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ABSTRACT 

An abstract of the thesis of Rebecca Claire Williamson for the award of Doctor of Philosophy submitted 

August 2018.  

Title: Mechanisms of Fixed Contamination of Commonly Engineered Surfaces. 

This project is concerned with developing a greater understanding of the deposition of radioactive solids, 

colloids, or ions suspended in aqueous liquid onto the surface of stainless steel. Fixed contamination on 

contaminated metallic surfaces is commonly removed using (electro) chemical methods. The most 

common methods employed are the use of mineral acids or MEDOC (Metal Decontamination by 

Oxidation with Cerium). However, these result in dissolution of the passive oxide layer formed at the 

metal surface. This increases the level of secondary waste which, in turn, increases the burden of effluent 

treatment plants.  The passivation of steels in HNO3 is complicated by the autocatalytic reduction of 

HNO3 to aqueous HNO2 which attacks the steel surface. We describe the effect of this behaviour on 

process steels in stagnant and/or flowing conditions. Rotating Disk Electrode (RDE) studies indicate that 

at HNO3 concentrations ≤20% wt. the reaction is surface based. At HNO3 concentration ≥20% wt. the 

reaction occurs in the bulk solution.  We established a series of corrosion potentials for varying 

concentrations of nitric acid. These corrosion potentials allowed us to age steel in a controlled fashion. 

Thus, we describe work carried out on electrochemically accelerated oxide growth on 316L SS and 

SS2343 in HNO3 media and HNO3 media with radionuclide surrogates (depleted U, Ce and Eu). 

Characterisation was performed using combined Linear Sweep Voltammetry (LSV), Electrochemical 

Impedance Spectroscopy (EIS) and Electrochemical Quartz Crystal Microgravimetry (EQCM) 

measurements. Areas of active, passive, high voltage passive, transpassive and secondary passivation 

regimes in the associated current voltage were identified. Further, we have directly measured the growth 

of that layer by using in situ microgravimetry. X-Ray Photoelectron Spectroscopy (XPS) was used to 

determine film composition and presence of contaminant uptake. The passive film on 316L SS is formed 

of a passive film consisting of Cr(III) hydroxide rich layer and Cr(III) oxide layers at lower potentials. 

With increasing HNO3 and potential the layer becomes more Cr(III) oxide rich before oxidising to Cr(VI). 

No radionuclide surrogate contaminants were detected within passive films formed in this study. 
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Project Objectives 

Decontamination of nuclear facilities for decommissioning allows for the reduction of waste 

classification levels with concomitant decreases in waste consignment costs, remote handling, hazard and 

personnel risk. Development of cost effective decontamination strategies - including selection of a 

suitable technique, identification of their R&D needs, confidence in efficacy and minimisation of 

secondary wastes - requires a fundamental understanding of the interfacial science of radionuclide 

contaminants and the way in which they are associated with surfaces to be decontaminated. Due to their 

high corrosion resistance, steels are ubiquitous on nuclear sites as process plant and construction 

materials. However, current understanding of the mechanisms of adherence and penetration of 

contamination into steels is inadequate to support informed choice of decontamination methods. 

Surface contamination, generally derived from the “plating out” of solids, colloids or metal ions from a 

liquid/solution phase, is broadly classified as being of two main types: non-fixed and fixed contamination. 

Here, ‘Plate-out’ is a general term associated with the contamination and clean-up of contaminated 

surfaces and is defined as: ‘The deposition of radioactive solids, colloids, or ions suspended in aqueous 

liquid onto the surface of stainless steel holding the liquid.’ [1].  In general the two types of contamination 

may be mechanistically defined as follows:  

1. Non-fixed contamination - Here contaminants are held weakly on the surface by electrostatic 

attractions or may be held on the surface through chemical bonds to the upper oxide surface. 

Alternatively, if the surface is exposed to a highly concentrated solution then a pure precipitate 

of radioactive metal-oxide may form on the steel surface. 

2. Fixed contamination - The contaminant is precipitated or co-precipitated with iron or chromium 

to form a specific mineral phase e.g. substituting iron within one of the many oxide phases which 

form on corroding steel. Alternatively, contaminants may channel down grain boundaries 

(especially in chromium deficient areas of a steel) [1].  

Whilst Rouppert et al. [2] have suggested that fixed contamination is chemisorbed and non-fixed is 

physisorbed, the distinction between the two types is in reality more subtle. Studies indicate that inter-
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conversion between a fixed and a non-fixed state is possible, depending upon the environmental 

conditions [3]. 

A high percentage of ‘plated-out’ contamination will be loosely bound to the surface through the afore 

mentioned non-fixed contamination mechanisms. This material is easily removed by most physical clean-

up techniques. Technical difficulties start to arise following the removal of the weakly bound, non-fixed 

material. The steel may only be slightly contaminated but such contamination is held within difficult to 

remove oxide layers.  

Such fixed contamination on conducting metallic surfaces is commonly removed using (electro) chemical 

methods. The most common methods employed are the use of simple mineral acids or multi-step 

oxidative chemical processes such as MEDOC (Metal Decontamination by Oxidation with Cerium). 

However, such treatments frequently result in dissolution of the chromium passive oxide layer formed at 

the metal surface resulting in excessive dissolution of the underlying bulk iron. This increases the level 

of secondary waste which, in turn, increases the burden on effluent treatment plants. 

