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Summary 42 

 Plant functional traits regulate ecosystem functions but little is known about how co-occurring 43 

gradients of land use and edaphic conditions influence their expression. We test how gradients of 44 

logging disturbance and soil properties relate to community-weighted mean traits in logged and 45 

old-growth tropical forests in Borneo. 46 

 In eight 1 ha plots, we studied 32 physical, chemical and physiological traits from 284 tree species 47 

and measured long-term soil nutrient supplies and plant-available nutrients. 48 

 Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth 49 

forests had greater values for structural and persistence traits. Although disturbance was the 50 

primary driver of trait expression, soil nutrients explained a statistically independent axis of 51 

variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait 52 

expression via nutrient availability, nutrient pools and pH. 53 

 Our finding, that traits have dissimilar responses to land use and soil resource availability, provides 54 

robust evidence for the need to consider the abiotic context of logging when predicting plant 55 

functional diversity across human-modified tropical forests. The detection of two independent 56 

axes was facilitated by the measurement of many more functional traits than have been examined 57 

in previous studies.  58 

 59 
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Introduction 63 

The differential expression of plant functional traits influences key ecosystem functions (Cornwell et 64 

al. 2008; De Deyn et al. 2008; Fortunel et al. 2009; Finegan et al. 2015). Trait expression varies across 65 

landscapes due to anthropogenic disturbance, soil characteristics, and other abiotic factors such as 66 

climate (Ordoñez et al. 2009; Baraloto et al. 2012; Fortunel et al. 2014a; Dent & Burslem 2016). Fertile 67 

soils are associated with traits conferring rapid nutrient acquisition and use, which support fast growth 68 

rates, whereas nutrient-poor soils are often associated with conservative strategies for the 69 

maintenance of long-lived tissues (Aerts & Chapin 2000; Ordoñez et al. 2009; Jager et al. 2015). 70 

Anthropogenic disturbances pervade ecosystems worldwide (Hansen et al. 2013) and can affect trait 71 

expression in seeds, leaves and woody tissue (Gómez-González et al. 2011; Baraloto et al. 2012; 72 

Carreño-Rocabado et al. 2012). Substantial effort has been dedicated to characterising the 73 

independent effects of human disturbance (McIntyre et al. 1999; Mouillot et al. 2013a; Buzzard et al. 74 

2016) and environmental gradients (Fortunel et al. 2014b; Fyllas et al. 2017) on plant trait expression 75 

and ecosystem function. However, in practice, communities are influenced by multiple factors 76 

simultaneously, and the effects of disturbance may vary along environmental gradients such as 77 

nutrient availability. 78 

Comprehensively analysing trait expression in response to multiple gradients is challenging but 79 

essential for predicting the ecosystem-level consequences of anthropogenic disturbance. The leaf 80 

economics spectrum (Wright et al. 2004; Díaz et al. 2016) suggests that the increase in resource 81 

availability associated with disturbance and soil fertility will select for similar leaf trait syndromes. 82 

Therefore, functional traits of plant communities should converge at the extremes of environmental 83 

gradients. Evidence from tropical tree communities suggests that foliar concentrations of N and P and 84 

specific leaf area increase in response to gradients of both disturbance (Baraloto et al. 2012; Carreño-85 

Rocabado et al. 2012; Carreño-Rocabado et al. 2016) and soil nutrient availability (Fyllas et al. 2009; 86 

Fortunel et al. 2014a; Apaza et al. 2015; Jager et al. 2015; Turnbull et al. 2016; Van der Sande et al. 87 

2016). Similarly, leaf dry matter content and branch and stem wood density decrease with both 88 

disturbance (Verburg & van Eijk-Bos 2003; Baraloto et al. 2012; Carreño-Rocabado et al. 2012; 89 

Carreño-Rocabado et al. 2016) and soil nutrients (Ordoñez et al. 2009; Fortunel et al. 2014b; Jager et 90 

al. 2015). All these studies, however, share twolimitations: they did not examine the influence of 91 

multiple factors on trait expression, and they used a restricted set of traits. Moreover, many did not 92 

consider traits associated with ecologically important processes, such as structural and defence 93 

compounds (important for herbivory and hence trophic interactions); photosynthetic activity 94 

(essential for biomass production); and leaf δ15N values (provides insight into sources and use of 95 



nitrogen). Our understanding about the links between trait sensitivity to anthropogenic disturbance, 96 

soil properties, and ecosystem processes in tropical forests therefore remains incomplete. 97 

The consequences of changes in community structure and diversity for ecosystem service 98 

provision are determined by the impacts of disturbance on community-level trait expression, which is 99 

a function of the type and intensity of disturbance. For example, in South American tropical forests, 100 

disturbance due to logging and silvicultural activity increases light availability and triggers the 101 

recruitment of species with traits that promote rapid growth rates (Baraloto et al. 2012; Carreño-102 

Rocabado et al. 2012). We expect a similar response to logging in Southeast Asian tropical forest. We 103 

build upon these studies to additionally determine the influence of soil properties, including nutrient 104 

availability on functional traits. 105 

Tropical lowland forests in Southeast Asia are amongst the most species-rich communities 106 

worldwide, but are also the most threatened by logging and conversion to agriculture (Hansen et al. 107 

