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Abstract. We propose a lightweight localisation approach for support-
ing distance and range queries in ad hoc wireless sensor networks. In con-
trast to most previous localisation approaches we use a distance graph
as spatial representation where edges between nodes are labelled with
distance constraints. This approach has been carefully designed to sat-
isfy the requirements of a concrete application scenario with respect to
the spatial queries that need to be supported, the required accuracy of
location information, and the capabilities of the target hardware. We
show that this approach satisfies the accuracy requirements of the ex-
ample application using simulations. We describe the implementation of
the algorithms on wireless sensor nodes.

1 Introduction

Cooperative localisation algorithms play an important role for wireless sensor
networks. In cooperative localisation, nodes work in a peer-to-peer manner to
compute a map of the network using only the resources provided by the nodes
themselves [1]. This makes cooperative algorithms especially suited for sensor
network deployments that require true ad hoc localisation without external
infrastructure.

The design of cooperative localisation algorithms requires a careful tradeoff
between fidelity and complexity. Fidelity refers to quality of the computed result
and includes precision and accuracy, as well as timeliness. Because measurements
used as input to localisation algorithms are to some degree unreliable or inaccu-
rate, node locations cannot be determined with absolute certainty. Complexity
refers to the amount of resources consumed by an algorithm. In the wireless sensor
network literature, complexity is most often considered in the context of energy
efficiency and network use, although hardware, memory and time requirements
are also important. Complexity is important because typical sensor network com-
ponents possess very limited resources for processing and communication.

In this paper, we describe a novel approach to cooperative localisation that
focuses on supporting distance and range queries, and trades fidelity against
complexity. A distance query retrieves the distance between two given nodes,
and a range query retrieves the IDs of nodes that are within a given distance
from a given node. This approach has been carefully designed to satisfy the
requirements of a concrete application scenario with respect to the accuracy
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of location information, the spatial queries that need to be supported and the
capabilities of the target hardware. Our approach can be characterized as in the
following ways.
1. In contrast to most previous approaches we use a distance graph as spatial

representation where edges between nodes are labelled with distance con-
straints. Node coordinates (absolute or relative) are not represented.

2. The distance constraint of each edge is represented as an interval [a,b] indi-
cating that the distance between two nodes is at least a and at most b. The
distance intervals are used for modelling uncertainty and localisation errors.

3. A constraint propagation algorithm is used to compute an overall consistent
distance graph.

The next section discusses the localisation requirements of our application
scenario. Following that is a description of the spatial model and the cooper-
ative algorithm. We then evaluate the accuracy of our approach for range and
distance queries using simulations, and we describe the resource requirements of
an implementation of the algorithm on a specific type of wireless sensor node. Fi-
nally, we contrast our approach to some well-known algorithm in wireless sensor
networks, and provide a comparative quantification of the computational and
memory requirements of our algorithm.

2 Motivating Application Example

The application scenario that motivates this research is taken from the chemical
industry work place in which safe handling and storage of chemical containers is
of key importance. The goal here is to assist trained staff in detecting hazards
of inappropriately stored chemicals. These hazards are defined by safety rules
that are defined in terms of the storage conditions of the chemicals. For example,
they prescribe that incompatible materials, such as reactive chemicals, must not
be stored in immediate proximity. The meaning of “proximity” depends on a
number of parameters including the type of involved chemicals.

We have developed a wireless sensor network for detecting possible safety
hazards [2, 3]. Chemical containers are moved around quite frequently and may
end up in a location without global networking capabilities, for example during
transport inside the hull of ships or trucks. Moreover, it is generally unrealistic
to rely on centralised services in environments that deal with chemical contain-
ers. Thus the key design goal was to enable the detection of safety hazards
without the involvement of external infrastructure. This required a cooperative
approach in which the containers themselves are able to sense their environment
and interpret their storage conditions with respect to predefined safety rules.
We achieved this goal by embedding perception, safety rules and higher-level
reasoning capabilities into sensor nodes attached to chemical containers.