Thus, improving the understanding of contaminant radionuclides interaction with and attachment to 

process engineering materials in plant environments is essential to enable the development of targeted 

decontamination techniques. Importantly, from the limited literature relating to radionuclide sorption 

mechanisms on engineering metals, key studies [2], [4] have found that sorbed contamination is almost 

entirely located in the outermost 0.5-1µm of the passive oxide layer formed at the steel surface. This 

suggests such heavily oxidising techniques could be replaced by more targeted/milder chemical treatment 

processes. Alternative techniques, such as mechanical process (jet blasting etc.), are unsuitable due to the 

large volumes of secondary wastes produced and also the lack of accessibility to the contaminated surface 

e.g. contamination of the inner surface of metal pipework. 

The thickness and character of the aforementioned passive oxide layer formed on stainless steel surfaces 

is influenced by the type of stainless steel as well as by environmental factors including the pH of the 

local environment [1]. This project is concerned with developing a greater understanding of 

contamination under reprocessing plant conditions (e.g. PUREX), in particular aqueous acidic conditions, 

where steel corrosion/re-precipitation is most likely to be prevalent and fixed contamination most likely. 

HNO3 concentration varies throughout the reprocessing flow sheet. Thus, the behaviour of stainless steel 
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in a range of HNO3 concentrations will be studied to investigate the possibility of contaminant 

sorption/co-deposition on passive oxide films formed in HNO3. Study of the passive layer is in contrast 

to previous studies which have looked at the corrosion products formed on those metals.  

The proposed research can therefore be divided into two sections: 

1. First, we investigate the electrochemical behaviour and surface composition of oxides formed 

on the surface of 316L SS in HNO3 and the affect that the redox behaviour in HNO3 has on these. 

Corrosion results from the coupling of two processes, one oxidative and one reductive. HNO3 

can sustain a reduction process at high HNO3 concentrations, understanding how this couples 

with stainless steel oxidation may provide insights into HNO3 promoted corrosion of stainless 

steels. Previous studies on HNO3 by Balbaud [5] and Fauvet [6] indicate that at low 

concentrations the autocatalytic electrochemical reduction of HNO3 is a slow surface based 

reaction. At higher concentrations, studies by Lange [7] and Carta and Pigford [8] suggest that 

the autocatalytic electrochemical reduction of HNO3 shifts to a rapid solution based mechanism. 

The effect of the difference between these two types of HNO3 reduction on passive oxide 

formation is explored. 

2. Finally, In order to determine whether radionuclide surrogate contaminants become entrained 

in oxides formed under HNO3 conditions similar to reprocessing, the electrochemical behaviour 

and surface composition of oxides formed on the surface of 316L SS in the presence of 

radionuclide surrogates will be assessed.  

Chapter 1 provides an introduction to the nuclear fuel cycle, electrochemistry and corrosion 

concepts and the corrosion of austenitic stainless steels. Also, a review of actinide chemistry and 

research into surface contamination is presented, followed by an overview of available 

decontamination techniques. 

Chapter 2 of this work describes the experimental details pertaining to work undertaken towards 

the characterisation of 316L SS in HNO3 and in the presences of radionuclide surrogates. 

The third and fourth chapters describe the electrochemical and surface characterisation of 316L 

SS in low and high concentrations of HNO3, through the use of Linear Sweep Voltammetry 
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(LSV), Electrochemical Impredance Spectroscopy (EIS), Electrochemical Quartz Crystal 

Microgravimetry (EQCM) and X-Ray Photoelectron Spectroscopy (XPS). 

Chapter 5 deals with the electrochemical and surface characterisation of 316L SS in high and 

low concentrations of HNO3in the presence of radionuclide surrogates. 

The final chapter summarises the main conclusions that can be drawn from the work and outlines 

possible future work. 
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Introduction  
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1     INTRODUCTION 

 The Nuclear Fuel Cycle 

There are more than 400 operating nuclear reactors throughout the world. These reactors supply about 

11% of the world’s electricity production capacity [9]. In the UK, there are currently fourteen Advanced 

Gas-cooled Reactors (AGR) and one Pressurised Water Reactor (PWR) (Sizewell B). These fifteen 

reactors generate approximately 21% of the UK’s electricity [10].  

In order to provide fuel for the UK’s nuclear reactor fleet, the UK imports mined uranium which is then 

milled, enriched (Urenco, Capenhurst) and fabricated into fuel (Springfields, Preston) for both AGR and 

PWR reactors [10], [11]. When used fuel is reprocessed (recycled) this is referred to as a “closed fuel 

cycle”, a diagram of which is shown in Figure 1-1: 

 

Figure 1-1 –A simplified schematic of a closed  nuclear fuel cycle [12]. 

An “open fuel cycle” refers to used nuclear fuel that is sent to interim storage after being removed from 

the reactor before being sent for disposal at a Geological Disposal Facility (GDF) without undergoing 

reprocessing.  

While the UK may in the future move towards an open fuel cycle, currently a closed fuel cycle is operated 

through the use of the THermal Oxide Reprocessing Plant (THORP) and MAGNOX (MAGnesium Non-
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Oxidising) Reprocessing Plant, both located at Sellafield. Thus, reprocessing is an important component 

of the UK’s nuclear fuel cycle and power generation strategy. 

 Nuclear Fuel Reprocessing 

Nuclear reprocessing involves chemical treatment of spent nuclear fuel in order to separate the remaining 

U and Pu from the highly active waste component (composed of fission products and higher actinides). 

The reprocessing of spent nuclear fuel is undertaken for several reasons: i) Recovery of valuable fissile 

materials, ii) recovery of special isotopes and iii) reduction in the volume of high level waste.   

Once reprocessed the U, Pu and TRU (TRansUranic waste) from UK AGR fuel can re-enter the fuel cycle 

for use in fuel fabrication, nuclear research applications or may be manufactured into MOX (Mixed 

OXide) fuel for use in other nuclear reactor designs. All current industrial reprocessing in the UK is 

centred on a liquid-liquid solvent extraction process known as PUREX (Plutonium URanium Extraction).  