2013; Edwards et al. 2014; Stibig et al. 2014). The high density of commercially valuable species 108 

explains the high intensity of logging in Southeast Asian forests (Osman et al. 2012; Gaveau et al. 109 

2014), which suffer rates of extraction that far exceed those in tropical forests elsewhere (see Asner 110 

et al. 2005 for the Brazilian Amazon and Rutishauser et al. 2015 for various sites in the Amazon Basin). 111 

Logging creates a spatially patchy disturbance, with gaps and skid trails characterised by high light and 112 

temperature distributed among fragments of relatively unmodified forest (Johns 1997). The selective 113 

removal of target species, logging-induced mortality and recruitment of pioneer species in disturbed 114 

areas affects tree species composition and the pools and fluxes of biomass and nutrients (Cannon et 115 

al. 1998; Verburg & van Eijk-Bos 2003; Pfeifer et al. 2016; Riutta et al. 2018). Although the magnitude 116 

of anthropogenic disturbance is much greater in forests in Southeast Asia than in South America, they 117 

have received far less attention regarding the modification of plant functional traits. Specifically, the 118 

potential for intense logging to override the effects of environmental gradients, including soil 119 

properties, has not been investigated. 120 

Here, we measured 32 leaf, wood and physiological traits of 284 tropical tree species to capture 121 

community level trait expression in response to selective logging across a gradient of soil properties 122 

in species-rich tropical rainforest in Sabah, northern Borneo. We consider traits reflecting nutrient 123 

status, light capture, photosynthesis, and allocation to structure and defence, to provide a whole-124 

plant perspective and assess many aspects of functional diversity. We tested the hypothesis that 125 

functional trait values and functional diversity shift in response to anthropogenic disturbance and soil 126 

properties. We used community-weighted mean (CWM) values of traits to quantify average trait 127 

values, and a multi-trait index of functional diversity (FD) to quantify trait variation, which can occur 128 

independent of variation in CWM trait values (Ricotta & Moretti 2011). 129 



Specifically, we predict that (1) increasing disturbance and soil nutrient availability will increase 130 

CWM traits related to tissue nutrient concentrations and carbon assimilation rates, but reduce tissue 131 

densities and investments in structural defences. Given the high logging intensity in Southeast Asia, 132 

we further predict that (2) a greater proportion of the variance in CWM traits will be explained by 133 

logging than by soil properties, emphasizing the pervasive impact of anthropogenic land use on 134 

functional trait expression. Finally, due to the high overall tree species richness, we predict that (3) 135 

functional diversity will remain high in response to disturbance, despite shifts in overall CWM traits. 136 

 137 

Material and Methods 138 

Study sites 139 

Sampling was conducted in eight 1 ha plots in Sabah, Malaysian Borneo. The plots are part of the 140 

Global Ecosystems Monitoring (GEM) network of permanent sample plots with intensive, regular 141 

carbon cycle measurements (Malhi et al. 2015; Riutta et al. 2018) and were selected to capture 142 

variation in logging intensity across a range of lowland tropical forests in northern Borneo. Old-growth 143 

lowland mixed dipterocarp forest plots (hereafter OG) were located in the Maliau Basin Conservation 144 

Area (MBCA, two plots) and the Danum Valley Conservation Area (DVCA, two plots), while the other 145 

four plots were distributed between these two areas in the selectively logged Kalabakan Forest 146 

Reserve (hereafter SL). The four logged plots are part of the Stability of Altered Forest Ecosystem 147 

(SAFE) project (Ewers et al. 2011). This area has been logged two times with the first round of logging 148 

in the mid-1970s and subsequent repeated logging during 1990-2008. Approximately 150–179 m3 ha-149 

1 of timber was removed over this time period (Struebig et al. 2013), bracketing the mean extraction 150 

volume across Sabah (152 m3 ha-1, Fisher et al. 2011). 151 

All three areas are part of the Yayasan Sabah Forest Management Area and belong to a formerly 152 

connected area of lowland dipterocarp rainforest characterised by high species richness and many 153 

tall, emergent trees. The region has a moist tropical climate with an annual daily mean temperature 154 

of 26.7 °C and annual precipitation of approximately 2600-2700 mm (Walsh & Newbery 1999). 155 

Although the climate is aseasonal there are occasional droughts and dry spells associated with supra-156 

annual El Niño Southern Oscillation events (Walsh & Newbery 1999; Newbery & Lingenfelder 2009). 157 

The forest soils in Sabah are mostly orthic Acrisols or Ultisols (for more details see Marsh & Greer 158 

1992; Nainar et al. 2015). 159 

 160 

Sampling design 161 

Thirty-two functional traits were measured on 651 individual trees ≥ 10 cm diameter at breast height 162 

(dbh) representing 284 species during an intensive sampling campaign from July to December 2015. 163 
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We combined two strategies to sample the functional trait values in each plot. In the first, weighted 164 

basal area strategy, we sampled species that most contributed to the total plot basal area. This 165 

approach assumes that species accounting for a larger proportion of plot basal area also make a 166 

greater contribution to ecosystem functioning. Species were ranked based on their contribution to 167 

total basal area at the most recent census for each plot (2011 to 2015), which ranged from 10.9–41.8 168 

m2 ha-1. All species that contributed to 70% of plot basal area (in decreasing order of species basal 169 

area) were identified for sampling. In 57% of cases only one individual per species occurred; otherwise, 170 

the individual with the greatest dbh within a species was sampled. This strategy disproportionately 171 

sampled large-statured and abundant species. To ensure that smaller and potentially rare species 172 

were also represented, we adopted a second strategy: stratified random and taxon-independent 173 

sampling of all trees ≥ 10 cm dbh in three randomly selected 20 × 20 m subplots within each 1 ha plot. 174 