2.1 Peer-to-Peer Position Sensing

The sensor nodes make use of a simplified version of Relate, which is an ultrasonic
peer-to-peer positioning system for determining the relative locations of a set of
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mobile computing devices [4]. The simplified version does not require a connec-
tion to a host PC and delivers accurate range information between nodes of a
wireless sensor network. Using the Relate technology we can directly measure the
distance between co-located nodes and do not have to rely on network measure-
ments such as received radio signal strength. The maximum distance that can
be measured by Relate is about two meters. Relate nodes cooperate by broad-
casting distance measurements over the network. Thus each node has access to
distance measurements between a wide range of nodes and using the algorithm
described in this paper can build a spatial model of its network neighbourhood.

2.2 Localisation Requirements

In our application scenario a container A tries to detect whether there are any
reactive chemicals in its proximity, whereby proximity is defined as a circular
area around A with a domain-specific radius. In this situation A needs to deter-
mine which containers are located within the proximity zone and which ones are
located outside of it. The cooperative reasoning process described in [2] involves
all nodes located within the proximity zone, regardless of their absolute loca-
tion. Consequently, the spatial model for this application example must be able
to support range queries, i.e. queries that return all nodes located in a specified
range around a given node.

The required precision of the distance and range information depends in large
measures on the physical dimensions of chemical containers. A chemical container
as used in our application scenario is barrel-shaped and has a diameter between
60 and 80 cm. We assume that a range measurement precision of about half the
diameter of a container is high enough. The Relate system provides measurements
with 10 cm granularity or better, but only within the relatively short detection
range of its ultrasound transducers (2 m). Thus a localisation algorithm must be
able to indirectly compute distances between nodes that are beyond this range.

2.3 Hardware Requirements

The hardware used for instrumenting a chemical container is comparable to that
used in other wireless sensor networks nodes such as the Berkeley Motes. The
hardware consists of two separate components. The Relate component imple-
ments peer-to-peer distance sensing, and the arteFACT component implements
the reasoning framework. Both are based on the Particle Smart-its, an embedded
wireless sensing platform [5]. Particle Smart-Its incorporate a PIC 18F6720 mi-
crocontroller with 128 KB of program flash memory and 4 KB of RAM. Particle
Smart-its communicate via a slotted RF protocol and can provide effective data
rates of up to 39 kbit/s. In the following we will describe the localisation system
we designed for this application scenario.

3 Spatial Model and Algorithm

Our approach is based on the idea of representing localisation information in the
form of a constraint network that expresses restrictions on the distance between



Constraint-Based Distance Estimation in Ad-Hoc Wireless Sensor Networks 57

network nodes. Node coordinates (absolute or relative) are not represented. To
represent constraints we use a graph where edges between nodes are labelled
with distance intervals. More formally, a distance graph is an undirected labelled
graph G = (N, E, C) where N is a set of network nodes, E is a set edges and C
is a constraint function which assigns to each edge a distance interval [u, v] with
u, v ∈ IR and u ≤ v. Distance intervals are used to represent knowledge about
the real-world distance between nodes. If the edge between nodes A and B is
labelled with the interval IAB = [u, v] and d(A, B) is the real-world distance
between A and B, then:

u � d(A, B) � v . (1)

Thus an interval [u, v] indicates that the distance between the two respective
network nodes is at least u and at most v. An interval [u, u] indicates that the
distance is exactly u. An interval [0, ∞] is the most generic (or empty) constraint
since it does not limit the distance between nodes in any meaningful way. An
edge labelled with an empty constraint can be omitted from the graph without
any loss of information. Figure 1 shows an example of a distance graph.

Fig. 1. Example distance graph

The algorithm for computing and updating the distance graph is a modi-
fied Floyd-Warshall algorithm for computing all-pairs shortest paths. Instead of
adding distances and selecting a minimum distance in each step, it infers and
adds distance intervals.

1. Initialize all edges with the empty constraint [0, ∞]
2. Receive distance measurements from Relate positioning system.
3. For all edges perform the modified Floyd-Warshall iteration:

(a) infer new distance interval, and
(b) combine interval with interval inferred in previous iteration.