In the UK, nuclear fuel reprocessing has been carried out at Sellafield, Cumbria since the 1950s. There 

are two nuclear fuel reprocessing plants on site: (1) THORP, which deals with fuel from British Advanced 

Gas-cool Reactors (AGR) and global Light Water Reactors (LWR) and (2) B205, which deals with 

MAGNOX fuel from Britain’s early nuclear reactors (e.g. Calder Hall) [13]. Here we focus on the more 

prolific THORP plant and the PUREX chemical extraction process used therein for nuclear fuel 

reprocessing. 
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1.2.1 Reprocessing at THORP 

THORP at Sellafield commenced operation in 1994. THORP combines all the facilities needed to 

reprocess both UK and foreign spent oxide fuel. A flow diagram of reprocessing at THORP is shown in 

Figure 1-2:  

 

Figure 1-2 –Flow Diagram of Aqueous Reprocessing at THORP [12]. 

Transport flasks containing spent fuel from power stations are delivered to Sellafield by rail. On arrival 

the fuel is removed from the transport flasks underwater and stored in storage ponds to allow the fuel to 

cool further before reprocessing. Once the fuel has cooled sufficiently it is transferred from the storage 

pond to the Head End Plant shear cave where the fuel is chopped into sections. The fuel is then dropped 

into a dissolver vessel where the fuel is dissolved in nitric acid. The dissolved fuel liquor is then 

forwarded to the chemical separation plant [14], [15]. Each of these processes is described in more detail 

in the following sections.  

1.2.1.1 Receipt and storage 

Nuclear fuel is usually removed from a reactor after 1-3 years (depending on design and reactor 

burnup/operation cycle). Due to the high level of radiation produced by fission fragments, fuel is 

immediately unloaded into an adjacent interim storage pond for a period of several months (or years, 

again depending on burnup/operation cycle) to allow the short lived fission products to decay to safe 

levels for transportation [15].  The spent fuel is then sent to Sellafield and either immersed in long term 
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storage ponds on site or transferred directly to THORP for reprocessing (if held in interim storage for a 

long period) [15], [16]. The length of time required in long term pond storage before reprocessing depends 

on the fuel type and different rates of fuel burnup [12], [17]. For AGR it is usually around 3 years and 

for LWR around 5 years [12].  

1.2.1.2 Head End: Disassembly and dissolution 

In order to dissolve the uranium fuel pellets in preparation for reprocessing, first the steel cladding needs 

to be either partially or fully removed.  

In THORPs Head End, AGR (stainless steel clad)/LWR (zircaloy clad) fuel element assemblies are 

sheared into small (~5cm) pieces which are allowed to fall into a basket partly immersed in ~7 mol dm-3 

90oC nitric acid (HNO3). The stainless steel or zircaloy clad solids, often referred to as ‘hulls’, are 

removed from the dissolver first and treated as Intermediate Level Waste (ILW) [18]. As the AGR/LWR 

fuel is dissolved in HNO3, both the uranium and plutonium components are oxidised to the 6+ valence 

state and nitric oxide/nitrogen dioxide gases may be released as seen in equations (1.1) and (1.2) below. 

3𝑈𝑂ଶ + 8𝐻𝑁𝑂ଷ → 3𝑈𝑂ଶ(𝑁𝑂ଷ)ଶ + 2𝑁𝑂 + 4𝐻ଶ𝑂 (1.1) 

𝑈𝑂ଶ + 4𝐻𝑁𝑂ଷ → 𝑈𝑂ଶ(𝑁𝑂ଷ)ଶ + 2𝑁𝑂ଶ + 2𝐻ଶ𝑂 (1.2) 

Some fission products may also be released during fuel dissolution as gases or steam. For example, iodine 

is removed with the off-gases during shearing and is removed using a caustic wash. The standard PUREX 

process cannot be used to separate other long-lived fission products, such as Cs and Sr, and they follow 

the high level waste raffinate [19], [20]. 

After fuel dissolution, the HNO3 concentration is adjusted to a lower concentration of 2-3 mol dm-3. 

Additions of hydrogen peroxide (H2O2), nitrous acid (HNO2) or nitrogen tetroxide (N2O4) are then made 

in order to adjust the plutonium component to its most extractable oxidation state of +4, ready for the 

next chemical separation step [16], [21].  
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1.2.1.3 Chemical Separation 

Liquid-liquid extraction is the process of extracting a desired solute from a feed (inlet stream containing 

the substance to be extracted) by use of a solvent (second immiscible liquid into which the solute is 

transferred) to produce an extract (outlet stream containing solute) and a raffinate (feed material minus 

solute) [22].  

During the PUREX process, an aqueous phase, initially containing all of the dissolved fuel (feed), is 

exposed to an organic solvent phase (solvent) in a series of contactors. In these devices, the two 

immiscible phases are thoroughly agitated and then allowed to separate as shown in Figure 1-3. At each 

stage the desired product (U and Pu) is extracted from the aqueous phase by the organic solvent. 

Eventually, the solvent phase contains U and Pu (extract) and fission products remain in the aqueous 

phase (raffinate). In each contactor, the separation process may not be complete, and several stages are 

often necessary to achieve the desired separation [16], [23]. 

 

Figure 1-3 - Mixer-settler principle of organic solvent extraction for nuclear fuel reprocessing [20]. 