As this strategy allowed for repeated samples of the same species, as well as sampling from all height 175 

strata, it contained understory and shaded trees. This combination of different sampling strategies 176 

provided a comprehensive representation of the tree community (Paine et al. 2015) and resulted in 177 

an overall representation of > 90% of the total basal area per plot (except one plot with 65%) and 51–178 

71% of the species ≥ 10 cm dbh (Fig. S1).  179 

 180 

Soil properties 181 

We measured total nutrients and exchangeable nutrient pools to estimate both long-term nutrient 182 

supply as well as plant-available forms. Two randomly located soil cores were taken per plot in 2014-183 

2015. Surface soil (0-10 cm) was analysed for pH, cation exchange capacity and total concentrations 184 

of P, C, N, Mg, K and Ca using the protocols of Quesada et al. (2010, 2012). To assess availability of K, 185 

Ca, Mg, P, NO3
- and NH4

+ we measured nutrient supply rates using in-situ ion exchange membranes 186 

(PRSTM Probes, Western AG, Saskatoon, Canada). To account for spatial variability we installed four 187 

probe pairs (each composed of one cation and anion probe) vertically at corners of three 50 × 50 cm 188 

quadrats to 10 cm depth within each of the three subplots used in the stratified random sampling. 189 

These were collected after two weeks, washed with distilled water and sent to the manufacturer for 190 

analysis. They pooled the four probe pairs from each quadrat prior to elution with 0.5M HCl for 1 hr, 191 

yielding 72 samples. NO3
- and NH4

+ were measured colorimetrically using automated flow injection 192 

analysis (FIA). All other elements were analysed using Inductively Coupled Plasma Mass Spectrometry 193 

(ICP-MS). Results are reported as supply rates over the burial period (micrograms/10 cm2/14 days). 194 



 195 

Trait measurements 196 

From each target tree, we attempted to sample a fully sunlit canopy branch and a fully shaded branch; 197 

however, branches of only one type were available for most trees (91%) because it was uncommon 198 

for large canopy trees to possess fully shaded branches and for small understorey trees to have fully 199 

sunlit branches. Branch samples were collected by tree climbing or by cutting from the ground with 200 

telescopic branch cutters. Target tree height ranged from 2.3 to 78.1 m, and sample height ranged 201 

from 2.3 m to 53 m. Branches were approximately 2-4 cm in diameter and provided sufficient leaf 202 

material for all analyses. Photosynthetic activity was only measured on trees selected by the basal 203 

area sampling strategy due to time constraints (N = 298), whereas all other functional traits were 204 

determined on all trees. Undamaged mature leaves were collected and cleaned with water for 205 

subsequent analyses. Fresh and dry leaf weight, (specific) leaf area, leaf thickness, leaf dry matter 206 

content (LDMC), (specific) force to punch and branch wood density were determined in a field 207 

laboratory. Dried bulked and milled leaf material was used for determination of Ca, K, Mg, P, C and N 208 

concentrations, δ13C and δ15N stable isotope composition, cellulose, hemicellulose and lignin 209 

concentrations. Analyses of pigments (chlorophyll a, chlorophyll b, and carotenoids), phenols and 210 

tannins were conducted on 0.7 cm diameter leaf discs punched from fresh leaves immediately after 211 

field collection and frozen in liquid nitrogen. Herbarium voucher specimens were taken for 212 

identification of trees and were deposited in the herbarium at Danum Valley Field Centre. All trait 213 

measurements follow standardised protocols (Pérez-Harguindeguy et al. 2013), and detailed methods 214 

and an overview of sampling and replication are provided in Table S1. 215 

 216 

Statistical analyses 217 

Replicated leaf-level functional traits were averaged for sun and shade leaves for the few individuals 218 

that possessed both to generate a tree-level dataset. Our results were not significantly different for 219 

analyses on sun leaves alone, where available, or otherwise shade leaves, so we combined data from 220 

sun and shade leaves together. Leaf chemical properties that are most relevant for photosynthetic 221 

activity (chlorophyll a, chlorophyll b, bulk carotenoids, N, and P) were expressed as mass-based as well 222 

as area-based values. For 43% of species, multiple individuals were measured and trait values were 223 

averaged to result in species-level values. For all analyses, if necessary, species-level leaf traits were 224 

log-transformed to improve the normality of residuals. A CWM was calculated for each trait, weighted 225 

by the number of individuals of each species in each plot (Pla et al. 2012). Values of dark respiration 226 

fluxes and δ13C were converted to positive values for ease of interpretation. To characterise soil 227 

properties in relation to land use, we performed a principal component analysis (PCA) of soil chemical 228 



properties across the eight plots with the measurements of total concentrations of P, C, N, Mg, K, Ca, 229 

exchangeable Mg, K, Ca, NH4
+ and NO3

-, extractable P, pH and cation exchange capacity (CEC). To 230 

visualise the distribution of CWM traits across forest types and test hypothesis 1, we conducted a PCA 231 