4. Go to step 2

Step 2 of this algorithm takes a raw distance measurement d from the Relate
system and transforms it into a distance interval [d− ε, d+ ε] which accounts for
the inaccuracy of the measurement d. ε is a constant derived from an error model
of the Relate positioning technology. More details on this transformation can be
found in Sect. 4. The resulting distance interval [d−ε, d+ε] is added to the graph.

Step 3 of this algorithm traverses the whole graph to infer new or more specific
constraints. This is done using a number of transitive inference steps which derive
information about IAC from IAB and IBC . Figure 2 illustrates an inference
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Fig. 2. Two intervals are used to infer a third one

step assuming the position of A and B. For simplicity reasons we assume zero-
length (i.e. u = v) intervals. The distances d(A, B) and d(B, C) are already
known, either because they have been inferred in a previous step or because
they represent measurements. d(A, C) must be inferred in this step. We know
that C must lie on the circle with radius d(B, C) and centre B. Hence we can
represent all possible distances between A and C as [d(A, Cmin), d(A, Cmax)].
Equations (2)-(4) illustrate the inference steps for the general case.

IAB = [u1, u2], IBC = [v1, v2]
⇒ IAC = [v1 − u2, u2 + v2] if u2 � v1 . (2)

IAB = [u1, u2], IBC = [v1, v2]
⇒ IAC = [u1 − v2, u2 + v2] if v2 � u1 . (3)

IAB = [u1, u2], IBC = [v1, v2]
⇒ IAC = [0, u2 + v2] if IAB ∩ IBC �= ∅ . (4)

These inference steps for all interval cases are also illustrated in Fig. 3. If the dis-
tance intervals IAB between A and B and IBC between B and C do not overlap
all nodes have a different position. Hence, d(A, C) > 0 and the interval bound-
aries are calculated according to case (a) (cf. (2)) and (b) (cf. (3)) respectively.
Otherwise A and C could have the same position and the minimum distance
is chosen to be 0 in the inferred interval (c) (cf. (4)). There could exist several
paths between pairs of nodes. In the second iteration step the inferred interval
Iinf is therefore compared to the previously inferred interval Ipre to obtain the
smallest consistent interval Inew. Consistency means that there is a position
for each node in the graph so that all calculated distances would lie in their
respective intervals. Thus, if the graph is consistent before the Floyd-Warshall
iteration step, the intervals in step 3b will overlap and the smallest consistent

Fig. 3. Three possible inference steps for input intervals [u1, u2] and [v1, v2]
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interval is obtained by intersecting them (6). Otherwise, we create a consistent
graph by choosing the smallest interval that contains both input intervals (5).

Ipre = [u1, v1] and Iinf = [u2, v2]
IF ((v1 � u2) OR (v2 � u1)) ⇒ Inew = [min(u1, u2), max(v1, v2)] (5)

ELSE ⇒ Inew = [max(u1, u2), min(v1, v2)] . (6)

4 Evaluation

In this section we evaluate the feasibility and accuracy of our algorithm and
spatial model. Using a simulation environment, we characterise the algorithm
results in terms of range query success and in terms of distance accuracy. We
also show that our algorithm can be implemented on a resource-constrained
wireless sensing platform such as the Particle Smart-Its.

4.1 Accuracy

Accuracy was evaluated in a simulation environment. For the purposes of com-
parison, our simulation parameters were similar to that described by Shang and
Ruml [6].1 Our test networks consist of two hundred sensor nodes. The nodes are
randomly placed, using a uniform distribution, within a 10r × 10r square area.
Next, a measurement range is chosen; our standard range is 2r. Each node can
measure the distance to neighbouring nodes that are within the measurement
range. These distance measurements build the input to our inference algorithm.
A single experiment simulates one hundred random networks each consisting of
two hundred nodes.