The first stage separates the uranium and the plutonium in the aqueous nitric acid stream from fission 

products and minor actinides by a solvent extraction process, using TriButyl Phosphate (TBP) dissolved 

in Odourless Kerosene (OK). Uranium and plutonium enter the organic phase as the TBP/nitrate mixed 

complexes Pu(NO3)·TBP and UO2(NO3)·TBP, while the fission products and other elements remain in 

the aqueous phase  [14]. In the second stage, plutonium is stripped from the solvent phase by reducing 

the plutonium to its trivalent state using ferrous sulfamate, allowing back extraction of plutonium to the 

aqueous phase. Once the uranium and plutonium are separated the uranium is evaporated to 
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UO2(NO3)2·6H2O and thermally denitrated to UO3, while the plutonium is precipitated as PuF3 and PuO2 

and then converted to Pu metal via reduction with Ca. These high level strategic materials are then either 

solidified and disposed of or re-used in fuel manufacture [14], [16], [21], [24], [25]. 

Having discussed the processes and chemicals involved in a PUREX separation we now discuss the key 

properties of the main material from which reprocessing pipework and associated plant are compromised 

(e.g. contactors, evaporators and mixer settlers), stainless steel. 

1.2.2 Stainless Steels in Nuclear Reprocessing 

The integrity and availability of nuclear fuel reprocessing plants for uninterrupted operation depends on 

the quality and performance of critical engineering components. Any failure of a component could lead 

to leakage of radioactive material.  

Stainless steels are used worldwide in chemical process plants because of their high corrosion resistance 

(compared to iron or carbon steels), ease of fabrication and availability. Stainless steels are an iron based 

alloy in which chromium is the main alloying additive, with a concentration of at least 12% wt. The high 

corrosion resistance inferred by the chromium addition has allowed stainless steels to be used in a wide 

range of chemical process applications [26], [27]. Further, both nuclear and conventional power plants 

have many key components formed from stainless steels, including, but not limited to: pressure vessels, 

pumps, turbines, power condensers and feed-water heaters [17].  

As such stainless steels are also used at THORP (Sellafield) as the main constituent material for 

reprocessing plant vessels and pipework, in particular where the concentration of HNO3 is ≤8 mol dm-3. 

Stainless steels provide two main benefits over iron or carbon steels for process work:  

(1) The formation of a chromium oxide or chromium containing oxide film gives stainless steels excellent 

corrosion resistance in oxidising media such as nitric acid (see below).  

(2) Stainless steels are believed to be relatively easy to decontaminate compared to iron or carbon steels 

where heavy multi oxide state iron deposits can form, making them essentially maintenance free [28], 

[29].  
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These benefits are essential characteristics, as access for maintenance is difficult or sometimes 

impossible, therefore complete reliability is required [30]. 

1.2.2.1 Steel Crystal Structures 

Solid metals and alloys consist of randomly oriented grains that have a well-defined crystalline structure, 

or lattice, within the grains. Many of the properties of stainless steels depend upon which crystalline 

lattice occurs. Common crystalline structures that occur within the grains have been given names such as 

ferrite, austenite and martensite [31].  

1.2.2.1.1 Ferrite 

The main alloying element of ferritic stainless steels is Cr at 11-30% wt. with low C content which results 

in ferritic steels having limited strength. They have low temperature strength and weldability but exhibit 

good formability and excellent resistance to chloride stress corrosion cracking [31], [32]. Ferritic steels 

usually cost less than austenitic steels, due to the absence of Ni. Ferric stainless steels have a ‘body-

centred cubic’ crystal structure at ambient temperatures, as shown in Figure 1-4.  

 

Figure 1-4 – Example of a body-centred cubic crystal structure. Where the black dots represent atoms 

and the black lines are present to aid structure visibility [31]. 

1.2.2.1.2 Austenite 

Austenitic stainless steels form the largest group of stainless steel, in terms of usage and contain 18-25% 

wt. Cr, 8-20% wt. Ni and low C. The addition of nickel changes the crystal structure into a ‘face-centred 

cubic’ form. In general austenitic steels are easier to shape and bend, more weldable and less brittle than 

ferritic alloys [31], [32]. 
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Figure 1-5 – Example of a face-centred cubic crystal structure. Where the black dots represent atoms 

and the black lines are present to aid structure visibility [31]. 

Austenitic grades tend to be employed to resist corrosion. Increasing the levels of Cr, Mo and N result in 

increased resistance to pitting and crevice corrosion in chloride environments [32]. 

Low carbon content (typically <0.03% wt.) reduces the possibility sensitisation due to chromium carbide 

formation either during welding or when exposed to a high temperature thermal cycle. When a sensitised 

steel is exposed to a corrosive environment, intergranular corrosion can occur. Reducing C content does 

not affect resistance to pitting, crevice and stress corrosion cracking [32]. 

Further effects of alloying will be discussed in section 1.2.2.2. 

1.2.2.1.3 Martensite 

Martensite is a stable structure at room temperature and is more similar to ferrite than austenite. 

Martensite is alloyed with Cr and has a relatively high C content. 

 Martensite has a ‘body-centred’ tetragonal structure, as shown in Figure 1-6.  

 

Figure 1-6 - Example of an elongated body-centred crystal structure. Where the black dots represent 

atoms and the black lines are present to aid structure visibility [31]. 
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Martensite is produced by heat treatment or by cold working cubic crystals of ferrite and austenite. 

Martensite is the strongest of the three crystalline forms but that makes it the least workable. It exhibits 

excellent wear or abrasion resistance but limited corrosion resistance [31], [32]. 

1.2.2.2 Effect of Alloying Elements on Austenitic Stainless Steel 

Apart from the major alloying element of chromium, other alloying elements also influence the chemical, 

physical and mechanical properties of austenitic stainless steel. The addition of other alloying elements 

therefore allows stainless steel properties such as ductility and weldability to be tailored specifically to 

the required construction application. Examples of the mechanical/chemical properties and steel grade 

produced by alloying element addition are shown in Figure 1-7. 