using centred and standardised CWM trait values for each study plot.  232 

In order to test hypothesis 2, site scores from the first two PCA axes of soil properties, along with a 233 

binary variable representing logging history, were used as predictors in linear models to partition the 234 

variance in each CWM trait. The first two principal components from the soil PCA were both 235 

statistically independent of logging history (linear model: p ≥ 0.48). Nevertheless, because the three 236 

predictors were weakly but non-significantly inter-correlated (R2 ≤ 0.29), we used the hierarchical 237 

partitioning method of Chevan and Sutherland (1991), as implemented in the hier.part library of R, to 238 

estimate the variance in functional traits explained by each. This technique calculates the R2 of every 239 

possible model, then averages over this set of models to allocate the variance explained by each 240 

predictor variable. It thereby overcomes the effect of the order that inter-correlated variables enter a 241 

model on the inference of variance explained by each variable (Chevan & Sutherland 1991). Tests of 242 

significance are less important than partitioning the variance in CWM trait values in this analysis. 243 

Nevertheless, given that this analysis generated 99 p-values (3 tests on each of 32 functional traits, 244 

plus functional diversity), we corrected the p-values using the false discovery rate (García 2004). 245 

To address hypothesis 3, we computed plot-level values of functional diversity (FD) as Rao’s quadratic 246 

entropy (Rao’s Q), which is the sum of the pairwise distances between species in multidimensional 247 

trait space weighted by their relative abundance (Rao 1982). It is the functional equivalent of 248 

Simpson’s diversity index. We compared Rao’s Q among forest types with ANOVA.All analyses were 249 

performed using R 3.4.0 (R Core Team 2017). 250 

 251 

Results 252 

Forest structure, species composition and soil properties of plots 253 

The study plots varied substantially in basal area (BA) and stem density, with BA varying fourfold (10.9 254 

m - 41.8 m2 ha-1, Table 1). Basal area was significantly lower in the SL plots but the range among plots 255 

within each forest type was similar (means: SL 17.8 ± 12.7, OG 34.8 ± 14.9 m2 ha-1; ANOVA: F1,6 = 15.26, 256 

p = 0.008). Stem density ranged from 331 to 565 ha-1, peaking in plots with intermediate BA but was 257 

not associated with logging (F1,6 = 0.02, p = 0.90). Species richness was similar in OG and SL plots, 258 

ranging from 124 to 211 tree species ha-1 (F1,6 = 0.55, p = 0.49). 259 

A PCA of soil chemical properties explained 69.5% on the first two principal axes (Fig. 1). The 260 

strongest gradient was defined by variation in total Mg, total P and CEC, whereas the second axis 261 

represented a gradient of total C, total N and exchangeable Ca to exchangeable K and NH4
+. Nutrient 262 



concentrations varied markedly among plots, including 10-fold and 5-fold variation in total Mg and 263 

total P concentrations, and 9-fold and 10-fold variation in exchangeable K and NH4
+  (Table 1). Soil 264 

properties differed among plots, but were independent of logging history, indicated by the 265 

overlapping distribution of OG and SL plots in the PCA (Fig. 1). 266 

 267 

Community-weighted mean traits 268 

Major gradients in CWM trait expression were visualised by PCA, with the first two axes 269 

explaining 77.7% of the variance in functional traits (Fig. 2). There was a clear differentiation of 270 

functional composition between OG and SL plots along the first principal component, indicated by a 271 

distinct clustering of the study plots. Tree communities in OG plots were characterised by greater 272 

investment in defence and tissue density, whereas SL tree communities expressed higher 273 

photosynthetic activity and reduced investment into structural components (Table 2). Old-growth 274 

forests were characterized by denser wood and tougher leaves. These traits reflect enhanced 275 

structural investment, implying longer leaf life span and slower growth rates. Tree communities in SL 276 

forest had higher photosynthetic activity represented by higher CWM values of Amax and Asat, and 277 

higher Rd. These higher rates of gas exchange were supported by the expression of higher CWM area-278 

based pigment concentrations in SL communities and higher Na, Nm and Pa concentrations. Tree 279 

communities in SL were enriched in 13C compared to OG communities, indicating greater water-use 280 

efficiency. 281 

The second axis of functional trait space represented tissue nutrient concentrations and leaf 282 

area but was independent of logging history (Fig. 2). This axis reflects covariance among CWM values 283 

of leaf area, leaf Pm, Nm, Mgm and Cam concentrations, and a negative association of these traits with 284 

leaf Cm and tannin concentrations. Variability of these traits within both logged and unlogged forests 285 

was high, which suggests that the expression of these traits is driven by underlying soil properties 286 

rather than logging history.  287 

 288 

Variance partitioning 289 

Partitioning the CWM response of traits to logging and the first two principal components of soil 290 

properties showed that these factors explained up to 90% of the variation in traits. Overall, the 291 

proportion of variance explained was on average 74.4%. (Fig. 3, Table S4). To present these results, , 292 

we group the functional traits based on their main association with leaf nutrients, photosynthesis or 293 

structure. Variation in mass-based concentrations of leaf Cam, Pm, Nm and Km and to a lesser extent 294 

