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Summary

The concept of distance covariance/correlation was introduced recently to characterize dependence among vectors

of random variables. We review some statistical aspects of distance covariance/correlation function and we demonstrate

its applicability to time series analysis. We will see that the auto-distance covariance/correlation function is able to

identify nonlinear relationships and can be employed for testing the i.i.d. hypothesis. Comparisons with other measures

of dependence are included.
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1 Introduction

There has been a considerable recent interest in measuring dependence by employing the concept of distance co-

variance, a new and appealing measure of dependence for random variables, introduced by Székely et al. (2007).

As examples for the importance of distance correlation in applications we mention the work by Martı́nez-Gómez et al.

(2014); Richards et al. (2014) on astrophysical data; Guo et al. (2014); Piras et al. (2014); Oliveira et al. (2015) in

molecular biology; Zhang et al. (2014) on return indices and stock market prices in the ship market; Donnelly et al.

(2016) in hydrology; and Kong et al. (2012) on the association of lifestyle factors, diseases, familiar relationship

and mortality. Furthermore, there has been an increasing number of works extending the concept of distance co-

variance in various scientific fields for independent data. In the first part of this paper, we review several of them.

http://arxiv.org/abs/1710.01146v2
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Complementary to our work, we refer to the recent paper by Székely and Rizzo (2017) that gives a comprehensive

overview of energy statistics and distance correlation methods.

Székely et al.’s (2007) distance covariance methodology is based on the assumption that the data are i.i.d.

However, as this assumption is often violated in many practical problems, Rémillard (2009) proposed to extend

the notion of distance covariance to the case of dependent data. Zhou (2012) defined the so-called auto-distance

covariance function in a multivariate strictly stationary time series setting and Fokianos and Pitsillou (2018) intro-

duced the matrix auto-distance covariance function. Compared to the i.i.d. case, there have been only few works

regarding distance covariance in the context of time series. In the second part of this paper, we give a brief survey

of these works and we review other measures of dependence, in the context of time series.

The article is divided as follows. In Section 2, we give the basic definitions of distance covariance and correla-

tion functions and present their basic properties. In Section 3, we review the main works of distance covariance by

presenting its extensions and modifications along with some related tests of independence as these appeared in the

statistics literature, for the case of independent data. The concept of distance covariance for the case of dependent

data, and especially time series data, is presented in Section 4. Tests of serial independence based on distance

covariance and other measures of dependence are reviewed in Section 5. A comparison of these tests is discussed

in Section 6, by giving some simulated and real data examples and testing the i.i.d. hypothesis.

2 The Distance Covariance Function

In what follows, X denotes a univariate random variable and X denotes a multivariate random vector.

Székely et al. (2007) introduced the distance covariance function as a new measure of dependence between

random vectors, say X and Y, of arbitrary, not necessarily equal, dimensions, p and q respectively. However, for

the special case of p = q = 1, this definition can be also found in Feuerverger (1993, Sec. 4) who considered a

rank test for bivariate dependence. The definition of distance covariance relies on the joint characteristic function

of X and Y, which is denoted by φ(X,Y)(t, s) = E
[
exp
(
i(t′X + s′Y)

)]
, where (t, s) ∈ R

p+q and i2 = −1.

The corresponding marginal characteristic function of X and Y are denoted by φX(t) = E
[
exp
(
it′X

)]
and

φY(s) = E
[
exp
(
is′Y

)]
, respectively. The distance covariance function is defined as the nonnegative square

root of a weighted L2 distance between the joint and the product of the marginal characteristic functions of two

random vectors, namely

V 2(X,Y) =

∫

Rp+q

∣∣φ(X,Y)(t, s)− φX(t)φY(s)
∣∣2 ω(t, s)dtds, (1)
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where ω(·, ·) : Rp+q → R is a weight function for which the above integral exists and whose choice is discussed

later on. Rescaling (1) leads to the definition of the distance correlation function between X and Y, which is the

positive square root of

R2(X,Y) =





V 2(X,Y)√
V 2(X,X)V 2(Y,Y)

, V 2(X,X)V 2(Y,Y) > 0;

0, otherwise.

(2)

The previous display shows that the distance correlation function is a coefficient analogous to Pearson’s correlation

coefficient. But, unlike the classical coefficient which measures the linear relationship between X and Y and can

be zero even when the variables are dependent, the distance correlation vanishes only in the case where X and Y

are independent–see Fig 1. Further properties of (1) and (2) are established later. The choice of the weight function

ω(·, ·) is crucial. Choosing the non-integrable weight function of the form

ω(t, s) = (cpcq |t|1+p
p |s|1+q

q )−1, (3)

where cd = π(1+d)/2/Γ((1 + d)/2), with Γ(·) denoting the Gamma function, R2(X,Y) given by (2) is scale

and rotation invariant. In particular, (3) is (up to a constant) the only weight function such that V 2(X,Y) is rigid

motion invariant and scale equivariant (Székely and Rizzo, 2012); moreover the resulting distance standard devi-

ation defined as V (X) := V (X,X) is then an axiomatic measure of spread (Edelmann et al., 2017). An early

reference discussing the particular choice of (3) is that of Feuerverger (1993). For related work on character-

istic functions, see also Meintanis and Iliopoulos (2008) and Hlávka et al. (2011), among others. Furthermore,

Bakirov et al. (2006) proposed a weight function ω(·, ·) different than (3). However, the choice of (3) yields to

computational advantages. Denote by |x|p the Euclidean norm in R
p. The main properties of (1) and (2), when (3)

is used, are given by the following:

1. IfE
(
|X|p+|Y|q

)
< ∞, then the distance correlation,R(X,Y), satisfies 0 ≤ R(X,Y) ≤ 1 andR(X,Y) = 0

if and only if X and Y are independent.

2. R(X,Y) is invariant under orthogonal transformations of the form (X,Y) →
(
α1 + b1C1X, α2 + b2C2Y

)
,

where α1, α2 are arbitrary vectors, b1, b2 are arbitrary nonzero numbers and C1, C2 are arbitrary orthogonal

matrices.
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3. If p = q = 1 and X and Y have standard normal distributions with r = Cov(X,Y ), then R(X,Y ) ≤ |r| and

R2(X,Y ) =
r arcsinr +

√
1− r2 − r arcsinr/2−

√
4− r2 + 1

1 + π/3−
√
3

. (4)

4. When E
(
|X|2p + |Y|2q

)
< ∞ then

V 2(X,Y) = E
∣∣X − X′

∣∣
p

∣∣Y − Y′
∣∣
q
+ E

∣∣X − X′
∣∣
p
E
∣∣Y − Y′′

∣∣
q
− 2E

∣∣X − X′
∣∣
p

∣∣Y − Y′′
∣∣
q
. (5)

with (X′,Y′) and (X′′,Y′′) being independent copies of (X,Y).

3 Estimation, Testing and Further Properties

3.1 Estimation

We consider the empirical counterparts of (1) and (2), when using the weight function (3). The empirical distance

covariance and correlation measures are functions of the double centered distance matrices of the samples. Suppose

that (Xi,Yi), i = 1, · · · , n, is a random sample from the joint distribution of the random vectors X and Y. Based

on this sample, consider the n× n Euclidean pairwise distance matrices with elements (aij) =
(
|Xi − Xj |p

)
and

(bij) =
(
|Yi − Yj |q

)
. These matrices are double centered so that their row and column means are equal to zero.

In other words, let

Aij = aij − āi. − ā.j + ā.., Bij = bij − b̄i. − b̄.j + b̄..,

where āi. =
(∑n

j=1 aij

)
/n, ā.j =

(∑n
i=1 aij

)
/n, ā.. =

(∑n
i,j=1 aij

)
/n2. Similarly, we define the quantities

bi.,b.j and b... The sample distance covariance is defined by the square root of the statistic

V̂ 2(X,Y) =
1

n2

n∑

i,j=1

AijBij . (6)

We compute the squared sample distance correlation in terms of (6) by (2) as

R̂2(X,Y) =





V̂ 2(X,Y)√
V̂ 2(X,X)V̂ 2(Y,Y)

, V̂ 2(X,X)V̂ 2(Y,Y) > 0;

0, otherwise.
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Furthermore, note that by multiplying out (6) we obtain the alternative expression

V̂ 2(X,Y) =
1

n2

n∑

i,j=1

aijbij +
1

n4

n∑

i,j=1

aij

n∑

i,j=1

bij −
2

n3

n∑

i,j,k=1

aij bjk. (7)

The main properties of sample distance covariance and correlation functions are the following:

• The estimators V̂ 2(X,Y) and R̂2(X,Y) are both strongly consistent, that is they both converge almost surely

to their population counterparts (1) and (2) respectively, as n tends to infinity, provided that E[|X|p] < ∞

and E[|Y|q] < ∞.

