvesting of the solar cell is highly dependent on the environment. A study of duToit 

et al. [25] proved that the power density of a solar cell reduces from 15mW/cm3 to 

180μW/cm3 during a cloudy day. This power density is less than when using 

piezoelectric energy harvesting technique. Thus, it can be concluded that piezoelectric 

energy harvesting has higher potential to be an alternative power supply for MEMS. 
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Table 2.1 Power densities of harvesting technologies. 

Harvesting technology Power density 

Solar cells (outdoors at noon) 15mW/cm3 

Piezoelectric (shoe inserts) 330μW/cm3 

Vibration (small microwave oven) 116μW/cm3 

Thermoelectric (10oC gradient) 40μW/cm3 

Acoustic noise (100dB) 960nW/cm3 

 

There are three basic types of vibration energy harvesting which are electromagnet, 

electrostatic and piezoelectricity and these were mostly covered by Bogue [49], P. 

Glynne-Jones et al. [50] and Cook-Chennault et al. [51]. In recent studies, most of the 

regenerable energy sources such as solar cells and thermoelectrical power have been 

introduced and comparisons have been made. Researchers in recent years have shown 

that piezoelectricity is an ideal regenerated energy resource for the low power 

consuming device.  

This research focuses on optimizing the power output of micro-scale piezoelectric 

energy harvester PFT with surrogate model assisted optimization techniques and 

improving the efficiency of energy conversion to satisfy the power requirement of the 

low power consuming devices. The novel PFT energy harvester, which was designed 

to insert into shoes to harvest the bio-kinetic energy from human gait, will be 

investigated in the next section.  

 

2.2 Piezoelectric material 

2.2.1 Piezoelectricity 
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Piezoelectricity was first discovered by Pierre and Jacques Curie [26] [27] in 1880 and 

their first article was published in 1882 [28]. The Piezoelectric effect originally appears 

in some crystals such as tourmaline and quartz etc. This effect, which takes its name 

from the Greek word ‘Piezo’ meaning ‘to press’, is often described as a phenomenon 

as materials such as these generate electricity on their surface whilst subjected to 

mechanical stress. The converse piezoelectric effect was predicted mathematically by 

Lippmann [29], which means the piezoelectric effect can be inverse. In the converse 

piezoelectric effect, the piezoelectric material can be deformed when subjected to an 

electricity supply. This effect was later confirmed by the Currie brothers, following their 

experiments.  

At the beginning of the 1880s, the first materials used to observe piezoelectricity were 

the single crystals such as Quartz, Tourmaline and Rochelle salt, which were founded 

by Pierre and Jacques Curie. Since then, many materials have been found that have the 

properties of piezoelectricity. In 1935, Busch and Scherrer [30] discovered potassium 

dihydrogen phosphate (KDP), the first major family of piezoelectric and ferroelectrics. 

After the expansion of piezoelectrical research to the USA, Japan and the Soviet Union 

during the Second World War, barium titanate and lead zirconate titanate with 

the chemical formula Pb[ZrxTi1-x]O3 (0≤x≤1) (PZT) were discovered. PZT has become 

one of the most widely used piezoelectric materials today since they have very high 

dielectric and piezoelectric properties. In recent years, piezoelectric materials have been 

categorized into two types, piezoceramics [31-33] and piezopolymers [34,35], 

according to material properties. Piezoceramics can provide a higher amount of energy 

https://en.wikipedia.org/wiki/Chemical_formula
https://en.wikipedia.org/wiki/Lead
https://en.wikipedia.org/wiki/Zirconium
https://en.wikipedia.org/wiki/Titanium
https://en.wikipedia.org/wiki/Oxygen
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compared to piezopolymers due to their high electro-mechanical coupling constants 

while piezoceramics are more brittle than piezopolymers. 

In order to demonstrate the fundamental of piezoelectric materials, the structure of 

piezoceramic is illustrated in this section. As shown in Figure 2.1, the structure of 

piezoceramic is a perovskite crystal structure. The piezoelectric material is the 

material with piezoelectric effect, this is because of the center of inversion of the unit 

cell of piezoelectric material structure in microscope. As an example, the structure of 

perovskite crystal is shown. It includes a tetravalent metal ion placed inside a lattice 

of larger divalent metal ions and O2. Once the material is polarized, ionic charges will 

be distributed when the external force applied on the structure and the charge 

distribution will be no longer symmetric. 

(a)                    (b) 

 

Figure 2.1 Structure of piezoceramic (a)before polarization (b)after polarization. 

Governing equations of the linear theory of piezoelectricity which describe the 

electromechanical properties of the piezoelectric materials and widely accepted in the 

literature are concluded as follows.  
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 𝜀𝑖 = 𝑆𝑖𝑗
𝐸 + 𝑑𝑚𝑖𝐸𝑚 (2.1) 

 𝐷𝑚 = 𝑑𝑚𝑖𝜎𝑖 + 𝜉𝑖𝑘
𝜉
𝐸𝑘 (2.2) 

 

they can be re-written as the following form which often employed when the 

piezoelectric material is used as sensor, 

 𝜀𝑖 = 𝑆𝑖𝑗
𝐷𝜎𝑗 + 𝑔𝑚𝑖𝐷𝑚 (2.3) 

 𝐸𝑖 = 𝑔𝑚𝑖𝜎𝑖 + 𝛽𝑖𝑘
𝜎 𝐷𝑘 (2.4) 

 

where i, j, m, k are indexes that indicating the directions of the coordinate system of the 

material, which can be represented as x, y, z in Figure 2.2. Besides, σ is the stress vector, 

E is the vector of applied electric field, ξ is the permittivity, d is the matrix of 

piezoelectric strain constants, S is the matrix of compliance coefficients, D is the vector 

of electric displacement, g is the matrix of piezoelectric constants and β is the 

impermitivity component. 

In these equations, the piezoelectric materials are assumed to be linear while the 

material operate under low electric field or mechanical stress based on the IEEE 

standard. Equation (2.1) represents the converse piezoelectric effect which the 

piezoelectric material is used as an actuator, while equation (2.2) represents the direct 

piezoelectric effect which the material is used as a sensor. The superscripts D, E, and σ 

represent measurements taken at constant electric displacement, constant electric field 

and constant stress, respectively. 
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Figure 2.2 Coordinate system and axis nomenclature of piezoelectric materials. 

 

According to the coordinate systems shown in the figure. The matrix form for equation 

(2.1) - (2.2) can be expressed as: 

 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝜀4

𝜀5

𝜀6]
 
 
 
 
 

 = 

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆12 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆13 𝑆32 𝑆33 𝑆34 𝑆35 𝑆36

𝑆14 𝑆42 𝑆43 𝑆44 𝑆45 𝑆46

𝑆15 𝑆52 𝑆53 𝑆54 𝑆55 𝑆56

𝑆16 𝑆62 𝑆63 𝑆64 𝑆65 𝑆66]
 
 
 
 
 

 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏23

𝜏31

𝜏12]
 
 
 
 
 

  

+ 

[
 
 
 
 
 
𝑑11 𝑑21 𝑑31

𝑑12 𝑑22 𝑑32

𝑑13 𝑑23 𝑑33

𝑑14 𝑑24 𝑑34

𝑑15 𝑑25 𝑑35

𝑑16 𝑑26 𝑑36]
 
 
 
 
 

 [

𝐸1

𝐸2

𝐸3

] 

 

(2.5) 

 

[
𝐷1

𝐷2

𝐷3

] = [

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16

𝑑12 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26

𝑑13 𝑑32 𝑑33 𝑑34 𝑑35 𝑑36

] 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

  

+ [

𝑒11
𝜎 𝑒12

𝜎 𝑒13
𝜎

𝑒21
𝜎 𝑒22

𝜎 𝑒23
𝜎

𝑒31
𝜎 𝑒32

𝜎 𝑒33
𝜎

] [
𝐸1

𝐸2

𝐸3

] 

(2.6) 

index direction 

1 x 

2 y 

3 z 

4 shear around x 

5 shear around y 

6 shear around z 
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For piezoelectric material operates at 𝑑31 mode, many parameters of the matrices in 

equation (2.5) - (2.6) can be zero or expressed by other parameters as follows: 

 𝑆11 = 𝑆22 (2.7) 

 𝑆13 = 𝑆31 = 𝑆23 = 𝑆32 (2.8) 

 𝑆12 = 𝑆21 (2.9) 

 𝑆44 = 𝑆55 (2.10) 

 𝑆66 = 2(𝑆11 − 𝑆12) (2.12) 

 𝑑31 = 𝑑32 (2.13) 

 𝑑15 = 𝑑24 (2.14) 

 𝑒11
𝜎 = 𝑒22

𝜎  (2.15) 

 

As a result, the piezoelectric material poled along the axis 3, the matrix form of 

constitute equations for piezoelectric material operates at 𝑑31 mode can be written as: 

 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝜀4

𝜀5

𝜀6]
 
 
 
 
 

 = 

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆13 𝑆32 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆44 0
0 0 0 0 0 2(𝑆11 − 𝑆12)]
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𝜏23

𝜏31

𝜏12]
 
 
 
 
 

  

+ 

[
 
 
 
 
 

0 0 𝑑31

0 0 𝑑32

0 0 𝑑33

0 𝑑15 0
𝑑15 0 0
0 0 0 ]
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𝐸1

𝐸2

𝐸3

] 

 

(2.16) 
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[
𝐷1

𝐷2

𝐷3

] = [

0 0 0 0 𝑑15 0
0 0 0 𝑑15 0 0

𝑑31 𝑑31 𝑑33 0 0 0
] 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

  

+ [

𝑒11
𝜎 0 0

0 𝑒11
𝜎 0

0 0 𝑒33
𝜎

] [
𝐸1

𝐸2

𝐸3

] 

 

(2.17) 

 

2.2.2 Material properties 

This section reviews the physical meaning of the piezoelectric coefficients, 

namely dij , gij , Sij and eij. 

Firstly, the piezoelectric coefficient dij for piezoelectric energy harvester is the ratio 

of short circuit charge per unit area flowing between connected electrodes 

perpendicular to the j direction to the stress applied in the i direction. The 

generated electric charge is: 

 𝑞 =  𝑑𝑖𝑗𝐹 (2.18) 

 

where F is the force applied to the piezoelectric material on i direction. 

As a result, piezoelectric materials that with a higher d are able to generate more 

electric power under the same stress. 

Similar to dij, the piezoelectric constant gij denotes the electric field generated 

along the i-axis when the material is stressed along the j-axis. The physical 

meaning of gij is the open circuit voltage generated across two electrodes. For the 

applied force F of 31-mode, the generated voltage is:  
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 V =  
𝑔31𝐹

𝑤
 (2.19) 

 

where w is the width of the piezoelectric material. 

The relationship between piezoelectric constants dij and gij, can be expressed as: 

 𝑔𝑖𝑗 = 
𝑑𝑖𝑗

𝜀𝑇
 (2.20) 

 

where 𝜀𝑇 is the dielectric constant measured at a constant stress. 

Since the physical meaning of dij and gij, the product of dij and gij is often employed 

to represent the electric power generated from the piezoelectric material and thus used 

for piezoelectric material selection in the literature as the Figure of Merit (FOM) 

which is expressed as: 

 FOM =  𝑑𝑖𝑗 ∙  𝑔𝑖𝑗, (2.21) 

 

The higher FOM stand for a higher electric power generate from the material.  

The elastic compliance Sij represents the ratio of the strain the in i-direction 

to the stress in the j-direction. 

Piezoelectric coupling coefficient kij represents the ability of the piezoelectric 

material to convert the strain into electric power and vice versa. The expression of the 

piezoelectric coupling coefficient for energy harvester can be written as: 

𝑘𝑖𝑗
2 = 

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑝𝑝𝑙𝑖𝑒𝑑
 

and related to the material properties, 
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𝑘𝑖𝑗

2 = 
𝑑𝑖𝑗

2

𝑆𝑖𝑖
𝐸𝜀𝑟𝑗𝑗

𝑇  
(2.22) 

 

where 𝑆𝑖𝑗
𝐸  is the elastic compliance measured at a constant electric field. A 

superscript “E” denotes that the elastic compliance is measured with the electrodes 

short-circuited. 

2.3 Piezoelectric energy harvesters 

The first application of piezoelectricity was an ultrasonic transducer developed by 

Langevin et al. [36] in 1917. Since then, lots of applications such as microphones [37,38] 

and accelerometers [39,40] have been made. The use of piezoelectric materials in 

applications can be divided into two types: 

• The direct piezoelectric effect of the piezoelectric material acts as a sensor of load 

or pressure; 

• The inverse piezoelectric effect of the material acts as an actuator. 

There are many different reviews for applications of piezoelectric materials that can be 

found in the literature. To name a few, C.M.A. Lopes [41] reviewed a few applications 

of the energy harvester using piezoelectric materials, including piezoelectric dance floor, 

Heel Strike Generator (HSG) and piezoelectric windmill etc. Duan, W.H. et al. [42] 

recently reviewed the piezoelectric materials and applications in the field of structural 

health monitoring. Tressler et al. [43] reviewed the piezoelectric sensors and compared 

the material properties of different piezoelectric sensor materials. The history of 

piezoelectricity and piezoelectric materials has been reviewed in the literature [44-46]. 

The following sections will focus on the development of the piezoelectric energy 
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harvester and the development of the novel PFT device.  

 

2.3.1 The modeling of the piezoelectric energy harvester 

This section introduces different types of modeling for the piezoelectric energy 

harvester. 

To predict the dynamics of the piezoelectric energy harvester, several researchers have 

investigated the modeling of the energy harvesting device. In this section, the basic 

modeling of Piezoelectric Energy Harvesters (PEH), including lumped-parameter 

model and distributed-parameter model, will be introduced. The idea of the conversion 

between vibration and electricity was first mentioned by William and Yates [47] in 1996. 

They proposed the significant lumped-parameter base excitation model for vibration 

energy harvester. The schematic diagram of this lumped-parameter model is shown in 

Figure 2.3. This model consists of a spring k, mass m, and a damper d. The damper 

represents the energy transducer in this model because the energy conversion will damp 

the mass m. Relative movement of the mass and the house is depicted as z(t) and the 

displacement of the system is y(t). 
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Figure 2.3 Schematic diagram of vibration energy harvester [47]. 

The differential equation describes the movement of the system, expressed as: 

 

 𝑚�̈�  +  𝑑�̇�  +  𝑘𝑧(𝑡)  =  −𝑚�̈�(𝑡)  (2.23) 

 

where m stands for the seismic mass, d is the damping constant and k is the spring 

constant. The instantaneous power (p(t)) of the mass is produced by the force applied 

to the mass and its velocity. The instantaneous power can be expressed as: 

 

 𝑝(𝑡)  =  −𝑚�̈�(𝑡) [�̇�(𝑡)  + �̇�(𝑡)]   (2.24) 

 

The generated electrical power of the system can be calculated from equation (2.24) 

when damping is present, for a sinusoidal excitation vibration y(t) = Y0cos(ωt), the 

generated power can be expressed as: 
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where 𝜁𝑡 is the damping ratio of the transducer d, 𝜔𝑛 is the natural frequency of the 

system, 𝑌0 is the amplitude of vibration and ω is the vibration frequency. 

This model indicates that the maximum power output can occur when the vibration 

frequency is equal to the natural frequency of the system. Also, generated power is 

proportional to the natural frequency. The maximum power of the system can be 

expressed as: 

 

 
𝑃𝑚𝑎𝑥  =  

𝑚𝑌0
2𝜔𝑛

3

4𝜁𝑡

    
(2.26) 

 

The equation shows that the maximum power output of the system increases when the 

damping ratio ζ𝑡  decreased. This indicates that optimizing the vibration energy 

harvester can be achieved by reducing the damping ratio of the system. Based on the 

lumped-parameter model, Roundy [48] developed a model for the bimorph 

piezoelectric energy harvester with tip mass and improved the power output of the 

piezoelectric energy harvester by modifying the geometry of the bender. Kundu and 

Nemade [52] studied the effect of resistance load at resonant frequency of the bimorph 

piezoelectric energy harvester.  

One of the distributed parameter models of cantilevered piezoelectric energy harvester 

was proposed by Sodano et al. [53]. This model is based on the Rayleigh-Ritz 
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piezoelectric actuator model derived by Hagood et al. [54] in 1990. The Rayleigh-Ritz 

formulation of piezoelectric material derived from the generalized form of Hamilton’s 

principle for the coupled electromechanical system given by Crandall et al. [55]. The 

diagram of the distributed parameter model (Figure 2.4) shows an elastic body that 

includes a piezoelectric material of which electrodes are poled arbitrarily.  

 

Figure 2.4 Distributed parameter model of piezoelectric material. [54] 

 

The equation for the variation of this model can be expressed as: 

 

 
∫ [𝛿(𝑇 + 𝑈 + 𝑊𝑒)]𝑑𝑡

𝑡2

𝑡1

  = 0 
(2.27) 

 

where T is the kinetic energy, U is the potential energy and We is the external work 

applied to the system. Details of the model expression can be found in [54]. 

By considering the material properties of piezoelectric energy harvester, the distributed 

parameter model more accurately approximates the system compared to the original 

lumped parameter model. Goldschmidtboeing and Woias [59] compared different beam 
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shapes of cantilevered piezoelectric energy harvesters in terms of their efficiency and 

maximum tolerable excitation amplitude base on the Rayleigh-Ritz type derived model. 

Tabatabaei et al. [60] optimized the geometric parameters of cantilevered piezoelectric 

energy harvester by using the Rayleigh-Ritz modeling method. The most cited 

modelings of vibration-based piezoelectric energy harvester have been summarized by 

Erturk [56].  

 

2.3.2 Design of piezoelectric energy harvester 

There are a variety of different designs for the piezoelectric energy harvesting device 

to satisfy different energy sources and applications. For example, cantilevered type 

designs of energy harvester are used in the high-frequency vibration such as aircrafts 

and helicopters, while the cymbal type designs are suitable for low-frequency vibration 

such as human gait. In this section, the two most basic and conventional piezoelectric 

energy harvester designs, including the cantilevered type and the cymbal type, are 

introduced to give a basic understanding of the novel PFT device which will be 

optimized in this research. 

 

2.3.2.1 Cantilevered type 

A cantilevered beam structure is the most used structure for a piezoelectric energy 

harvesting device. This structure is shown in Figure 2.5. It contains a metal beam with 

a fixed end and usually it has a tip mass on the other end of the beam. The piezoelectric 

material layer is placed on the top or bottom of the metal beam base depending on the 



52 

 

different purpose of the design. Conventionally, a unimorph structure with one 

piezoelectric layer and a bimorph structure with two piezoelectric layers, are present on 

both sides of the metal beam. The conventional designs of the cantilevered piezoelectric 

energy harvester (PEH) are shown in Figure 2.6. 

 

Figure 2.5 Schematic diagram of cantilevered PEH. 

 

 

(a)                   (b) 

Figure 2.6 Structure of (a) unimorph (b) bimorph piezoelectric cantilevered beam. 

 

The cantilevered type PEH has a long history. Different kinds of optimized designs can 

be found in the literature. Ng and Liao [61] compared the power outputs of three 
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cantilevered beam type piezoelectric energy harvesters which have different ways of 

connecting the electrodes. They are a unimorph structure harvester with a parallel 

connection, a bimorph structure harvester with a parallel connection and a bimorph 

structure harvester with a series of connections. The results show that the bimorph 

structure harvester with a series of connections has the largest range of load resistance 

and operating frequency in which to generate peak power.  

To improve the power output of a cantilevered type piezoelectric energy harvester, 

Liang et al. [62] optimized the power output of the unimorph cantilevered beam 

piezoelectric energy harvester with a fixed resonance frequency. In this study, the PEH 

system was modeled using the energy method containing four geometric parameters 

(length, width, thickness of the beam and the tip mass). The experiment results verified 

that the optimal PEH was able to generate an output voltage of 3.95V.  Sun et al. [63] 

improved the performance of the typical cantilever PEH with an increase in 

piezoelectric coefficient and electromechanical coupling coefficient material. The 

optimized geometries of the device had been found with the maximum power output of 

18mW. Cho et al. [64] improved the power output of PEH by improving the 

electromechanical coupling coefficient in terms of applied stress, electrode coverage 

and thickness of the beam and the piezoelectric layers. The electromechanical coupling 

had been significantly improved by 150%. Du et al. [65] found the optimal electrode 

cover area of the piezoelectric material for cantilevered PVEH and verified this with an 

experiment. The results showed that the maximum power output of the cantilevered 

PEH, which was 222nW, can be generated with 50% of the electrode area in the study. 
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Furthermore, there are many researchers focusing on the variant of PEH to improve the 

power output, the traditional cantilevered type PEH has a narrow range of suitable 

harvesting frequency (resonance frequency). The purpose of variants for a cantilevered 

PEH is to produce a wider range of natural frequencies. Abdelkefi et al. [66] developed 

a unimorph cantilevered PEH with a bending-torsion vibration tip mass as shown in 

Figure 2.7. Similar to the unimorph cantilevered PEH, this device has an excitation base 

connected with one end of the cantilevered beam, however, a two-end mass is connected 

with the other end of the beam. The piezoelectric layer placed on the cantilevered beam 

is thus subjected to bending and torsion force at the same time. Vibration with multiple 

natural frequencies is achieved by different vibration mode shapes. The bending-torsion 

vibration design and the optimal asymmetric tip mass design have improved the power 

output by 30% compared to the symmetric tip mass design. 

 

Figure 2.7 Schematic of the bending–torsion unimorph cantilever beam [66] 

 

Xiong and Oyadiji [67] developed a double clamped multilayer structure PVEH. The 

multilayer structures are shown in Figure 2.8, beams are connected with extra masses 

(named M+1 and M-1) up to three layers. One of the beams is double clamped as an 
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excited base and two piezoelectric layers are located on both sides of the base layer. A 

maximum of five vibration modes can be achieved by adjusting the position of the mass 

and thickness of the base layer. The study shows that the optimal multilayer 

cantilevered PEH can be used in different scales of vibration frequencies. 

 

 

(a) 

 

 

(b) 

Figure 2.8 Double clamped multilayer structure PVEH: (a) double layers (b) triple 

layers [67] 

2.3.2.2 Cymbal type 

Another significant PEH structure is the Cymbal transducer, its schematic diagram is 

shown in Figure 2.9 (a). A typical cymbal transducer is designed as a circular shape, 
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configured with two metal endcaps on the top and bottom and the piezoelectric material 

plate. Two electrodes are placed on the top and bottom of the piezoelectric plate. The 

function of the endcap is to convert the vertical force from the top into a horizontal 

force so that the piezoelectric material can operate in d33 mode which can generate a 

higher amount of electrical power. The working mechanism of the Cymbal type 

piezoelectric energy harvester is shown in Figure 2.9 (b). 

 

(a) 

 

(b) 

Figure 2.9 (a) Schematic diagram of cymbal transducer (b) Force analysis of the 

cymbal transducer [10]. 