Mgm were associated with variation in soil properties, both with soil PC1 and 2. Particularly soil PC1, 295 

enveloping a gradient from exchangeable Mg to cation exchange capacity (CEC) and total P, strongly 296 

affected the variance in leaf Cam, Pm, Cm. However, expressed on area basis, foliar Pa and Na 297 
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concentrations were mainly explained by logging. Variation in SLA and leaf thickness appears to 298 

underlie the contrasting response of mass and area based traits. For leaf traits related to 299 

photosynthesis, 33.5–78.6% of variance was explained by logging and a much smaller proportion by 300 

soil PC1 (1.5–21.8%) or soil PC2 (0.9–35.6%; Table S4). Structural traits were explained by a 301 

combination of both logging history and the independent effects of soil properties. Logging explained 302 

on average 39.2% of variance in traits reflecting tissue density and structural investment, such as 303 

specific force to punch and branch wood density, which had consistently lower values in logged forest 304 

plots. Community-weighted mean LDMC was unusual in that it was poorly explained by the predictor 305 

variables. In contrast, leaf size, expressed as CWM leaf area and leaf mass, incr eased with increasing 306 

values of soil PC1, which was linked to plots with higher total N and exchangeable Ca concentrations 307 

(Fig. 1). There was an increase in CWM tannin concentrations in logged forest plots and at higher 308 

values of soil PC1. The CWM values of Cm and Na were significantly explained by the first principal 309 

component of soil properties, and forest type, respectively, whereas other traits were statistically 310 

independent of the predictors (Fig. 3) 311 

 312 

Functional diversity 313 

Functional diversity, expressed as Rao’s Q, was similar between forest types (Fig. 4; F1,6 = 0.16, p = 314 

0.70), and neither logging nor soil properties explained a significant proportion of its variance (Fig. 3). 315 

The main proportion of variance was explained by soil PC2. The negative relationship with soil PC2 316 

indicates xxx.  Variability in FD was greater among SL than OG forests (Fig. 4), potentially indicating 317 

the heterogeneous conditions resulting from logging.  318 

 319 

Discussion 320 

Logging profoundly affected the expression of plant functional traits in Bornean tropical forests. 321 

Logging was the primary driver of variation in community-weighted mean (CWM) values of functional 322 

traits (Fig. 2), and explained more variation than soil properties for 20 of 32 traits (Fig. 3). Similar 323 

impacts of logging on functional trait expression have been demonstrated in Neotropical forests 324 

(Baraloto et al. 2012; Carreño-Rocabado et al. 2012), although those studies did not analyse soil-325 

related factors. Together, these studies confirm that CWM traits are highly sensitive to land-use 326 

change in tropical forests, but results from our study additionally highlight the considerable relevance 327 

of the environmental context for trait expression. This is an important outcome in the light of the fact 328 

that logging has impacted over half of all tropical forests globally, and over 70% of forests in Sabah 329 

(Bryan et al. 2013; Potapov et al. 2017). Therefore, the effect of logging on the expression of functional 330 

traits is likely to pervade tropical forest landscapes and impact ecosystem processes with cascading 331 



effects on other trophic levels. Moreover, logging-associated changes in forest structure and CWM 332 

traits drive altered patterns of productivity in tropical forests (Pfeifer et al. 2016; Riutta et al. 2018).  333 

In our study, the principal axis of functional trait space defined a clear gradient from values of 334 

traits that maximise carbon capture and growth, which were predominantly expressed in selectively 335 

logged forests, to greater allocation to tissue persistence and stability, which were predominantly 336 

expressed in old-growth forests. This strong signal of anthropogenic disturbance is partly congruent 337 

with the leaf economics spectrum, which differentiates species along a gradient based on leaf traits 338 

contributing to resource acquisition and conservation (Wright et al. 2004; Díaz et al. 2016). Thus, 339 

species in logged forest communities expressed higher CWM values of area-based measures of N, P 340 

and pigments, whereas old-growth forest communities expressed low CWM values of these traits and 341 

higher values of traits conferring structural stability and resistance to herbivory, such as branch wood 342 

density and leaf toughness. Supporting hypothesis 1, disturbance enhanced the occurrence of species 343 

possessing traits that confer rapid carbon capture and investment in fast growth rates (Baraloto et al. 344 

2012; Carreño-Rocabado et al. 2012, 2016). We add to previous results by additionally demonstrating 345 

that logged forest communities expressed higher CWM values of Asat, Amax and Rd, whereas old-growth 346 

forest communities were characterised by higher values of traits conferring structural stability of wood 347 

and leaves.  348 

We observed lower CWM values of specific leaf area (SLA) in logged forests, in contrast to 349 

results from French Guiana (Baraloto et al. 2012), and contrary to the expectation that SLA scales 350 

positively with Amax, foliar Na, and foliar Pa concentrations among species (Wright et al. 2004). The lack 351 

of association between SLA and other leaf-economic traits may be explained by the abundance of 352 

pioneer species, which recruit following disturbance and are adapted to resist the more exposed and 353 

potentially desiccating conditions created by logging (Hardwick et al. 2015). A reduction in SLA may 354 

contribute to photosynthetic water-use efficiency, especially when combined with enhanced 355 

investment in photosynthetic enzymes, to ensure draw-down of internal CO2 concentrations at a given 356 

stomatal conductance (Reich et al. 2003). Greater enrichment of CWM δ13C of logged forest tree 357 

communities demonstrates reduced discrimination for the heavier 13C isotope and provides 358 

independent evidence of enhanced, integrated water-use efficiency for trees in this hotter and drier 359 

environment (Farquhar et al. 1989; Rumman et al. 2018). The absence of a shift in SLA in response to 360 

logging in French Guianan forests (Baraloto et al. 2012) suggests that logging imposes a more extreme 361 

environmental contrast for trees occurring in the less seasonal climate of Borneo. Species that have 362 

evolved in a seasonal climate such as in French Guiana, may be better adapted to changes in 363 

microclimatic conditions, like those driven by logging (Blonder et al., unpublished data). The impact of 364 

logging may be more severe in tree communities not adapted to drought and emphasises the potential 365 



sensitivity of Bornean forests to future climatic change.  Mean temperature for Borneo is predicted to 366 

rise by 0.9 – 3.2 °C, annual precipitation is predicted to become increasingly drier in central to western 367 