• V̂ 2(X,Y) ≥ 0 a.s., where the equality holds when X and Y are independent.

• 0 ≤ R̂(X,Y) ≤ 1.

• R̂(X, α+ bXC) = 1, where α is a vector, b is a nonzero real number and C is an orthogonal matrix.

Figure 1 illustrates a comparison between the empirical distance correlation R̂ and the empirical Pearson

correlation Ĉor for several examples of nonlinear association between two real-valued variables X and Y , where

the sample size is fixed at n = 1000. While the Pearson correlation Ĉor is very close to 0 in these examples,

signifying that there are either no or very weak linear dependencies, the distance correlation coefficient R̂ is

substantially larger than 0 for all cases.

Figure 1: Comparison of empirical Pearson correlation Ĉor and empirical distance correlation R̂ for different

settings. The number of samples is fixed at n = 1000. The left graph illustrates a quadratic dependence between

X and Y . The middle graph represents a cubic relationship between X and Y . In the right graph, the relationship

between X and Y depends on three different subgroups. In the first subgroup (medium gray), X and Y are

independent. In the second subgroup (black), there is a positive correlation between X and Y . In the second

subgroup (light gray), there is a negative correlation between X and Y .
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It turns out that V̂ 2(X,Y) is not an unbiased estimator of V 2(X,Y), but it holds that

E[V̂ 2(X,Y)] =
(n− 1)(n− 2)2

n3
V 2(X,Y) +

2(n− 1)2

n3
γ − (n− 1)(n− 2)

n3
αβ,

where α = E
∣∣X − X′

∣∣
p
, β = E

∣∣Y − Y′
∣∣
q

and γ = E[
∣∣X − X′

∣∣
p

∣∣Y − Y′
∣∣
q
]. Here, X′ (respectively Y′) denotes

an independent copy of X (respectively, Y). An unbiased estimator of squared distance covariance proposed by

Székely and Rizzo (2014) is given by

V̂U (X,Y) =
1

n(n− 3)

∑

i6=j

ÃijB̃ij

for n > 3, where the so-called U-centered matrices, Ãij have the additional property that E[Ãij ] = 0 for all i,j

and are defined by

Ãij =





aij − 1
n−2

∑n
l=1 ail − 1

n−2

∑n
k=1 akj +

1
(n−1)(n−2)

∑n
k,l=1 akl, i 6= j;

0, i = j.

For p = q = 1, Huo and Székely (2016) have shown that V̂U (X,Y ) is a U-statistic, which is degenerate in

the case where X and Y are independent. For further details concerning the properties of V̂U (X,Y), we refer

to the paper by Huang and Huo (2017). By using the U-statistic representation of V̂U (X,Y ), Huo and Székely

(2016) show that it can be computed by an O(n log n) algorithm. This algorithm considerably speeds up the

calculation of the distance correlation coefficient for large sample sizes. For higher dimensions, Huang and Huo

(2017) derive an alternative independence test based on random projections and distance correlation. Their method

has computational complexity of order O(Kn logn), where K is the number of random projections.

3.2 Asymptotic tests

Following Székely et al. (2007), it can be shown that, under the null hypothesis of independence between the

random vectors X and Y,

nV̂ 2(X,Y)
n→∞−→

∞∑

j=1

λjZj , (8)

in distribution, where {Zj} are independent standard normal variables and {λj} are eigenvalues which depend on

the joint distribution of the random vectors (X,Y), provided that E[|X|p] < ∞ and E[|Y|q] < ∞. Moreover the
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quadratic form Q :=
∑∞

j=1 λjZj satisfies E[Q] = E
∣∣X − X′

∣∣
p
E
∣∣Y − Y′′

∣∣
q
.

On the other hand, if X and Y are not independent, then

nV̂ 2(X,Y)
n→∞−→ ∞ (9)

in probability. Results (8) and (9) imply a test for independence based on the statistic nV̂ 2. While Székely et al.

(2007) derive an asymptotic test with asymptotic significance level at most α, they point out that this significance

level can be quite conservative for many distributions. As an alternative, they propose a Monte-Carlo permutation

test, which is now the standard method for testing independence based on the distance covariance. This permuta-

tion test is also implemented in the R package energy by Rizzo and Székely (2016). Recently, Huang and Huo

(2017) have proposed an alternative distance covariance test based on a gamma approximation of the asymptotic

distribution of the test statistic under the null hypothesis.

The idea of employing (1) for detecting independence was previously discussed by Feuerverger (1993) who

considered measures of the form of (1). To develop a nonparametric test for independence, Feuerverger (1993)

suggested to replace univariate sample points Xi and Yi, i = 1, . . . , n, by approximate normal score quantities X ′
i

and Y ′
i , where X ′

i = Φ−1

((
rank(Xi)− 3/8

)
/
(
n+ 1/4

))
. Then, he proposed the test statistic

∫

R2

∣∣∣φ̂(X′,Y ′)(t, s)− φ̂X′(t)φ̂Y ′(s)
∣∣∣
2

|t|−2 |s|−2
dtds, (10)

where φ̂(X′,Y ′)(t, s) =
∑n

j=1 e
i(tX′

j+sY ′
j )/n is the empirical joint characteristic function of (X,Y ) and φ̂X′(t) :=

φ̂(X′,Y ′)(t, 0) and φ̂Y ′(s) := φ̂(X′,Y ′)(0, s) are the empirical marginal characteristic functions. Clearly, (10) is

the empirical version of (1) by using (3) and is identical to (8); the differences are the use of scores instead of

observations and the restriction to the univariate case. More on the comparison between the distance covariance

and the statistics proposed by Feuerverger (1993) can be found in Gretton et al. (2009). Furthermore, Feuerverger

(1993) derived conditions for the weight function ω(·, ·) under which (10) can be written analogously to the right-

hand side of (7), where | · − · |1 is replaced by some function g(·, ·). Kankainen (1995) gave an explicit example,

showing that choosing a Gaussian weight function in (1) results in a statistic of the form (7), where aij and bij are

replaced by 1 − exp(−(Xi −Xj)
2/(2σ2)) and 1 − exp(−(Yi − Yj)

2/(2σ2)), respectively. In a recent preprint,

Böttcher and Schilling (2017a) enlighten the connection between the weight function ω and the corresponding

distance g(·, ·). Furthermore, they give several examples including the one given by Kankainen (1995).
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3.3 Generalizations and Modifications of the Distance Covariance

The α-distance covariance function, V (α)(X,Y), is a generalization of the distance covariance function (1) for a

constant α that lies in the interval (0,2), when (3) is used. More precisely, it is the non-negative number given by

the square root of (Székely et al., 2007)

V 2(α)(X,Y) =
1

C(p, α)C(q, α)

∫

Rp+q

∣∣φ(X,Y)(t, s)− φX(t)φY(s)
∣∣2

|t|α+p
p |s|α+q

q

dtds, (11)

where C(p, α) and C(q, α) are given by

C(d, α) =
2πd/2Γ((1− α/2))

α2αΓ((d+ α)/2)
.

An estimator of (11) is computed analogously by defining a distance matrix with elements aij = |Xi − Xj |αp and

bij = |Yi − Yj |αq and working analogously as in the case of (1). Note that (11) extends the theory of distance

covariance since (1) is obtained as a special case when α = 1. Possible extensions of α-distance covariance for

values of the parameter α which do not lie in the interval (0, 2) are discussed by Dueck et al. (2015).