The force amplification principle of the endcap can be expressed as the horizontal and 



57 

 

vertical result forces: 

 𝐹𝑦 = 
𝐹

2
 (2.28) 

 𝐹𝑥 =
𝐹

2

1

𝑡𝑎𝑛𝜃
≅ 

𝐹

2𝜃
 when θ is small (2.29) 

 

Thus, the force amplification factor of the endcap 𝐴𝑐 can be expressed as: 

 𝐴𝑐 = 
𝐹𝑥

𝐹
≅

1

2𝜃
 (2.30) 

 

The piezoelectric strain constant that related to the force amplification had been 

proposed in the literature [54], which is called the equivalent strain constant 𝑑33
𝑒𝑓𝑓

 and 

it is expressed as: 

 𝑑33
𝑒𝑓𝑓

= 𝑑33 + |𝐴𝑑31| (2.31) 

 

where                     𝐴 = 
𝑐𝑎𝑣𝑖𝑡𝑦 𝑟𝑎𝑑𝑖𝑢𝑠

𝑐𝑎𝑣𝑖𝑡𝑦 𝑑𝑒𝑝𝑡ℎ
                   (2.32) 

 is dependent on the angle of endcaps’ leverage contributions, this equation shows how 

piezoelectric constant 𝑑31 contributes to the piezoelectric constant through the angle 

of endcap. 

In order to improve the power output of the cymbal type PEH, Palosaari et al. [68] 

optimized the Cymbal type PEH by finding the vibration frequency, applied force and 

thickness of the steel endcaps. For a fixed diameter of 35mm and thickness of 540μm, 

the optimal electrical power of 0.27mW was reported when the thickness of the steel 

endcaps was 250μm and 24.8N force with the vibration frequency of 1.19Hz applied. 

Kim et al. [69] studied the performance of the cymbal transducer with the fixed 
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diameter of 29mm and 1.8mm thickness. Results from FEA simulations and 

experiments reported that the maximum electrical power of 52mW across the resistant 

load of 400kΩ had been generated with the mechanical force of 70N at 100Hz. Yuan et 

al. [70] improved the cymbal transducer by employing the analytical model, the 

maximum electrical power output of the cymbal transducer under the force of 8.15N 

was found around 1.56mW, with the resistant load of 390kΩ at the vibration frequency 

of 120Hz. Ren et al. [74] modified the cymbal transducer into a rectangular shape to 

make full use of the transverse extensional vibration of the PMN-PT crystal, for which 

the piezoelectric effect of PMN-PT is anisotropic, the piezoelectric strain constant and 

electromechanical coupling coefficient is ultrahigh. The study shows that a power 

output of 14mW can be achieved under a cyclic force of 0.55N at the resonance 

frequency of 500Hz, connected with a proof mass of 17g and load resistance of 74kΩ. 

Tufekcioglu and Dogan [71] designed a PEH that combined two cymbal transducers 

with a cantilevered structure, as shown in Figure 2.10. In this PEH, when the device is 

subjected to vibration, two cymbal transducers convert the vertical force of the 

cantilevered beam into the horizontal force and transfer the force to the PZT layer in 

the middle of the cymbal device. This design enhances the fatigue life of piezoelectric 

ceramic bodies by compressing the piezoelectric materials constantly. Design 

parameters have been optimized by the analytical method and the finite element method, 

and this has been validated by experiments. The aim of selecting design parameters is 

to control the resonance frequency under the constraint of 200Hz whilst maximizing 

the power output. For the cymbal structure of double piezoelectric layers, this PEH was 
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able to generate 141.61μW at 153 Hz, while a single piezoelectric layer cymbal 

generates 104.04μW at 166 Hz. 

 

 

Figure 2.10 3D sketch of PEH with two cymbal transducers [71] 

 

Yuan et al. [72] studied the energy harvesting of a slotted-cymbal design [73], as shown 

in Figure 2.11, which consists of a piezoelectric plate and two slotted metal endcaps. 

Two silver electrode layers are located on the top and bottom surface of the piezoelectric 

plate. The purpose of this design is to release the tangential stress which may cause 

flexural motion to the piezoelectric plate and the loss of input energy. The study shows 

that the 18-cone radial slotted cymbal is able to generate the highest electrical power of 

16mW across the resistant load of 500kΩ. Compared to the original cymbal design with 

the same thickness and diameters of the piezoelectric plate and the endcaps, the slotted-

cymbal had improved the power output by 60%. 
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Figure 2.11 Sectional schematic diagram of the slotted cymbal design [73] 

 

Yuan et al. [70] introduced another slotted-cymbal transducer, which had been designed 

with the circumferential slot between the horizontal and conical surface on the endcap. 

The structure is illustrated in Figure 2.12. The purpose of the slot was to avoid the high 

circumferential stress on the endcap which may reduce the efficiency of the mechanical-

to-electrical conversion.  Experimental results showed that the energy conversion 

coefficient increase was proportional to the depth of the slot. A maximum output of 

2.5mW was found in the study, with slot depth of 0.35mm at the frequency of 120Hz. 

This design improves the power output by 80% compared to the original cymbal 

transducer. 

 

Figure 2.12 Design of the circumferential slotted-cymbal transducer [70] 



61 

 

Traditional cymbal design and the designs introduced from the literature above have 

the input limitation of less than 100N mechanical force. In order to scavenge bio-kinetic 

energy from human walking, researchers have improved the endurance of the cymbal 

device. Mo et al. [75] proposed a unimorph piezoelectric cymbal design of cymbal 

transducer which can stand up to 1940N. Shown in Figure 2.13, the design replaces the 

single PZT layer with a PZT/steel composite between the endcaps. Experiment results 

show that the design with a substrate layer can generate a power of 121.2μW across the 

load resistance of 3.3MΩ under 1940N at the low frequency of 1Hz.  

 

Figure 2.13 (a) Traditional cymbal design (b) new design for the higher mechanical 

load [75] 

 

Another novel cymbal transducer for harvesting bio-kinetic energy from human footfall, 

the Piezoelectric Flex Transducer (PFT), was developed by Daniels et al. [76]. In this 

research, the PFT device was studied and geometric parameters were optimized by 

using surrogate modeling techniques to maximize the power output. Details of the 

development of the PFT device will be given in the following section. 
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2.4 The PFT device 

2.4.1 Construction 

The PFT device (as shown in Figure 2.14), was designed as a rectangular shape 

containing two metal endcaps, one piezoelectric middle layer and two substrate layers 

between the piezoelectric layer and two endcaps. Two electrode layers are located in 

the top and the bottom surface of the piezoelectric plate, the resistor is connected 

between them. 

 

Figure 2.14 Structure of the developed PFT [76] 

 

In developing the PFT, Daniels [76] created a coupled piezoelectric circuit finite 

element model (CPC-FEM) for the Cymbal transducer, which was validated through 

experiments. Based on the developed FEM, effects of geometric parameters and 

material properties had been studied in order to find the optimal design and material for 

the Cymbal transducer. In the study, eight geometric parameters (as shown in Figure 

2.15) were selected as design variables. They are total diameter (D), cavity diameter 

(Dc), apex diameter (Da), height (H), caps thickness (tc), PZT thickness (tp), join length 

(J) and angle of the endcap (θ).  
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Figure 2.15 Schematic diagram of cymbal transducer with geometric parameters [76] 

 

By varying one parameter each time, the maximum power of 0.12mW across the load 

resistance of 10MΩ under 50N at 2Hz was found with the diameter of 30mm, 4.6 mm 

in thickness of PZT and 0.33mm in thickness of endcaps. 

The PFT had been developed based on the studies of the cymbal transducer. The 

purpose of the design is to enable the cymbal transducer to harvest bio-kinetic energy 

from human walking. Two substrate layers between the endcaps and the piezoelectric 

plate were designed to avoid all the force from the endcap transfer across the surfaces 

of the piezoelectric material causing the mechanical failure of delamination. Thus, the 

role of two substrate layers was to enable the PFT to operate under a high load which 

is up to 1kN and low-frequency environments by increasing the vulnerable interface 

between the endcaps and the piezoelectric plate. The rectangular shape of the PFT 

device was designed to increase the packing factor and the use of the space whilst 

integrating it into a shoe for harvesting energy from human walking.  

The effect of geometric parameters and material properties had been studied by Daniels 

[76] using FEA. The original design parameters of the PFT are based on the previous 
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study of the cymbal transducer. To study the effect of design parameters on the power 

output, eight geometric parameters were selected. The values of the original geometric 

parameters are listed in Table 2.2, they are total length (D), cavity length (Dc), width 

(w), apex length (Da), heights of endcaps (H), caps thickness (tc), piezo thickness(tp), 

join length (J) and angle of the endcap (θ). Amongst the design parameters, the 

thickness of the piezoelectric layer, the angle of the endcap and the joint length are 

picked from the optimal design of the cymbal transducer. 

 

Table 2.2 Geometric parameters of PFT before optimization 

Total Length (mm) D 52 

Cavity Length (mm) Dc 40 

Width (mm) w 30 

Apex Length (mm) Da 14 

Height (mm) H 3.5 

Endcap Thickness (mm) tc 2 

Piezo Thickness (mm) tp 4 

Join Length (mm) J 6 

Angle of the Endcap (°) θ 8.75 

 

Similar to the geometric parameters, material properties were optimized by Daniels [10] 

by using CPC-FEM to investigate its effects on the power output. Six material 

properties of the piezoelectric material were selected as design parameters including 

the elastic compliance (s11), piezoelectric strain constant (d31), piezoelectric voltage 

constant (g31), the relative dielectric constant (εr33
T

 ), piezoelectric coupling coefficient 

(k31) and FOM (d31
2/εr33

T
 ). After optimization using the one parameter a time approach, 

piezoelectric material DeL Piezo DL-53HD was selected. Materials used for the 
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developed PFT and its properties are listed in Table 2.3. The piezoelectric coefficients 

have been described in the previous section. The damping ratio of the piezoelectric 

material is determined by the mechanical quality factor Q. This is a dimensionless 

parameter that describe the resonance behavior of an underdamped harmonic oscillator 

or resonator. The relationship between damping ratio and Q factor can be expressed as: 

 

 ζ = 
1

2𝑄
 (2.33) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Resonance
https://en.wikipedia.org/wiki/Harmonic_oscillator
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Table 2.3 Material properties used in the study of PFT 

 

2.4.2 The developed CPC-FE model of PFT 

To study the performance of the novel PFT device, Daniels [10] developed a CPC-FEM 

to analyze the effect of geometric parameters on the power output. This model was 

created by employing the multi-physics FEA software ANSYS (version 13) [13]. The 

FE model with its components and the mesh is shown in Figure 2.16. In this model, the 

element type SOLID226 was selected for the PZT plate. This element is a 3-D couple 

AK Stainless Steel: Austenitic stainless steel 304, MatWeb, LLC 

Young's Modulus (GPa) 193 

Yield Strength (MPa) 251 

Density (Kg/m3) 8030 

Poisson's Ratio 0.24 

Piezoelectric Material: DeL Piezo DL-53HD 

Elastic Compliance (x10-12 m3/N) 

S11 15.1 

S12 -4.5 

S13 -9.4 

S33 24.8 

S44 37.1 

S66 39.2 

Relative Dielectric Constant (at constant stress) 

εr11
T

 
 3550 

εr33
T

  3850 

Density (Kg/m3) 7900 

Piezoelectric Strain Constants (x10-12 m/volt) 

d15 810 

d31 -300 

d33 680 

Piezoelectric Coupling Coefficient k31 0.42 

Mechanical Quality Factor Q 20 
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field hexahedron of 20 nodes and suitable for the analysis of piezoelectric structural 

responses. SOLID95 was selected for endcaps, which is also a hexahedral element type 

with 20 nodes. CIRCU94 was used for the resistor connected between the positive and 

negative electrodes. The fix base is set in the bottom of the device, electrode layers are 

in the top and the bottom surface of the piezoelectric layer between the substrate layers 

and the load resistance is connected between electrodes. In order to obtain the power 

output of the device, the FEM was subjected to 1kN distributed load with 2Hz on the 

top apex of the device.  

 

 

Figure 2.16 The FEM of PFT with components and mesh 

 

After optimizing by changing one parameter at a time, as in the previous study of the 

traditional cymbal device, optimized geometric parameters were selected (listed in 

Table 2.4).  
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Table 2.4 Optimized design parameters of PFT 

Total Length (mm) D 52 

Cavity Length (mm) Dc 40 

Width (mm) w 30 

Apex Length (mm) Da 14 

Endcap Thickness (mm) tc 2 

Piezo Thickness (mm) tp 4 

Substrate layer thickness (mm) ts 0.6 

Angle of the Endcap (°) θ 8.7 

 

Lastly, the PFT device was fabricated and tested based on the optimal design parameters.  

To test the prototype of the PFT, the PFT device was connected to a range of load 

resistance from 0 to 10 MΩ and the mechanical input was given by a 1.5kN payload of 

the loading machine. The experiment set up used to test the PFT is shown in Figure 

2.17 and the equivalent electrical circuit of the PFT including the resistance (R), 

capacitance (C1, C2) and inductance (L1) is shown as Figure 2.18. The data was taken 

from different input loadings and vibration frequencies.  

 

Figure 2.17 Experiment set up for PFT testing [10]. 
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Figure 2.18. The equivalent circuit of the PFT device [10]. 

 

One comparison of the experiment and simulation results is shown in Figure 2.19. This 

figure plots the results that the PFT was testing with 5Hz excitation frequency.  

 

Figure 2.19 Comparison between experiment and simulation results of PFT device 

under input load at 5Hz. [10]  

 

Combining Figure 1.6 and Figure 2.19, both comparison studies above have shown 

that a non-negligible error has occurred between the simulation results and the 

experiment results. As mentioned in the previous chapter 

In this research the accuracy of the FE model will be studied and further developed 

with improved accuracy. 
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2.5  Optimization techniques 

In the literature there are different optimization techniques for optimizing engineering 

designs, for example the one factor a time using the FE method and the analytical 

model method. As the design becomes more complex in recent times, surrogate 

models are often employed for optimization. In this research, the electric output of the 

novel PFT energy harvester will be improved efficiently and effectively by employing 

the surrogate model assisted optimization method. This methodology optimizes the 

PFT device by following steps: (i) the experiment of the PFT is approximated by FE 

model in order to study the behavior of the device at a lower cost; (ii) with the design 

of the computer experiment, the design space is sampled within the selected design 

constraints and the sampled data are simulated by FEA; (iii) using the results of FEA, 

the relation between output parameters and the input design variables can be 

approximated within the design space by surrogate models; (iv) the surrogate models 

can be optimized by numerical optimization algorithm and (v) the result will be 

validated by FEA. The following subsections will give an overview of optimization 

techniques which were employed in the surrogate model assisted optimization 

method, they are Finite Element (FE) method, Design of Experiments (DoE), 

surrogate modeling techniques and numerical optimization techniques. 

 

2.5.1 Finite Element (FE) method 

Traditional engineering optimization processes require a large number of expensive 

experimental tests from prototypes which may be unaffordable and ineffective. 
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Benefiting from the rapid development of computer-aided design engineering, finite 

element analysis, which can numerically predict the performance of a design by virtual 

computer experiments, has become the most popular method to replace the traditional 

design process so that the cost of the experimental tests can be greatly reduced. 

The finite element method is one of the popular computer-aided modeling methods to 

approximate the differential equation of complex engineering problems. This modeling 

method has the advantage of convenience and that it can be used in different fields. In 

this research, the prototype of the PFT device will be approximated using the Finite 

Element Model (FEM). According to the literature, the governing equation of 

piezoelectric energy harvesting via FEM can be expressed as: 

 

 {D} = [e]T{S} + [α]{E} (2.34) 

 {T} = [β]{S} - [e]{E} (2.35) 

 

In these governing equations, {D} is the dielectric displacement vector and {T} the 

stress vector, [e] is the dielectric permittivity matrix, {S} is the strain vector, [α] is the 

dielectric matrix at constant mechanical strain, {E} is the electrical field vector, and [β] 

is the matrix of elastic coefficient at constant electric field strength. 

Alternatively, the established equation for strain and electrical displacement, given by 

IEEE [85], is as follows: 

 

 {S} = [sE]{T} + [d]{E} (2.36) 
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 {D}= [d]T{T} + [εS ]{E} (2.37) 

 

Different from the equation used by FEM, in these constituted equations {S} is the 

strain vector, [sE] is the compliance matrix at the electric field, [d] is the piezoelectric 

matrix relating strain and electric field and [εS] is the dielectric matrix evaluated at 

constant strain. Matric form of the constituted equations and the input method of the 

piezoelectric material properties to the ANSYS FEM software based on the equations 

have been introduced in Daniels [76]. In this research, the FE model will be constructed 

and analyzed by the FEA software ANSYS APDL and the input method used by 

Daniels [76] is employed.  

In the literature there are many successful engineering designs that have used FEM. 

The first FEM textbook was published by Zienkiewicz and Cheung [77] in 1967. Since 

then, FEM has been used widely on a number of engineering design problems. The 

fundamentals of FEM were given by Barkanov [78], along with an example of 

modeling a shaft system using FEM and other modeling methods for comparison. Sohn 

et al. [79] developed FE models for piezoelectric thin films to evaluate the electric 

output of the piezoelectric material under stress. The results were validated by an 

analytical model and experiments which concurred. Marco et al. [80] developed the 

FEM of acoustic levitator and used the model to determine the optimal geometries of 

the device. The optimal design of the acoustic levitator was produced and then verified 

by the experiment, the results had closely matched those from FEA. Amira et al. [81] 

performed FEA on a thin-filmed, multi-layer piezoelectric pressure sensor to obtain the 
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maximum deflection and the voltage generation of the piezoelectric layer. In this case 

the optimal material properties for the application had been selected. Leinonen [82] 

developed an FEM for a piezoelectric cymbal harvester to calculate the power 

generation. The results showed that when compared with the prototype the developed 

FEM had a minor error of 7% compared to the experiment and that the optimal 

resistance load of the device had been predicted successfully. Tabatabaei et al. [83] 

optimized the shape of the beam for the piezoelectric cantilevered energy harvester 

using the analytical model and verified the optimal design with the results obtained 

from the FEM simulations. Zhu et al. [84] developed a coupled piezoelectric-circuit 

finite element model (CPC-FEM) for the cantilevered piezoelectric energy harvester. 

This model connects the cantilevered beam with the piezoelectric layer and a load 

resistor to predict the electrical power output directly from the FEM including load 

resistance. The study found that the electric output of cantilevered PEH is highly 

dependant on the load resistor and the relationship is nonlinear. 

 

2.5.2 Design of Experiment (DoE) 

The design of experiment is the first step towards creating a surrogate model which is 

used to generate the input data in a given design space. The selection of DoE will affect 

the efficiency of surrogate modeling and the convergence of the model. The most basic 

DoE techniques are factorial designs. In factorial designs, the variables used to predict 

the approximation model are called factors. The most basic types of factorial design 

include full factorial design [86, 87], fractional factorial design [88, 89] and central 
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composite design [90,91]. Full factorial design of experiments generates all design 

variables to create the surrogate model. For example, full factorial DoE generates 2k 

design variables to approximate the model when the experiment has k factors with 2 

levels in each factor. In DoE, factors are used to represent the design variables and 

levels are the possible values of the design variables. Figure 2.20 (a) demonstrates a 23 

full factorial design, the black dots represent the experiment designs. This methodology 

has the advantage of high accuracy in approximation, however, the number of designs 

will increase exponentially with the number of design variables and levels to be 

estimated, thus it is also time-consuming and expensive. Fractional factorial DoE is 

often used when the number of factors is large. This DoE technique reduces the 

estimation of main factors, and the reduced main effect of the factors are aliased by the 

interactions between factors. Figure 2.20 (b) demonstrates the fractional factorial 

design with 23-1 runs. Fractional factorial designs are normally indicated as 2𝑅
𝑘−𝑝

 , 

where R is the resolution of the experiment or the number of main effects to be aliased, 

for Figure 2.20 (b), aliasing effects are x1, x2, x3, the fractional factorial design can be 

denoted as 2III
3−1.  

The Central Composite Designs sampling technique is commonly used to fit the second 

order models. This technique generates 2k full factorial design or 2k-p fractional factorial 

design points, plus 2k axial points and one centre point to explore the quadratic effects 

of the model. Figure 2.20 (c) demonstrates the Central Composite Design, sampling 

points are indicated by the black dots. 
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(a) (b) (c) 

Figure 2.20 Three types of factorial design: (a) 2III
3  Full Factorial (b) 2III

3−1 

Fractional Factorial (c) Central Composite Design 

 

Besides the factorial designs, a number of optimal designs have been proposed based 

on different optimality criteria. For example, the D-optimal computer-aided design base 

on the d-optimality criteria reduce the number of designs from the full factorial design 

depending on the determinant of the combination matrix. The larger determinant of the 

selected combination matrix X'X indicates that the sampled design has spanned a wider 

volume of the design space. Details of the optimal design of experiments with different 

optimal criteria have been reviewed by Triefenbach [92]. 

An efficient and economic DoE technique suitable for fitting second order polynomial 

surrogate models named Box-Behnken designs is derived by Box and Behnken [93]. 

This technique employs incomplete 2k factorial design blocks in sampling designs. For 

the most part these designs are rotatable and can be orthogonally blocked, which are 

two desirable properties of the second-order response surface model. 

Plackett–Burman designs is a DoE technique suitable for 2-level design. In this method, 

the interaction between factors is ignored and only the main effects are considered in 

order to reduce the number of designs from the complete factorial design. Details of the 
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method can be found in Plackett and Burman [94] 

The Taguchi method [95] employed the orthogonal array of DoE technique to 

investigate the effect of factors in reducing the sensitivity of the design. In the 

orthogonal array, factors are divided into control factors and noise factors. Control 

factors are parameters where value can be controlled. These factors are listed in the 

inner array while noise factors (uncertainties) are set in the outer array. Experiments are 

conducted with inner and outer arrays to estimate how the noise factors affect the 

control factors, and how these eventually lead to the reduction in sensitivity of the 

design. 

Latin hypercube DoE developed by Mckay et al. [96] is a sampling technique that 

generates designs from the design space uniformly. The number of samples to be 

generated could be any population decided by the designer before sampling. The design 

space will be divided into uniform subsets depending on the number of samples that 

being decided, then one design is generated in each subset in order to generate uniform 

samples.  

 

2.5.3 Surrogate modeling 

Due to the increase of design complexities, the combinations of different design 

parameters increase exponentially with either the number of design variables or the 

level of each variable. For instance, a system design with 7 variables and 2 levels of 

each will have 27 which is 128 possible designs, 7 variables with 3 levels of each will 

cause 37 which is 2187 designs, etc. To explore all of these possible designs using FEM 
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with a fine mesh becomes expensive and impractical. At this point, surrogate models 

are often employed to approximate the original FE simulations so that the design 

optimization can be predicted efficiently by using the mathematical algorithm. In this 

subsection, some basic and popular types of surrogate modeling techniques will be 

introduced. 