Borneo and wetter in northern and north-western Borneo (ICCP 2013; Scriven et al. 2015).  368 

We show that trait expression responded independently to logging disturbance and soil 369 

properties. Variation in soil properties can be attributed to interactions between underlying soil 370 

texture and mineralogy, on one hand, and the impacts of logging disturbances including soil inversion, 371 

removal, and compaction on the other (Pinard et al. 2000). However, soil properties did not differ 372 

systematically between old-growth and selectively logged forests (Fig. 1), owing to variation in 373 

underlying soil types and the heterogeneous nature of logging. This allowed us to assess their 374 

independent effects on the expression of CWM functional traits. For most of the mass-based nutrient 375 

concentrations, variation in soil properties explained more variation in CWM trait values than did 376 

logging, whereas traits linked to photosynthesis and carbon capture were more sensitive to logging 377 

than to variation in soil properties (Fig. 3). The mechanisms underlying these associations deserve 378 

further study. An obvious field of research should be the study of post-logging alterations in the fungal 379 

community, in particular the occurrence and diversity of ectomycorrhizal fungi (McGuire et al. 2015). 380 

They are almost exclusively associated with tree species of the family Dipterocarpaceae, which are 381 

also the main family logged for timber (but see Essene et al. 2017). The interacting effects between 382 

tree species dominance, logging and below-ground microbial diversity and ecosystem functions are 383 

largely unknown. 384 

Moreover, we provide clear evidence that soil properties act on trait expression in two 385 

independent ways; the first axis reflected total pools of nutrients, and the second reflected nutrient 386 

availability (Fig. 1). Community-weighted mean values of leaf area, leaf dry mass and foliar 387 

concentrations of Pm, Pa, Nm and Cam all increased in response to the first axis of variation in soil 388 

properties, whereas leaf Cm and tannin concentrations decreased along this gradient (Fig. 3). The 389 

second component of soil variation also influenced some leaf traits, particularly δ13C, Na and Pa 390 

concentrations (Table 2, Table S4). Moreover, most traits were influenced either by the first or second 391 

axis of variation in soil properties, but rarely both. This finding may reflect a trade-off in how plants 392 

interact with local edaphic conditions, as suggested in other systems (Laliberte et al. 2015); a key 393 

future challenge will be to disentangle the mechanisms underpinning these contrasting responses of 394 

functional traits to the soil environment. Our results highlight the need to consider the context 395 

dependency of drivers of variation in functional traits. Landscape-level predictions of change in 396 

functional trait expression in response to anthropogenic disturbance will need to account for the 397 

additional effects of soil properties.  398 Commented [cetp5]: Add a mention of implications of 
your results for dynamic global vegetation models here? 



Despite the large variation in CWM traits, functional diversity (FD) did not differ between logged 399 

and old-growth forest, which is consistent with our third hypothesis and with results from Neotropical 400 

forests (Fig. 4; Baraloto et al. 2012; Carreño-Rocabado et al. 2012). This finding emphasises that 401 

forests can retain species richness and trait variation, yielding similar FD, despite logging. In line with 402 

Mayfield et al. (2010), logging did not result in loss of FD but in shifts of numerous CWM trait values, 403 

indicating a lower sensitivity of multi-trait FD to these changes (Ricotta & Moretti 2011). FD was more 404 

variable among logged forests than old-growth forests (Fig. 4), probably owing to variation in logging 405 

history and intensity, which affect forest structure (Cannon et al. 1994; Berry et al. 2008), 406 

microclimatic conditions (Hardwick et al. 2015) and ecosystem functions (Mayfield et al. 2006; Both 407 

et al. 2017; Riutta et al. 2018). The substantial variance in FD among the disturbed plots highlights the 408 

challenge of predicting the impacts of anthropogenic modification on FD in environments where the 409 

outcomes may be highly context-dependent (Costantini et al. 2016). 410 

Assessments of functional composition and diversity at a community scale are critical as human-411 

modified landscapes become more extensive and play an increasing role in the provision of ecosystem 412 

services (Berry et al. 2010; Gibson et al. 2011). However, uncertainty remains over how changes in 413 

community trait expression will affect ecosystem functioning and resilience after selective logging and 414 

other forms of disturbance (Laliberté et al. 2010; Mayfield et al. 2010; Edwards et al. 2014). Part of 415 

that uncertainty arises because rare tree species may contribute substantially to resilience (Mouillot 416 

et al. 2013b), but tend to be under-represented in traditional sampling designs adopted for measuring 417 

ecosystem functions. Our nested sampling design explicitly resolved this issue by selecting both 418 