On the other hand, Kosorok (2009) suggested the weight function

ω(s, t) = c−1
p c−1

q (
√

s′M1s)−1−p(
√

t′M2t)−1−q,

where M1 and M2 are positive-definite matrices. By choosing M1 = ΣX and M2 = ΣY, where ΣX and ΣY are

the covariance matrices of X and Y, respectively we obtain the affinely invariant distance covariance and distance

correlation (Dueck et al., 2014), which are given, respectively, by

Ṽ 2(X,Y) = V 2(Σ
−1/2
X X,Σ

−1/2
Y Y),

R̃2(X,Y) =
Ṽ 2(X,Y)√

Ṽ 2(X,X) Ṽ 2(Y,Y)
= R2(Σ

−1/2
X X,Σ

−1/2
Y Y).

(12)

R̃ retains all the important properties of distance correlation. In particular 0 ≤ R̃(X,Y) ≤ 1 and R̃(X,Y) = 0

if and only if X and Y are independent. Additionally it is invariant under general invertible affine transformation

X → A1 X +A2 and Y → B1 Y +B2.

An alternative way to generalize the distance covariance is based on (5) (or (6) if second moments do not exist).

Lyons (2013) extends distance covariance to random variables X and Y on general metric spaces of negative type.
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If dX ( respectively, dY ) is a distance on the space where X is defined (respectively Y) and if second moments exist

then the generalization is given by

V 2
dX ,dY

(X,Y) = E dX (X,X′)dY(Y,Y′) + E dX (X,X′)E dY(Y,Y′)− 2E dX (X,X′)dY(Y,Y′), (13)

where X′, Y′ are independent copies of X and Y. Lyons (2013) showed that this measure characterizes inde-

pendence if the underlying metric spaces are of strong negative type; in particular, this class of sets includes all

separable Hilbert spaces. Sejdinovic et al. (2013) extend (13) to semimetric spaces of negative type. They further

establish the equivalence of distance covariance measures on semimetric spaces of negative type (as in (13)) and

the Hilbert-Schmidt independence criterion (HSIC), see Gretton et al. (2005, 2008). In particular, the standard

distance covariance can be written as a special case of the HSIC with kernel functions given by

k1(x1, x2) = |x1|p + |x2|p − |x1 − x2|p, k2(y1, y2) = |y1|q + |y2|q − |y1 − y2|q.

Another extension of distance covariance was proposed by Székely and Rizzo (2009) who considered the no-

tion of Brownian distance covariance. Suppose that X and Y are real-valued random variables in R
p and R

q

respectively, and W(s) and W′(t) are independent Brownian motions for all s ∈ R
p and t ∈ R

q . Then the

Brownian covariance function of X and Y is defined as the positive square root of

W 2(X,Y) = E[XWX′
W′YWY′

W′ ], (14)

where

XW = W(X)− E[W(X)|W]

and (W,W′) are independent of (X,Y,X′,Y′). The authors proved the surprising result that the Brownian co-

variance coincides with the squared population distance covariance (1) (Székely and Rizzo, 2009, Thm. 8), that

is

W 2(X,Y) = V 2(X,Y).

Further extensions of this idea to other stochastic processes, such as fractional Brownian motions and to more

general Gaussian processes, like the Laplace-Gaussian process are given by Székely and Rizzo (2013). When
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(X,Y ) is a bivariate vector and the processes W and W ′ are replaced by the identity function id, that is Xid =

X − E[X ] and Yid = Y − E[Y ], then we obtain the absolute value of the classical Pearson covariance.

Furthermore, Székely and Rizzo (2013) extended this idea to a general class of Gaussian processes, showing

that for any stochastic processes of this form, (14) can be expressed similarly as the right-hand side of (13) (where

the (semi)-metrics are replaced by conditional negative definite continuous symmetric functions generating the

covariance functions of the processes). Fiedler (2016) developed new dependence measures based on the distance

correlation function for spatial stochastic processes. Moreover, a recent contribution of the appropriate definitions

of distance covariance for measuring dependence in the context of stochastic processes is that of Matsui et al.

(2017).

Rémillard (2009) suggested to extend the notion of distance covariance by replacing the samples {Xi}, {Yi}

by their normalized ranks, that is {RX,i/n} and {RY,i/n} respectively, where RX,ij is the rank of Xij among

X1j , . . . , Xnj , j = 1, . . . , p. He further suggested to generalize the distance covariance to measure dependence

among more than two random vectors. For random vectors X1, . . . , Xd, taking values in R
p1 , . . . ,Rpd , Belu (2012)

defined the distance covariance as the weighted difference between the d-dimensional joint characteristic function,

φ(t1, . . . , td) = E
[
exp
(
i(t′1X1 + · · ·+ t′dXd)

)]
,

and the product of the marginals

φ(j)(tj) = E
[
exp
(
i(t′jXj)

)]
, j = 1, · · · , d.

The extended version of distance covariance (compare (1) and (11)) is defined as the positive square root of

V 2(α)(X1, . . . ,Xd) =
1

cp1
...cpd

∫

R
p1+···+pd

∣∣φ(t1, . . . , td)− φ(1)(t1) · · ·φ(d)(td)
∣∣2

|t1|α+p1

p1
... |td|α+pd

pd

,

where cpj
, j = 1, . . . , d is given as before andα is a positive constant that lies in the interval (0,2). The above quan-

tity can be employed for testing independence in the case of more than two random vectors but Bakirov and Székely

(2011, p. 471) point out that this integral can diverge. For novel approaches of multivariate version of distance

covariance, see Yao et al. (2018), Böttcher and Schilling (2017b) and Chakraborty and Zhang (2018). A related

line of research is based on HSIC; see Pfister et al. (2018).
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Wang et al. (2015) introduced the conditional distance covariance as the square root of

cdCov2(X,Y|Z) = 1

cp cq

∫

Rp+q

∣∣φ(X,Y|Z)(t, s)− φX|Z(t)φY|Z(s)
∣∣2

|t|p+1
p |s|q+1

q

dtds,

where φ(X,Y)|Z denotes the conditional joint characteristic function of (X,Y) given Z and φX|Z and φY|Z denote

the respective conditional marginal characteristic functions. Analogously the conditional distance correlation is

defined as the square root of

cdCor2(X,Y|Z) = cdCov2(X,Y|Z)√
cdCov2(X,X|Z)cdCov2(Y,Y|Z)

,

provided that cdCov2(X,X)|Z)cdCov2(Y,Y|Z) > 0, and 0, otherwise. It is easy to see that cdCov2(X,Y |Z)

equals 0 if and only if X and Y are independent given Z . In addition, Wang et al. (2015) derive two consistent,

ready-to-use sample measures for the conditional distance covariance, which do not involve integration of the

empirical characteristic functions.

It is important to point out that the conditional distance correlation is not equivalent to the partial distance

correlation introduced by Székely and Rizzo (2014), which can be defined via

R∗(X,Y ;Z) =
R2(X,Y )− R2(X,Z)R2(Y, Z)√
(1 −R4(X,Z))

√
(1−R4(Y, Z))

,

if R(X,Z) 6= 1 andR(Y, Z) 6= 1 and 0 otherwise. In particular, Székely and Rizzo (2014) show thatR∗(X,Y ;Z) =

0 is not equivalent to conditional independence of X and Y given Z .

Another related measure is the martingale difference correlation (Shao and Zhang, 2014), which is defined for

X ∈ R
p and Y ∈ R by

MDC =
MDD(Y |X)√

var2(Y )V 2(X,X)
.

Here MDD(U, V ) denotes the martingale difference divergence given by

MDD(Y |X) =
1

cp

∫

Rp+q

∣∣E
[
Y exp

(
it′X

)]
− E

[
exp
(
it′X

)]
E[Y ]

∣∣2

|t|p+1
p

dtds.