In early experiments, we used an error model for modelling measurements
more realistically. The error model was based on experiments with Relate USB
dongles [4] that have similar characteristics as the Relate devices we used. In one
experiment it was shown that 90% of the true distances lie in the interval [˜d −
2cm, ˜d+4.5cm]; ˜d is the measured distance. However, tests showed that the error
model does not have a big influence on the final errors. It is the algorithm itself
that introduces the biggest errors; so the influence of the initial measurement
errors and interval lengths is negligible for the overall end result.

Thus, we decided not to use this error model. This allows us to produce results
that are more easily comparable to other algorithms because they are indepen-
dent of the underlying error model which is based on a specific technology. In
the following we present the evaluation results of these experiments.
1 Despite this, the results of our algorithm cannot be directly compared to that of

Shang and Ruml. Whereas we measure the errors between estimated node-to-node
distances and the ground truth distances, Shang and Ruml measure the Euclidean
error between estimated locations and ground truth locations. However, it can be
shown that for a given spatial configuration of nodes, the distance estimation error
(our quantity) roughly corresponds to the location estimation error (computed by
Shang and Ruml); this gives some basis for comparison.
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Fig. 4. Distribution of distances within intervals. As shown, this distribution depends
on the measurement radius (connectivity).

We first analysed the characteristics of the intervals. As mentioned earlier the
algorithm computes intervals; hence, if we want to do range queries, a position
within each interval has to be chosen as the represented distance of the inter-
val. We observed that the ground truth distances are not uniformly distributed
within the intervals produced by our algorithm. We projected all intervals onto a
standard interval [0,1]. These intervals were subdivided into one hundred subin-
tervals. Then, we counted the number of times a real distance falls within the
limits of each of the hundred sub-intervals; Fig. 4 shows that most real distances
are close to the upper boundary of the interval results.

There are two main reasons for this. It can be shown that the lower boundary
decreases faster than the upper boundary increases with each inference step. So,
it is more probable that the real distance is not around the centre of the interval
but closer to the upper boundary. This effect is intensified if several steps are
necessary to infer the distance interval to another node. Because distant nodes
are in the majority, we can clearly see this tendency in the overall distribution.
There is also a geometric explanation. In Fig. 2, we showed that A sees C as
lying on a circle around B. If we assume that the position of C is uniformly
distributed on the periphery of the circle, we can see that the distance AC is
not uniformly distributed between ACmin and ACmax; the probability density
is higher toward the boundaries.

By choosing an interval position close to the upper boundary as a represen-
tative for the real distance, the total error rate can be minimised. We use values
between 0 and 1 to refer to interval positions as a fraction of the interval size.
The distance between two nodes A and B can be calculated according to (7).
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We have experimented with various interval positions and measurement ranges.
An optimal choice of p depends, among other reasons, on the connectivity of the
graph. Because we do not know the connectivity in advance, we have to find a
good trade-off. We chose the interval position p = 0.98 for our next experiments
that are based on different sets of simulated networks.

IAB = [u, v] ⇒ d(A, B) ≈ v − p(v − u) with p ∈ [0, 1] . (7)

Range Query Classification Error. In our range query scenario we are in-
terested in the number of miss classifications. Therefore we distinguish between
false positives and false negatives to characterize the accuracy of our algorithm.
If a range query classifies a node as being inside the range even though it is out-
side, it is a false positive. On the other hand, a false negative is a node reported
to be outside the query range even though it is inside in reality.

Figure 5 shows the error rate of false negatives, false positives and the total
error as percentage of the number of nodes classified as being inside the respective
circular query range. The measurement range is chosen to be 2r. The error rate
is displayed with respect to the range specified in the query. Figure 6 depicts
the same error but as percentages of the total number of nodes. The maximum
false positive error ratio is 1.5% with respect to the number of nodes classified
inside the query range. So for a query range of 4r, 1.5% of the nodes are wrongly
classified as being inside the query range. With respect to the total number of
nodes we have a maximum of 0.65% false positives, 0.45% of false negatives and
a maximum total error of 1.1%.