common and rare species across the full range of size classes. We therefore advocate this approach in 419 

future assessments of trait expression at the community scale. 420 

We demonstrate a consistent shift in community-level trait expression in response to logging, 421 

reflecting a transition from an old-growth forest dominated by individuals with resource conserving, 422 

structurally persistent tissues to logged forests manifesting greater capacity for carbon assimilation 423 

and vegetative growth. Strikingly, there was a second, independent, axis of functional trait variation 424 

reflecting variation in soil properties (i.e. nutrient availability and chemistry including pH), which 425 

explained variation in leaf size and mass-based foliar nutrient concentrations. The elucidation of these 426 

orthogonal dimensions of plant trait variation was made possible by the measurement of numerous 427 

functionally relevant traits and by their consideration at the community level, as well as by the 428 

inclusion of rare species. These results provide a basis for predicting how pervasive logging 429 

disturbance combines with natural gradients to determine trait expression and ecosystem functioning 430 

across human-modified tropical landscapes. 431 

 432 
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Figure captions 643 

 644 

Figure 1: Principal component analysis (PCA) of plot-level soil properties. The highest loadings on the 645 

first axis are CEC (12.6%), total Mg (12.3%) and total P (12.2%). The highest loadings on the second 646 

axis are exchangeable K (12.0%), total N (11.1%) and exchangeable Ca (11.1%). See Table S2 for all PCA 647 

loadings. 648 

 649 

Figure 2: Principal component analysis (PCA) of plot-level community-weighted mean functional traits. 650 

Plots cluster by logging history, with increased values of traits that maximise carbon capture and 651 

growth in logged forest communities and greater allocation to tissue persistence and structural 652 

stability in old-growth forests. The highest loadings on the first axis are chlorophyll bm (4.44%), Na 653 

(4.37%), branch wood density (4.25%), Asat (4.25%), Amax (4.21%) and SLA (4.17%). The highest loadings 654 

on second axis are Pm (7.45%), LA (7.02%), tannins (6.22%), Cm (5.88%) and leaf dry weight (5.75%). 655 

Mass-based nutrients are denoted by superscript “m” and area-based values by superscript “a”. See 656 

Table S3 for all PCA loadings. 657 

 658 

Figure 3: Proportion of variance in community-weighted mean functional trait values explained by 659 

forest type and the first two principal components of soil properties (Fig. 1). Functional traits are 660 

grouped by the ecosystem function to which they most contribute. Statistical significance is derived 661 

from linear regression models following false discovery rate correction, asterisks indicate p < 0.05, ‘+’ 662 

and ‘-‘ indicate the direction of the relationship. For forest type ‘+’ indicates that trait values were 663 

greater in selectively logged than old-growth forests (i.e. positive with first PC axis). For variance 664 

explained by soil, ‘+’ indicates positive relationship with the respective PC axis. See Table 2 and Table 665 

S4 for detailed results. 666 

 667 

Figure 4: Box-and-whisker plots showing the median, upper and lower quartile of functional diversity 668 

calculated as Rao’s Q with no significant difference between forest type (ANOVA: F1,6 =  0.16, p = 0.70).  669 

Tables 670 



Table 1: Study plot description and soil properties, plots are listed with decreasing basal area. Basal 671 

area, stem density and number of tree species refers to all tree individuals ≥ 10 cm dbh. 672 

673 
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Table 2: Results from linear regression models from which the explained variance was generated, factors are the categorical ‘forest type’ (OG – old-growth, 674 

SL – selectively logged), and continuous ‘soil PC1’ and ‘soil PC2’.  For analyses values of dark respiration Rd fluxes and δ13C were converted to positive values 675 

for ease of interpretation, here untransformed values are shown. For abbreviations and description of the functional traits, see table S1. 676 

 677 

Commented [SB7]: I’ll pimp up that table 



 

25 
 

 678 

Functional trait OG SL F value p-value F value p-value F value p-value

hemicellulose_perc 12.3 (11.4 - 13.1) 11.8 (11 - 12.6) 1.7284 0.4371 ns 0.7672 0.5839 ns 0.27 0.725 ns

cellulose_perc 22.5 (20.9 - 24) 20.9 (19.4 - 22.4) 3.3431 0.3055 ns 0.3132 0.725 ns 0.995 0.538 ns

lignin_recalcitrants_perc 19.4 (17.3 - 21.4) 17.3 (15.3 - 19.2) 2.7065 0.3403 ns 3.333 0.3055 ns 0.0803 0.8265 ns

Total_tannin_mg_gDW 8.56 (7.7 - 9.41) 9.41 (8.6 - 10.2) 8.8879 0.1586 ns 8.0687 0.1626 ns 0.0043 0.9508 ns

Total_phenol_mg_gDW 36.4 (33.7 - 39.1) 42.7 (40.2 - 45.3) 29.9599 0.0641 ns 5.0043 0.2147 ns 2.762 0.3403 ns

WD_B 0.564 (0.528 - 0.599) 0.493 (0.46 - 0.526) 15.3085 0.1227 ns 2.4421 0.3608 ns 1.5223 0.4406 ns

LDMC_mg_g_mean 416 (391 - 440) 410 (387 - 433) 0.1426 0.78 ns 0.3322 0.725 ns 0.0786 0.8265 ns