The martingale correlation satisfies the property that MCC(V |U) = 0 if and only if E[V |U ] = E[V ] almost

surely. In Park et al. (2015), a conditional version of the martingale difference correlation is introduced; it is

defined analogously to the partial distance correlation of Székely and Rizzo (2014).
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3.4 Variable selection

Since the distance correlation coefficient captures any kind of dependence including nonlinear or non monotone

dependencies, it appears natural to apply this coefficient for variable selection in nonlinear models. For this pur-

pose, Li et al. (2012) have developed the distance correlation sure independence screening method (DC-SIS) for

variable screening. As the usual SIS (Fan and Lv, 2008) selects the variables with the highest Pearson corre-

lation, DC-SIS selects the variables with the highest distance correlation. Unlike SIS, which is applicable to

linear models only, DC-SIS can detect arbitrary associations of the predictors with the response. Li et al. (2012)

show the sure screening property for DC-SIS, under moderate assumptions, and show that this method accommo-

dates linear models as a special case. Two iterative modifications for DC-SIS have been developed recently ( see

Yenigün and Rizzo (2015); Zhong and Zhu (2015)). However there are no known theoretical properties of these

methods as of yet, to the best of our knowledge. Kong et al. (2015) have derived an automatic stopping rule for

DC-SIS, which determines the number of predictors to select. Recently, Liu and Wang (2017) have proposed a

modified version of DC-SIS based on the concept of conditional distance correlation (Wang et al., 2015), which

allows for feature screening conditional on some prespecified variables. Other notable approaches are the methods

by Shao and Zhang (2014), who propose a variable screening algorithm based on the martingale difference cor-

relation and Kong et al. (2017) who derive the sure screening property for a two-stage screening procedure that

applies distance correlation on transformed variables.

Considering the equivalence of the generalized distance covariance and the Hilbert Schmidt Independence

Criterion (Sejdinovic et al., 2013), more general distance correlation based variable selection methods emerge as

special cases of HSIC based methods. As examples, see Song et al. (2012), Balasubramanian et al. (2013) and

Tonde (2016).

3.5 Closed form expressions for the distance covariance of multivariate distributions

Distance correlation possesses an astonishingly simple sample quantity but the analytical evaluation of its popu-

lation quantity for known parametric distribution often represents computational problems. For distributions with

finite support, it is straightforward (but cumbersome) to evaluate (2) to obtain closed form expressions for the

distance covariance. For example, for two Bernoulli-distributed random variables X and Y with P
(
(X,Y ) =

(0, 0)
)
= P

(
(X,Y ) = (1, 1)

)
= p/2 and P

(
(X,Y ) = (0, 1)

)
= P

(
(X,Y ) = (1, 0)

)
= (1 − p)/2, we have that

R2(X,Y ) = (2p− 1)2 = ρ2(X,Y ),
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where ρ denotes the ordinary Pearson correlation coefficient. For distributions with non-finite support, the usual

approach is to directly calculate the integral (1). For normally distributed X and Y with correlation r and EX =

EY = 0, Var(X) = Var(Y ) = 1 we have already seen identity (4). Dueck et al. (2014) extended this result

to the affinely invariant distance correlation (recall (12)) of two multivariate normal vectors X and Y. When

Cov(X) = Ip and Cov(Y) = Iq this coincides with the regular distance correlation. In this particular case, the

squared affinely invariant distance covariance is given as

Ṽ 2(X,Y) = 4π
cp−1

cp

cq−1

cq
×
(
3F2

(
1
2 ,− 1

2 ,− 1
2 ;

p
2 ,

q
2 ; Λ

)
− 2 3F2

(
1
2 ,− 1

2 ,− 1
2 ;

p
2 ,

q
2 ;

1
4Λ
)
+ 1
)
,

where cp has been defined immediately after (3), Λ denotes the squared cross covariance matrix of X and Y and

3F2 denotes a generalized hypergeometric function of matrix argument (see Dueck et al. (2014) for the details).

Dueck et al. (2017) outlined a general approach for calculating the distance correlation for the so-called Lancaster

class of distributions. The authors illustrate this result by calculating the distance correlation for the bivariate

gamma, the bivariate Poisson and the bivariate negative binomial since all of those distributions belong to the

Lancaster class. Moreover, they derive an alternative expression for the affinely invariant distance correlation of

the multivariate normal distribution and derive the distance correlation for generalizations of the bivariate normal.

3.6 The distance correlation coefficient in high dimensions

As stated in subsection 3.2, distance covariance provides a test for independence for random vectors X and Y

of arbitrary dimension p and q, respectively. However, practitioners often use distance correlation rather as an

an ad-hoc measure for independence than applying a formal test. While this appears to work well for univariate

random variables, some authors have reported that the direct interpretation of distance correlation is questionable

in high dimensions. Dueck et al. (2014) showed that for fixed q and standard multivariate normal random vectors

(X,Y) ∈ R
p+q

lim
p→∞

R(X,Y) = 0, (15)

irrespectively of the dependence structure between X and Y. On the other hand, Székely et al. (2013) proved that

for fixed n

lim
p,q→∞

R̂(X,Y) = 1, (16)

provided that the coordinates of X and Y are i.i.d. and the second moments of X and Y exist. Comparison of

(15) and (16) reveals that there are actually two different effects, which complicate the interpretation of distance
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correlation in high dimension. Equation (15) shows that the population distance correlation is close to 0 when

comparing a low-dimensional and a high-dimensional vector. Equation (16 shows that the sample distance corre-

lation is close to 1 when comparing two high-dimensional vectors. These two problems may occur simultaneously,

when comparing two high-dimensional vectors with substantially distinct dimensions. In particular, (15) shows

that we can find sequences (pk)k∈N, (qk)k∈N, such that pk → ∞, qk → ∞ and

lim
k→∞

R(X,Y) = 0, lim
k→∞

R̂(X,Y) = 1,

where for any k, X and Y are pk and qk-dimensional standard normal vectors and n is fixed. When p = q, the

population distance correlation R(X,Y) can attain both the values 0 (X and Y independent) and 1 (Y = α+ b C X

with α ∈ R
p, b ∈ R, C orthogonal). In view of (16) we can apply an unbiased estimator for the distance co-

variance as described in Székely et al. (2013). This has the further advantage that transformation of this estimator

converges to a Student-t distribution with n(n − 3)/2 degrees of freedom, which enables a distance correlation

t-test for independence in high dimensions. When p and q differ (but are both high-dimensional), the t-test may

still be applied, however a direct interpretability is critical (recall equation (15)).

4 Auto - Distance Covariance Function

4.1 Basic definitions

The distance covariance methodology discussed in Section 2 is based on the assumption that the observations are

i.i.d. However, in many practical problems this assumption is violated. Rémillard (2009) proposed an extension

of the distance covariance methodology to non-i.i.d. observations, especially time series data, for measuring serial

dependence. In this section, we review and compare a number of related dependence measures that have appeared

in the time series literature. Throughout the remainder of the paper, we denote by bold {Xt} a d-dimensional

stationary time series process, with components {Xt;i}di=1. Define further the joint characteristic function of Xt

and Xt+j by φj(u, v) = E
[
exp
(
i(u′Xt + v′Xt+j)

)]
and the marginal characteristic function of Xt by φ(u) =

E
[
exp
(
iu′Xt

)]
, with (u, v) ∈ R

2d, i2 = −1 and j ∈ Z. The above definitions include the case of univariate time

series; that is d = 1 and (u, v) ∈ R
2.

Zhou (2012) introduced the definition of distance covariance in time series literature. In particular, extending

Székely et al.’s (2007) definition, Zhou (2012) defined the auto-distance covariance function (ADCV) as the posi-
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tive square root of (1), between the joint and the product of the marginal characteristic functions of Xt and Xt+j .

However, Hong (1999) had already defined a similar measure of dependence that captures all types of pairwise de-

pendencies. In what follows, we explain how this work is related to Székely et al.’s (2007) work for the definition

of distance covariance in time series.