 

2.5.3.1 Interpolation 

Surrogate modeling techniques can be divided into two main types, mathematical 

modeling, and artificial intelligence modeling. One of the most basic mathematical 

surrogate modeling methods is interpolation. There are different types of interpolation, 

depending on the model that is selected, for example, linear, polynomial or spline 

interpolation. In this method, the real model is approximated by the response of 

interpolating points and the selected function. The simplest method of interpolation is 

the linear interpolation. This method connects two nearest sampling points with a 

straight line, the function used for approximation in linear interpolation can be 

expressed as: 

 

 
𝑦 − 𝑦1

𝑥 − 𝑥1
= 

𝑦2 − 𝑦1

𝑥2 − 𝑥1
 （2.38） 

 

where (x1, y1) and (x2, y2) are interpolation points. 

Clearly, it is suitable for approximating first-order linear functions but the error will 

become unavoidable while approximating curve functions since only finite 
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interpolating points can be created. 

For a complex design problem, the method often used to interpolate function is 

polynomial interpolation rather than linear interpolation. This method is used to 

interpolate the sampling data, approximate the real function by polynomials and 

construct a polynomial with the degree of the most n, where n is the number of 

interpolation points. For example, the interpolation polynomial created by Lagrange 

has formed the equation: 

 

Ln(x) = 𝑓(x0)λ0(x) + 𝑓(x1)λ1(x) + … + 𝑓(xn)λn(x) = ∑ 𝑓(𝑥𝑘)𝑛
𝑘 𝜆𝑛(𝑥) (2.39) 

 

where λk = 
(𝑥− 𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑘−1)(𝑥− 𝑥𝑘+1)…(𝑥− 𝑥𝑛)

(𝑥𝑘− 𝑥0)(𝑥𝑘− 𝑥1)…(𝑥𝑘− 𝑥𝑘−1)(𝑥𝑘− 𝑥𝑘+1)…(𝑥𝑘− 𝑥𝑛)
 

 

Polynomial interpolation has the ability to approximate the real function with higher 

accuracy, however, for a large number of interpolation points, the polynomial 

interpolation will become time-consuming to create a high dimension polynomial. 

Details of the interpolating method and other mathematical approximating functions, 

such as the construction of polynomial interpolations and the Taylor Series 

approximation, can be found in Kincaid and Chene [97].  

 

2.5.3.2 Polynomial fitting and Response Surface Method (RSM) 

One of the most popular mathematical modeling techniques recently is polynomial 

fitting. The difference between polynomial fitting and interpolation is that polynomial 
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fitting involves finding a solution that closes to the data points with smoothed function 

while interpolation is to create the function through the relationship between the 

interpolating points. 

A general form of polynomial can be written as: 

 

yi = β0 + β1xi + β2𝑥𝑖
2 + … + βmxm + εi (i = 1,2,…,n) (2.40) 

 

where yi is the response of the function, x is the independent variable, β is the linear 

coefficient to be evaluated and εi is the zero-mean random error. The significance of 

different independent variables can be identified by the coefficient β from the 

normalized polynomial model, thus the design problem can be simplified by reducing 

the ineffective design variables. Furthermore, noise functions can be reduced, and the 

model can be converged efficiently with its smooth property. However, the coefficient 

will be difficult to evaluate, and the model becomes highly inaccurate as the complexity 

of the design problems increase. The polynomial regression is thus suitable for 

approximating linear or second-order design problems. 

Similar to polynomial fitting, the Response Surface Methodology (RSM), as proposed 

by Box and Wilson [98], is used to approximate the model with a higher dimension. In 

this method, the second-order polynomial regression model is often suggested since its 

derivative can be easily calculated for ease of finding the optimal value of the problem. 

Errors between the function and the data are assumed to be normally distributed with 

mean zero and standard deviation σ. The regression coefficients are determined by the 
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factorial design of experiments and the least squares regression analysis to fit the data. 

Examples of solving mathematical problems using response surface methodology are 

given in Box and Wilson [98]. 

 

2.5.3.3 Artificial Neural Network (ANN) 

In artificial intelligence surrogate modeling techniques, one of the basic modeling 

methods is the Artificial Neural Network. This method creates the surrogate model 

through components called neurons. Typically, the neural network surrogate model 

includes multiple linear regression models with a nonlinear transformation [99]. A 

simple neural network including a single input neuron is demonstrated in Figure 2.21. 

It includes input p, weight w, bias b, net input n, transfer function f and output a. 

 

 

Figure 2.21 Schema of single input neural network [99] 

 

Most commonly, the weight function w is used to multiply the input p and the net input 

is constructed by summing weighted inputs with the bias, thus, the simple network 

shown in Figure 2.21 is expressed as: 
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 f(𝑛)  =  f(𝑝 ∗ 𝑤 +  𝑏) (2.41) 

 

Another important component of ANN is the selection of transfer function. The most 

commonly used transfer function to create the surrogate model is the sigmoid transfer 

function since its derivative of this function can be easily calculated. For example, the 

neural network created by sigmoid transfer function can be expressed as: 

 

 y =  
1

1 + 𝑒−𝜂/𝑇
 (2.42) 

 

where η = ∑𝑤𝑖𝑥𝑖 +  𝛽 , 𝛽  is the bias of the input and T is the coefficient of the 

selected sigmoid transfer function. 

Creating surrogate models with the neural network can be concluded in 5 main steps:  

• data collection   

• network creation 

• initializing weight and bias 

• network training  

• network validation. 

To create a surrogate model by using a neural network, a back propagation algorithm 

is commonly used. In this algorithm, first, an initial network is defined with the 

weight and bias. The output data is compared with the target value of the real model, 

error between the output and the target value will be used to propagate the input and 

adjust the weight and bias. The training process will be repeated until the error 
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satisfies the defined value. The ANN was recorded that the outputs are a regression-

type function, it is suitable for approximating the regression applications, however, 

the data training may be computationally expensive if the data is of a large volume. 

 

2.5.3.4 Kriging 

The kriging surrogate modeling method was introduced by Sack [100] and recently it 

is often employed in the literature. The kriging modeling method creates a model with 

polynomial regression plus the error between the predicted function and the regression 

model. The general form of a kriging model can be expressed as the equation: 

 

 
Y(x) =  ∑𝛽𝑗𝑓𝑗(𝑥) + 𝑍(𝑥)

𝑘

𝑗=1

 
(2.43) 

 

where ∑ 𝛽𝑗𝑓𝑗(𝑥)𝑘
𝑗=1  is the traditional response model and Z(x) is the stochastic process 

with zero-mean, variance 𝜎2, and covariance [101] 

 

 𝐶𝑜𝑣[ 𝑧(𝑥𝑖), 𝑧(𝑥𝑗)] =  𝜎𝑧
2𝑅(𝑥𝑖, 𝑥𝑗) (2.44) 

 

where R (xi, xj) is the correlation function. Most commonly used correlation functions 

are an exponential function, Gauss function and Cubic-spline function. Expressions of 

correlation function can be found in Ryu et al. [102]. For a complex design problem, 

the kriging model has been shown to have a small oscillation and a better fitting 

compared to polynomial fitting. Many researchers employ kriging surrogate modeling 
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for a fast optimization in the literature, examples can be found in [103-107]. 

 

2.5.3.5 Genetic Programming (GP) 

Genetic programming methodology (GP) is an optimization technique that belongs to 

the Evolution Algorithm (EA) [106]. GP is not only capable of finding the optimal 

solution of the problem but also the better coefficient or operators of the surrogate 

model. The genetic programming code was first developed according to the guidelines 

provided by Koza [107], then implemented for symbolic regression tasks by Armani et 

al. [108]. This modeling method is based on Darwin’s evolution theory in which the 

species that fit the environment survive by the process of natural selection. Similar to 

the reproduction process of species, this modeling methodology starts with an initial 

user defined individual (surrogate model) including model data and operators. The 

computer program generates a number of populations iteratively by operations such as 

mutation and crossover etc., each generated individual will be examined by a fitness 

function, the one with better fitness to the given data will survive and finally the 

programming process stops if the output reaches the design criteria, such as number of 

populations or the model fitness. A typical tree structure used to represent an individual 

function in GP is shown in Figure 2.22. This individual representing a mathematical 

expression of  (
𝑥1

𝑥2
+ 𝑥3)

2

, the subtree structures will be varied during the modeling 

procedure and the one with better fitness rank will survive and pass to the new 

generation. 
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Figure 2.22. Typical tree structure for (
𝑥1

𝑥2
+ 𝑥3)

2

. 

 

The process of the GP methodology can be concluded and schematically shown in 

Figure 2.23. More details and implementations about genetic programming can be 

found in Armani [109]. 
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Figure 2.23. A flowchart of Genetic Programming methodology. 

 

Since the GP surrogate modeling technique has the advantage of easy handling, and the 

surrogate model is inexpensive to evaluate, the GP method will be employed in this 

research for surrogate modeling in order to approximate the relation between the output 

of the FEM and design variables of the PFT energy harvester. 
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There are many successful engineering designs that employ surrogate modeling in the 

literature. Examples include: Kim et al. [110] employed the kriging surrogate modeling 

method to maximize the electrical power output of the piezoelectric cantilevered energy 

harvester. The kriging surrogate model was constructed by optimal Latin Hypercube 

(OLH) sampling to approximate the relation between selected geometric parameters 

and the electrical power, natural frequency and mass. The model predicted the optimal 

design successfully which has 208.02% improvement compared to the original design. 

Cappelleri et al. [111] optimize the tip force and deflection of a thickness varying PZT 

bimorph actuator for minimally invasive surgery. The study approximates the global 

design space by using both response surface model and a kriging model, the kriging 

surrogate model shows the advantage of approximating the nonlinear problem in the 

study. With a Pareto frontier result given by the kriging model, the optimal design 

variables are selected for a sufficient performance of the device. Marcelin [112] 

introduced a numerical optimization approach that approximates the design problem by 

the neural network and the optimal solution is calculated using GA. The methodology 

is then demonstrated to optimize a car gearbox mechanism with 2 beams and 3 bearings 

for minimizing the deflection of the beams. Araújo et al. [113] estimate the elastic and 

material properties of the active plate structure with surface bonded piezoelectric 

patches by employing both artificial neural network (ANN) and numerical gradient-

based optimization methods. The aim of the study is to find the design parameters while 

the system operates at eigen-frequencies and to minimize the error between the FE 

model and experiment results. Both methods showed a good performance in the study 
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to estimate the parameters but the ANN is computationally more costly.  

 

2.5.4 Numerical optimization techniques 

After the engineering design problem has been approximated by surrogate models, the 

optimal design can be found by solving the problem with numerical optimization 

techniques. There are many approaches that can be used to solve the mathematical 

optimization problem. These approaches can be categorized into two types: the 

optimality criteria methods and the search method. The optimality criteria method finds 

the optimal solution based on the optimality criteria, while the search method finds the 

optimal result iteratively from a given starting point in the function. 

Most of the optimization techniques have been described by Arora [114]. This section 

will focus on the numerical optimization techniques that are commonly used to solve 

non-linear constrained design problems. Two optimal searching methods and a nature-

inspired method are introduced in the following, they are Sequential Linear 

Programming, Sequential Quadratic Programming, and Genetic Algorithm. 

Generally, the search methods that are used to solve nonlinear problems is to linearize 

the problem at a given design and consider the optimization problem at the current point 

as a linear subproblem. SLP is the numerical method that treats the subproblem of a 

given design point as a standard linear programming (LP) optimization subproblem. 

The given point moves to a new location by calculating the gradient and move step of 

the current point, then the LP process will be repeated.  

The linearization of the cost function and constraints of the problem are implemented 
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by employing the linear Taylor’s expansions, thus the linearized cost function and 

constraints of the problem at the design x with kth iteration are expressed as: 

 

Minimize 

 𝑓(𝑥𝑘 + Δ𝑥𝑘) ≅ 𝑓(𝑥𝑘) + ∇𝑓T(𝑥𝑘)Δ𝑥𝑘 (2.45) 

 

Subject to 

 ℎ𝑗(𝑥
𝑘 + Δ𝑥𝑘) ≅ ℎ𝑗(𝑥

𝑘) + ∇ℎ𝑗
T(𝑥𝑘)Δ𝑥𝑘 = 0; j = 1 to p (2.46) 

 𝑔𝑗(𝑥
𝑘 + Δ𝑥𝑘) ≅ 𝑔𝑗(𝑥

𝑘) + ∇𝑔𝑗
T(𝑥𝑘)Δ𝑥𝑘 ≤ 0; j = 1 to m (2.47) 

 

where 𝑓(𝑥) is the cost function, ℎ𝑗(𝑥) and 𝑔𝑗(𝑥) represent the equality constraint 

and inequality constraint, respectively. According to the Taylor’s expansions, ∇𝑓, ∇ℎ𝑗 

and ∇𝑔𝑗  are the gradients of the cost function, the equality constraint and the 

inequality constraint at the kth iteration, respectively. Δ𝑥 is the change of the design 

variable 𝑥. After the problem has been linearized, the minimization of the cost function 

becomes a problem of finding the Δ𝑥. 

 

2.5.4.1 Sequential Linear Programming (SLP) 

To find the optimal solution using SLP algorithm, the linearized subproblem is 

simplified as a linearized change of the cost function, which expressed in matrix form 

as follows: 
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Minimize 

 𝑓̅ =  cT d (2.48) 

 

Subject to  

 NTd = e (2.49) 

 ATd ≤ b (2.50) 

 

where the matrices c, N, A are the gradient matrix of the cost function, equality 

constraint and inequality constraint, respectively, d is the move step along the direction.   

The linearized LP subproblem can be solved by a standard Simplex method [114] which 

is commonly used to solve the LP problem. The procedure of the SLP algorithm can be 

concluded as following, 

1) Estimate a starting point with iteration k = 0 and set the permissible tolerance which 

is a small allowable distance between the current point and the new point. 

2) Calculate the value and gradient of the cost function and constraints at the starting 

point and define the LP subproblem with equation (2.45)-(2.47). 

3) Select a proper move limit for the searching procedure  

4) Solve the LP subproblem by the standard Simplex method to find the move step d. 

5) Check for convergence, stop if it satisfies the preset permissible tolerance, 

otherwise, continue. 

6) Update the starting design with the new design as a new iteration k+1, and go to 

step (2). 
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The SLP technique is a simple and direct approach to solve the optimization problem, 

however, this algorithm shows some disadvantages: 

• The optimal solution search by SLP may not converge to the minimum precisely, 

and the searching process may repeat between two points. 

• A proper move limit is required to be selected before the search process is executed. 

The move step can be found by a trial and error approach which may be time-

consuming. 

 

2.5.4.2 Sequential Quadratic Programming (SQP) 

To overcome the drawbacks of the SLP algorithm several derivative-based methods 

have been developed to solve the nonlinear optimization problem. The SQP is one of 

these derivative-based optimization techniques that is able to solve the problem with 

both equality and inequality constraints accurately and effectively. The main process of 

SQP is to approximate the cost function of the optimization problem using quadratic 

functions and to solve the quadratic subproblem iteratively until the optimization 

problem has been solved.  

The first and basic step of SQP is to approximate the cost function using a quadratic 

function and to formulate the linearized optimization problem into a QP subproblem.  

The approximation of the QP subproblem is expressed as: 

 

Minimize 

 𝑓̅ =  cT d + 
1

2
dTd (2.48) 
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Subject to  

 NTd = e (2.49) 

 ATd ≤ b (2.50) 

 

where matrices c, N, A are the gradient matrix of the cost function, equality constraint, 

and inequality constraint, vector d is the search direction. The factor of 
1

2
  with the 

second term in Eq. (2.48) is introduced to eliminate the factor of 2 during differentiation. 

Since the QP subproblem is formulated as a convex, the minimum point of the 

subproblem is unique and it can be found by solving the problem in different ways. The 

search direction d can be computed by solving the subproblem and the step size of the 

QP problem can be calculated as the minimization of the descent function. Thus, this 

technique is more popular than the SLP technique, since it can converge to the local 

optimal point faster. In this research, the SQP will be employed to find the optimal 

design of the PFT energy harvester after the design problem is approximated by 

surrogate models.  

 

2.5.4.3 Genetic Algorithm (GA) 

Owing to the complexity of the design problems, local optimization techniques are not 

able to guarantee finding a global optimal design of the nonlinear design problem when 

the problem has more than one local optimum. In this case, Global optimization 

techniques will be employed. 
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GA is one of the natural-inspired global optimization methods that are general and easy 

to handle. As per the previous description of the GP modeling technique, GA is also 

one of the classifications of EA, which is inspired by Darwin’s theory of evolution by 

natural selection. GA searches the optimal solution by the following steps, 1) start with 

a given initial design, 2) generate a set of design candidates within the design space, 3) 

evaluate the design randomly, 4) a subset of new designs is generated with a bias of 

selecting design variables that lead to a better result, 5) this optimization process stops 

if the design satisfies the preset criteria. The most important step in GA is the generation 

of new populations, this process is implemented by operation of reproduction, crossover, 

and mutation. Reproduction is the process that generates a new population from the 

previous one, by selecting the members that cause a better fitness during the evaluation. 

As a result, designs in the new population will show a better result compared to their 

parents. 

Crossover is the process that combines the characteristics between two different designs 

within the new population in order to further improve the result of the fitness function. 

The most popular methods of crossover are the one-cut-point and the two-cut-point 

method. The operation of crossover with the one-cut method is illustrated in Figure 2.24. 

x1 and x2 in Figure 2.24 (a) are two sets of design that are encoded into a binary string. 

The cut point is decided as 4 digits from the right end and the designs exchange base 

on this cut point. New designs are generated as Figure 2.24 (b) which is x1’ and x2’. 
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Figure 2.24 Crossover with one-cut point method. (a) Binary string before crossover 

(b) after crossover [114] 

 

Mutation is the operation that selects the member randomly from the new population 

and changes the value of the member. As an example, the binary string x1 shown in 

Figure 2.24 which has a value of 10 1110 1001. To execute the mutation process, one 

of the numbers will be selected and switch from 0 to 1 or vice versa. If the location 4 

from the left side is selected, x1 will become 10 1010 1001. The purpose of this 

operation is to prevent the loss of a better gene during the reproduction and crossover 

process.  

By its random search process, GA is able to find the global optimal within the given 

design space for all types of design problems, such as constrained and unconstrained 

problems. Thus, this method is easy to execute and it is a general global optimization 

technique. It is worth noting that to deal with the constrained problem using GA, the 

problem will be reformulated to an unconstrained problem by the penalty function. This 

optimization method will be employed in this research to find the global optimal 

solution while proceeding the multi-level surrogate modeling. 

 



94 

 

2.6 Summary 

In this chapter, the literature review of piezoelectric energy harvesting, including the 

mechanism of cantilevered type and cymbal type PEH, the development of novel PFT 

device and the recent optimization techniques have been discussed. The PFT has been 

developed with a higher standing force and it can be embedded into a shoe to harvest 

the bio-kinetic energy from human walking. However, the optimization of PFT in 

previous research employed the traditional one parameter each time methodology 

which changes one design parameter and keeps the remaining others constant. This 

method ignores the effects between different design parameters during the optimization 

process. In this research, the novel PFT device will be optimized by using the surrogate 

model assisted optimization techniques. The design parameters will be generated 

uniformly from the design space as input data and then analyzed by an FE model, and 

both input and output data will be used to construct surrogate models which are able to 

represent the behavior of the FEM. With the convenience of the surrogate model, the 

optimal design of PFT will be found efficiently by using mathematical optimization 

techniques. The result of optimization in this research will be compared with previous 

studies to prove that recent advanced optimization techniques have the advantages of 

efficiency and reliability. The optimized PFT energy harvester is expected to generate 

a higher power compared to previous studies.  

In the following chapter, the FEM of PFT will be further developed in order to improve 

its accuracy so that the error between the result of FEM and the experiment can be 

reduced. 
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Chapter 3  

Further development of the FE model of the PFT 

 

The aim of this chapter is to improve the accuracy of the existing finite element (FE) 

model of PFT by changing the size of the element (mesh size). As mentioned in the 

previous chapter, the results obtained by the FE model has a non-negligible error 

compared to the experimental results. This error can be explained by two main reasons, 

the first reason is the inaccuracy of the FE model itself with the large size of elements, 

which means the developed FE model has a coarse mesh. FE models with a large size 

of elements are capable of providing the results within a short computational time in 

the simulations, however, the inaccuracy of the FE models cannot predict the result 

accurately due to the lack of convergence. As a result, the cost of simulations to predict 

the performance of the designs, as well as the experimental validations may be 

prohibitive. The second reason for the error between the results of FE model and 

experiments is the inappropriate equipment used in the experiment. According to 

Daniels [10] who developed the FE model and validated it by experiments, the 

experiment employed a 20kN load cell to monitor the loading of 1kN on the PFT instead 

of using the 1.5kN load cell since the 1.5kN load cell was unavailable. The 20kN load 

cell had an unsuitable working force range for the experiment and thus the error had 

occurred. In this chapter, the first reason will be considered and the CPC-FEM will be 

further developed by improving its accuracy. 

FE models with a coarse mesh will cause the inaccuracy of the result, on the other hand, 
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decreasing the mesh size of the model leads to a relatively accurate model but a longer 

simulation time. The trade-off between model accuracy and the computational time of 

the FE model is needed to be considered before the use of the model. In this study, the 

accuracy of the FE model will be addressed by referring to three electrical output 

parameters including current, voltage and power, and the mechanical output parameter 

which the von mises stress of the endcaps. An appropriate mesh size and computational 

time will be selected based on the stability of the outputs. The improved FE model will 

be employed for the further study to optimize the power output of the PFT device. 

 

3.1 Convergence analysis of the developed PFT 

The developed FE model should converge to the experiment so that the model can be 

used to represent and predict the performance of the system. A good convergence of the 

FE model means the solution of the FE model is close to the solution of the experiment. 

Generally, increasing the accuracy of the FE model can be achieved by reducing the 

size of the element, however, reducing the size of the element will be penalized by a 

significant increase of computing time because the number of elements will be 

increased rapidly. The original FE model developed by Daniels [10] is shown in Figure 

3.1, this model includes 1101 elements and 6437 nodes. The size of its elements is 3 

mm3. The lack of convergence of the developed FE model has been mentioned in the 

previous chapter, results of this FE model have a large error compared to the 

experimental results. This error could be reduced with an appropriate mesh size.  