 

Figure 1-7 –Different types of stainless steel after compositional modifications starting at 18-8/AISI 

304 stainless steel [33]. 
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Considering the chemical environments encountered by nuclear process steels, the specific effects on 

corrosion resistance of some of the alloying elements shown in Figure 1-7 are discussed in more detail 

below. [26], [33]–[37].  

1.2.2.2.1 Chromium 

Chromium (Cr) is added to increase steel resistance to oxidation and pitting. The resistance of metal 

alloys to chemical effects of a corrosive agent is determined by their ability to protect themselves through 

formation of an adherent, insoluble film. Cr produces a very fine chromium oxide (Cr2O3) passive film 

on the order of ~1-2 nm thick. Increasing the chromium content within the steel results in increased 

corrosion resistance, through enhancement of the stability of the passive film. In practise stainless steels 

must have ~14-18% wt. chromium for passivity to occur, less than this and the film is inconsistent and 

greater than this and the film becomes unstable. Thus, chromium is an essential alloying element for 

corrosion resistance in nitric acid environments because it readily forms this passive film in response to 

oxidising conditions. 

1.2.2.2.2 Nickel 

Austenitic stainless steels generally have a high nickel (Ni) content, between 8 and 20% wt. The addition 

of nickel leads to the formation of the austenitic crystal phase. This improves the metals formability, 

weldability, toughness and the high and low temperature behaviour of the steel. Nickel is also responsible 

for an increase in corrosion resistance for chromium-nickel alloys, particularly in reducing environments. 

Nickel has no effect on pit/crevice initiation, however, pit/crevice propagation is greatly reduced with 

increased nickel content [36], [38], [39].  

1.2.2.2.3 Molybdenum 

When added to Cr-Ni austenitic stainless steel, molybdenum (Mo) improves resistance to pitting 

corrosion, especially in chloride environments. Because Mo is a ferrite former, the nickel content of the 

steel is usually also increased (e.g. ~3% wt. extra Ni in Mo containing 316L SS over 304L SS) in order 

to maintain the austenitic structure. However, Mo is rapidly attacked by oxidising agents and therefore 

nitric acid is one of the few environments in which additions of Mo does not improve corrosion resistance. 

Such differences can be seen in Figure 1-8, which shows a comparison between the domains of stability 
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of a Mo containing steel (316L SS) and two low Mo containing steels is (304L SS and 310L SS) in nitric 

acid. 

    

Figure 1-8 - Comparison between the domains of stability of a Mo containing steel (316L SS) and two 

low Mo steels is (304L SS and 310L SS ) in nitric acid as a function of concentration and temperature 

[6]. 

Thus, Mo containing steels are often inferior to other stainless steels in terms of resistance to nitric acid. 

However, in some of the potentially chloride-containing environments/streams encountered at THORP 

due to the coastal location, Mo containing stainless steels may still be employed in certain areas of high 

pitting corrosion risk. 

1.2.2.2.4 Niobium 

Niobium, which is alloyed into 18Cr/13Ni/1Nb for corrosion resistance (see below), is completely 

resistant to nitric acid and other oxidising media at temperatures below 100oC. Thus, introduction of 

niobium into process steels can greatly improve corrosion resistance. Furthermore, the presence of 

niobium retards the precipitation of Cr-rich carbides in stabilised stainless steel grades, reducing risk of 

intergranular corrosion.  

1.2.2.2.5 Titanium 

Titanium is added to stainless steels for carbide stabilisation. Titanium combines with carbon to form 

stable titanium carbides, in preference to chromium carbides, which are hard to dissolve in steel. This is 

particularly useful when the material is to be welded and tends to minimise the occurrence of intergranular 

corrosion.  
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1.2.2.3 Grades and Materials Selection 

18Cr-13Ni-1Nb and 18Cr-8Ni-Ti were the primary grades of stainless steel used in Magnox reprocessing 

at Sellafield until the 1980s. 18Cr-13Ni-1Nb was developed in the 1950s specifically for HNO3 duty in 

nuclear reprocessing in the U.K. It was used for plant handling of corrosive liquids, high temperatures 

and areas of high radioactivity. These steels were shown to have deficiencies in operation such as end 

grain corrosion and attacks at welds which are susceptible to corrosion in HNO3 vapours and iodine 

vapours. For the THORP reprocessing plant, nitric acid grade (NAG) 18-10L and 304L stainless steel 

have replaced 18Cr-13Ni-1Nb and 18Cr-8Ni-Ti respectively [40], [41]. NAG 18-10L is essentially 304L 

stainless steel that is developed with controlled chemical composition e.g. reduced carbon, and modified 

microstructures that lead to the elimination of weaker sites that may allow passive film breakdown and 

dissolution. Furthermore, closer control on residual elements gives improved strength against 

transpassive dissolution [29], [42], [43]. Table 1-1 shows the composition of the various steels/alloys 

used at THORP.   

Table 1-1 - Composition of various Stainless Steels (% wt.)  [44]–[47]. 