For a strictly stationary α-mixing univariate time series {Xt}, Hong (1999) defined a new measure of depen-

dence between the joint characteristic function of Xt and its lagged observation Xt+j and the product of their

marginals, namely

σj(u, v) = Cov
(
eiuXt , eivXt+j

)
= φj(u, v)− φ(u)φ(v), (17)

where j ∈ Z. Given that the joint characteristic function factorizes into the product of its marginals under in-

dependence of Xt and Xt+j , σj(u, v) equals 0 if and only if Xt and Xt+j are independent. Thus, compared

to the classical autocorrelation function (ACF), (17) can capture all pairwise dependencies including those with

zero autocorrelation. Note that various measures of dependence can be based on (17) (recall (1)) by considering

symmetric weighted integrals of the form (see also Davis et al. (2018))

∫
|σj(u, v)|2 ω(u, v)dudv,

for a suitable function ω(·, ·). For instance, consider ω(u, v) = φ(u)φ(v) where φ(·) is the density of the standard

normal. Motivated by the work of Székely et al. (2007), Zhou (2012) also defined the so-called auto-distance

covariance function of {Xt} as the positive square root of

V 2
X(j) =

1

π2

∫

R2

|σj(u, v)|2

|u|2 |v|2
dudv, j ∈ Z. (18)

From the above definition, we can observe that V 2
X(j) equals 0 if and only if Xt and Xt+j are independent.

Rescaling (18), we define the auto-distance correlation function (ADCF) as the positive square root of

R2
X(j) =





V 2
X(j)

V 2
X(0)

, V 2
X(0) 6= 0;

0, V 2
X(0) = 0.

(19)

Clearly, R2
X(j) equals zero if and only if Xt and Xt+j are independent. Thus, the ADCF is suitable for exploring

possible nonlinear dependence structures in time series that are not detected by the ACF. This is better understood
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Figure 2: Comparison of the sample ADCF and sample ACF. The data are generated by the NMA(2) model given by (20).

Results are based on sample size n = 2000.

by examining Figure 2. The plot presents the ACF and ADCF of a second order nonlinear moving average process

(NMA(2)) defined by

Xt = ǫtǫt−1ǫt−2, (20)

where {ǫt} is a sequence of i.i.d. standard normal random variables. It is well known that the process {Xt} consists

of uncorrelated but two-dependent random variables. The white noise property is clearly discovered by the ACF,

whereas the dependence structure is only detected by the ADCF. We note that the shown critical values of the

ADCF plots (second column) are the pairwise 95% critical values that correspond to the pairwise independence

test. They are computed via the subsampling approach suggested by Zhou (2012, Section 5.1), where the choice of

the block size is based on the minimum volatility method proposed by Politis et al. (1999, Section 9.4.2). Moreover,

the 95% simultaneous critical values, for testing whether the data form an iid sequence, are also shown in the

sample ADCF plots (last column). They are computed via the wild bootstrap method (Dehling and Mikosch, 1994;

Shao, 2010; Leucht and Neumann, 2013) following the algorithm presented in Fokianos and Pitsillou (2018).

4.2 Estimation of ADCV

The sample ADCV, denoted by V̂X(·), is defined analogously as in Section 3.1, with the second sample replaced

by the lagged observation of the time series, that is by letting Yt = Xt+j for j ≥ 0. In particular, by defining the
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(n − j) × (n − j) pairwise Euclidean distance matrices by (arl) = |Xr −Xl| and (brl) = |Yr − Yl|, the sample

ADCV is given by

V̂ 2
X(j) =

1

(n− j)2

n−j∑

r,l=1

ArlBrl. (21)

where Arl = arl − ār. − ā.l + ā.. and Brl = brl − b̄r. − b̄.l + b̄.., with ār. =
(∑n−j

l=1 arl

)
/(n − j), ā.l =

(∑n−j
r=1 arl

)
/(n − j) and ā.. =

(∑n−j
r,l=1 arl

)
/(n − j)2. Similarly, we define the quantities br.,b.l and b... If

j < 0, then V̂ 2
X(j) = V̂ 2

X(−j). Replacing (21) into (19), the sample ADCF is the nonnegative number defined by

the square root of

R̂2
X(j) =





V̂ 2
X(j)

V̂ 2
X(0)

, V̂ 2
X(0) 6= 0;

0, V̂ 2
X(0) = 0.

The main properties of ADCV and ADCF and their empirical counterparts are summarized below:

1. Under the minimal conditions of a strictly stationary α-mixing process and existence of first moment,

Fokianos and Pitsillou (2017) obtained the strong consistency of V̂ 2
X(·) to its population counterpart for

a fixed lag j. Zhou (2012) obtained the weak consistency of V̂X(·) requiring (1 + r0);th moment of the

process for some r0 > 0 by assuming short range dependence condition. Davis et al. (2018) also proved

strong consistency for ADCV, under various choices of finite and infinite weight functions ω(·, ·). In ad-

dition, Fokianos and Pitsillou (2018) show strong consistency of V̂ 2
X(·) by assuming existence of second

order moments of Xt. The proof is simpler when compared to other proofs but at the cost of assuming

E|Xt|2 < ∞.

2. V̂ 2
X(j) ≥ 0 a.s., for j ∈ Z where the equality holds under independence.

3. If Xt has finite first moments, then 0 ≤ RX(j) ≤ 1. RX(j) = 0 if and only if Xt and Xt+j are independent

and RX(j) = 1 if Xt and Xt+j are linearly related by an orthogonal matrix.

4. If {Xt} is a univariate Gaussian zero-mean stationary time series process with Var(Xt) = 1 and ρ(j) =

Cov(Xt, Xt+j) then RX(j) ≤ |ρ(j)| and

R2
X(j) =

ρ(j) arcsinρ(j) +
√
1− ρ2(j)− ρ(j) arcsinρ(j)/2−

√
4− ρ2(j) + 1

1 + π/3−
√
3

, j ∈ Z.
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4.3 Extensions of ADCV

Zhou (2012) defined the distance correlation coefficient to explore temporal nonlinear dependence structure in

multivariate time series. However, his approach is missing the interrelationships between the various time series

components. For a strictly stationary d-dimensional time series {Xt}, Zhou (2012) defined

V 2
X (j) =

1

c2d

∫

Rd

∫

Rd

|σj(u, v)|2

|u|d+1 |v|d+1
dudv, j ∈ Z. (22)

When testing for independence for multivariate time series, a natural extension consists of defining the distance

correlation appropriately for examining whether there exists some inherent nonlinear interdependence between the

component series. Fokianos and Pitsillou (2018) investigated this problem by defining the pairwise auto-distance

covariance and correlation matrices, and extended the theory described in Section 5.2 to multivariate processes.

In particular, define an analogous dependence measure to (17) by

σ
(r,m)
j (u, v) = φ

(r,m)
j (u, v)− φ(r)(u)φ(m)(v), j ∈ Z,

where φ
(r,m)
j (u, v), φ(r)(u) and φ(m)(v) are the joint characteristic function and the marginal characteristic func-

tions of Xt;r and Xt+j;m respectively, for r,m = 1, . . . , d. Then the pairwise auto-distance covariance function

between Xt;r and Xt+j;m as the positive square root of

V 2
rm(j) =

∫

R2

∣∣∣σ(r,m)
j (u, v)

∣∣∣
2

ω(u, v)dudv, j ∈ Z, (23)

where ω(·, ·) is given in (3). The auto-distance covariance matrix of {Xt} at a specific lag j, denoted by V (j), is

the d× d matrix

V (j) =

[
Vrm(j)

]d

r,m=1

, j ∈ Z.

The pairwise auto-distance correlation function betweenXt;r andXt+j;m, say Rrm(j), is then defined by rescaling

(23)

R2
rm(j) =

V 2
rm(j)√

V 2
rr(0)

√
V 2
mm(0)

,

for Vrr(0)Vmm(0) 6= 0 and zero otherwise. The auto-distance correlation matrix at lag j, denoted by R(j), is the
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d× d matrix

R(j) =

[
Rrm(j)

]d

r,m=1

, j ∈ Z.

The pairwise distance correlation coefficient can be employed for exploring complex nonlinear interdependence

structures that can not be discovered by the classical cross-correlation coefficient.