Fp_N_mm_mean 0.266 (0.227 - 0.311) 0.212 (0.183 - 0.247) 7.611 0.1626 ns 0.2997 0.725 ns 0.2597 0.725 ns

specific_Fp_mean 1.23 (1.03 - 1.47) 0.889 (0.751 - 1.05) 13.209 0.1285 ns 0.4308 0.686 ns 0.013 0.9337 ns

leaf_thickness_mm_mean 0.221 (0.209 - 0.233) 0.236 (0.224 - 0.249) 7.1956 0.1697 ns 0.2132 0.7434 ns 2.3189 0.3712 ns

dry_weight_mg_mean 922 (784 - 1.08e+03) 1.08e+03 (930 - 1.27e+03) 2.0771 0.4013 ns 10.6002 0.1385 ns 6.1195 0.1891 ns

LA_mm2_mean 1.37e+04 (1.13e+04 - 1.65e+04) 1.31e+04 (1.1e+04 - 1.57e+04) 1.6779 0.4371 ns 11.1158 0.1367 ns 1.8983 0.4249 ns

SLA_mm2_mg_mean 16.3 (15.3 - 17.4) 13.2 (12.2 - 14.1) 52.0691 0.057 ns 3.0363 0.3225 ns 5.338 0.2081 ns

chla_mg.g 2.62 (2.54 - 2.71) 2.49 (2.41 - 2.57) 13.8526 0.1285 ns 0.967 0.539 ns 0.0201 0.922 ns

chla_mg.mm2 0.00018 (0.000169 - 0.000192) 0.000206 (0.000195 - 0.000217) 29.1407 0.0641 ns 1.4573 0.4408 ns 7.0602 0.1697 ns

chlb_mg.g 1.09 (1.05 - 1.13) 0.97 (0.931 - 1.01) 40.3793 0.0622 ns 0.0054 0.9508 ns 2.6047 0.3462 ns

chlb_mg.mm2 7.42e-05 (6.79e-05 - 8.04e-05) 7.95e-05 (7.36e-05 - 8.55e-05) 5.5521 0.2032 ns 1.6784 0.4371 ns 1.3329 0.4618 ns

carot_mg.g 0.687 (0.667 - 0.708) 0.667 (0.647 - 0.687) 6.3526 0.1891 ns 1.5548 0.4406 ns 0.2638 0.725 ns

carot_mg.mm2 4.74e-05 (4.47e-05 - 5.02e-05) 5.54e-05 (5.28e-05 - 5.79e-05) 47.7257 0.057 ns 1.7074 0.4371 ns 7.9565 0.1626 ns

Asat_mean 4.08 (2.66 - 5.5) 7.03 (5.69 - 8.38) 20.2667 0.0936 ns 0.2841 0.725 ns 4.4952 0.2333 ns

Amax_mean 11.7 (8.94 - 14.5) 18 (15.4 - 20.6) 23.2366 0.0844 ns 0.8777 0.5526 ns 4.2675 0.2424 ns

DR_mean 1.03 (0.871 - 1.19) 1.25 (1.09 - 1.4) 7.7079 0.1626 ns 1.546 0.4406 ns 5.7587 0.199 ns

N_mg.mm2 0.128 (0.12 - 0.136) 0.166 (0.158 - 0.174) 97.6994 0.0343 * 0.5198 0.6654 ns 19.7036 0.0936 ns

total_P_mg.mm2 6.62e-05 (6.21e-05 - 7.06e-05) 8.04e-05 (7.57e-05 - 8.54e-05) 33.2076 0.0641 ns 12.2667 0.1294 ns 10.3913 0.1385 ns

X13C 32.4 (32.1 - 32.8) 31.4 (31.1 - 31.8) 28.7751 0.0641 ns 8.7471 0.1586 ns 11.3558 0.1367 ns

C_perc 44.6 (44.3 - 44.9) 44.7 (44.4 - 45) 12.2663 0.1294 ns 89.7169 0.0343 * 0.2403 0.7309 ns

total_P_mg.g 0.998 (0.912 - 1.09) 0.99 (0.909 - 1.08) 1.4839 0.4408 ns 13.2189 0.1285 ns 0.444 0.686 ns

N_perc 1.83 (1.74 - 1.91) 1.97 (1.89 - 2.05) 9.1914 0.1586 ns 7.7457 0.1626 ns 4.523 0.2333 ns

total_K_mg.g 9.99 (8.4 - 11.9) 10.8 (9.13 - 12.7) 0.9229 0.5454 ns 0.3208 0.725 ns 2.7576 0.3403 ns

total_Mg_mg.g 2.57 (2.06 - 3.2) 2.41 (1.96 - 2.97) 0.7237 0.5925 ns 1.2751 0.4687 ns 0.4897 0.672 ns

total_Ca_mg.g 7.09 (6.12 - 8.2) 6.6 (5.75 - 7.59) 6.1143 0.1891 ns 17.5554 0.1051 ns 1.5777 0.4406 ns

X15N 1.64 (0.966 - 2.32) 0.846 (0.204 - 1.49) 5.032 0.2147 ns 0.1854 0.7495 ns 0.5269 0.6654 ns

RaoQ 0.791 (0.735 - 0.847) 0.789 (0.736 - 0.842) 0.1971 0.748 ns 0.1187 0.7961 ns 3.0601 0.3225 ns

Forest type Soil PC1 Soil PC2CWM trait value (95% confindence intervals)
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