Metals Cr Ni C Mn Si P S Mo Nb 

NAG18-10L 18.77 9.64 0.015 1.54 0.32 0.015 0.008 - <0.01 
304L 18 11 0.03 2.0 1.0 0.045 0.03 - - 
316L 16.6 10.03 0.016 1.49 0.48 0.03 0.002 2.06 0.004 

18Cr-13Ni-1Nb 16.6 12.6 0.09 0.99 0.51 0.07 0.006 0.08 0.92 
310L 25 20 0.015 <2 <0.03 - <0.3 <0.3 <0.25 

 

Type 304L is predominantly used for the fabrication of vessels, tank piping and equipment in THORP 

where the concentration of HNO3 is ≤8 mol dm-3 [43]. AISI (American Steel and Iron Institute) Type 

316L stainless steel (316L SS) is used in the construction of some process vessels and pipe work that 

contain concentrations of  HNO3 < 3 mol dm-3. It is also used in liquor storage cans and some outdoor 

plant areas at THORP that may be effected by saline spray from the Cumbrian coastline as the added Mo 

improves resistance to pitting corrosion from the chloride environment (see above) [45]. 18Cr-13Ni-1Nb 

(a fully austenitic variant of type 347 [48]) is used for high HNO3 concentration areas in THORP. An 

example of this is Evaporator C. This evaporator concentrates Highly Active Aqueous Raffinate (HAAR), 

from a concentration of ~3 mol dm-3 HNO3 to ~8 mol dm-3 HNO3.  
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1.2.2.4 Potential Corrosion Problems in Reprocessing Plants 

As discussed above, nuclear fuel reprocessing flow sheets use nitric acid at varying high concentrations 

and temperatures. Therefore, constituent materials used for reprocessing plant equipment must be chosen 

and used carefully. As alluded to in the previous section, consideration must be given to:  

 The nature of the medium encountered 

 Concentration of HNO3 

 Temperature 

 Plant operating conditions 

 Level of radioactivity 

As discussed above, austenitic stainless steels owe their good corrosion resistance properties in nitric acid 

solution to the formation of a chromium rich passive oxide layer. However, under certain conditions 

passivity may no longer be possible. For example, active dissolution of Cr3+, Fe2+ and Ni2+ may occur if 

reprocessing stream conditions become sufficiently reducing. Alternatively, if the reprocessing stream 

becomes excessively oxidising, chromium (III) oxide (Cr2O3) could dissolve into hexavalent chromium 

(chromate). This would result in passive film dissolution, known as ‘transpassive corrosion’, typically 

causing intergranular corrosion at grain boundaries [49]. 

Having described the materials and possible vulnerabilities of reprocessing pipework/vessels it is now 

important to discuss the process of metallic corrosion itself and the types of corrosive action that could 

be encountered in a reprocessing waste stream scenario. 

 Electrochemistry and Corrosion Concepts  

The International Standards Organisation defines corrosion as:  

 “Physiochemical interaction between a metal and its environment that results in changes in the 

properties of the metal, and which may lead to significant impairment of the function of the metal, the 

environment, or the technical system, of which these form a part” (ISO 8044-1999).  

Note: This interaction is often electrochemical in nature. [50] 
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Due to the corrosion of metal being electrochemical in nature it is important to understand the 

electrochemical behaviour of metals in aqueous solutions and corrosion related processes. 

1.3.1 Electrochemistry Concepts 

An electrochemical reaction is characterised by the exchange of electrons. 

𝑂𝑥 + 𝑒ି ↔ 𝑅𝑒𝑑 
(1.3) 

 

Ox = Oxidising agent or electron acceptor 

Red = Reducing agent or electron donor 

When a reaction takes place with the transfer of electrons into the external circuit, it is referred to as an 

oxidation. The electrode at which oxidation takes place is called the anode. If a reaction takes place with 

the transfer of electrons from the external circuit, it is referred to a reduction, the electrode this occurs at 

is called the cathode [27], [51]. 

Many corrosion processes are electrochemical in nature because they involve redox reactions [52]. For 

example, the corrosion of metal atoms to form an ionic species and the liberation of electrons is shown 

in the generic metal oxidation reaction below: 

𝑀 → 𝑀ା + 𝑛𝑒ି (1.4) 

Equation 1.4 represents the generalised corrosion reaction that removes the metal atom by oxidising it to 

its ion (at an anodic site). An example of a real metal would be the oxidisation of iron (Fe), as shown in 

Equation 1.5: 

𝐹𝑒 → 𝐹𝑒ଶା + 2𝑒ି (1.5) 

This is called a half-cell reaction. However, to make a balanced chemical process the electrons liberated 

by the oxidation reaction must be consumed by a reduction reaction (at a cathode site). One reduction 

Reduction 

Oxidation 
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reaction that is common in corrosion processes in acids is evolution of hydrogen, which is shown in 

Equation (1.6) [52], [53]: 

2𝐻ା + 2𝑒ି → 𝐻ଶ (1.6) 

The complete reaction would be:  

𝐹𝑒 +  2𝐻ା → 𝐹𝑒ଶା + 𝐻ଶ (1.7) 

This is demonstrated in Figure 1-9, in this case the surface of the metal serves as both anode and cathode. 

  

Figure 1-9 – Formation of ions at an anodic area and release of hydrogen at a cathodic area in a local 

cell on an iron surface in hydrochloric acid [54]. 

1.3.1.1 Electrode Potential  

Two types of processes occur at electrodes: 

1. Faradaic – Faradaic processes are sometimes referred to as charge transfer processes where 

charge is transferred across the metal-solution interface. Electron transfer causes oxidation and 

reduction to occur [55]. 

2. Non-Faradaic – no charge transfer reactions occur but processes such as adsorption and 

desorption can occur. The structure of the electrode-solution interface can change with changing 

potential or solution composition. 

HCl 
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If a piece of metal, M, is surrounded by an aqueous solution containing ions of the metal, Mn+, then 

electrode reactions of the type shown in equation (1.4) take place at the surface of the metal until charge 

separation and equilibrium is reached. These reactions ultimately lead to an 'electrical double layer', a 

zone of charge separation at the electrode/electrolyte interface being established, as shown in Figure 1-10. 