The sample quantity of (23) is obtained analogously as in Section 4.2. In particular, for j ≥ 0 consider a sample

(X,Y ) = {(Xt;r, Xt+j;m)} for r,m = 1, 2, . . . , d. Define the Euclidean distance matrices by (arts) = |Xt −Xs|

and (bmts) = |Yt − Ys| and the double centered distance matrices by

Ar
ts = arts − ārt. − ār.s + ār.., Bm

ts = bmts − b̄mt. − b̄m.s + b̄m.. ,

where the quantities in the right hand side are defined analogously as those defined in Section 4.2. Thus, the sample

counterpart of Vrm(·) is the positive square root of

V̂ 2
rm(j) =

1

(n− j)2

n−j∑

t,s=1

Ar
tsB

m
ts .

If j < 0, set V̂ 2
rm(j) = V̂ 2

mr(−j). The sample distance covariance matrix is then given by

V̂ (j) =

[
V̂rm(j)

]d

r,m=1

, j ∈ Z.

The main properties of Vrm(·) and Rrm(·) and their sample counterparts are outlined below:

• For all j ∈ Z, the diagonal elements
(
Vrr(j)

)d
r=1

correspond to the auto-distance covariance function of

{Xt;r} and they express the dependence among the pairs
(
Xt;r, Xt+j;r

)
, r = 1, . . . , d.

• The off-diagonal elements
(
Vrm(0)

)d
r,m=1

measure the concurrent dependence between {Xt;r} and {Xt;m}.

If Vrm(0) > 0, {Xt;r} and {Xt;m} are concurrently dependent.

• For j ∈ Z− {0},
(
Vrm(j)

)d
r,m=1

measures the dependence between {Xt;r} and {Xt+j;m}. If Vrm(j) = 0

for all j ∈ Z− {0}, then {Xt+j;m} does not depend on {Xt;r}.

• For all j ∈ Z, Vrm(j) = Vmr(j) = 0 implies that {Xt;r} and {Xt+j;m} are independent. Moreover, for all

j ∈ Z− {0}, if Vrm(j) = 0 and Vmr(j) = 0 then {Xt;r} and {Xt;m} have no lead-lag relationship.
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• If for all j > 0, Vrm(j) = 0 but there exists some j > 0 such that Vmr(j) > 0, then {Xt;m} does not

depend on any past values of {Xt;r}, but {Xt;r} depends on some past values of {Xt;m}.

As a closing remark, Davis et al. (2018) applied distance covariance methodology to stationary univariate and

multivariate time series to study serial dependence under various choices of the weight function ω(·, ·). One of

their main results was to show that the asymptotic distribution of the empirical ADCV when applied to the residuals

of a fitted autoregressive process converges to a random variable whose distribution differs from that of ordinary

ADCV.

5 Test Statistics for Pairwise Dependence in Time Series

5.1 Introduction

There are many available tests for testing serial independence in time series literature using both time domain and

frequency domain methodologies, see Tjøstheim (1996). For a univariate time series, the most well known testing

procedures are mainly based on the serial correlation coefficient including those by Box and Pierce (1970)

BP = n

p∑

j=1

ρ̂2(j),

and Ljung and Box (1978)

LB = n(n+ 2)

p∑

j=1

(n− j)−1ρ̂2(j),

among others, where ρ(j) = Cor(Xt, Xt+j) for j ∈ Z and ρ̂(j) denotes its empirical analogue (Brockwell and Davis,

1991, pg.29). Most of these procedures were extended to the multivariate case; see Mahdi (2011) for an overview

and a newly proposed correlation-based test. The multivariate Ljung-Box test statistic Hosking (1980),Li and McLeod

(1981), Li (2004)

mLB = n2

p∑

j=1

(n− j)−1trace{Γ̂′(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)},

is widely used for testing Γ(1) = · · · = Γ(p) = 0, where Γ(j) = E
[
(Xt+j − µ)(Xt − µ)′

]
is the auto-

covariance matrix of {Xt} and Γ̂(j) denotes the sample autocovariance matrix (see Brockwell and Davis (1991,

pg. 397)). Although these tests perform well under linear and Gaussian processes, they behave poorly against

general types of nonlinear dependencies including those with zero autocorrelation (ARCH, bilinear, nonlinear

moving average processes); see Romano and Thombs (1996) and Shao (2011). Tjøstheim (1996) pointed out that
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a standard procedure for increasing the power of the correlation based tests in ARCH type models is to compute the

correlation of the squared observations. However, this strategy leads to a loss of power compared to the ordinary

correlation based tests. Robinson (1991) gave a variety of test statistics for testing serial correlation under the

presence of conditional heteroskedasticity, whereas Escanciano and Lobato (2009) further proposed an automatic

Portmanteau test that allows for nonlinear dependencies and automatic selection of lag order p.

5.2 Asymptotic tests based on ADCV

Under the null hypothesis of pairwise independence between Xt and Xt+j , Zhou (2012) obtained the asymptotic

distribution of the sample ADCV at fixed lag j and shows that it has identical limiting distribution as that obtained

by Székely et al. (2007) for the case of independent data (recall (8)). Under the alternative hypothesis that Xt

and Xt+j are dependent, nV̂ 2
X (j) tends to infinity. However, Zhou (2012) studied the behavior of ADCV in

multivariate time series at a fixed lag. Fokianos and Pitsillou (2017) relaxed this assumption by defining the ADCV

in the framework of generalized spectral domain following Hong’s (1999) methodology. It can be shown that serial

dependence in time series can be characterized by the generalized spectral density function. In fact, it is well known

that any deviation of the generalized spectral density from uniformity is a strong evidence of serial dependence.

Hong (1999) confirmed these facts by showing that the standard spectral density approach becomes inappropriate

for non-Gaussian and nonlinear processes with zero autocorrelation. To bypass such problems he proposes a

generalized spectral density that is defined based on (17), that is

f(ω, u, v) =
1

2π

∞∑

j=−∞

σj(u, v)e
−ijω , ω ∈ [−π, π],

provided that sup(u,v)∈R2

∑
j

∣∣∣σ(r,m)
j (u, v)

∣∣∣ < ∞. This ’generalized’ spectral density can be defined for both

linear and nonlinear processes and captures all pairwise dependencies while preserving the nice properties of the

standard spectrum. The null hypothesis of pairwise independence can be interpreted in terms of the generalized

spectral density; i.e. testing whether

f(ω, u, v) = f0(ω, u, v) =
σ0(u, v)

2π
.
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To test for serial dependence, Hong (1999) compared the Parzen’s (1957) kernel-type estimators of f̂(ω, u, v) and

f̂0(ω, u, v) by the L2-norm. The final test statistic takes the form

H99 =

∫

R2

n−1∑

j=1

(n− j)k2(j/p) |σ̂j(u, v)|2ω(u, v)dudv, (24)

where p is a bandwidth or lag order and k(·) is a Lipschitz-continuous kernel function with the following properties:

k : R → [−1, 1] is symmetric and is continuous at 0 and all but a finite number of points, with k(0) = 1,

∫∞

−∞ k2(z)dz < ∞ and | k(z) |≤ C | z |−b for large z and b > 1/2.

Distance measures obtained by characteristics functions have been also considered by Pinkse (1998) and Hong

(1999). Hong (1999, pg.1206) explained how tests based on the empirical characteristic function may have om-

nibus power against tests based on the empirical distribution function. In addition to the test of serial depen-

dence, Hong (1999) proposed testing other aspects of dependence after substituting σ̂j(u, v) in (24) by its deriva-

tives σ̂
(m,l)
j (u, v) = ∂m+lσ̂j(u, v)/∂

mu∂lv. Different choices of the indices (m, l) and the weight function

ω(u, v) = ω1(u)ω2(v) deliver a wide range of various hypotheses tests. For instance, choosing (m, l) = (1, 1)

and both ω1(u), ω2(v) having the Dirac delta function, yields a test statistic for serial correlation. To test for the

martingale hypothesis which implies that the best predictor of future values of a time series, in the sense of least

mean squared error, is simply the current value of the time series, put (m, l) = (1, 0) and assume that ω1(u) has

a Dirac density and ω2(v) is an arbitrary increasing function that is integrable. For these latter choices of ω1(·)

and ω2(·) and for the choices of (m, l) = (3, 0) and (m, l) = (4, 0), we can test for conditional symmetry and

conditional heterokurtosis respectively; see Hong (1999) for more details.