To analyze the convergence of the original FE model simulations will be executed with 
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the boundary conditions shown in Figure 3.1 and concluded as follows: 

• The fixed base is set at the bottom endcap  

• Distributed load is applied at the top endcap 

• The top and bottom surface of the piezoelectric plate are set as two electrodes 

• The load resistor is connected between two electrodes 

 

 

Figure 3.1. Mesh and boundary conditions of the original FE model. [10] 

 

As the solution of the FE model will be more accurate with a smaller size of elements, 

the solution of the FE model will be gradually approximated to the optimal value while 

reducing the size of the element. The convergence of the FE model is thus represented 

by the proximity of the result. Four output parameters are compared with different 

element sizes in this study to demonstrate the proximity of the FE model, including 

current, voltage, power output of the PFT device, and the von mises stress of the endcap. 

Electrical outputs are used to represent the performance of the device, and it is 

important to ensure the convergence as well as the von mises stress which are referred 
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as critical constraints of the design because it can accurately predict the failure of 

yielding for the selected endcap material austenitic stainless steel 304 and it had been 

employed in the previous research.  

Figure 3.2 shows how the von mises stress of the endcap varies while the element size 

of the FE model is reduced. In this figure, the element size of the FE model reduces 

from the original volume which is 3 mm3 to 1/8 of the original volume which is 3/8 

(0.375) mm3. The FE model with the element size of 0.375 mm3 is the most accurate 

FE model to approximate the PFT system in this study, the computational time for this 

model is more than 48 hours which is extremely time-consuming, thus, this value is 

used as the reference of output stability only. Outputs of the FE model will be closer to 

this value and the variance will be reduced while the size of the element is reduced to 

0.375 mm3. The purpose of this mesh refinement is to select an appropriate size of the 

element in order to find an FE model with acceptable accuracy and computational time. 

The FE model that is further developed in this chapter will be used to construct 

surrogate models for PFT optimization. As the surrogate modeling may be constructed 

by more than a hundred FEM simulation results with the selected FE model, the 

appropriate size of the element should be selected between the original mesh and the 

model with a final level of mesh refinement. 
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Figure 3.2 Von mises stress against level of mesh refinement. 

 

In this figure, five levels of mesh refinement have been listed and compared, the level 

of mesh refinement on the x-axis stands for the integer that is used to divide the original 

mesh size, for example, 1 stands for the original size of the element and 2 stands for 1/2 

of the original size. The von mises stress of the endcap is significantly increased 

between the first two levels of mesh refinement. This variation implies that the original 

mesh of the previous FE model is not accurately representing the PFT system because 

the results are not stable. When the size of elements decreases to level 4 and level 5, the 

value of output becomes gradually closer to the value of level 8 mesh refinement. 

Comparing levels 4 and 8 of mesh refinement, the FE model with an element size of 

3/4 mm3 has an acceptable error with the 8th level model. 

The computational time of the FE model is proportional to the number of elements, 

decreasing the size of the elements while the total volume of the model stays the same 

will increase the number of nodes and elements significantly. Table 3.1 lists the number 
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of nodes and elements of the FE model for the FEM of PFT with the different mesh 

refinements used in Figure 3.2. The increments in the number of elements are indicated. 

 

Table 3.1 Number of nodes and elements of the PFT FEM for different mesh 

refinements. 

Level of mesh 

refinements 

Number of nodes Number of 

elements 

Increment on number of 

elements 

1 6437 1101 - 

2 32636 6381 479.56% 

4 184305 39441 518.1% 

5 342096 75151 90.54% 

8 1317098 303121 303.35% 

 

The results in the table show that a small reduction in the element size is causing a 

significant increment in the number of elements and nodes, as well as the computational 

time. Although the FE model with level 5 mesh refinement will slightly reduce the error, 

it will significantly increase the computational time. For example, the computational 

time for FEM with level 4 mesh refinement will be approximately 30 minutes while 

FEM with level 5 mesh refinement will be approximately 120 minutes depend. In the 

following studies, the results from electric output against element size will be discussed 

to ensure that the selected FE model with level 4 mesh refinement is the suitable 

candidate for further study. 

The comparison of electric output against four different mesh sizes is shown in Figure 

3.3. The original size of the element is 3 mm3 and it reduces into a half each time until 

3/8 mm3. In order to find an appropriate mesh size, four levels of mesh refinement were 

tested and the size of the element was reduced to 1/8 of the original size. As in the study 
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above on the von mises stress, the level of mesh refinement is the integer used to divide 

the original size of the element. According to Table 3.1 level 5 mesh refinement has 

improved a little in accuracy but has significantly increased the computational time, 

thus the FE model with level 5 mesh refinement will not be compared in the electrical 

power outputs unless the electric output error of the FE model with level 4 mesh 

refinement is considered significant. 

The figures show that three types of electric outputs have a small degree of variation 

when the element size changes from the original size to level 2 mesh refinement. The 

variations become larger while the level of mesh refinement changes from 2 to 4, and 

eventually the errors between level 4 and level 8 become acceptable. These results 

shown that the FEM with level 1 and level 2 of mesh refinement have no capability to 

represent the behavior of the PFT device accurately. 
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(b) 

 

 

(c) 

Figure 3.3 Electric output against decreasing size of element: (a) power (b) voltage (c) 

current 

 

The numerical results of the three electric outputs are listed in Table 3.2. From this table, 

the variation of the outputs while changing the size of elements can be calculated. For 
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Levels 

Response type 

the electrical power shown in Figure 3.3(a), the output has increased 4.382*10-5W 

(0.812%) when the size of the element decreases from level 1 to level 2, and it has a 

increment of 2.928*10-4W (5.382%) when the mesh size decreased to level 4 of mesh 

refinement, finally, the output has a small increment of 7.6*10-7W (0.013%) between 

mesh refinement of level 4 and level 8.  

 

Table 3.2 Numerical results of FE model against decreasing size of element 

 power (W) voltage (V) current (I) 

1 0.00539621 -240.518 -2.40518E-05 

2 0.00544003 -242.158 -2.42158E-05 

4 0.00573282 -250.425 -2.50425E-05 

8 0.00573358 -250.34 -2.50340E-05 

 

Similar trends appear in the results of output voltage and current, Figure 3.3(b) shows 

that the magnitude of the voltage increases from 240.518V to 242.158V (0.682%) when 

the mesh size decreases from level 1 to level 2, then it increases to 250.425V at level 4 

with a variation of 3.414% and the FE model becomes more stable, and it has a small 

error of 0.03% compared to the FE model with mesh refinement of level 8. Figure 3.3(c) 

indicates the variation of output current. Similar to the output voltage, it has a variation 

of 0.682% when the element size reduces to 1/2 of the original size. Then the variation 

become 3.414% and 0.03% at the next level and the final level of mesh refinement, 

respectively.  

For better comparison, the magnitudes of the variations of the three electric outputs 

when reducing the size of elements are plotted in Figure 3.4 and the numerical results 
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are listed in Table 3.3. This figure shows the variations of three different outputs 

including power, voltage and current, against the 3 times of variation. These variations 

are the comparison result with its previous mesh size, for example, the first variation 

representing the variation of the output when the size of elements reduced from the first 

level of mesh refinement to the second level. Three different output variations are 

showing a similar trend. From this figure, variations of electric output can be concluded 

as: 

• The largest variations of output parameters appear in the second time of variation 

when the element size decrease from level 2 to level 4 of mesh refinement. 

• The third time of variation which representing element size decrease from level 4 

to level 8 has the smallest variation. 

• Errors between the FE models with mesh refinement of level 4 and level 8 are less 

than 0.1%. 

 

Figure 3.4 variations of FEM analysis against time of variations. 
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Response type 

Time of variations 

Table 3.3 Variations of outputs on different mesh reductions. 

 

 

 

 

Power (%) Voltage (%) Current (%) 

1th 0.812 0.682 0.682 

2th 5.382 3.414 3.414 

3th 0.013 0.03 0.03 

As a result, the element size of 0.75 mm3 is selected as the appropriate mesh size. Using 

the appropriate size of elements, the FE model of PFT device has been created and 

shown as Figure 3.5 (b). This corrected FE model includes 39441 elements and 184305 

nodes, and the simulation of this FE model is around 30 minutes, depending on the 

geometries. Compared to the original FE model shown in Figure 3.5(a), this FE model 

with the appropriate mesh size is more precise and the computational time is acceptable. 

 

(a) 
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(b) 

Figure 3.5 FE model of PFT with (a) original mesh (b) appropriate mesh. 

 

3.2 Model validation 

As shown in the study above, the power output of the original FEM is acceptable. The 

developed FEM is thus validated by comparing the results with the original FEM 

instead of experiment. In order to validate the further developed CPC-FEM. The 

developed FEM in this study is tested using the same boundary conditions as the 

original FEM, which were noted in the previous chapter. The model is subjected to a 

uniform distributed load of 1kN with a vibration frequency of 2Hz on the top of the 

device. The power outputs and the von mises stresses of FEMs against the range of load 

resistor from 0.5MΩ to 10MΩ are plotted in Figure 3.6. The gray curves in the figures 

stands for the power output and von mises stress of the original FEM and the orange 

curve stands for the results of the current FEM which is developed in this study. 
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(a) 

 

(b) 

Figure 3.6 Comparison of the (a) power outputs (b) von mises stress from the current 

model and the original model. 

The results of power output between the original FEM and the current FEM closely 

correspond while there is an improvement of accuracy on the von mises stress. 

Therefore, the developed CPC-FEM will be used as the virtual experimental tool in the 

following surrogate model assisted optimization process to represent the behavior of 
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the PFT energy harvester and maximize the power output of the PFT. 

 

3.3 Summary 

In this study, four output parameters of the PFT have been considered in order to select 

the appropriate mesh size for the FE model of the PFT device, including von mises 

stress, electrical power, voltage and current. The outputs have gained a higher accuracy 

by decreasing the mesh size of the FE model while increasing the computational time. 

Comparing the results of four outputs against the mesh size has shown that the size of 

the element below 1/4 of the original size has an acceptable stability. Furthermore, the 

FE model with the size of element below 1/4 of the original size will be time-consuming. 

Thus, the appropriate size of the element should be 1/4 of the original size which is 0.75 

mm3.  

The mesh size of the developed FE model of PFT has been further developed with a 

higher accuracy but higher computational time. The appropriate size of the element has 

been selected to be 0.75 mm3. The corrected FE model will be used for further study to 

optimize the geometric parameters of the PFT energy harvester. 
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Chapter 4  

Surrogate model assisted design optimization of the 

PFT  

 

In the previous study, the developed FE model of PFT was enhanced by selecting an 

appropriate size for the element. The new FE model of PFT has been created for the 

purpose of optimizing the geometric parameters of PFT with higher accuracy. In this 

chapter, 7 parameters are selected as design variables including 6 geometric parameters 

and the load resistor. The optimization for PFT employed surrogate models to replace 

the time-consuming FEM simulation. In order to achieve the replacement, first the 

surrogate model is created by uniform sampling over the design space using Latin 

hypercube DOE, then the surrogate model is constructed by Genetic Programming. 

After the surrogate model is converged with the FEA, the local optimal design will be 

searched by Sequential Quadratic Programming technique, and finally the optimal 

result will be verified by the modified FE model. The solution has shown that the 

magnitude of the electrical power generated from the optimal design in this study can 

be up to 6.5 mW with the safety design factor of 2.0 applied. 

 

4.1 Problem description 

The developed PFT energy harvester consists of a piezoelectric plate, two substrate 

layers and two metal endcaps. The CAD sketch, with its selected geometric parameters, 

is shown in Figure 4.1. The device is designed to harvest bio-kinetic energy from human 
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footfall. The mechanism of the endcaps is to transfer a part of the vertical load into a 

horizontal load, thereby improving the power output of the device based on the poling 

direction of the piezoelectric plate. The geometric parameters of the PFT shown in the 

figure were selected by the previous researcher for the purpose of generating a higher 

electrical power. The parameters of the PFT are selected by the traditional optimization 

technique which varies one parameter at a time. The study shows that the power output 

of the PFT has been improved successfully by 27% compared to the original design. 

However, this technique considers only the optimum of each parameter and ignores the 

effect between parameters, thus this technique is not suitable for multiparameter design 

problems. To optimize the PFT device with several design variables in this study, 

surrogate models are employed to approximate the behavior of the PFT within the 

design space, and the optimal design will be found using the mathematical optimization 

technique. The optimization problem is described below. 

 

Figure 4.1 CAD sketch and dimensions of the developed PFT 

 

To improve the power generation of the novel PFT energy harvester, 6 geometric 
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parameters and the load resistor are selected as design variables. As shown in figure 4.2, 

these geometric parameters are: cavity length (Dc), apex length (Da), the endcap 

internal angle (θ), the respective thicknesses of the piezoelectric plate (tp), the substrate 

layer (ts), and the endcap (tc). Two geometric parameters are kept constant during the 

optimization process, they are the total length (D=52mm) and the width (W=30mm).  

 

Figure 4.2 Geometric design parameters of the PFT to be optimized 

 

Other geometric parameters can be defined as a function of design variables, i.e. the 

joint length (J) can be defined by the total length and the cavity length with the 

following equation: 

 

 J= 
𝐷−𝐷𝑐

2
 (4.1) 

 

Also, the endcap height (H) is defined as a function of cavity length (Dc), the apex 

length (Da) and the internal angle of the endcap (θ), as represented in the following 

equation: 
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 H = 
𝐷𝑐−𝐷𝑎

2
 tan 𝜃 (4.2) 

 

During the design process, seven design variables are constrained by their minimum 

and maximum limit. These limits are selected by manufacture restraints and design 

experience and they are listed in Table 4.1. 

 

Table 4.1 Boundaries of Design variables 

DVs Lower Boundary Upper Boundary 

Thickness of PZT, tp (mm) 0.5 9 

Thickness of substrate, ts (mm) 0.6 0.9 

Thickness of endcap, tc (mm) 0.5 4 

Length of cavity, Dc (mm) 25 40 

Length of apex, Da (mm) 9.8 18.2 

Internal angle, θ (deg) 5 45 

Resistive loads, R (MΩ) 1 19 

 

Furthermore, constraints of the design process, including the displacement of the 

endcap and the von mises stress, are also considered. The design of the PFT device will 

be identified as a failure when the output parameters meet the critical threshold levels. 

For this study, failure will occur when: 

• The displacement of the endcap is larger than the height of the endcap (H), in which 

case the metal endcap will reach the surface of the substrate layer; 

• The von mises stress exceeds the yield stress of the material. 

Consequently, the optimization problem of maximizing the power output of the PFT 

device can be defined as: 

 



113 

 

 Max 𝑃    (4.3) 

 

Subject to: 

 
𝐷𝑑𝑖𝑠𝑝

𝐻
 < 1 (4.4) 

 

 

 
𝜎𝑚

𝜎𝑦
≤ 0.5 (4.5) 

 

where P is the non-dimensional electrical power and it is normalized by the maximum 

electrical power amongst all the designs during the sampling process in this study. This 

rule is also employed to calculate the normalized von mises stress and displacement in 

the optimization process, where the normalized von mises stress is normalized by the 

yield stress and the normalized apex displacement normalized by the height of the apex 

H. Ddisp is the displacement of the apex, 𝜎𝑦 is the yield stress of the endcap material 

and 𝜎𝑚 is the von mises stress in the endcap component. Thus, equation (4.4) is the 

constraint for the apex displacement which indicates that the displacement should not 

be larger than the height of the endcap. Equation (4.5) implies that the von mises stress 

should not exceed half of the yield stress where the safety factor of 2.0 is applied. In 

the CPC-FEM, the piezoelectric material is polarized and the resistor is connected 

ideally, the electric failure criteria is thus not considered in this study. 
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4.2 Latin hypercube Design of Experiment 

In order to create a surrogate model to approximate the expensive FEA to optimize the 

engineering design, the first step is to select samples from the design space. Design of 

Experiment is often employed at this stage, however, the selection of the DoE technique 

will affect the quality of the surrogate model and the efficiency of the modeling process. 

DoE techniques with a large amount of sampling output will be time-consuming for the 

FE simulation, while the surrogate model will not converge to the FEA with the lack of 

sampling points. As mentioned in the previous chapter, the corrected FE model will cost 

approximately thirty minutes for each simulation depending on the number of elements 

and nodes, thus, selecting the DoE technique properly is necessary for this study to 

create the surrogate model efficiently. 

The Latin hypercube DoE technique is based on the use of the Audze-Eglais optimality 

criterion [115] which is employed for uniform sampling and is selected for this study. 

The main principles in this approach can be concluded as follows: 

• The number of the set of design variables (same for each design variable) is 

equal to the number of experiments and for each set of the design variable, there 

is only one experiment allowed; 

• The points corresponding to the experiments are distributed as uniformly as 

possible in the domain of design space where each design parameter is defined 

with the independent co-ordinate system. As a result, the distance between two 

neighboring points, e.g., points p and q representing two different sets of designs, 

can be calculated as Euclidean distance using a Pythagorean formula. There is 
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a physical analogy of the Audze-Eglais optimality criterion with the minimum 

of potential energy of repulsive forces for a set of points of unit mass, if the 

magnitude of these repulsive forces is inversely proportional to the squared 

distance between the points. 

As a result, one has 

 

 
min

1

1 1
2

→= 
= +=

P

p

P

pq pqL
U

 

(4.6) 

 

where P is the total number of points, Lpq is the distance between points p and q (p≠q). 

Minimizing U produces a system (DoE) where points are distributed as uniformly as 

possible in the design space.  

According to this Latin hypercube DoE, and to optimize the performance of the PFT in 

this study, 140 designs are uniformly sampled over the design space. Figure 4.3 shows 

the uniform distribution of 140 DoE sampling. The y-axis represents the minimum 

distance with respect to the Euclidean distance. The bars in the figure with similar value 

indicate the uniform distribution of the sampling points. 
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Figure 4.3 Minimum distances between points in 140–point optimal Latin hypercube 

(OLH) DoE 

 

4.3 Building surrogate models by Genetic Programming 

The 140 sampled points with DoE are then analyzed by using the further developed 

CPC-FEM. Responses of the FEA are the electrical power, voltage, current of the load 

resistor, von mises stress of the endcap and the vertical displacement of the top apex. 

Data are collected, and surrogate models related to electrical power, von mises stress, 

and apex displacement are created by GP which was described in Chapter 2. As an 

example, the expression for the normalized von mises stress created by GP with 7 

design variables is: 
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𝜎𝑚

= 0.2614 − 0.01449𝑍3 + 0.002264𝑍4 −
0.0027𝑍5

𝑍1
+ 

1.92𝑍5

𝑍2𝑍4
2

− 
9.429𝑍5

𝑍4𝑍6
− 0.0028𝑍6

+ 
0.002746 (−2.71206𝑍4 − 

3.10105𝑍3𝑍4

𝑍2
+ 1.64421𝑍6)

𝑍3
2

+
0.00000634𝑍6
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𝑍2
6𝑍3
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3.48637𝑍1𝑍3
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7 − 
0.3615Z6Z7
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)） 

 

(4.7) 

 

where 𝑍1 to 𝑍7 are corresponding to the 7 design variables listed in Table 4.1, for 

example, 𝑍1 is the thickness of the PZT and 𝑍2 is the thickness of the substrate layer. 

Three surrogate models representing the output electrical power, von mises stress and 

displacement of apex are listed in Appendix B. 

A graphical representation of the quality of the fit of the GP approximation for the 

normalized von mises stress is shown in Figure 4.4. The horizontal axis represents the 

training (measure) data and the vertical axis represents the predicted data. The point on 

the diagonal stands for a perfect fit. 
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Figure 4.4. Indications of the differences between the normalized von mises stress 

response (predicted) and the training data (measured) 

 

4.4 Optimal design search by Sequential Quadratic Programming (SQP) 

In this study, the optimal design of the built surrogate model is searched by the SQP 

numerical optimization technique. This technique is a popular method to solve 

nonlinear numerical problems since it has a high rate of convergence and its basis is 

easy to understand. The fundamentals of SQP were introduced in Chapter 2. Since the 

optimal result of SQP may descend to the local optimum, three different starting points 

are selected over the global design space. The optimal results with different starting 

points are listed in Table 4.2, where the three starting points are represented as design 

case one, design case two and design case three respectively.  
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Table 4.2 Optimal design by SQP with three different starting points. 

 

As a result, SQP with starting point under design case one and design case three has 

reached a maximum electrical power of 7.91mW, while the starting point under design 

case two has reached a local maximum design which has a smaller electrical power 

output. The optimal electrical power of 7.91mW shows a significant improvement 

compared to the original design. 

 

4.5 Optimal design verified by FEM 

The optimal design found by SQP in the previous subsection, has a predicted optimal 

electrical power output magnitude of 7.91mW which is 0.46 after being normalized by 

the highest power output of the design found during the sampling process. This result 

has a significant improvement compared to either the original design or the optimal 

design found by Daniels [10] which have been described previously. As the FEM is 

employed to predict the performance of the PFT, the optimal design found by the 

DV SQP 

Design Case one Design Case two Design Case three 

Z1 Thickness of PZT, tp (mm) 2.0 4.5 7.0 

Z2 Thickness of substrate, ts 

(mm) 

0.6 0.9 0.8 

Z3 Thickness of endcap, tc 

(mm) 

2.0 0.7 1.0 

Z4 Length of cavity, Dc (mm) 40.0 32.3 40.0 

Z5 Length of apex, Da (mm) 14.0 12.6 9.8 

Z6 Internal angle, θ (deg) 8.75 11.7 14.0 

Z7 Resistive loads, R (MΩ) 10.0 9.8 13.4 

electrical power (mW) 7.91 7.05 7.91 

von mises stress (MPa) 126 125 126 
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surrogate modeling assisted optimization process is thus verified by the FEM. 

Table 4.3 shows the outputs of the optimal result verified by FEM compared with the 

results predicted by SQP, the output of the original design before optimization, and 

optimal design found by Daniels [10].  

 

Table 4.3 Comparison of structural and electrical responses between four different 

designs. 

Structural response type Normalized 

electrical power 

Normalized von 

mises stress 

Normalized 

displacement 

 

Result before 

optimization [10] 

0.24 0.51 0.01 

Optimal result in previous 

research [10] 

0.33 0.50 0.01 

Predicted by surrogate 

model 

0.46 0.50 0.01 

Validation by FE analysis 0.38 0.49 0.009 

 

As shown in the table, the structural response of the optimal design from SQP 

converged well with the FEA results. The output analyzed by FEM has a difference of 

2% compared to the optimal design driven by the von mises stress with a safety factor 

of 2.0 which has a normalized von mises stress of 0.50. The normalized apex 

displacement output from FEA has a value of 0.009 which is slightly smaller than the 

predicted value (0.01) by SQP. This small error is acceptable as it is not the critical 

constraint in this design optimization problem. However, the electrical power obtained 

by FEA has a normalized value of 0.38 representing an electrical power of 6.5mW 

harvested from the PFT, which is 17% smaller than the predicted normalized value of 
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0.46. This discrepancy can be explained by the fact that the surrogate model created by 

GP with 140 sampling points is limited for a high accuracy. 