The existence of this electrical double layer means that the piece of metal exhibits a different electrical 

potential (Φm) to that of the electrolyte (Φσ,b). Electronically, when a faradaic current is flowing, this 

region behaves like a capacitor in parallel with a resistor (double layer capacitance and charge transfer 

resistance respectively). However, importantly for the corrosion chemist, a relative value of Φm can be 

measured via comparison with a reference electrode, many of which are based on a simple metal/metal 

chloride couple e.g. the saturated calomel electrode (Hg/Hg2Cl2) and the saturated silver chloride 

electrode (Ag/AgCl). The so-called measured quantity is commonly referred to as the electrode potential, 

E [27], [53]. The electrode potential of a metal is very useful in corrosion studies, as it enables 

determination of oxidative or reductive stresses derived from the solution environment that may induce 

corrosion or passivation [56]. This is explored in more detail in the following two sections. 

 

Figure 1-10 – Helmholtz model of the formation of the electrical double layer. LH is layer thickness in 

nm and Φ is potential [53]. 
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1.3.2 Pourbaix Diagrams 

A potential-pH diagram, commonly referred to as a Pourbaix diagram after Marcel Pourbaix who first 

assembled such diagrams for all elements into a comprehensive atlas [57], is a summary of 

thermodynamic data (speciation) in the form of electrode potential vs. pH diagrams. The simplest pH-

potential diagram is for water, Figure 1-11. 

 

Figure 1-11 - Potential/pH diagram for water [58].  

The diagonal lines labelled as (a) and (b), mark the region of stability of water as a function of potential 

and pH. At any value of pH and potential below line (a), water is thermodynamically unstable and 

results in the generation of hydrogen gas. Alternatively, for any value of potential and pH above line 

(b), water is thermodynamically unstable and results in the evolution of oxygen. For potential and pH 

conditions between lines (a) and (b), water is thermodynamically stable.  

Such thermodynamic considerations become more important when considering metal/water systems. 

As an example the potential-pH diagram for iron is shown in Figure 1-12. 
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Figure 1-12 - Potential pH diagram of the Iron/Water system at 25oC [57]. 

From Figure 1-12 it can be seen that different regions of corrosion (soluble species of Fe2+ and Fe3+), 

passivation (solid oxides of Fe2O3) and immunity (Fe is the stable species) can be identified. This allows 

construction of simplified corrosion diagrams that allow rapid identification of regions of corrosion, 

immunity and passivation, Figure 1-13. 

Two key considerations should be made when using potential-pH diagrams. Firstly, any dissolved species 

can participate in complex formation which could cause alterations to the stability boundaries of water 

potential-pH diagram [27]. Secondly, the diagrams are based purely on thermodynamic data, thus they 

do not reveal any information as to rates of reaction or other kinetic parameters [59].  
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Figure 1-13 – Simplified potential pH diagram of the Iron/Water system at 25oC. a) Simplified 

corrosion diagram, b) primary species involved in immunity, corrosion and passivity [57], [58]. 

As described in section 1.2.2.2, the corrosion resistance of stainless steels is often improved by 

introduction of other oxide layer forming metals such as nickel, chromium or elements such as 

molybdenum that expand the region of passivity. The potential-pH diagrams for Chromium, Nickel and 

Molydenum are shown in Figure 1-14, Figure 1-15 and Figure 1-16 repectively. 

 

Figure 1-14 - Potential pH diagram of the Chromium/Water system at 25oC [57]. 
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Figure 1-15 - Potential pH diagram of the Nickel/Water system at 25oC [57]. 

 

 

 

Figure 1-16 - Potential pH diagram of the Molybdenum/Water system at 25oC [57]. 

The introduction of such metals may also improve the stability and mechanical properties of the steel by 

creating a tougher austenitic crystal phase. Using potential-pH diagrams the thermodynamically predicted 

corrosion resistance properties of each alloying element may be more easily understood by overlaying 

the regions of passivation, in the case of 316L, 304L and 18Cr/13Ni/1Nb, for iron, chromium, nickel and 

molybdenum. This is shown in Figure 1-17 where the passive regions for Fe, Cr, Ni and Mo are shaded 

in red, green, blue and pink respectively. 
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Figure 1-17 – Pourbaix diagram for the Fe-H2O system showing conditions for corrosion (E = V/SHE). 

Overlaid are conditions of passivation for Iron (red), Chromium (green), Nickel (blue) and 

Molybdenum (pink). The shaded pink area indicates an area of possible passivation by Molybdenum 

oxide [57]. 

Figure 1-17 shows that iron and chromium are the primary passivators in steel, the latter being particularly 

resistive to reductive dissolution. Nickel provides improved resistance in neutral to alkaline, oxidative 

solutions while the addition of molybdenum improves passivation in the low pH, mid-high potential 

region. 

1.3.3 Voltammetric Determination of the Corrosion Behaviour of Stainless Steels 

The previous section described how knowledge of the electrode potential and solution pH can allow 

thermodynamic determination of whether active corrosion or passivation of a metal will take place. 

However, an alternative to measuring the open circuit potential or O.C.P. (the potential between a metal 

electrode and a reference electrode under conditions where no current is allowed to pass between these 

electrodes) is to actively drive the potential positive or negative of O.C.P. and record the current that 

obtains. This technique is known as voltammetry. As the change in potential can result in the occurrence 

of oxidation or reduction reactions at the working electrode (due to either oxidation/reduction of the 
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working electrode or due to oxidation/reduction of electroactive solution species), the charge passed 

during such reactions  may be directly related to the kinetics of oxidation/reduction via Faraday’s 1st law 

of electrolysis  [55], [60]. In the case of linear current-voltage curves (linear sweep voltammetry or LSV) 

such measurements are often expressed as log current density vs. potential plots, often known as 

polarisation curves, in order to emphasise changes in current during the potential sweep. 