Under the null hypothesis of independence, Hong (1999) proved that a standardized version of H99 given in

(24) is asymptotically standard normally distributed, provided that p = cnλ, for c > 0 and λ ∈ (0, 1). He further

proved that the asymptotic power of the derived test statistic approaches unity; hence the test statistic is consistent.

Recalling (22), one can observe that the statistic H99 proposed by Hong (1999) is similar to that of Székely et al.

(2007) with the main differences being the restriction to the univariate case and the choice of the weight function.

Moreover, the number of lags used in the construction of H99 is not fixed but increases with the sample size of the

process. Fokianos and Pitsillou (2017) built a bridge between these two methodologies. They have chosen ω(·, ·)

of the form of (3), resulting in a test statistic based on the ADCV

FP =

n−1∑

j=1

(n− j)k2(j/p)V̂ 2
X(j). (25)
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Clearly, the statistic FP is a portmanteau type statistic, with each squared distance covariance being multiplied

by a weight determined by a kernel function k(·). Under the null hypothesis that the process Xt forms an i.i.d.

sequence, a suitable standardization of FP was proved to follow asymptotically a standard normal distribution,

provided that p = cnλ, for c > 0 and λ ∈ (0, 1). In addition, considering any type of pairwise dependence for

the process, the authors showed that the proposed test statistic is asymptotically consistent. The latter test statistic

is faster to compute than the one proposed by Hong (1999) since the authors avoid a two dimensional integration.

Although both test statistics, FP and H99 given in (25) and (24) respectively, are defined for univariate α-mixing

processes, the proposed methodologies can be extended for multivariate processes as explained in the following.

Following a similar methodology for multivariate time series and considering the generalized spectral den-

sity matrix, Fokianos and Pitsillou (2018) proposed a test statistic based on the pairwise auto-distance covariance

function

F̃P =
∑

r,m

n−1∑

j=1

(n− j)k2(j/p)V̂ 2
rm(j) =

n−1∑

j=1

(n− j)k2(j/p)trace{V̂ ∗(j)V̂ (j)},

where V̂ ∗(·) denotes the conjugate transpose of the sample distance covariance matrix V̂ (·). Under the null hy-

pothesis of independence, a standardized version of F̃P follows asymptotically a standard normal distribution,

provided that the numbers of lags employed in the construction of F̃P increases with the sample sizes, whereas

under any type of alternative hypothesis the proposed test statistic has asymptotic power one.

Chen and Hong (2012) developed a nonparametric test for the Markov property of a multivariate time se-

ries based on the conditional characteristic function. Based on the fact that the correlation coefficient is suit-

able for Gaussian data but it fails for nonlinear cases, many authors defined the correlation function in a lo-

cal sense, including Tjøstheim and Hufthammer (2013), Berentsen and Tjøstheim (2014), Støve et al. (2014) and

Støve and Tjøstheim (2014) among others. In the context of time series, Lacal and Tjøstheim (2017) defined a new

measure of dependence, the so-called local Gaussian autocorrelation that works well for nonlinear models. The

authors compared the proposed test statistic to distance covariance function and found that they both work in a

similar way.

5.3 Other test statistics

Many studies in the literature have considered the problem of measuring dependence between Xt and Xt+j ≡ Yt,

in terms of the distance between the bivariate distribution of (Xt, Yt), FX;Y (x, y) = P (Xt ≤ x, Yt ≤ y), and the

product of their marginal distribution functions, FX(x) = P (Xt ≤ x) and FY (y) = P (Yt ≤ y). Well known
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distance measures for distribution functions are the Kolmogorov-Smirnov distance

D1(j) = sup(x,y)∈R2 |FX;Y (x, y)− FX(x)FY (y)| (26)

and the Cramer-von Mises type distance

D2(j) =

∫

R2

{
FX;Y (x, y)− FX(x)FY (y)

}2

dFX;Y (x, y). (27)

Replacing the theoretical distribution functions with their empirical analogues

F̂X;Y (x, y) =
1

(n− j)

n−j∑

t=1

I(Xt ≤ x, Yt ≤ y),

F̂X(x) =
1

(n− j)

n−j∑

t=1

I(Xt ≤ x),

(28)

where I(·) is the indicator function, we form the corresponding empirical estimates. Similar distance measures are

obtained by employing density functions instead of distribution functions (see Skaug and Tjøstheim (1996) and

Bagnato et al. (2014) for an overview).

Skaug and Tjøstheim (1993) extended the work by Blum et al. (1961) and considered the asymptotic behavior

of the Cramer-von Mises type statistic (27) at lag j, under ergodicity of {Xt}. Moreover, they constructed a test

for pairwise independence among pairs (Xt, Xt+1), (Xt, Xt+2), . . . , (Xt, Xt+p) using the statistic

ST =

p∑

j=1

D̂2(j)

where p is a fixed constant denoting the maximum lag order employed for the test. Under the null hypothesis

that {Xt} consists of i.i.d. random variables, n ST converges in distribution (as n → ∞) to an infinite mixture

of chi-squared random variables. However, the latter test statistic is consistent against serial dependencies up to

a finite order p. From a practical point of view, this may be restrictive since the actual serial dependence may be

detected at lags larger than p. Motivated by the approach introduced by Skaug and Tjøstheim (1993), Hong (1998)

proposed a statistic where the number of lags increases with the sample size and different weights are given to

different lags; in other words let

H98 =

n−1∑

j=1

(n− j)k2(j/p)D̂2
2(j)
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where k(·) is a kernel function with properties similar to the kernel function of (24). He further proved that

after proper standardization and for large p, provided that p = cnλ, for c > 0 and λ ∈ (0, 1), the statistic is

asymptotically standard normally distributed.

In general, incorporating a large number of lags in the asymptotic theory is an issue nicely addressed by

the frequency domain framework. Hong (1996) proposed three test statistics for testing serial independence in

univariate time series by considering a kernel-based standardized spectral density

f̂(ω) =
1

2π

(n−1)∑

j=−(n−1)

k(j/p)ρ̂(j)cos(jω), ω ∈ [−π, π]

where the notation follows the notation of (24) and ρ̂(j) is the sample autocorrelation function of {Xt} at lag j.

Comparison of f̂(ω) to f0(ω) = 1/2π (spectral density of white noise process) via divergence measures yields

test statistics that can be employed for testing that the process {Xt} is white noise. In particular, he employs the

quadratic norm, the Hellinger metric and the Kullback-Leibler information criterion, i.e.

T1n =

[
2π

∫ π

−π

{
f̂(ω)− f0(ω)

}2

dω

]1/2
,

T2n =

[∫ π

−π

{
f̂1/2(ω)− f

1/2
0 (ω)

}2

dω

]1/2
,

T3n = −
∫

ω:f̂(ω)>0

ln
(
f̂(ω)/f0(ω)

)
f0(ω)dω,

respectively. A closed form expression for T1n is given by

H96 = n

n−1∑

j=1

k2(j/p)ρ̂2(j).

Compared to the classical portmanteau statistics, like BP and LB, all these suggested statistics, properly standard-

ized, are asymptotically standard normally distributed and can be developed without imposing a specific alter-

native model. Xiao and Wu (2014) proved that the asymptotic null distribution of H96 in its standardized form,

remains intact under the presence of serial correlation, whereas Shao (2011) proved its robustness to conditional

heteroscedasticity. Although Hong’s (1996) tests incorporate an increasing number of lags, they are based on the

classical correlation coefficient and are not consistent against all pairwise dependencies of unknown form. To avoid

this problem, Hong (2000) generalizes both the Cramer-von Mises and Kolmogorov-Smirnov type test statistics
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by employing the generalized spectral theory. Define a dependence measure analogous to (17) by

ρ∗j (x, y) = FX;Y (x, y)− FX(x)FY (y). (29)

Clearly, the distance dependence measure ρ∗(·, ·) defined in (29) vanishes only in the case whereXt and Yt ≡ Xt+j

are independent, leading to the observation that ρ∗j (·, ·) can capture all pairwise dependencies. Replacing the

theoretical distribution functions with the empirical ones given in (28), one can find the empirical analogue of (29),

ρ̂∗j (·, ·). Clearly, Skaug and Tjøstheim’s (1993) approach is based on (29).