Compared to the previous research by Daniels [10], the optimized PFT has a normalized 

electrical power output of 0.33 (5.7mW). The optimal normalized electric output of 

0.38 (6.5mW) in this study has further improved the PFT by 15% by employing 

surrogate modeling optimization techniques. Furthermore, comparing the optimal result 

with the original design without optimization, this optimization has improved the power 

output of the original PFT from 0.24 (4.1mW) to 0.38 (6.5mW), representing an 

improvement of 58%. To compare the changes of the design variables, the design 

variables of the original design and the optimal design are listed in Table 4.4 

 

Table 4.4 Design variables of PFT device before and after optimization. 

Design 

variables 

Thickness 

of PZT, 

tp (mm) 

Thickness of 

substrate, ts 

(mm) 

Thickness 

of endcap, 

tc (mm) 

Length of 

cavity,  

Dc (mm) 

Length 

of apex, 

Da (mm) 

Internal 

angle, θ 

(deg) 

Resistive 

loads, R 

(MΩ) 

Original 

value 

4 0.6 2 40 14 15.07 10 

Optimal 

value 
9 0.6 1.8 40 10 16 18.5 

 

As shown in the table, the optimal design of the thickness of the PZT (tp) – 9mm – has 

reached its upper bound. The same observation applies to some other design variables, 

such as the length of the cavity (Dc) and the resistive load (R). However, the optimal 

values for the thickness of the substrate (ts) and the apex length (Da) are very close to 

the lower bounds. 
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4.6 Summary 

In this chapter, the surrogate model assisted optimization techniques have been 

employed for optimizing the geometric parameters of the novel PFT energy harvester 

in order to maximize the electrical power generation. The further developed FE model 

is used to analyze the structural and electrical outputs of the 140 uniformly generated 

designs from Latin hypercube DoE. The data from FEA is then collected and used to 

generate surrogate models which represent the relation between input and output 

parameters of the PFT over the defined design space. The surrogate models are created 

by GP and the optimal solution of the created models are searched by SQP. Finally, the 

optimal design found by the numerical optimization technique was validated using FEA. 

The optimal design obtained in this study has improved the electrical power output of 

the PFT energy harvester successfully. Compared to the original design, an 

improvement of 58% from the optimal design has been shown, and the magnitude of 

the electrical power generated from the optimal PFT energy harvester is up to 6.5 mW, 

subject to the safety factor of 2.0. It can be concluded that the surrogate modeling 

techniques assisted optimization approach is able to find the optimal design, is able to 

provide the designers with a wealth of information on the structural behavior and energy 

output and is able to find the optimal design of the novel PFT energy harvester with an 

acceptable accuracy. 
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Chapter 5  

Multi-level surrogate modeling strategy for design 

optimization of the PFT 

 

The optimal design of the PFT energy harvester has been successfully found by 

employing the surrogate modeling and optimization techniques in the previous chapter. 

To improve the electrical power output of the PFT, the optimization problem of the PFT 

was modeled by GP and the optimal design was searched for by the SQP, and the 

optimal design was validated by the FE model. The optimal design has a significant 

improvement compared to the original design, however, as shown in the previous 

chapter, there is a nonnegligible error of 17% between the numerical optimal solution 

by SQP and the FEA validation. The reason for the error is that the surrogate model 

built by 140 data among the large design space lacked accuracy. To construct surrogate 

models with high accuracy among the design space with 7 design variables will be time-

consuming and impractical, for example, a full factorial design of experiments with 7 

design variables and 3 levels of each variable results in 2187 points for analyzing. To 

create a surrogate model with high accuracy with a limited number of computer 

experiments is a significant problem in engineering optimization. In this chapter, a 

multi-level surrogate modeling strategy is developed which is able to reduce this error 

and improve the accuracy of the surrogate model efficiently. The PFT energy harvester 

is then optimized by the surrogate models with improved accuracy and the numerical 

result will be validated by FEA. In order to show the advantages of the multi-level 
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surrogate model optimization method, the result will be compared with results predicted 

by other optimization methods. 

 

2.4  Advanced sampling strategy for constructing surrogate models 

As mentioned in the previous chapter, surrogate model assisted design optimization 

techniques are necessary for solving multivariable engineering design problems. When 

employing surrogate models to approximate the design problem, the convergence of 

the optimal solution is highly dependent on the accuracy of the surrogate model, while 

the accuracy of the surrogate model and the efficiency for constructing the model is 

dependent on the mode of data sampling or the selection of DoEs. The fundamentals of 

DoE were reviewed in Chapter 2. To construct surrogate models efficiently, advanced 

sampling techniques are often employed in the literature. One example of engineering 

design problems where the employed surrogate model fails to approximate the global 

optimum is given by Forrester et al. [116] and it is shown in Figure 5.1. The design 

problem was approximated by the Radial Basis Function (RBF) which is one of the 

mathematical modeling method that only based on the distance of the origin. This 

model constructed by the sampled points with an efficient infill sampling strategy. The 

true function with the expression of f(x) = (6x-2)2sin(12x - 4) is plotted by the solid 

curve and the RBF surrogate model is plotted by the dotted curve in the figure. This 

sampling strategy has two phases, an initial sampling phase and an infill sampling phase. 

The initial sampling phase has 3 sampled data which are equally assigned at both ends 

and the middle of the design space, then, the gradients of the initial sampled points are 
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calculated. According to the gradients of the initial sampling data, the infill points are 

assigned to the vicinity of the local minimum of the model in the direction of descent. 

These infilled sampling points are indicated as ‘updates’ in the figure.  

 

Figure 5.1 Surrogate model using an infill points strategy descending to a local 

optimum [116] 

The failure of the optimal search solution in this example is caused by the inaccuracy 

of the true function approximation. It can be concluded that the exploration of the global 

design space with sufficient data is necessary to construct an accurate surrogate model. 

To overcome this drawback, the multi-level surrogate modeling strategy is introduced 

and demonstrated to solve the problem in this chapter. 

 

5.2 Multi-level surrogate modeling strategy 

To construct a surrogate model with sufficient accuracy from a limited number of 

computer experiments, a multi-level surrogate modeling strategy is introduced in this 

f(x) = (6x-2)2sin(12x - 4) 
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section. The multi-level surrogate model strategy includes two levels of modeling: the 

global level exploration and the local level exploitation. First, to construct the global-

level surrogate model, a sufficient number of uniform sampling points over the global 

design space is generated by employing the Latin Hypercube DoE. The global-level 

surrogate models are then built by GP. The global optimal solution of the global-level 

surrogate model is searched by the GA technique. Although the numerical solution from 

GA may have a large error compared to the FEM results in this step, the solution found 

by GA is able to reach the near-optimal solution. Then, the local-level surrogate models 

are constructed by uniformly sampled points from the vicinity of the global optimum. 

These uniformly distributed sampling points are generated by OLH DoE techniques 

with a smaller population but higher density compared to the sampling points for the 

global approximation. The procedure of the multi-level surrogate modeling strategy 

optimization is shown as the flowchart in Figure 5.2. Both levels of the surrogate 

modeling phase have a similar step, the only difference is the numerical optimization 

techniques employed for searching the optimal design. The optimal solution of the 

created high accuracy local-level surrogate models is searched by the SQP with its 

advantage of fast convergence. Finally, the optimal solution searched by the numerical 

technique is validated by FEA. If the result is not convergent with the FE model, the 

local exploitation will be re-executed. The main advantages of this multi-level surrogate 

modeling strategy optimization can be concluded as follows: 

• The modeling strategy is able to construct a high accuracy surrogate model 

efficiently around the optimal solution because the global design space can be 
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explored by a sufficient number of uniformly sampled points, while the vicinity of 

the global near-optimal design space is much smaller and it can be exploited with 

a small number of points. 

• The surrogate model can be rebuilt efficiently if the optimal solution searched by 

SQP is not convergent with the FEA results. Conventional single level surrogate 

model assisted optimization (e.g. the optimization method used in Chapter 4) will 

need to resample the global design space with a large number of sampling points if 

the optimal solution is not convergent with the FEA result and the global-level 

surrogate model will need to be reconstructed. This process is time-consuming, 

while the multi-level surrogate modeling method only needs to reconstruct the 

local-level surrogate model with a small amount of sampling points. 
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Figure 5.2 Flowchart showing the multilevel surrogate modeling strategy. 
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To demonstrate the use of the developed multi-level surrogate modeling strategy, the 

example given by Forrester et al. [116] is employed. Figure 5.3 shows a perfect fit 

between the surrogate model and the true function f(x) = (6x-2)2sin(12x - 4). To 

approximate the problem with one variable, first, 10 initial sampling points are used to 

explore the global design space. All sampled points are generated by OLH DoE 

technique since it should be uniformly distributed. The initial sampling points are 

indicated as blue squares in the function. In order to explore the design space, the 

number of the data points selected is sufficient. The near-optimal solution is then based 

around the point x = 0.8, and the vicinity of the near-optimal design space is exploited 

by 5 equally distributed data points which are indicated as infill samples in the figure. 

Although the population of infill sampling points is smaller than the initial sampling 

points, the density of the population is larger since the size of the design space has 

reduced. 

 

Figure 5.3 Demonstration of the developed multi-level surrogate modeling strategy. 
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By exploiting the near-optimal design space, a surrogate model with high accuracy will 

be constructed. In this strategy, the surrogate models are constructed by GP. The local 

optimal solution of the near-optimal space which is also the global optimum can be 

searched efficiently by the SQP technique. The multi-level surrogate modeling strategy 

has been demonstrated to have the advantage of efficiently constructing the surrogate 

model with high accuracy. This strategy is employed to optimize the PFT energy 

harvester in this chapter. 

 

5.3  Optimization of the PFT using a multi-level surrogate modeling 

strategy 

The developed multi-level surrogate modeling strategy optimization consists of 2 

optimization phases which are the global exploration phase and the local exploitation 

phase as has been explained in the last section. The procedures of both phases are 

similar and it can be considered as a single level surrogate model assisted optimization.  

This procedure has been explained in Chapter 4 and it can be summarized as follows: 

• Uniform sampling by DoE technique over the constrained design space; 

• Analyze the sampled designs by FEA and collect the data to construct surrogate 

models by GP; 

• Search the optimal solution based on the surrogate models using numerical 

optimization techniques; and 

• Validate the optimal design using the FE model. 

To maximized the electrical power output of the PFT energy harvester, 6 geometric 
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parameters and the load resistor are selected as design variables. Constraints of 7 design 

variables are selected according to engineering design experience and manufacturing 

restraints. The design problem and constraints are formulated as specified in equations 

(4.1) to (4.5). In contrast to the previous study, a safety factor of 1.0 is applied instead 

of 2.0 in order to further improve the electrical power output theoretically. Therefore, 

the equation (4.5) is replaced by: 

 

 
𝜎𝑚

𝜎𝑦
≤ 1 (5.1) 

 

For the global exploration, 140 designs which are uniformly distributed over the design 

space are generated by the OLH sampling technique. The minimum distance between 

the sampling points has been shown in Figure 4.3 of the previous Chapter. These 

designs are analyzed by the FE model and the analyzed data are collected by GP to 

construct the low accuracy surrogate model. The optimal design of the surrogate model 

is then searched using GA for global optimization. The global-level optimal design 

variables predicted by the surrogate model with GA and its result validation by FEA are 

listed in Table 5.1. The global optimal design is validated in this study in order to 

compare the difference of convergences between the global and local surrogate model 

so that the efficiency of the modeling strategy can be proved. 
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Table 5.1 Optimal design search by GA and its FEA validation. 

type of parameter predicted value FEA result 

Thickness of PZT, tp (mm) 9  

Thickness of substrate, ts (mm) 0.9  

Thickness of endcap, tc (mm) 0.5  

Length of cavity, Dc (mm) 40  

Length of apex, Da (mm) 10.68  

Internal angle, θ (deg) 14  

Resistive loads, R (MΩ) 13.5  

Normalized Electrical power 1.79 0.52 

Normalized von mises stress 0.88 0.94 

Normalized displacement 0.04 0.04 

 

As shown in the table, the optimal design predicted by GA has a maximum value with 

the length of the cavity (Dc), the thickness of PZT layer (tp) and the substrate layer (ts), 

while the thickness of endcaps (tc) has reached its minimum value. The predicted 

normalized electrical power has a value of 1.79 with the FEA validation showing a 

normalized power output of 0.52 which is 71% smaller. Although the normalized von 

mises stress (0.88) has a small error of 6.8% compared to the FEA result (0.94) and the 

normalized displacement appears the same, the global-level surrogate model is not 

accurate enough to predict the optimal solution for the system. However, according to 

the multi-level modeling strategy, this model has the ability to explore the landscape of 

the global design space and predict the relationship between the input and output of the 

design with sufficient accuracy and efficiency, as a result, the optimal solution of the 

global-level surrogate model is a near-optimal solution. The global optimal solution can 

be predicted by exploiting the local design space wherein the near-optimal solution is 

located. Based on the predicted optimal design variables listed in Table 5.1, the local 
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design boundaries of the 7 design variables are reselected and listed in Table 5.2. 

Compared to Table 4.1, the near-optimal local design space is much smaller than the 

global design space.  

 

Table 5.2 Bounds of 7 design variables for local exploitation. 

DVs Lower Boundary Upper Boundary 

Thickness of PZT, tp (mm) 7 9 

Thickness of substrate, ts (mm) 0.6 0.8 

Thickness of endcap, tc (mm) 0.5 1 

Length of cavity, Dc (mm) 38 40 

Length of apex, Da (mm) 9.8 14 

Internal angle, θ (deg) 10 15 

Resistive loads, R (MΩ) 10 19 

 

Based on the value in this table, 30 designs are uniformly generated among the local 

design space by using the OLH technique. In order to improve the quality of the local-

level surrogate models, the existing sampling points of the global-level surrogate 

modeling phase are correlated with the uniform distribution of the sampling points of 

the local-level surrogate modeling phase. As a result, one additional requirement has to 

be met in the local-level surrogate modelling phase, that is, the sampling points 

generated in the local-level surrogate modeling phase should be determined such that 

the distance between any local-level sampling point and the existing global-level 

sampling point satisfies Equation (4.6). 

The minimum distance between the 30-DoE data points is shown in Figure 5.4 which 

indicates a good uniform distribution of the samples. Although the number of sampled 

points is small compared to the initial 140 data-point sampling strategy for global 
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surrogate modeling, it may be used to exploit the local design space with sufficient 

accuracy.  

 

Figure 5.4 Minimum distances between points generated by OLH within the local 

design space. 

 

By analyzing the sampled designs using the FEM, the data is collected by GP for 

surrogate modeling. A local-level surrogate model is constructed to represent the 

relationship between input and output parameters in the local design space. The local-

level surrogate model with an increased accuracy compared to the global-level 

surrogate model can be used to predict the optimal design. The optimal solution of the 

constructed surrogate model is then searched by SQP with its advantage of fast 

convergence, and finally, the optimal solution is validated by FEA. The design 

predicted by SQP and its FEA validation are listed in Table 5.3. It can be seen that the 

error between the predicted result and the FEA result has significantly reduced and the 

local-level surrogate model is convergent with the FEA within the local design space. 
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Table 5.3 Optimal design search by SQP and its FEA validation. 

Type of parameter predicted value FEA results 

Thickness of PZT, tp (mm) 7  

Thickness of substrate, ts (mm) 0.6  

Thickness of endcap, tc (mm) 0.92  

Length of cavity, Dc (mm) 40  

Length of apex, Da (mm) 9.8  

Internal angle, θ (deg) 11.2  

Resistive loads, R (MΩ) 13.4  

Normalized Electrical power 0.97 0.99 

Normalized von mises stress 0.99 0.99 

Normalized displacement 0.04 0.04 

 

Compared to the predicted optimal variables in Table 5.1, the optimal design predicted 

by SQP in Table 5.3 with the local-level surrogate model has a reduced thickness of 

PZT and substrate layers, length of the apex and internal angle, while the thickness of 

the endcap increases. As shown in this table, both the normalized von mises stress of 

the endcap component and the normalized displacement have the same value which is 

0.99 and 0.04 respectively. The normalized electrical power predicted by the surrogate 

model, 0.97, has a small error of 2% compared to the FEA result of 0.99. The optimal 

normalized electrical power output of 0.99 representing an electrical power magnitude 

of 17.1mW has significantly improved the power output of the PFT energy harvester. 

It is concluded that by using the multilevel surrogate modeling strategy, not only can 

the optimal design of the PFT energy harvest be found efficiently, but also the accuracy 

of the surrogate model that is used to approximate the relationship between the input 

and output parameters has been improved. For a better comparison, optimal results 

predicted by 2 different phases using a multi-level surrogate modeling strategy and their 
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FEA validations have been listed in Table 5.4. In this table, the normalized electrical 

power predicted by the single (global) level surrogate model has an error of 244% 

compared to its FEA validation, while the multi (global-local) level surrogate model 

has an error of 2%. The 2 optimal results of this table from using different levels in the 

multilevel modeling strategy have shown that the errors of the predicted results have 

significantly reduced from the first (global) level optimization to the second (local) 

level optimization.  

 

Table 5.4 Optimal solution predicted by different phases in multi-level surrogate 

modeling strategy and validations. 

 Structural 

response type 

Normalized 

Electrical 

power 

Normalized 

von mises stress 

Normalized 

displacement 

Global level 

optimization  

Predicted by GA 1.79 0.88 0.04 

Validation by FEA 0.52 0.94 0.04 

Local level 

optimization 

Predicted by SQP 0.97 0.99 0.04 

Validation by FEA 0.99 0.99 0.04 

 

In order to prove this conclusion, an optimal design with SF of 2.0 has been found by 

using the multi-level surrogate model optimization method. The results are listed and 

compared in Table 5.5 with those found using a single-level surrogate model 

optimization method as detailed in Chapter 4. 

The first and the second row in Table 5.5 list the optimal results predicted by multilevel 

and single level surrogate model optimization method respectively. Two different 

optimization methods have predicted the same optimal designs, thus the FEA validation 
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of both predicted designs has the same value and has been listed in the third row of the 

table. The optimal normalized electrical power (0.46) predicted by the single-level 

surrogate model optimization method and the SQP technique with 3 different starting 

points in Chapter 4 shows an error of 17% compared to the FEA result (0.38). The 

predicted normalized von mises stress and the normalized displacement of both 

methodologies have the same error compared to the FEA value, while the optimal 

electrical power (0.39) predicted by the multilevel surrogate model has a close 

correspondence with its FEA validation (0.38). This comparison shows that the 

surrogate model, constructed using multi-level strategy, is able to predict the optimal 

design with higher accuracy compared to the single-level surrogate model. 

 

Table 5.5 Optimal solution with SF2 and original design. 

Designs Response type 

Normalized 

Electrical power 

Normalized von mises 

stress 

Normalized 

displacement 

Predicted by multi-level 

surrogate modeling strategy 

0.39 0.50 0.01 

Predicted by single-level 

surrogate model 

0.46 0.50 0.01 

Validation by FEA 0.38 0.49 0.009 

 

It can also be observed from Table 5.4 and 5.5 that by changing the safety factor from 

2.0 to 1.0, the normalized electrical power of the optimal design increases nonlinearly 

from 0.38 to 0.99. The electric output with an SF of 1.0 is more than twice that with an 

SF of 2.0. To see this observation more clearly an optimal design with an SF of 1.5 is 

found using a multi-level surrogate model. 3 optimal designs, subjected to an SF of 2.0, 
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1.5 and 1.0, as well as the original design before optimization are listed in Table 5.6. In 

this table, 7 design variables and the normalized electrical power (Pn) of different 

designs are listed and compared. In order to achieve a lower safety factor and a higher 

power output, the thickness of endcaps (tc) and internal angle (θ) are decreasing 

gradually, while the thickness of PZT (tp), substrate layers (ts) and the length of the apex 

(Da) are attaining their lowest allowable value.  

 

Table 5.6 Original design and optimal designs subjected to different SF. 

Design 

variables 

tp 

(mm) 

ts 

(mm) 

tc 

(mm) 

Dc 

(mm) 

Da 

(mm) 

θ 

(deg) 

R 

(M𝛺) 

Pn Power

(mW) 

Original 

design value 
4 0.6 2 40 14 8.75 10 0.33 5.7 

Optimum 

value (SF2) 
9 0.6 1.8 40 10 16 18.5 0.38 6.5 

Optimum 

value (SF1.5) 
7 0.6 1 40 9.8 14 13.4 0.58 9.9 

Optimum 

value (SF1) 
7 0.6 0.92 40 9.8 11.2 13.4 0.99 17.0 

 

Compared to the original design, the normalized electrical power (Pn) improved by 15%, 

76% and 200% when the optimal designs obtained by the multi-level surrogate model 

optimization were subjected to the SF of 2.0, 1.5 and 1.0 respectively. For a better 

comparison, 4 normalized electrical power outputs generated by different optimal 

designs in Table 5.6 are listed in Figure 5.5. The nonlinear improvement of the 

normalized electrical power is illustrated clearly. The second order polynomial curve 

shows a good fit with the 3 optimal designs. 
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Figure 5.5 Optimal results of the PFT device with different safety factors. 

 

It can also be concluded from the trend that the power output is more sensitive with a 

lower safety factor. With the same unit change of safety factor, there is a higher 

improvement in the power output that can be obtained when the safety factor is lower. 

Thus, lowering the safety factor is an important issue for design engineering to achieve 

a higher power output of the PFT device. However, different kinds of uncertainties 

always exist in the real-world design, such as parameter variations due to the fabrication 

process, temperature influence and vibrations. Uncertainties will affect the performance 

of the optimal designs. Conventional design engineering employs a safety factor to 

avoid the effects of real-world uncertainties, thus, lowering the safety factor without 

considering the effect of uncertainties may cause critical failures. In order to improve 

the quality of the design in this stage, an optimal design which is less sensitive to 

uncertainties will need to be found by design engineers. The sensitivity and reliability 

of the optimal designs obtained in this chapter under parametric uncertainties will be 
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discussed in the next chapter. 

 

5.4 Summary 

This chapter introduced and demonstrated the multi-level surrogate modeling strategy 

for constructing surrogate models to approximate efficiently the relationship between 

input and output parameters of an engineering system with high accuracy, then, the 

modeling strategy was used to optimize the novel PFT energy harvester. The modeling 

strategy constructs the surrogate model with 2 phases, the first phase is global 

exploration. In this phase, 140 designs were generated uniformly by Latin Hypercube 

DoE technique and analyzed by FEM. Both input and output data are collected and used 

to construct a global-level surrogate model by GP. This global level surrogate model 

has less accuracy in approximating the global design space but it has the ability to 

explore the landscape of the system. By solving the optimization problem with this 

surrogate model, the near-optimal solution of the system can be found. The optimal 

solution of the global-level surrogate model was searched by GA globally, and a local 

design space in which the optimal design is located was selected based on the near-

optimal design parameters. The second phase of the modeling strategy is local 

exploitation, the selected local design space was exploited by 30 uniform sampling 

points using OLH DoE. Similar steps were executed in this phase, the surrogate model 

was constructed by GP with the sampling points and the optimal solution found 

numerically by a SQP optimization technique. Finally, the optimal design was validated 

by FEA and the result closely matched. 
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By employing the multi-level surrogate modeling optimization technique, the power 

output of the PFT energy harvester was successfully improved. Optimal designs 

subjected to the safety factor of 2.0, 1.5, and 1.0 were found. The optimal design 

subjected to a SF of 2.0 was used to compare with that obtained by a single level 

surrogate model optimization method to show the advantages of highly accurate 

approximation given the multilevel surrogate model optimization method. 3 different 

optimal designs show the nonlinear improvement of the power output when lowering 

the safety factor. The power output of the PFT of the optimal design with a low safety 

factor shows a higher sensitivity. 