For small ranges we have direct ultrasound distance measurements. For larger
query ranges we depend on inferred distances. In both graphs we can therefore see
an increase of the error rate at the beginning. Then, we observe a sharp decrease
of the error rate. This is not because distance estimation is more accurate at

Fig. 5. Error rates in random uniform
networks with respect to the number of
nodes classified as being inside the range.
The measurement range is 2r.

Fig. 6. Error rates in random uniform
networks with respect to the total num-
ber of nodes. The measurement range
is 2r.
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longer distances, but because we display classification errors as relative ones.
For example, in Fig. 5 we show the error with respect to the total number
of nodes classified inside the respective query range. So if the query range is
increased and the absolute error remains the same, the relative error would
decrease because of a larger number of nodes inside the query range. Similarly,
in Fig. 6, for large query radii, most nodes clearly contain most of the other
nodes in their range. Thus the probability of a misclassification is smaller. The
maximum possible query radius of around 14r affects only a few nodes in the
corners of the 10r × 10r square area.

The previous test was based on a uniformly distributed random network. We
expect our algorithm to perform worse if the shortest path distance between two
nodes is long compared to the Euclidean distance. This is the case for nodes
in the two wings of a C-shaped network. These networks consist of 160 nodes
randomly positioned in C-shape; they are generated analogously to the random
C-shaped placement used in experiments by Shang and Ruml [6].

As expected we observe a higher error rate for the C-shaped network. Figures 7
and 8 show the classification error rates. The error rate is significantly higher.
We observe a lot of false negative errors; the discrepancy between the Euclidean
distance and the graph distance is the main reason for this. The error rate could
be reduced by changing the value of p in (7); the optimal p is topology-dependent.
But because we do normally not know the topology in advance, we used the same
p as in the experiments with uniform networks.

Distance Error. In order compare with other algorithms, we analysed the
distance errors. Again we chose p = 0.98 as the distance position inside the
intervals. Figure 9 shows a cumulative distribution of all the distance errors
in the random uniform networks. In total, almost two million distances were
represented in our simulations (100 networks consisting of 200 nodes each). All
of these distances were compared with the inferred distances. Figure 9 shows,

Fig. 7. Error rates in random C-shaped
networks with respect to the number
of nodes classified as being inside the
range. The measurement range is 2r.

Fig. 8. Error rates in random C-shaped
networks with respect to the total num-
ber of nodes. The measurement range
is 2r.
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Fig. 9. Cumulative distribution of distance errors for p = 0.98 in random uniform
topology. The distribution is shown for different measurement ranges (connectivities).

for example, that around 90% of the distances are less than 1.5r away from the
real distance if we take 1.2r as our measurement radius. It is expected that the
accuracy is improved if the measurement range (and connectivity) is increased.
In the evaluation of the missclassification error, we chose a measurement radius
of 2r. For this radius we expect the distance error of 90% of the nodes to be less
then 0.15r.

Figure 10 shows the cumulative distribution of distance errors in the ran-
dom C-shaped networks. Although a large portion of the inferred distances are
accurate, there is also a significant number of inferred distances that are not.
Again the discrepancy between the graph distance and the Euclidean distance
explains this observation. However, we have this extreme discrepancy between
some pairs of nodes only. Shang and Ruml [6] only report the error medians,
rather than their entire error distributions. However, our distance error median
is comparable to their position error median.

4.2 Feasibility

The algorithm has been implemented on the Particle Smart-Its. The arteFACT
component listens to measurement broadcasts by Relate nodes and maintains its
own spatial model. The location model is updated by each node independently
whenever a Relate node broadcasts its measurement updates.

Before we update the model, inferred intervals that have not been replaced by
new measurements are reset to [0, ∞]. In a similar way we reset old measurement
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Fig. 10. Cumulative distribution of distance errors for p = 0.98 in random C-shaped
topology. The distribution is shown for different measurement ranges (connectivities).

intervals to account for the case when devices have moved out of the ultrasound
measurement range. This is achieved by timestamping the measurements with
the local clock on arrival. In our prototypical implementation we chose a timeout
of about 8s. Further experiments will help to choose this parameter according to
update requirements. This will also help us to minimize the number of model up-
dates for a given required update rate. Currently we update the model whenever
we receive new measurements.