In a recent work, Dette et al. (2015) introduced a ”new” spectrum as the Fourier transform of the so-called

copula cross-covariance kernel

ρUj (τ1, τ2) := Cov
(
I(Ut ≤ τ1), I(Ut+j ≤ τ1)

)
, (30)

where (τ1, τ2) ∈ (0, 1)2 and Ut := F (Xt). They proposed to estimate the corresponding spectral densities

associated with measures (29) and (30) via Laplace periodogram (Li, 2008). In addition, they highlighted that in

the case of using (30), replacing the original observations with their ranks, potentially preserves the invariance

property with respect to transformations of the marginal distributions.

5.3.1 Multivariate Extension

All univariate testing methodologies presented in this section can be extended to the multivariate case by consid-

ering the distances between Xt;r and Yt;m ≡ Xt+j;m for r,m = 1, . . . , d. The idea is to compare the pairwise

bivariate distribution function of (Xt;r, Yt;m), FXr ;Ym
(x, y) = P (Xt;r ≤ x, Yt;m ≤ y), and the product of their

marginal distribution functions, FXr
(x) = P (Xt;r ≤ x) and FYm

(y) = P (Yt;m ≤ y) via the dependence mea-

sures (26) and (27). The final test statistics can then be defined by summing over r,m = 1, . . . , d. The multivariate

extensions of ST and H98 are derived as

S̃T =
d∑

r,m=1

p∑

j=1

D̂
(r,m)
2 (j)

and

H̃98 =

d∑

r,m=1

n−1∑

j=1

(n− j)k2(j/p)
(
D̂

(r,m)
2 (j)

)2
,
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Table 1: Achieved type I error of the test statistics for testing the hypothesis that the data are i.i.d. The data are generated by

the standard normal distribution. Significance level is set to α = 0.05. Achieved significance levels are given in percentages.

The results are based on b = 499 bootstrap replications and 1000 simulations.

n p BP LB H96 H98 H99 ST FP

100 5 4.5 5.0 4.9 4.6 4.2 6.0 4.8

8 4.9 5.2 5.1 5.8 4.3 5.9 4.7

12 4.0 5.6 5.6 3.9 4.1 3.4 4.0

500 6 3.5 5.4 5.6 5.8 4.5 4.8 4.3

11 4.1 4.4 5.0 5.2 5.6 6.1 5.0

20 3.3 5.5 4.1 5.1 5.7 5.1 4.8

respectively, where D̂
(r,m)
2 (·) is the Cramer-von Mises type distance given by

D
(r,m)
2 (j) =

∫

R2

{
FXr ;Ym

(x, y)− FXr
(x)FYm

(y)

}2

dFXr ;Ym
(x, y).

All other univariate test statistics mentioned in this section can be developed along the same lines. Although

the development of the asymptotic theory of these test statistics is not in the scope of this review paper, we think

that this is a challenging topic for further research.

6 Applications

6.1 Univariate Case

We investigate the finite sample performance of the statistics BP, LB, H96, H98, H99, ST and FP presented in

Section 5.2. All simulations performed correspond to different sample sizes (n = 100, 500). We employ ordinary

bootstrap (with size b = 499) to obtain critical values in order to study the size and the power of the statistics. We

first examine the size of the tests. Suppose that {Xt} is an i.i.d. sequence of standard normal random variables.

The spectral density based test statistics, H96, H98, H99 and FP, are all computed based on the Bartlett kernel with

three different choices of bandwidth p = [3nλ], where λ = 0.1, 0.2 and 0.3. Table 1 shows the achieved type

I error rates at 5% nominal level. All test statistics achieve nominal sizes quite adequately especially for large

bandwidth parameters.

For investigating the power of the tests we consider the NMA(2) model given in (20) and the following addi-

tional models:

• AR(1) -model

Xt = 0.4Xt−1 + ǫt, (31)
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• ARCH(2)-model

Xt = σtǫt, σ2
t = 0.5 + 0.8X2

t−1 + 0.1X2
t−2 (32)

where {ǫt} is a sequence of i.i.d. standard normal random variables. Note that (31) corresponds to a first-order

autoregressive process, (32) corresponds to an autoregressive conditional heteroscedastic model of order two (see

Engle (1982)). It is well known that the process {Xt} generated by (20) consists of a sequence of dependent but

uncorrelated random variables. Table 2 show the power of all test statistics considered for various sample sizes

and bandwidth parameters by models (20), (31) and (32) respectively. It is clear that when the data are generated

by the nonlinear models NMA(2) and ARCH(2) the test statistics FP and H99 perform better, whereas in the case

where the data are generated by the linear AR(1) model all test statistics exhibit similar power.

Table 2: Empirical power (%) of all test statistics of size 5%. The bandwidth p is [3nλ], λ = 0.1, 0.2 and 0.3. The

results are based on B = 499 bootstrap replications for each of 1000 simulations. The test statistics H96, H99, FP

and ST are calculated by employing the Bartlett kernel.

n 100 200 500

p 5 8 12 6 9 15 6 11 20

Model (20)

BP 23.5 20.5 17.8 27.9 22.7 20.5 35.8 33.3 25.1

LB 22.8 21.8 16.9 27.9 25.7 21.2 35.4 30.2 24.6

H96 36.9 34.7 31.4 42.3 40 36.2 47.5 42.6 37.6

H98 47.4 43.1 37.7 93.9 85.8 75.5 100 100 100

H99 97 82 59 100 100 100 100 100 100

ST 26.1 20 17.5 53.7 43.9 31.2 100 98.3 84.4

FP 89.2 72.8 49.5 99.8 99.6 95 100 100 100

Model (31)

BP 88.3 81.2 71.6 99.6 99.6 98.1 100 100 100

LB 87.4 84.2 72 99.3 98.8 98 100 100 100

H96 94.4 94.2 93.2 99.9 100 100 100 100 100

H98 95 93.3 92.5 100 100 100 100 99.8 100

H99 81.5 75.7 68.8 98.6 98 96.1 100 100 100

ST 80.5 76.1 67.1 98.2 97.2 93.3 100 100 100

FP 93.5 87.7 84.8 100 99.8 99.4 100 100 100

Model (32)

BP 23.4 19.4 17.3 30.1 24.8 23.5 40.6 34.2 27.1

LB 21.4 18.7 15.9 28.9 24.6 20.7 38.2 35.9 26.4

H96 37.1 35.2 35.6 48 48.2 47.9 64.7 63.1 63.6

H98 24.9 22.9 19.3 40.1 39.7 35.4 89 83.8 72.2

H99 71 74 60 99 96 86 100 100 100

ST 20.8 14.3 14.3 29.1 27.3 20.8 67.3 54.5 39

FP 59.8 54 45.3 89 81.3 76 99.9 100 100
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Figure 3: The ADCF plots of the residuals of the VAR(7) model for the four-dimensional air pollution time series

data.

6.2 A Data Example

We analyze air pollution data on four pollutants, the sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2)

and respirable suspended particulates (RSP ) measured daily from the monitoring station at Tsuen Wan in Hong

Kong from February 2015 to December 2016. The time series data can be obtained from the Environmental Pro-

tection Department of Hong Kong (http://epic.epd.gov.hk/EPICDI/air/station/?lang=en).

Each time series consists of 700 observations. We use a log-transformation to the data and applied a first-order

differencing on the series to remove seasonal patterns. Assuming that the four dimensional series follow a vector

autoregressive model (VAR) and employing the AIC to choose its order, we obtain that a seventh order model would

be appropriate for the data. After a VAR(7) model fit, we examine the ADCF plots of the residuals (Figure 3). The

plot does not show any evidence of serial dependence. Cnstructing multivariate tests of independence among the

residuals, all test statistics used, F̃P, mLB, S̃T and H̃98, yield large p-values (Table 3) suggesting the sufficiency

of this model fit. Some of the methods are implemented in the R package dCovTS–see Pitsillou and Fokianos

(2016).
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