With the safety factor of 1.0 applied, the optimal solution shows a normalized electrical 

power of 0.99, which represents a 17.1mW of electrical power being generated from 

the optimal PFT. Theoretically, this result indicates a significant improvement 

compared to the original design, however, the design becomes unstable with a safety 

factor of 1.0 applied since uncertainties in the real-world will cause a critical failure. 

The effect of uncertainties will be studied in the next chapter. 
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Chapter 6  

Sensitivity and Reliability Analysis of the Optimal PFT 

 

The novel PFT energy harvester has been optimized successfully by employing an 

efficient multi-level surrogate modeling strategy in the last chapter. A significant 

improvement on the power output was obtained by theoretically applying a safety factor 

of 1.0 on the von mises stress in the study, however, maximizing the system output with 

a SF of 1.0 is impractical since uncertainties are unavoidable in real-world design, such 

as parameter tolerances, temperature, and vibration in the real-world environment. 

Conventional engineering design optimization applies different safety factors in order 

to avoid critical failures caused by the effect of uncertainties. As mentioned in the 

previous chapter, the power output of the PFT energy harvester can be significantly 

improved while decreasing the safety factor. Thus, it is worth investigating the effects 

of uncertainties on the optimal design in order to obtain a reliable design. In this chapter, 

the effects of uncertainties on the optimal PFT will be studied by employing surrogate 

models constructed in the previous chapter. Surrogate models are not only capable of 

predicting the optimal result, but also can be used for analyzing how the uncertainties 

will affect the system performance with the uncertainty propagated. The effects of 

variation of the geometric parameters of the PFT device will be considered in the study 

and it will be investigated by employing the well-known Monte Carlo Simulation (MCS) 

method. This simulation will be executed in MATLAB [117]. To study the effects of 

uncertainties, firstly, the optimal design variables of the PFT device obtained from the 
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deterministic optimization in the previous chapter are considered as the mean value of 

the design variables under uncertainties. Then, a set of random parameters are generated 

based on normal distributions which are defined by the mean values and selected 

standard deviations. The set of generated design parameters are used to imitate the 

parameter variation under uncertainties in the real world. Evaluating the set of design 

parameters using surrogate models which represent the relationship between the input 

and output parameters, the influence of parameter uncertainties on the optimal design 

can be analyzed.  

 

6.1 Uncertainty Analysis 

Before the effect of uncertainties can be analyzed, the first step is to define the design 

parameters which will be affected by uncertainties. In this study, the 7 design variables 

including 6 geometric parameters and the load resistance will be first considered for 2 

reasons. Firstly, the optimal design of the PFT was subjected to a low safety factor 

based on the von mises stress, critical failures may occur once the stress is larger than 

the yield stress of the materials. Geometric parameters are closely related to the von 

mises stress and thus it is necessary for them to be investigated. Secondly, surrogate 

models constructed in the previous chapter were based on 6 geometric parameters and 

the load resistor. It is convenient to investigate these design parameters since the 

process of constructing surrogate models with other design parameters is time-

consuming. Thus, 7 design variables, which were used to optimize the PFT in the 

previous chapters, are first considered in this study and other sources of uncertainties 
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will be discussed later. The optimal design of the PFT, obtained by the surrogate model 

assisted optimization method when subjected to a stress SF of 1.0, is shown in Figure 

6.1.  

As the previous study demonstrates, 6 geometric parameters, as well as the load resistor, 

are considered as design variables when optimizing the PFT device deterministically. 

These design variables may vary due to the temperature or strength of the 

manufacturing, etc. Thus, parametric uncertainties of 7 design variables will be 

investigated, including the load resistor (R), the cavity length (Dc), the apex length (Da), 

the endcap internal angle (θ), the respective thicknesses of the piezoelectric plate (tp), 

the substrate layer (ts), and the cap (tc).  

 

 

Figure 6.1 CAD of the PFT with optimal geometric parameters. 

 

The optimal design parameters obtained from the deterministic optimization are 

considered as the mean or nominal value under parametric uncertainties. These values 
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are listed in table 6.1. With the parametric uncertainties applied, the design parameters 

in the real-world are perturburbations around the nominal value. The next step of the 

MCS is to generate random samples based on the predefined probability distribute 

function (PDF), these generated designs are used to imitate the design variables under 

parametric uncertainties. In this study, the normal distribution is employed to generate 

random samples due to the analytical convenience and its tractability [118]. The 

standard deviations of the random samples are selected according to the coefficient of 

variance (COV) which represents the relative variation and the performance of the 

design variables under system uncertainties. The COV is expressed as the ratio of the 

standard deviation to the mean value which is: 

 

 COV =  
𝜎

𝜇
 (6.1) 

 

where σ is the standard deviation and μ is the mean value of the design variables. 

According to Madelon F. Zady [119], systems with COVs under 5% are considered as 

“good feeling” systems. The COV of 5% is thus selected to approximate the fabrication 

tolerance of a manufactured system. Using equation (6.1), the standard deviation of 7 

design variables are then calculated by the selected COV and listed in the column on 

the right end of Table 6.1. 
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Table 6.1 Optimal design variables of the PFT subject to a SF 1.0. 

dv optimal value standard deviation 

Thickness of PZT, tp (mm) 7 0.35 

Thickness of substrate, ts (mm) 0.6 0.03 

Thickness of endcap, tc (mm) 0.92 0.046 

Length of cavity, Dc (mm) 40 2 

Length of apex, Da (mm) 9.8 0.49 

Internal angle, θ (deg) 11.2 0.56 

Resistive loads, R (MΩ) 13.4 0.67 

 

6.2 Sensitivity analysis of the optimal PFT 

Based on the value list in the table, a set of random sample designs with the population 

of n = 5000 is then generated. Figure 6.2 (a)-(g) are the histograms of the generated 

samples with respect to the 7 design variables in the table. The design variables (dv) 

listed in Table 6.1 are denoted by “dv1” to “dv7” in the figures with respect to the order 

of the design variables in the table, for example, “dv1” in Figure 6.2 (a) denotes the 

thickness of the PZT layer (tp) and “dv2” denotes the thickness of substrate, etc. In these 

figures, the x-axes represent the values of the design parameters under uncertainties, 

while the y-axes represent the probabilities (p) of the values when the design variables 

are sampled based on the defined normal distribution.  

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

Figure 6.2 Histograms of the generated design parameters for the MCS. 
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These generated designs are then evaluated by the constructed multi-level surrogate 

models from Chapter 5. One significant observation using the MCS method is the 

correlations between design parameters and the system output parameters including the 

consideration of the effects between different input variables. In this case, the 

correlations between 7 design variables and the power output of the PFT energy 

harvester will be discussed first. By evaluating the generated design variables using the 

surrogate model that represents the relationship between output electrical power and 

the 7 design variables, the correlations of 7 design variable (dv1 to dv7) in Table 6.1 

and the output power are illustrated in Figure 6.3 from (a) to (g), respectively. These 

scatter plots show the output of the surrogate model against 5000 evaluations and a 

linear regression model that fit these data which indicates the relation between the 

design variable and the output power. The linear fitting of MATLAB employs the norm 

of residuals to evaluate the fitness of the linear regression, where the norm of residuals 

is the square root of the sum of squared residuals of the linear fit. The sum of squared 

residuals 𝑅2 can be defined using the residual variance from the fitted model: 

 

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 (6.2) 

 

where 𝑆𝑆𝑟𝑒𝑠𝑖𝑑 is the sum of the squared residuals from the model and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the 

sum of the squared differences from the mean of the dependent variable. As a result, 

the smaller magnitude of the norm of residuals indicates a better fit of the model and 

the linear regressions of the data are fitted by minimizing the norm of residuals. 
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The norm of residuals of the linear fittings are indicated below the figures. 

 

(a) Norm of residuals = 6.2768 

 

 

(b) Norm of residuals = 6.1212 

 

(c) Norm of residuals = 6.2017 
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(d) Norm of residuals = 6.2718 

 

(e) Norm of residuals = 6.5066 

 

(f) Norm of residuals = 4.0674 
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(g) Norm of residuals = 6.5158 

Figure 6.3 Scatter plots of the normalized electrical power against the perturbation of 

the design variables. 

 

In these figures, the magnitude of the influences of the design parameters on the system 

output can be represented by the gradients of the linear regression model. For example, 

the internal angle (dv6) is the most important design variable beyond the 7 DVs that 

affect the power output since the gradient of the fitting of its linear regression is the 

largest compared to the others, on the other hand, the load resistance has the least 

importance since the gradient of the linear regression model is close to 0. For a better 

comparison, the parameter influence of the 7 design variables on the power output is 

plotted in the tornado diagram in Figure 6.4. This diagram lists the design variables 

based on the magnitude of the influence of the parameter or the sensitivity of the design 

variable on the output parameter, e.g. the design variable that has the most importance 

to affect the system output (dv6) is listed on the first row of the diagram while the one 

with the least importance (dv7) is listed in the last row. The second, third, fourth, fifth 

and sixth most important variables to affect the system output are the thickness of the 

P
o
w

er
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W
) 
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substrate (dv2), the thickness of endcap (dv3), length of the cavity (dv4), the thickness 

of PZT (dv1) and the length of the apex (dv5), respectively. 

The tornado diagram plots both the parameter correlations and partial correlations 

between the input parameters and the output power in order to represent the influences 

of the parameters. The x-axis of the diagram indicates the magnitude of the correlation 

or partial correlation coefficient. Correlations between input and output parameters in 

MATLAB is calculated using the following mathematical expression: 

 

 
𝑟(𝑖, 𝑗) =  

𝐶(𝑖, 𝑗)

√𝐶(𝑖, 𝑖)𝐶(𝑗, 𝑗)
 

(6.3) 

 

where C is the covariance, 

 

 𝐶 =  𝑐𝑜𝑣(𝑥, 𝑦) 

                       = 𝐸[(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)] 

(6.4) 

 

The correlation between the design variables and the power output is shown as a yellow 

bar in the diagram, while the partial correlation which removes the effects between 

input parameters are shown as blue bars. The partial correlation coefficient can be 

calculated by the expression: 

 

 
𝑅𝑥𝑦(𝑧) =

𝑅𝑥𝑦 − 𝑅𝑥𝑧𝑅𝑦𝑧

√1 − 𝑅𝑥𝑧
2 √1 − 𝑅𝑦𝑧

2
 

(6.5) 
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where 𝑅𝑥𝑦(𝑧) represents the correlation between 2 input parameters x, y and the output 

parameter z. 𝑅𝑥𝑦, 𝑅𝑥𝑧 and 𝑅𝑦𝑧 is the correlation between parameters x, y; x, z and y, 

z respectively. 

When the influence of the parameter appears in the left-hand side of the diagram this 

indicates that the design parameter has a negative influence on the power output, that 

is, the value of the parameter is inversely proportional to the power output. Conversely, 

when the influence of the parameter appears in the right-hand side this indicates the 

positive influence of the design variable on the power output. 

 

 

Figure 6.4 Tornado diagram of the power output against the influence of 7 design 

variables. 

 

The diagram shows that the magnitudes of partial correlation coefficients are larger than 

the correlation coefficients. This implies that optimizing design parameters by ignoring 
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the effects between different design parameters, such as a methodology that involves 

varying one parameter at a time may mislead the decision-making of designers. 

It can be concluded from the figure that within the design space of the parameter 

perturbations, the power output can be increased by decreasing the internal angle (dv6), 

thickness of substrates (dv2), endcaps (dv3), the PZT layer (dv1), and the length of apex 

(dv5), or by increasing the value of length of cavity (dv4) and the load resistance (dv7). 

It is noted that dv7 has the lowest magnitude of a correlation which is close to 0 and a 

weak positive partial correlation. This indicates that the optimization process using SQP 

in Chapter 4 and Chapter 5 which involved varying multiple design variables at the 

same time may fail to further improve the power output. Increasing dv7 while keeping 

the remaining design variables the same may further increase the power output.  

However, since the optimal design was subjected to a safety factor of 1.0 with respect 

to the von mises stress of the device, varying the design variables may cause a yielding 

failure of the PFT. In order to analyze the feasibility of the design variables, a sensitivity 

analysis with the surrogate model which represents the relationship between input 

parameters and the von mises stress of the device is carried out by employing the MCS 

method. Figure 6.5 shows how the 7 design variables affect the normalized von mises 

stress of the PFT device. These figures include the scatter plots of the von mises stress 

against the value of design variables (dv1 to dv7) under uncertainties and the linear 

regression approximations of the data. The norm of residuals of the linear fittings is 

listed below the figures. 
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(a) Norm of residuals = 5.1303 

 

(b) Norm of residuals = 5.1301 

 

(c) Norm of residuals = 4.0551 
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(d) Norm of residuals = 5.1332 

 

(e) Norm of residuals = 5.0324 

 

(f) Norm of residuals = 3.5926 
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(g) Norm of residuals = 5.1323 

Figure 6.5 Scatter plots of the normalized von mises stress of the PFT against the 

values of design variables under uncertainties. 

 

It is shown in these figures that the thickness of the PZT (dv1), the substrate layer 

(dv2), the length of the cavity (dv4) and the load resistance (dv7) have few 

relationships with the von mises stress of the endcaps. The thickness of endcap (dv3) 

and the internal angle (dv6) have strong negative correlations, while the length of the 

apex (dv5) shows a strong positive correlation. For better comparison, the tornado 

diagram given in Figure 6.6 lists the correlations and partial correlation coefficients 

between the 7 design variables and the von mises stress of the endcaps. The design 

variables are listed according to the magnitude of the influence of the parameter. 
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Figure 6.6 Tornado diagram of the von mises stress against the influence of 7 design 

variables. 

 

It can be concluded from the two tornado diagrams (Figure 6.5 and Figure 6.6) that the 

thickness of the PZT layer (dv1), the endcap (dv3) and the internal angle (dv6) cannot 

be further decreased for the purpose of improving the power output because the von 

mises stress of the endcap is negatively correlated with these design variables so that 

the endcap will yield if they are decreased. Whereas the thickness of the substrate layers 

(dv2), and the length of the apex (dv5) can be reduced; and the length of the cavity (dv4) 

and the load resistance (dv7) can be increased without system failure. However, dv2, 

dv4, and dv5 have reached their boundary value. These boundary values were chosen 

by design experience and manufacturing restraints in previous studies. Thus, only the 

load resistance can be further increased without exceeding its feasible region.  

Another observation from the MCS is the sensitivity of the system output of the optimal 

design parameters under the parametric uncertainties. As the deterministic optimal 
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design parameters are considered as the mean value and the standard deviations are 

defined, the set of generated designs with design parameters based on the normal 

distribution can be used to imitate the parameter variation under the parametric 

uncertainties in the real-world design. The output variation due to the parametric 

uncertainties can be obtained by evaluating the generated set of designs. The histogram 

in Figure 6.7 shows the power output of the optimal PFT energy harvester under 

parametric uncertainties by evaluating the generated 5000 designs and the data 

approximated by a normal distribution function. This output data has the mean value of 

0.983 and a variance of 0.009 (standard deviation 0.095). The probability density 

function is then expressed as: 

 
ƒ(x |𝜇, 𝜎2) =  

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  
(6.6) 

 
= 

1

√2𝜋(0.009)
𝑒

−
(𝑥−0.983)2

2(0.009)  
 

 

Using equation (6.1), the COV of the output data can be calculated as 9.664%. As 

mentioned previously, the COV of the data which is less than 10% indicates that the 

sensitivity of the optimal design is acceptable. 
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Figure 6.7 Histogram and the normal distribution function fitting of normalized power 

output by the MCS method. 

 

However, the designs generated by the MCS method as input data in the sensitivity 

analysis for the power output did not consider the failure criteria of the designs. Thus, 

most of the generated designs beyond the normalized electrical power of 1.0 are not 

feasible because the designs may have yielded and the surrogate model representing the 

relationship between design parameters and electrical power is not able to predict 

yielding failure. 

With the consideration of design failure, the number of generated designs is infeasible, 

because the set of generated designs is perturbed around the optimal design which is 

subjected to the stress safety factor of 1.0. The following section will study the 

reliability of the optimal design under parametric uncertainties by analyzing the 

probability of failure (POF) for the generated designs. 
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6.3 Reliability-based optimization of the PFT 

With the parametric uncertainties propagated to the surrogate models, the number of 

the designs generated that are normally distributed around the optimal design are not 

feasible. Normally distributed designs based on the optimal design subjected to the 

stress safety factor of 1.0 may exceed the yield stress of the material, while the surrogate 

models representing the power output of the PFT device are not able to predict the von 

mises stress. In this study, the generated designs that exceed the yield stress are 

considered as failures. The reliability of the optimal design is then investigated via the 

probability of failure and the power output of the successful designs. The method of 

improving the design reliability will also be discussed. 

The von mises stresses of the generated designs using the MCS method can be 

computed by employing the surrogate model which represents the relationship between 

7 design variables and the von mises stress of the device. By evaluating the generated 

designs using this model, the von mises stresses of 2186 designs exceeded the yield 

stress of the endcap material. This indicates the POF of the optimal design subjected to 

a SF of 1.0 is 43.72%. 

As a result, by eliminating the failed designs from the histogram in Figure 6.7, the 

power outputs of the designs without failure are listed in Table 6.3. This table lists 6 

levels of the electrical power output, they are 100%, 90%, 80% 70%, 60%, and 50% of 

the optimal power output. The values of the power outputs are listed as well as the 

number of designs that reach different levels of power output and its probabilities. 



163 

 

 

Table 6.3 Probabilities of the power output of the generated designs that achieve 6 

different target values. 

Percentage 

of optimal 

power 

power 

generated 

(mW) 

Normalized 

power 

Num. of 

design 

probability 

>=100% 17.1 0.99 584 0.1168 

>=90% 15.39 0.891 684 0.1368 

>=80% 13.68 0.792 2779 0.5558 

>=70% 11.97 0.693 2814 0.5628 

>=60% 10.26 0.594 2814 0.5628 

>=50% 8.55 0.495 2814 0.5628 

 

As shown in the table, 11.68% of the generated designs reached the optimal output of 

17.1 mW. This indicates that the optimal design, which was subjected to a SF of 1.0, 

has a probability of 11.68% for producing the nominal value while subjected to 

parametric uncertainties. Furthermore, the generated designs that reach 90%, 80% and 

70% of the optimal power output have probability percentages of 13.68%, 55.58% and 

56.28%, respectively. All the successive designs without failure reached 70% of the 

optimal output. However, the total number of 2814 successive designs leads to a low 

quality of the product based on the optimal design. 

To overcome this situation, the reliability of the design can be improved by selecting 

new design variables that closed to the optimal design but reduce the von mises stress. 

According to the correlation coefficients between the 7 design variables and the von 

mises stress of the PFT listed in Figure 6.6, the design variables are varied by 5% away 

from its optimal value to reduce the von mises stress. Note that the constraints of the 

design variables defined in the previous study are also applied, therefore values 
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exceeding these constraints will not be selected. With this modification, the new design 

variables for improving the design reliability are listed in Table 6.4 as well as the 

standard deviations of each design variable subjected to parametric uncertainties which 

are calculated by the COV of 5%. The variations of the design variables compared to 

the original design are listed in the right-hand column. 

 

Table 6.4 Design parameters with improved reliability and their standard deviation 

under parametric uncertainties. 

dv mean value standard deviation variation 

Thickness of PZT, tp (mm) 7.35 0.3675 +5% 

Thickness of substrate, ts (mm) 0.6 0.03 0 

Thickness of endcap, tc (mm) 0.966 0.0483 +5% 

Length of cavity, Dc (mm) 40 2 0 

Length of apex, Da (mm) 9.8 0.49 0 

Internal angle, θ (deg) 11.76 0.59 +5% 

Resistive loads, R (MΩ) 14.07 0.7035 +5% 

 

As shown in the table, the thickness of the substrate, the length of the cavity and the 

length of the apex retain their optimal value because they are located in the boundaries 

and cannot be varied in order to improve the reliability. The other design variables are 

increased by 5%. As a result, the new design generates a nominal power output of 0.856 

which reduced the power output by 11.75%. 

Based on the new design variables and their standard deviation shown in the table, a set 

of 5000 designs is generated. The generated designs are first evaluated by the surrogate 

model which represents the relation between the 7 design variables and the von mises 

stress. The result shows that 378 designs failed by exceeding the yield stress of the 
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endcap material. Then the POF of the new design is calculated as 7.56% which indicates 

the degradation of 36.16% of the POF compared to the optimal design subjected to a 

SF of 1.0. 

The output of the successive designs is computed and listed in Table 6.5. Similarly to 

Table 6.3, the electrical power outputs are divided into 6 levels. The number and 

probabilities of the generated designs that reach the different levels are listed. For 

comparison, the 6 levels of output power are the same as the one used in Table 6.3. 

 

Table 6.5 Probabilities of the power output of new generated designs with improved 

reliability that achieve 6 different target values. 

Percentage of 

optimal power 

power generated 

(mW) 

Normalized 

power 

Num. of 

design 

probability 

>=100% 17.1 0.99 188 0.0376 

>=90% 15.39 0.891 235 0.047 

>=80% 13.68 0.792 3774 0.7548 

>=70% 11.97 0.693 4592 0.9184 

>=60% 10.26 0.594 4622 0.9244 

>=50% 8.55 0.495 4622 0.9244 

 

The results of the table show that there are 188 designs that are able to generate the 

optimal power output and 235 designs are able to generate 90% of the optimal power, 

with probabilities of 3.76% and 4.7% respectively. This indicates that the new design 

has less chance to generate the optimal power under parametric uncertainties. However, 

there are 3774 designs with a probability of 75.48% that generate 80% of the optimal 

power output. This indicates a 35.8% increment in the number of designs and 19.9% in 

the percentage of probability. Furthermore, 4592 and 4622 designs are able to generate 
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70% and 60% of the optimal power output, at a percentage probability of 91.84% and 

92.44% respectively. From this it can be concluded that most of the generated designs 

without failure are able to generate 70% of the optimal power and all of the generated 

designs are able to generate 60% of the optimal output. The new design with a reduction 

of the von mises stress has improved the reliability of the product while the generated 

power is close to the optimal output. 