The current implementation supports a network of 10 nodes using 17% of
the program memory and 64% of the data memory in the worst case. These are
promising results, especially in the light that further optimizations are possible.
For example, we use a full n × n adjacency matrix to represent the graph.

5 Discussion

Our main objective was to find an efficient method for range queries. Thus, false
positive and false negative errors are our main concern; distance accuracy is of less
importance. Of course, distance accuracy and classification error rate (false neg-
ative and false positive errors) are correlated. Using intervals instead of just dis-
tances gives us several advantages. First, intervals give us a measure of uncertainty.
Second, we can influence the number of false positive errors with respect to the
number of false negative errors. Because we have intervals, we know exactly the
lower and upper limit of a distance. For example, if we choose p = 1.0 in (7), we
would not have any false positives but only false negatives; or if we choose p = 0.0,
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we do not have any false negatives, but only false positives (neglecting raw mea-
surement errors). There is an optimal p that minimises the overall error; the goal
is to find a good trade-off between false positives and false negatives. However, if
the application is very sensitive to only one kind of error, that kind of error could
be minimised. We achieved a relatively low error rate for our range queries by ex-
ploiting the non-uniform distribution of distances within the intervals.

Irrespective of the number of false positives and false negatives we also showed
that the distance errors are small for most of the node pairs. In Sect. 2.2 we stated
that the distance accuracy requirements of our application are around 30-40 cm.
We showed for a measurement range of 2r that the distance error of 90% of the
nodes is less than 0.15r. So ifwe choose rto be around1m(which corresponds to the
Relate measurement range of 2m (= 2r)), we expect to satisfy these requirements.

We first evaluated our algorithm on random uniform networks. We assume
that these random networks did not represent the worst or best case. The perfor-
mance of our algorithm is expected to be worse if the Euclidean distance between
two nodes is small but a large number of inference steps are necessary to infer
the distance interval, i.e. long graph distance between nodes. We modelled this
scenario in random C-shaped networks.

For our scenario we have not exploited all the information. We do not directly
make use of the fuzzy information that is given by the intervals. The length of
the intervals could be an indicator for accuracy; we expect less accurate results
if the intervals are longer.

The main advantage of our approach is its low complexity. We showed that it
can be implemented on resource constrained embedded sensor nodes. Based on
the requirements of our scenario, the algorithm only computes distances. This
is in contrast to other location algorithms for wireless sensor networks which
generally compute positions (cf. Sect. 6).

6 Related Work

We are not aware of any practical work on range queries in wireless sensor
networks. However, there are several research areas that provide theoretical
and practical foundations for our work. Hightower and Borriello provide a
good overview of positioning systems for ubiquitous computing [7], and there
have been a number of surveys describing and classifying positioning algo-
rithms [8–10].

Most important to our work is the Relate project from which we used the
sensing hardware. A USB dongle variant was used in [4] to provide relative
positioning support for mobile devices. In contrast to our work, Relate dongles
rely on host devices such as laptops or PDAs to compute the spatial model.

The Dolphin project developed a 3D peer-to-peer indoor positioning system
[11]. They use bidirectional ultrasonic ranging to measure distances between
neighbouring nodes. Several anchor nodes have to be manually configured with
their position. Then, a distributed iterative multilateration algorithm is used to
determine the position of other nodes with respect to the anchor nodes. Com-
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pared to other methods the feasibility of their approach was demonstrated by
implementing the algorithm on real sensor nodes. However, their technique can-
not be directly applied to Cooperative Artefact networks as it relies on anchor
nodes which have knowledge of their surveyed locations.

There exist a lot of localisation algorithms for wireless sensor networks. Most
algorithms depend on anchor nodes because they compute absolute node posi-
tions. Our application cannot depend on anchor nodes. Therefore, we mainly con-
sidered relative positioning algorithms: MDS-MAP [12] and the Self-Positioning
Algorithm (SPA) [13] are two typical examples, which calculate relative positions
using simple connectivity. MDS-MAP uses an all-pairs shortest path algorithm to
compute a distance matrix. Then, multi-dimensional scaling (MDS) is applied to
find an embedding in the two-dimensional space. In SPA each node forwards dis-
tance measurements to neighbouring nodes and calculates node positions using
trigonometry in the local neighbourhood. Then, these local coordinate systems
are merged into one coordinate system.