 

6.4 Summary 

This chapter analyzed the sensitivity and reliability of the optimal PFT using the MCS 

method. In this method, the optimal design variables of the PFT subjected to a stress 

safety factor of 1.0 were considered as the nominal design variables. The optimal design 

parameters were considered as the mean values, and 5000 designs were generated based 

on the defined normal distribution with the mean values and the standard deviations 

calculated by a COV of 5%. Then the generated data were evaluated using the 

developed surrogate models which are able to represent the relation between the input 

and output parameters of the PFT system. The results of the MCS provided the 

parameter influence of each design parameter on the output parameters, the sensitivity 

of the output power and the reliability of the optimal design. It was shown that the 

optimal design of the PFT subject to a safety factor of 1.0 was unreliable under the 

parametric uncertainties with a POF of 43.72%. In order to improve the reliability of 

the device while keeping the output power as close to the optimal value as possible, 

new design parameters were selected based on the parameter influence on the design 
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variables and by varying the design variables 5% away from the optimal value to reduce 

the von mises stress. The reliability of the new design was then analyzed by the MCS 

method. The results showed that the new design has reduced the POF by 36.16% and 

the mean power output by 11.75%. 
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Chapter 7  

Conclusions and future work 

 

The main objective of this thesis was to optimize the geometric parameters of the novel 

PFT energy harvester in order to power the Bluetooth communication node with the 

employment of surrogate model assisted optimization techniques in order to maximize 

the power output of the energy harvester, and to investigate the sensitivity as well as 

the reliability of the optimal design under parametric uncertainties. In this chapter, the 

contributions of this thesis will be summarized and suggestions of future work with the 

PFT energy harvester will be given. 

 

7.1 Conclusions of the research  

This research was motivated by the work of Daniels [10] who developed the PFT energy 

harvester in order to scavenge the bio-kinetic energy from human gait and generate 

electrical power for the Bluetooth communication node which is able to operate with a 

range of power from 5mW to 18mW depending on the quality of signal. The researcher 

selected the geometric parameter and the material properties by varying one design 

variable at a time with the assistance of FEM. The obtained optimal design was able to 

generate an electrical power of 5.7mW with an external load of 1kN and a frequency of 

2Hz. This power output was able to be used by the Bluetooth communication signal 

node to generate a low quality of power. As the vary-one-parameter-a-time optimization 

method employed in the previous research has the disadvantage of ignoring the effects 
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between design variables, it was expected that the PFT energy harvester could be further 

optimized and the optimal power output of 17.1mW is able to used by the 

communication signal node and generate a high quality of signal. The objectives of this 

thesis will be summarized as follows. 

 

7.1.1 Improvement in accuracy of the developed CPC-FE model of the PFT 

The first objective of this research was to improve the accuracy of the developed CPC-

FEM which is able to approximate the performance of the PFT energy harvester. As a 

result of an ineligible error appearing in the previous study when comparing the FEA 

results with the experimental results, it was necessary to analyze and increase the 

accuracy of the FE model before it could be used in this research. Since the accuracy 

of the FEM strongly depends on the size of elements, further analysis of the FEM was 

carried out by decreasing the size of the elements. The accuracy of the FE model was 

based upon the stability of 5 output parameters which were the output current, voltage, 

electrical power of the system, the von mises stress and displacement of the endcaps. 

To select the appropriate accuracy of the FE model, the size of the elements was reduced 

gradually. Results showed that during the process of reducing the element size, the 

system output for the FE model with a large element size was not stable, and inversely, 

the output of the FE model with a finer mesh became less sensitive. However, the 

reduction in element size led to a significant increase in the number of elements and 

also the computational time. The trade-off between the accuracy of the model and the 

computational time was then discussed. 
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The results of the analysis showed that the power output of the FE model with an 

element size of less than 0.75mm3 has a sufficient accuracy and stability. Decreasing 

the size of the elements even further will not improve the accuracy but will instead 

increase the simulation time. As a result, the FE model with an element size of 0.75mm3 

was created. 

This further developed FE model for the PFT energy harvester is now able to 

approximate the performance of the PFT accurately via computer experiments. It can 

be used to replace the expensive prototype experiment of the PFT and reduce the costs 

of future studies, including the optimization of design parameters to generate a higher 

electrical power. 

 

7.1.2 Surrogate model assisted optimization of the PFT 

The second objective of this research was to create surrogate models that are able to 

represent the relationship between design parameters and the system outputs to 

approximate the performance of the PFT energy harvester. In this research, 6 geometric 

parameters and the load resistance were selected as design variables and used as input 

variables of surrogate models to represent the system output power, von mises stress, 

and displacement. To construct the surrogate model, the OLH DoE technique was 

employed to generate the uniformly distributed samples of input parameters within the 

defined design space. A set of designs with population of 140 were generated by the 

DoE and analyzed by the FEM. The analyzed data was collected by the GP surrogate 

modeling technique for constructing surrogate models. The 3 surrogate models 
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representing the electrical power, von mises stress and displacement related to 7 design 

variables. They were then created and validated by FEA showing a close match. The 

PFT was then optimized by a mathematical optimization technique with the surrogate 

models. The surrogate model representing the electrical power of the PFT was 

optimized by the SQP technique with different starting points. The optimal design 

which is able to generate a power of 6.5mW was found, subjected to a stress safety 

factor of 2.0 and validated by FEA with an acceptable but non-negligible error of 17%. 

Compared to the previous study which optimizes the PFT by one-factor-at-a-time 

methodology, the optimal design of the PFT energy harvester obtained by the surrogate 

model is able to generate 14% more electrical power. 

There are serval advantages to constructing surrogate models for future studies. Firstly, 

not only can the global optimal design of the system be obtained, but also the local 

optimal design of any local design space. Secondly, the investigation of the surrogate 

model is time-saving and economical compared to the FEM simulation. Last but not 

the least, the surrogate models provide a wealth information on the system performance 

to the designers, e.g. the sensitivity of the design system. 

 

7.1.3 Multi-level surrogate modeling method 

The third objective of this research was to improve the efficiency of the surrogate 

modeling process and the accuracy of the constructed surrogate models by employing 

a multi-level surrogate modeling technique 

This technique constructs the surrogate models by two different phases called global 
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exploration and local exploitation. Both phases involve the construction their own 

surrogate models. The global exploration employs OLH DoE to sample the global 

design space uniformly with a sufficient number of points. This phase allows the 

designer to explore the global design space coarsely and find the location of the near-

optimal vicinity. In this research to explore the global design space of the PFT energy 

harvester, 140 points were sampled within the global design space. The data analyzed 

by FEM were collected and used to construct global level surrogate models. These 

models approximate the system output coarsely and its global optimum was searched 

by GA. The result was a near-optimal solution and it was used to locate the near-optimal 

vicinity wherein the final optimum lies. Then, the local exploitation phase was used to 

exploit the near-optimal vicinity with 30 extra OLH DoE samplings. The local-level 

surrogate models were developed to approximate the system performance in the local 

design space and predict the optimal design with an improved accuracy. Optimal 

designs, subjected to different safety factors, were found and validated by their FEA 

results with close agreement. 

The multi-level surrogate modeling approach overcame the disadvantages of the single-

level surrogate modeling approach by the capacity of constructing efficiently surrogate 

models that have higher accuracy. For example, to construct single-level surrogate 

models with high accuracy over the global design space, a large number of sampling 

points from the global design space are necessary. This procedure is thus time-

consuming and time is wasted because the amount of sampled points is large while not 

all of the information of the global design space are useful for the designer, e.g. the 
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designs with low power generation. In multi-level surrogate modeling method, the 

constructed global-level surrogate models provide the landscape of the global design 

space with a sufficient number of sampling points, and the local design space can be 

exploited by constructing improved surrogate models with few extra samplings. Thus, 

the procedure of finding the optimal design by employing this surrogate modeling 

technique is more efficient and economic than the single-level surrogate modeling 

approach.  

 

7.1.4 Sensitivity and Reliability analysis of the optimal design 

To maximize the output of the PFT energy harvester, optimal designs subject to 

different safety factors were compared in this research. The results showed that 

decreasing the safety factor of the PFT device could significantly improve the power 

output. However, the optimal design with a low safety factor may be unreliable when 

subjected to the uncertainties of the real world. The uncertainties may cause the 

perturbation of design parameters which may lead to critical failures, in this case, the 

PFT device may encounter a yielding failure. Thus, the next objective of the research 

was the investigation of the sensitivity and reliability of the optimal design when 

subjected to a safety factor of 1.0. The MCS method was employed to implement the 

analysis. A set of designs with a population of 5000 was generated based on the normal 

distribution. The mean values of the generated samples were set as optimal design 

parameters and the standard deviation was selected by the COV of 5%. This input data 

was used to imitate the parameter perturbation of the design variables under the 
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parametric uncertainties in the real world. 

By evaluating the generated design variables, the results of the MCS provides the 

relationships between input and output parameters, the importance of input parameter 

regarding the system output sensitivity, and reliability to the designer. The analysis 

showed that the optimal design subjected to a stress safety factor of 1.0 is unreliable 

under parametric uncertainties because a large amount of the generated designs were 

infeasible as the von mises stress exceeded the yield stress of the material. The results 

showed that only 56.28% of the generated designs are feasible. To overcome this 

situation, the 7 design variables were reselected to reduce the von mises stress of the 

design based on the parameter influence obtained by the MCS. The reliability of the 

new design was analyzed and the results showed that the new design variables had 

improved the reliability successfully by reducing the POF of 36.16%, but the mean 

power of the design had been reduced by 11.75%. The small reduction of the power 

output leading to a large improvement in reliability shows the importance of reliability-

based optimization. 

 

7.2 Future work 

This section provides suggestions for future work that focuses on maximizing the power 

output and the quality of the PFT energy harvester. 

 

7.2.1 Further optimization of the PFT 

The first suggestion for future work is to further optimize the PFT energy harvester by 
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investigating other design parameters, including geometric parameters and material 

properties. Geometric parameters that could be considered in future studies include the 

total length (D), the joint length (J), etc. which were treated as constants in this research. 

Material properties for the PFT energy harvester used in this research were selected by 

one-parameter-at-a-time method in the study by Daniels [10]. The parameter selection 

improves the power output of the PFT but the methodology was conventional and it has 

the disadvantage of ignoring effects between input parameters. Material properties that 

should be optimized by surrogate model assisted optimization technique were defined 

and listed in Table 1.1 in this thesis. 

Furthermore, the shape of the PFT energy harvester could also be considered to make 

full use of the bio-kinetic energy from human walking. 

 

7.2.2 Reliability-based optimization 

The results of the sensitivity and reliability analysis in Chapter 6 in this research has 

shown that the generated samples of optimal design subjected to the safety factor of 1.0 

has a large number of failures under parametric uncertainties and thus only a few 

designs can achieve the target output. This situation implies that the optimal design is 

unreliable when subjected to the parametric uncertainties.  

A suggestion for future study is the reliability-based optimization for the PFT energy 

harvester. The aim of the reliability-based optimization is to improve the system 

reliability under uncertainties using the optimization process. 

Generally, the improvement of system reliability leads to the reduction of the nominal 
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power output of the PFT, as a result, the trade-off between power reduction and the 

system reliability will need to be considered. 

Design parameters that may be affected by uncertainties, including the design 

parameters which were considered in this research, the material properties and the 

geometric parameters mentioned above, could be further optimized. Furthermore, input 

parameters of the PFT energy harvester, including the magnitude and location of the 

external force, vibration frequency, the influence of temperature, the effect of fatigue, 

etc. may be subjected to uncertainties in the real world. 
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Appendix A 

Further development of CPC-FEM for PFT 

 

/CLEAR 

/PREP7 

/OUTPUT, TERM 

/UNITS, SI 

/SHOW 

BCSOPTION,,minimum 

/UNITS, SI 

mm=1e-3 

microns=1e-6 

eps_0=8.854e-12 ! Permittivity of free space 

kv=1000 

elec=40*mm 

Force=-1000 !applied force (N) 

Segment_arc=360 !Arc length of cymbal section (degree) CANNOT BE ZERO 

Segment_div=20 !section division for segment 

!___pft SIZE___ 

Fw=30*mm 

FS=0*mm !Fibre spacing 

PFTDepth=30*mm ! this depth help match the capacitance of PCT5 

Dp=52*mm 

tp=9*mm !Pzt Thickness 

sub=(0.6)*mm  

tc=1.8*mm 

Dc=40*mm 

Da=10*mm 

fillet_radius=3*mm 

J=(Dp-Dc)/2 !8 

*AFUN,DEG 

Hi=((Dc-Da)/2)*tan(16)  

Resistance= 18.5e6  

!|||||||||))) 

Fpl=Dc 

Fpw=PFTDepth 

Ft=tp 

meshsize=0.75*mm 

meshL=0.75*mm  

meshw=0.75*mm 

meshH=0.75*mm 

meshD=0.875*mm 
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!the following are to make things easier later on 

Ra=Da/2 

Rc=Dc/2 

Rp=Dp/2 

!Hi=(1.5)*mm 

Ho=Hi+tc 

tph=tp/2 

subh=sub/2 

pztlayers=2 

tpi=tp/pztlayers 

!******************************* 

! material reference number 

!******************************* 

!material 1 = cap 

!material 2= pzt 

!material 4= resistor 

!******************************* 

! material properties 

!******************************* 

! * Pzt DL-53HD 

! ANISOTROPIC ELASTIC STIFFNESS 

!K31 = 0.42 

s11=15.1E-12 

s12=-4.5E-12 

s13=-9.4E-12 

s33=24.8E-12 

s44=37.1E-12 

NIPZT=(S44/(2*S11))-1 

s66=39.2E-12 

!PERMITTIVITY constant stress 

ep11_T=3550 

ep33_T=3850 

dens_p=7900 

! PIEZOELECTRIC STRAIN COEFFICIENTS, C/N 

D15=810E-12 

D31=-300E-12 

D33=680E-12 

Q=20 

/NOPR 

/PREP7 

! * Caps Stainless Steel 304 Yeild 251MPa SF4 62.75MPa 70% max elogation at break 

dens_s=8030 ! Density in kg/m^3 

young_s=193e9 ! Young's modulus in Pa 

poiss_s=0.24 
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! * Caps Stainless Steel 304 Yeild 251MPa SF4 62.75MPa 70% max elogation at break 

dens_c=8030 ! Density in kg/m^3 

young_c=193e9 ! Young's modulus in Pa 

poiss_c=0.24 

! material declaration 

!******************************* 

!___CAPS___ 

MP, EX, 1, young_c 

MP, DENS, 1, dens_c 

MP, NUXY, 1, poiss_c 

!___SUBSTRATE___ 

MP, EX, 4, young_s 

MP, DENS, 4, dens_s 

MP, NUXY, 4, poiss_s 

TB,ANEL,2,,,1 ! ANISOTROPIC ELASTIC COMPLIANCE MATRIX 

TBDATA, 1, s11 

TBDATA, 2, s13 

TBDATA, 3, s12 

TBDATA, 7, s33 

TBDATA, 8, s13 

TBDATA, 12, s11 

TBDATA, 16, s44 

TBDATA, 19, s44 

TBDATA, 21, s66 

TB,PIEZ,2,,,1 ! PIEZOELECTRIC STRAIN MATRIX 

TBDATA, 2, d31 

TBDATA, 5, d33 

TBDATA, 8, d31 

TBDATA, 10, d15 

TBDATA, 15, d15 

TB,DPER,2,,,1 

TBDATA,1,EP11_t !AT CONSTANT STRESS 

TBDATA,2,EP33_t 

TBDATA,3,EP11_t 

MP,DENS,2,dens_p ! DENSITY kg/m^3 

TB,ANEL,3,,,1 ! ANISOTROPIC ELASTIC COMPLIANCE MATRIX 

TBDATA, 1, s11 

TBDATA, 2, s13 

TBDATA, 3, s12 

TBDATA, 7, s33 

TBDATA, 8, s13 

TBDATA, 12, s11 

TBDATA, 16, s44 

TBDATA, 19, s44 
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TBDATA, 21, s66 

TB,PIEZ,3,,,1 ! PIEZOELECTRIC STRAIN MATRIX 

TBDATA, 2, d31m 

TBDATA, 5, d33m 

TBDATA, 8, d31m 

TBDATA, 10, d15m 

TBDATA, 15, d15m 

TB,DPER,3,,,1 

TBDATA,1,EP11_t !AT CONSTANT STRESS 

TBDATA,2,EP33_t 

TBDATA,3,EP11_t 

MP,DENS,3,dens_p ! DENSITY kg/m^3 

!___ELEMENT TYPES___ 

ET,1,PLANE82 

ET,2,SOLID95 

ET,3,SOLID226,1001 

ET,4,CIRCU94,0 

!ET,5,CIRCU94,2 

!__Real Values assigned__ 

R,3,RESISTANCE 

R,5,0.01 

!******************************** 

! Modelling 

!******************************** 

!___DRAW Metal caps____ 

!_TOPCAP 

!apex 

KSEL,NONE 

ASEL,NONE 

k,,0,(tp/2)+Hi+SUB,-Ra 

k,,0,(tp/2)+Ho+SUB,-Ra 

k,,0,(tp/2)+Ho+SUB,Ra 

k,,0,(tp/2)+Hi+SUB,Ra 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

!rest of cap 

KSEL,NONE 

ASEL,NONE 

k,,0,tp/2+SUB,Rc 

k,,0,(tp/2)+SUB+tc,Rc 

k,,0,(tp/2)+SUB+tc,Rp 

k,,0,tp/2+SUB,Rp 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 
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KSEL,NONE 

k,,0,(tp/2)+SUB+Hi,Ra 

k,,0,(tp/2)+SUB+Ho,Ra 

k,,0,(tp/2)+SUB+tc,Rc 

k,,0,tp/2+SUB,Rc 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

ARSYM,Z,ALL 

!_BOTCAP 

!apex 

KSEL,NONE 

ASEL,NONE 

k,,0,-((tp/2)+Hi+SUB),-Ra 

k,,0,-((tp/2)+Ho+SUB),-Ra 

k,,0,-((tp/2)+Ho+SUB),Ra 

k,,0,-((tp/2)+Hi+SUB),Ra 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

!rest of cap 

ASEL,NONE 

KSEL,NONE 

k,,0,-((tp/2)+SUB),Rc 

k,,0,-((tp/2)+tc+SUB),Rc 

k,,0,-((tp/2)+tc+SUB),Rp 

k,,0,-(tp/2+SUB),Rp 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

KSEL,NONE 

k,,0,-((tp/2)+Hi+SUB),Ra 

k,,0,-((tp/2)+Ho+SUB),Ra 

k,,0,-((tp/2)+tc+SUB),Rc 

k,,0,-(tp/2+SUB),Rc 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

ARSYM,Z,ALL 

ALLS 

VEXT,ALL,,,PFTDepth 

! lengthways seed 

LSEL,S,LINE,,50 

LSEL,A,LINE,,92 

LSEL,A,LINE,,66 

LSEL,A,LINE,,108 

LPLOT 

LESIZE,ALL,MESHL 
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LSEL,S,LINE,,42 

LSEL,A,LINE,,84 

LPLOT 

LESIZE,ALL,MESHD 

! widthways seed 

LSEL,S,LINE,,55 

LSEL,A,LINE,,63 

LSEL,A,LINE,,62 

LSEL,A,LINE,,80 

LSEL,A,LINE,,72 

LSEL,A,LINE,,71 

LSEL,A,LINE,,47 

LSEL,a,LINE,,96 

LSEL,A,LINE,,104 

LSEL,A,LINE,,101 

LSEL,A,LINE,,117 

LSEL,A,LINE,,118 

LSEL,A,LINE,,110 

LSEL,A,LINE,,88 

LPLOT 

LESIZE,ALL,MESHW 

! mesh caps 

ESIZE,meshsize 

VATT,1,,2 !num is material then el type 

vmesh,all 

CM,caps,VOLU 

cm,caps,elem 

CMSEL,S,caps 

CM,CAPSN,NODE 

ALLS 

EPLOT 

!__DRAW PZT LAYERS  

Lsel,none 

KSEL,NONE 

ASEL,NONE 

NSEL,NONE 

ESEL,NONE 

VSEL,NONE 

CMSEL,NONE 

!PZT 

k,,0,+(tp/2),-Rp 

k,,0,+(tp/2),Rp 

k,,0,-(tp/2),Rp 

k,,0,-(tp/2),-Rp 
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*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

VEXT,ALL,,,PFTDepth 

LSEL,S,LINE,,121 

LSEL,A,LINE,,123 

LSEL,A,LINE,,125 

LSEL,A,LINE,,127 

LSEL,A,LINE,,130 

LSEL,A,LINE,,131 

LSEL,A,LINE,,129 

LSEL,a,LINE,,132 

LSEL,A,LINE,,128 

LSEL,A,LINE,,124 

LSEL,A,LINE,,122 

LSEL,A,LINE,,126 

LPLOT 

LESIZE,ALL,MESHL 

ESIZE,meshsize 

VATT,2,,3 !num is material then el type 

vmesh,all 

CM,PZT_1V,VOLU 

CM,PZT_1E,elem 

CM,PZT_1N,node 

ALLS 

EPLOT 

Lsel,none 

KSEL,NONE 

ASEL,NONE 

NSEL,NONE 

ESEL,NONE 

VSEL,NONE 

CMSEL,NONE 

 

!DRAW_SUBSTRATE 

!UPPER 

k,,0,((tp/2)+sub),-Rp 

k,,0,((tp/2)+sub),Rp 

k,,0,+(tp/2),Rp 

k,,0,+(tp/2),-Rp 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

VEXT,ALL,,,PFTDepth 

LSEL,S,LINE,,133 

LSEL,A,LINE,,134 
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LSEL,A,LINE,,135 

LSEL,A,LINE,,136 

LSEL,A,LINE,,137 

LSEL,A,LINE,,138 

LSEL,A,LINE,,139 

LSEL,a,LINE,,140 

LSEL,A,LINE,,141 

LSEL,A,LINE,,142 

LSEL,A,LINE,,143 

LSEL,A,LINE,,144 

LPLOT 

LESIZE,ALL,MESHL 

ESIZE,meshsize 

VATT,4,,2 !num is material then el type 

vmesh,all 

CM,USUBV,VOLU 

CM, USUBE,elem 

CM, USUBN,node 

ALLS 

EPLOT 

Lsel,none 

KSEL,NONE 

ASEL,NONE 

NSEL,NONE 

ESEL,NONE 

VSEL,NONE 

CMSEL,NONE 

!LOWER 

k,,0,-((tp/2)+sub),-Rp 

k,,0,-((tp/2)+sub),Rp 

k,,0,-(tp/2),Rp 

k,,0,-(tp/2),-Rp 

*GET,KPNUM,KP,,NUM,MAX 

a,KPNUM-3,KPNUM-2,KPNUM-1,KPNUM 

VEXT,ALL,,,PFTDepth 

LSEL,S,LINE,,145 

LSEL,A,LINE,,146 

LSEL,A,LINE,,147 

LSEL,A,LINE,,148 

LSEL,A,LINE,,149 

LSEL,A,LINE,,150 

LSEL,A,LINE,,151 

LSEL,a,LINE,,152 

LSEL,A,LINE,,153 
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LSEL,A,LINE,,154 

LSEL,A,LINE,,155 

LSEL,A,LINE,,156 

LPLOT 

LESIZE,ALL,MESHL 

ESIZE,meshsize 

VATT,4,,2 !num is material then el type 

vmesh,all 

CM,LSUBV,VOLU 

CM, LSUBE,elem 

CM, LSUBN,node 

ALLS 

EPLOT 

Lsel,none 

KSEL,NONE 

ASEL,NONE 

NSEL,NONE 

ESEL,NONE 

VSEL,NONE 

CMSEL,NONE 

alls 

NUMMRG, NODE, 1.0E-10 

!____________boundary conditions 

alls 

!___Fixed Base___ 

NSEL,S,LOC,Y,-((tp/2)+sub+Ho) 

D,ALL,UY,0 

D,ALL,UX,0 

!selects top apex 

NSEL,S,LOC,Y,(tp/2)+sub+Ho 

CP,NEXT,UY,ALL 

!******************************************** 

! Loading 

!******************************************** 

!___FORCE___ 

CSYS,0 !ensures that were're in cartesian 

NSEL,S,LOC,Y,(tp/2)+SUB+Ho !selects top apex 

*get,numnode,node,0,count 

F,ALL,FY,(force/numnode) 

!********************************************* 

! Circuit 

!********************************************* 

 

!___ELECTRODE COUPLING___ 
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!__________________PZT_1 top electrode connect point 

VSEL,NONE 

NSEL,NONE 

ESEL,NONE 

CMSEL,NONE 

CSYS,0 

CMSEL,S,PZT_1N,NODE 

NPLOT 

NSEL,R,LOC,Y,TP/2 

NSEL,R,LOC,z,-elec/2,elec/2 

NPLOT 

*GET,node_s1,NODE,,NUM,MIN 

CM,signal_1,NODE 

! bottom electrode connect point 

VSEL,NONE 

NSEL,NONE 

ESEL,NONE 

CMSEL,NONE 

! 