MDS-MAP(P) is an improved MDS-MAP algorithm [6]. It is a distributed lo-
calisation algorithm which yields median accuracies similar to our algorithm.
Table 1 shows the complexity of our algorithm, compared to that of MDS-
MAP(P). To compute the complexity of MDS-MAP(P), we used the Numer-
ical Recipes in C algorithms for eigenvector decomposition, and Levenberg-
Marquardt non-linear regression.2 The step which merges the local maps, as
well as some of the preprocessing steps in the eigenvector decomposition were
neglected. In the per node computations which deal only with local maps, it
was assumed that distance measurements were available for half the total pairs
of neighbours. It was also assumed that the regression takes five iterations to
complete.3

One of the advantages of the MDS-MAP(P) algorithm is that it is distributed.
However, this means that each node must first compute its own local map, and
then work together with the other nodes to arrive at the global map. Assum-
ing each node has the ten or more neighbours necessary to achieve reasonable
accuracy, our interval-based Floyd-Warshall algorithm has lower processing re-
quirements for networks with a total of one hundred nodes or less. It is also
important to note that our interval-based Floyd-Warshall algorithm uses only
16-bit integer operations, whereas the MDS-MAP(P) steps mostly rely on float-
ing point operations (such as computing matrix inverses).

2 Because of the nature of location models where distances are related to (x, y) coor-
dinates using the Euclidean relationship, the gradient matrix used by the regression
algorithm holds only four non-zero gradients. Using this knowledge, large computa-
tional savings (O(k3) instead of O(k4)) can be made in the Levenberg-Marquardt al-
gorithm. In our computations, we assumed that this optimisation had been made. To
compute the complexity of the matrix inverse operations required by the Levenberg-
Marquardt method, we used Numerical Recipes Gauss-Jordan elimination with full
pivoting.

3 For this type of problem, non-linear regression normally requires between three and
ten iterations [6].
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Table 1. Resource requirements of MDS-MAP(P) and interval-based Floyd-Warshall.
n is the total number of nodes in the network, and k is the number of neighbours to
each node.

Operations Storage
MDS-MAP(P) per node

Compute shortest paths 2k3 + 6k2 + 6k + 2 k2 + 2k + 4
(Floyd-Warshall)

Multidimensional scaling 36k3 + 110k2 + 114k + 39 2k2 + 7k + 3
Non-linear regression 276k3 − 460k2 + 756k − 287 8k2 + 35k + 52
Per node total 314k3 − 344k2 + 876k − 246 8k2 + 35k + 52

MDS-MAP(P) all nodes ≈ n(314k3 − 344k2) ≈ n(8k2 + 35k)
Interval-based Floyd-Warshall 14n3 2n2 + 5

Thus, the MDS-MAP(P) algorithm trades off higher computational complex-
ity and storage requirements in order to produce coordinate location results. By
contrast, our algorithm requires less processing and storage, and instead esti-
mates the node-to-node distances.

7 Conclusions

We have presented a lightweight localisation algorithm for ad hoc sensor net-
works. The algorithm has been designed to satisfy concrete application require-
ments in terms of the accuracy of location information, spatial queries and the
capabilities of the target hardware. In contrast to most previous localisation ap-
proaches our algorithm computes constraints on the distance between network
nodes in the form of distance intervals. These intervals can be used to represent
inaccuracy of distance measurements as well as imprecision as result of inference
steps. The length of intervals can be seen as a quality measure for spatial infor-
mation. In future work we will look at ways to improve the information quality
by reducing the interval length. In particular, we are considering combining our
approach with Freksa’s reasoning method for inferring spatial relations between
neighbouring point objects in 2D [14].
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