CMSEL,S,PZT_1N,NODE 

NPLOT 

NSEL,R,LOC,Y,-TP/2 

NSEL,R,LOC,z,-elec/2,elec/2 

NPLOT 

*GET,node_g1,NODE,,NUM,MIN 

CM,Ground_1,NODE 

! couples all +ve flats 

VSEL,NONE 

NSEL,NONE 

ESEL,NONE 

CMSEL,NONE 

CMSEL,S,signal_1,NODE 

CMPLOT 

CP,NEXT,volt,ALL 

! Couples and grounds all -ve flats 

VSEL,NONE 

NSEL,NONE 

ESEL,NONE 

CMSEL,NONE 

CMSEL,S,Ground_1,NODE 

CMPLOT 

CP,NEXT,volt,ALL 

D,ALL,volt,0 
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!___Colecting number of elements to help when getting ESOL's___ 

ALLS 

*GET,ENUM,ELEM,,NUM,MAX 

EPLOT 

!___RESISTOR___ 

TYPE,4 

REAL,3 !assigns resistive value 

E,node_s1,node_G1 

NSEL,ALL 

ALLS 

EPLOT 

/SOLU 

!********************************************** 

!Results 

!********************************************** 

khz=1000 

f_min=0 !FOR RESISTANCE 

f_max=2 

subs=1 

KECI=1/(2*Q) 

EQSLV,SPARSE,1E-13 

ANTYPE,HARMIC 

HROPT,FULL 

OUTRES,ESOL,ALL 

HROUT,ON 

OUTPR,ALL,1 

!___Printing results as amplitudes and phaes angles___ 

OUTRES,ALL,ALL 

HARFRQ,f_min,f_max 

NSUBST,subs 

KBC,1 

DMPRAT,KECI 

ALLSEL,ALL 

!___Delete unused elements___ 

ALLSEL, ALL !this ET was used to make 3D mesh 

ESEL, U, TYPE, , 1 !but is now not used in model 

solve 

FINISH 

!/EXIT,NOSAVE 

SAVE 

/POST26 

NUMVAR,200 

LINES,5000 

alls 
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eplot 

ESOL,32,ENUM+1,,SMISC,1,V_RES  

ESOL,31,ENUM+1,,SMISC,2,I_RES 

ESOL,33,ENUM+1,,NMISC,1,P_RES 

PRCPLX,1 

PRVAR,V_RES 
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Appendix B 

Surrogate models created by GP 

Global level surrogate models: 

Power = 

(9737611631857638000.*dv_1.^2.*dv_3.^6.*dv_4.*dv_5.^3.*dv_6.^2.*dv_7.^5-

71266016781000000.*dv_1.^4.*dv_2.^4.*dv_3.*dv_4.^7.*dv_5.*dv_6.^3.*dv_7.^3

+(((3248725000000000.*dv_1.^4.*dv_2.^5.*dv_3.*dv_4.^8-

128512000000000.*dv_1.^4.*dv_2.^5.*dv_3.*dv_4.^9).*dv_5+10186929901525

77.*dv_1.^5.*dv_2.^4.*dv_3.^2.*dv_4.^8).*dv_6.^4+((117098500000000000.*dv

_1.^4.*dv_2.^4.*dv_3-

22079600000000000.*dv_1.^4.*dv_2.^4).*dv_4.^8+(183456679050000000.*dv

_1.^3.*dv_2.^4.*dv_3.^3+(-835385272110000000.*dv_1.^4-

871163062380000000.*dv_1.^3).*dv_2.^4.*dv_3.^2).*dv_4.^7+1343167360831

59210000.*dv_1.^4.*dv_2.^5.*dv_3.^3.*dv_4.^5).*dv_5.*dv_6.^3-

29416029219000.*dv_2.^3.*dv_3.^5.*dv_5.^3).*dv_7.^2+(4356830362500000.*

dv_1.^6.*dv_2.^3.*dv_3.*dv_4.^6.*dv_5.*dv_6.^5+((182477434450446540.*dv_1.

^4.*dv_2.^4.*dv_3.^2-

11885433228900000.*dv_1.^6.*dv_2.^4.*dv_3).*dv_4.^7.*dv_5-

2668170237300000000.*dv_1.^4.*dv_2.^3.*dv_3.*dv_4.^7).*dv_6.^4+(9765445

183200000.*dv_1.^4.*dv_2.^4.*dv_3.^3.*dv_4.^7.*dv_5.^3-

762614374230000000.*dv_1.^4.*dv_2.^3.*dv_3.^2.*dv_4.^7.*dv_5.^2+((437163

089760000000.*dv_1.^4.*dv_2.^3.*dv_3.^2+224113570650000000.*dv_1.^4.*d

v_2.^4.*dv_3).*dv_4.^8+(634779724680000000.*dv_1.^5.*dv_2.^4.*dv_3-

3914213433300000000.*dv_1.^4.*dv_2.^4.*dv_3.^3).*dv_4.^7).*dv_5).*dv_6.^3

+(23923508121000000000.*dv_1.^4.*dv_2.^4.*dv_3.^3.*dv_4.^7-

3537190719900000000.*dv_1.^4.*dv_2.^4.*dv_3.^2.*dv_4.^8).*dv_5.*dv_6.^2).*

dv_7+25355963988000000000.*dv_1.^3.*dv_2.^3.*dv_3.^3.*dv_4.^7.*dv_5.^2.*d

v_6)./(3219534749700000000.*dv_1.^4.*dv_2.^4.*dv_3.^2.*dv_4.^7.*dv_5.*dv_6.

^4.*dv_7) 

 

Stress = 

(2322119341547090262839125432396081920000000.*dv_1.*dv_2^5.*dv_3^9.

*dv_4^4.*dv_5^4.*dv_6^2.*dv_7^8+((331331600660513237503451717056402

037400000.*dv_1.*dv_2^6.*dv_3^9-

205408630529228866584400465519224663026979.*dv_1.*dv_2^6.*dv_3^11).

*dv_4^4.*dv_5^4.*dv_6^4+((140932615706205591508898851251780729186

102000.*dv_1.*dv_2^5.*dv_3^11.*dv_4^2-

198412860722475865958116400600245077394815.*dv_2^6.*dv_3^11.*dv_4^

4).*dv_5^5+((166140725814529690597335567342023262516771.*dv_1.*dv_

2^6.*dv_3^11+(293270565808894220737634499379473408000000-

624905492746233495210513831674637387000000.*dv_1).*dv_2^5.*dv_3^10-
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546518498785040554979966831341486616400000.*dv_1.*dv_2^6.*dv_3^9).*

dv_4^5+(19184790468792196559049329386988684800000000.*dv_1.*dv_2^

6.*dv_3^11-

1063779751227451660486904642904508035950880.*dv_1.*dv_2^6.*dv_3^12

).*dv_4^4).*dv_5^4).*dv_6^3+((5933622516353519009807748966598053570

0000000.*dv_1.*dv_2^6.*dv_3^10.*dv_4^4+(-

691987465823051554500374230533379472257293000.*dv_1.*dv_2^6.*dv_3^

11-

637821015028267374931503777268116042000000000.*dv_1.*dv_2^6.*dv_3^

10).*dv_4^3).*dv_5^5+((237884022903628462762857758520840384000000

00.*dv_1.*dv_2^5.*dv_3^10-

7289674259398723045610225354796974280000000.*dv_1.*dv_2^6.*dv_3^11

).*dv_4^5+293198154602232492152833594641589397400000000.*dv_1.*dv_

2^6.*dv_3^11.*dv_4^4-

11845601752400360788506125142254193570000000.*dv_1^2.*dv_2^4.*dv_3

^13.*dv_4^3).*dv_5^4).*dv_6^2+(-

180800800149467446917326196781276992000000000.*dv_1.*dv_2^4.*dv_3^

10.*dv_4^3.*dv_5^6-

114195355236909796402984352914810944000000000.*dv_1.*dv_2^5.*dv_3^

10.*dv_4^5.*dv_5^4).*dv_6+8128002314370701828555790541974566400000

00000.*dv_1^2.*dv_2^5.*dv_3^15.*dv_5^7+7285894042529768842192511779

86796800000000000.*dv_1.*dv_2^5.*dv_3^10.*dv_4^4.*dv_5^5).*dv_7^7+4653

30982621214364874539900939562500000.*dv_1.*dv_3^5.*dv_4^2.*dv_5.*dv_6

^9.*dv_7^6+10019469490106187713855428420670208000000000000.*dv_1

^9.*dv_2^2.*dv_4^4)/(73392465450618974258120697849135392700000000.

*dv_1.*dv_2^6.*dv_3^11.*dv_4^4.*dv_5^4.*dv_6^3.*dv_7^7) 

 

Displacement =  

(4254536195000000000.*dv_2^5.*dv_5.*dv_6.*dv_7^2+69718034295000.*dv_

1^4.*dv_3.*dv_4^2.*dv_6^4+(-

188198583762737.*dv_1^4.*dv_2.*dv_3^3.*dv_4^3-

236705398993362.*dv_1^4.*dv_3^5.*dv_4^2).*dv_6^3+(16046045333500000

0.*dv_1^4.*dv_3^4.*dv_4^2-

5959306580500000.*dv_1^4.*dv_3^2.*dv_4^3).*dv_6^2+(((326597037312000

00.*dv_1^5-57300858069000000.*dv_1^4).*dv_3^3-

72825678380000000.*dv_1^4.*dv_3^4).*dv_4^2.*dv_5+285351486420000000.

*dv_1^4.*dv_3^3.*dv_4^3-

532351058330000000.*dv_1^5.*dv_3^3.*dv_4^2).*dv_6-

1146269398820000000.*dv_1^4.*dv_3^3.*dv_4^2.*dv_5)/(9824165110000000

00.*dv_1^4.*dv_3^5.*dv_4^2.*dv_6^3) 
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Local-level surrogate models 

Power 

= (-8.33508*0.1^1 + ((((-5.87452*0.1^2 * (dv_7 / dv_5)) - (-8.75729*0.1^2 * 

dv_1)) + ((((9.41869*0.1^2 * (dv_3 * dv_1)) - (((3.81694*0.1^3 * (dv_6 * dv_1)) 

+ (((-5.07416*0.1^3 * (dv_1 / (((dv_1 * dv_7) / dv_7) / (dv_3 / (dv_1 / dv_7))))) 

+ (((3.69008*0.1^4 * (dv_2 * dv_5)) - (-5.63779*0.1^2 * (((dv_2 * dv_5) / dv_2) 

/ dv_7))) + (((((5.20239*0.1^2 * ((dv_7 / dv_6) / (dv_6 / (dv_7 / (dv_5 * 

dv_1))))))^(-1)))^(-1)))) + (((((1.11815*10^1 * ((dv_6 / dv_4) / ((dv_4 / 

((dv_1 / dv_7) / dv_7)) / dv_6))))^(-1)))^(-1)))) - (-1.90374*10^0 * dv_3))) - 

((((((((2.22365*10^2 + (-4.32503*10^1 * dv_3)))^1) / (-9.49593*10^0 * 

dv_6)))^(-1)))^(-1))) - (3.10096*10^1 * (dv_2 / dv_6)))) - ((((((4.81414*0.1^2 

* (dv_3 * dv_7)) - (1.44208*0.1^2 * dv_5)) - ((-1.84364*0.1^1 * dv_7) - 

(((2.05814*0.1^1 * (dv_1 / (dv_2 * dv_6))) + (((-1.28379*0.1^4 * (dv_4 / ((dv_1 

/ dv_7) / (dv_7 / dv_6)))) - (1.62493*0.1^2 * ((((dv_5 / dv_6) * dv_5) / ((dv_2 / 

(dv_2 / dv_7)) / dv_7)) / dv_7))) + (((((-5.24781*0.1^2 * (((dv_5 / dv_6) / 

dv_5) / (dv_7 / dv_6))))^(-1)))^(-1)))) - (((((5.70909*0.1^1 * ((dv_6 / dv_2) / 

((dv_4 / ((dv_1 / dv_7) / dv_7)) / dv_6))))^(-1)))^(-1))))) - (-3.83382*0.1^1 * 

(dv_5 / dv_6))) + ((-4.47285*10^0 * (dv_7 / dv_4)) - ((((1.54705*10^0 * (dv_3 * 

dv_2)) - (((3.76611*0.1^3 * (dv_7 / dv_2)) + (-4.69123*10^0 * ((dv_7 / dv_1) / 

dv_7))) + (((((-1.14496*0.1^1 * ((dv_7 / dv_2) / ((dv_4 / dv_3) / dv_6))))^(-

1)))^(-1)))) - ((((((-7.49302*0.1^2 * (dv_7 * dv_2)) - (-1.27345*10^1 * ((dv_1 / 

dv_7) / dv_6))))^(-1)))^(-1))) - ((2.79395*0.1^2 * dv_6) - (7.68301*0.1^1 * 

(dv_4 / dv_6)))))) + (-2.28256*0.1^1 * (dv_2 / (dv_4 / (dv_1 / (dv_1 / (dv_2 * 

dv_6))))))))) 

 

Displacement 

= (2.88968*10^0 + (((((((-7.74308*0.1^2 * dv_4) + (-8.93078*10^0 * (dv_6 / 

dv_4))) + ((2.31071*0.1^1 * dv_6) - (((((((((((2.75968*10^0 * (dv_3 * dv_3)) + 

((4.88122*0.1^1 * dv_3) - ((((-9.49091*10^1 * (dv_5 / dv_4)) + ((1.92181*10^0 

* dv_5) - ((2.48544*0.1^4 * dv_7) - (5.22217*0.1^2 * ((dv_4 * dv_6) / dv_1))))) 

+ ((-7.94263*0.1^2 * (dv_1 / (dv_3 * dv_5))) - ((-6.30566*0.1^1 * dv_4) - 

(3.27104*10^0 * dv_2)))) - (-3.96856*0.1^1 * (dv_1 * dv_2))))) - (-

2.59925*0.1^2 * (dv_6 * dv_4))) - (1.16701*10^0 * (dv_3 * (dv_3 * dv_5)))) / 

(7.75385*10^2 * (dv_3 * (dv_6 / dv_4)))) - (-9.37615*0.1^2 * dv_2)) - (-

1.47093*0.1^4 * (dv_1 * (dv_6 / (dv_5 * dv_3))))) - (-8.50286*0.1^4 * (dv_3 * 

(dv_6 / (dv_3 * dv_3))))) + (7.51220*0.1^4 * ((dv_4 * dv_6) * dv_1))) - 

(8.48506*0.1^3 * (dv_4 * dv_1))) - (2.96461*0.1^2 * (dv_1 * dv_6))))) + 

(3.77755*0.1^3 * dv_5)) + (3.62031*0.1^3 * ((dv_3 * dv_4) * dv_2))) - 

((3.34424*0.1^1 * dv_1) + (-7.21208*0.1^4 * (dv_4 / dv_2)))) + (-

6.39542*0.1^3 * ((dv_3 * dv_3) * dv_5)))) 
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Stress  

= (8.59848*10^0 + ((((((-5.52663*10^2 * (dv_6 * dv_3)) - (5.32334*10^2 * 

(dv_5 * dv_3))) + (1.66357*10^2 * dv_5)) - (-7.09737*10^0 * (dv_6 * dv_6))) * 

(((((3.62945*10^1 * dv_3))^2))^(-1))) + (((((((((6.90637*0.1^1 * ((dv_7 / 

(dv_3 * (dv_5 * dv_3))) / (dv_3 * dv_3))) - ((2.31664*10^1 * dv_5) + (-

5.45072*10^2 * dv_2))) + (-2.46563*10^1 * (((((((dv_5 * ((((dv_2 * (dv_5 * 

(((dv_2 * dv_2) * dv_2) * dv_2))) * dv_2) * (((((dv_2 * (dv_2 * (dv_2 * (dv_2 * 

(dv_2 * dv_2))))) * (dv_2 * (dv_2 * (dv_2 * dv_4)))) * ((((dv_2 / dv_1) * (dv_2 * 

(dv_2 * dv_2))) * ((dv_2 * (dv_2 / ((dv_5 * (dv_2 * dv_1)) * dv_2))) * dv_2)) * 

dv_2)) * dv_2) * (dv_2 * dv_7))) * dv_2)) * dv_2) / dv_2) * (dv_2 * (dv_2 * dv_2))) 

* ((dv_2 * (dv_2 * dv_2)) * dv_5)) * dv_2) * dv_2))) - (1.65770*10^2 * (dv_2 * 

(dv_3 * dv_3)))) / (-1.13918*10^1 * dv_1)) + (-8.65968*10^0 * dv_3)) - ((-

1.73231*0.1^1 * dv_6) - (1.32277*10^1 * dv_2))) - (-1.51868*0.1^3 * (dv_5 * 

((dv_6 * dv_6) / dv_1)))) - (6.69746*10^0 * (dv_2 * dv_2))))) 
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Appendix C 

Process of SQP/GA optimization using MATLAB optimization tool 

 

Input for SQP optimization in optimization tool is shown in Figure A.1 and can be 

concluded as follow: 

1) Define surrogate models represent electrical power and von mises stress in the 

MATLAB script editor and save. For SF of 2.0, define surrogate model represents 

the von mises stress as f(stress)-0.5; 

2) Select Solver, fmincon for SQP optimization; 

3) Call objective function using @filename; 

4) Define start point; 

5) Define lower bound and upper bound; 

6) Define constraint by calling the surrogate model represents the von mises stress 

using @filename; 

7) Start optimization. 
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Figure C.1 Input for SQP optimization in optimization tool 

 

Input for GA optimization in optimization tool is shown in Figure A.2 and can be 

concluded as follow: 

1) Define surrogate models represent electrical power and von mises stress in the 

MATLAB script editor and save. For SF of 1.0, define surrogate model represents 

the von mises stress as f(stress)-1; 

2) Select Solver, ga for GA optimization; 

3) Call objective function using @filename; 

4) Define lower bound and upper bound; 

5) Define constraint by calling the surrogate model represents the von mises stress 

using @filename. For GA optimization, stress > 0 should be also defined as 

constraint function; 

6) Start optimization. 
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Figure C.2 Input for GA optimization in optimization tool 
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Appendix D 

Sensitivity and Reliability analysis for the optimal PFT in MATLAB 

 

Process of sensitivity analysis using Simulink 

1) Define the surrogate model represents the electrical power in MATLAB script 

editor and save; 

2) Define values of design variables (dv_1 to dv_7) in the workspace; 

3) Open Simulink; 

4) Create simulation model by using components shown as Figure D.1, constant 

number blocks for 7 design variables, MATLAB function block for model to be 

analyzed and Display block for output; 

5) Open sensitivity analysis in the Analysis menu; 

6) Add parameter set to be analyzed by selecting dv_1 to dv_7; 

7) Add Requirement for analysis; 

8) Evaluate model. 
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Figure D.1 Simulink model for sensitivity analysis. 
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Code for reliability analysis 

 

n = 5000; !Define population 

!Generate design variables based on normal distributions 

dv_1a = (randn(n,1)*0.35)+7;  

dv_2a = (randn(n,1)*0.03)+0.6; 

dv_3a = (randn(n,1)*0.046)+0.92; 

dv_4a = (randn(n,1)*2)+40; 

dv_5a = (randn(n,1)*0.49)+9.8; 

dv_6a = (randn(n,1)*0.56)+11.2; 

dv_7a = (randn(n,1)*0.67)+13.4; 

 

stress = stress_model !surrogate model represents von mises stress 

 

f = find(stress>1); 

 !Define failure designs as ‘nan’. 

    dv_1a(f) = nan;  

    dv_2a(f) = nan; 

    dv_3a(f) = nan; 

    dv_4a(f) = nan; 

    dv_5a(f) = nan; 

    dv_6a(f) = nan; 

    dv_7a(f) = nan;    

!Define designs without failure. 

    dv_1 = dv_1a(~isnan(dv_1a)); 

    dv_2 = dv_2a(~isnan(dv_2a)); 

    dv_3 = dv_3a(~isnan(dv_3a)); 

    dv_4 = dv_4a(~isnan(dv_4a)); 

    dv_5 = dv_5a(~isnan(dv_5a)); 

    dv_6 = dv_6a(~isnan(dv_6a)); 

    dv_7 = dv_7a(~isnan(dv_7a)); 

   y = power ! surrogate model represents electrical output 

  

numy = length(y); !count number of successful designs 

  

!count number of designs based on normalized power output 

yr_1 = sum(y(1:numy) >= 0.99); 

yr_2 = sum(y(1:numy) >= 0.981); 

yr_3 = sum(y(1:numy) >= 0.792); 

yr_4 = sum(y(1:numy) >= 0.693); 

yr_5 = sum(y(1:numy) >= 0.594); 

yr_6 = sum(y(1:numy) >= 0.495); 