Figure 1-18 shows a typical polarisation curve for a metal that exibits a region of passivation. Such a 

curve is also observed for similarly behaving alloys such as stainless steel. 

 

       

Figure 1-18 – Schematic of an anodic polarisation curve of a metal, labelled regions are described in 

the text. 

Considering first the low potential region of Figure 1-18. Region AB indicates the region of active 

corrosion. Here the current is high due to oxidative metal dissolution. As the potential increases further 

the so-called passivation potential or Flade potential is reached, and the current density is reduced as the 

formation of a thin, protective coating occurs (passivity). In stainless steels this largely consists of mixed 

iron-chromium oxides and hydroxides [61]. The metal is passive at potentials more positive than C. If 

the solution contains aggressive anions, i.e. ions that promote corrosion reactions or increase the 

solubility of passive films, such as chloride (Cl-), passivity may break down at D (the pitting potential) 

and the current rises with further increase in potential (D to E) as pits in the passive film nucleate and 

propagate (see section 1.4.2 for more details). If pitting agents such as Cl- are absent, the passive film can 

transpassively dissolve (F to G) as the protective chrome oxide/iron oxide layer is oxidised. This is 

discussed in more detail in the following section and is not returned to here. For sufficiently stable passive 

films with good electronic conductivity which are chemically and electrochemically stable, then oxygen 
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evolution rather than transpassive dissolution may occur. This accounts for the observed current at the 

high anodic potentials. Oxygen evolution commences at H and increases in rate to I whilst the metal 

remains passive. If the film is stable and insulating to electrons, oxide film growth continues with a further 

increase in potential (HJ) and the metal remains passive [38], [53].  

With regards to corrosion in oxidative nitric acid environments, it is the higher potential regions of 

passivity and transpassivity that are of most interest in this study. Thus, each of these regions is described 

in more detail below. 

1.3.3.1 Passive Behaviour of Stainless Steels 

As described briefly in section 1.2.2.2.1, the corrosion resistance of stainless steels in the passive region 

arises from a chromium enriched (Iron-Chromium spinel) oxide film that forms on the surface. These 

oxides are extremely thin <5 nm however, they are strongly adherent and chemically stable [38], [62], 

[63]. The ease with which stainless steels can passivate increases with the level of Cr. Materials with 

higher Cr content are more readily passive (lower current density and the active/passive transition is at a 

lower potential). This is demonstrated in Figure 1-19, which shows the electrochemical differences 

between Fe, stainless steel and pure Cr.  

 

Figure 1-19 – Standard potentials vs ENH (Normal Hydrogen Electrode (NHE)) at 25oC for different 

electrochemical couples and steady anodic curves for iron chromium and stainless steel (in H2SO4 0.5 

mol dm-3) [64] 
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From Figure 1-19 it can be seen that the addition of Cr to Fe to form steel dramatically increases the 

passive region in the negative potential direction compared to that of pure Fe (or carbon steels). While 

not shown in Figure 1-19, materials with higher Cr content are also passive (higher pitting potential) in 

more aggressive anion environments than iron or carbon steels, due to the reduced ease of formation of 

soluble chlorides [38]. The primary species of chromium passivation is its trivalent state, Cr2O3, other 

species include the mixed iron-chromium spinels; such as FeCr2O4. The thickness of the passive film 

increases linearly with applied potential due to oxide growth, rather than hydroxide to oxide formation, 

which is independent of potential [63]. However, when the potential increases above ~1.1-1.2 V vs. NHE, 

the oxidation state increases to its hexavalent state to form HCrO4
- or HCr2O7

-. The oxides formed in this 

environment are generally more soluble in nitric acid (see section 1.3.4), leading to Cr dissolution from 

the oxide layer, causing the passive film to disintegrate [57], [63], [65]. Such behaviour is described in 

more detail in section 1.3.3.3. 

It is important to note that the passivating oxide coating formed on steel surfaces is influenced by the 

composition of the steel as well as by environmental factors, including oxygen, moisture, the presence of 

other ions, the electrostatic potential of the surface and pH of the local environment [1]. However, while 

film thickness/composition can change within a couple of seconds in response to a potential change, time 

is required to stabilise film properties in response to an environmental change. For example, increasing 

the pH from acidic to neutral leads to a lower Cr2O3 dissolution rate which, in turn, increases the thickness 

of the passive film. Increasing the pH into basicity leads to an increased iron content in the passive film 

due to increased stability of the iron oxides Fe2O3 and Fe3O4 [63]. 

1.3.3.2 Theories of Passive Film Growth  

Growth of passive films has been extensively researched [66]–[72]. There are two model types for 

predicting film growth in response to a potential change.  

1. If the electric field in the passive layer is assumed to increase upon a change in potential, the 

film growth is limited by high field ion conductivity through the oxide, the High Field Model 

(HFM). In this, the growth rate is controlled by ion conduction through the film. The HFM 

equation for film growth is shown in Equation (1.8). 
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𝑑𝜉

𝑑𝑡
 =   𝑘𝑖


𝑅(𝑡)𝑒

[కబாబା௱(௧)]
కబ௱క(௧)  

(1.8) 

Where dξ/dt represents film growth, kfilm is the film growth constant, i0
hf is a constant, proportional to the 

number of charge carriers in the film, Rg is the growth fraction (igrowth/itot), ξ0 and E0 represent the start 

values of the film thickness and electric field, respectively, ΔU is the applied potential.  

2. The Interface Model (IFM), shown in Figure 1-20, where the film growth rate is limited by the 

kinetics of charge transfer processes occurring at either; 

a. The metal-oxide interface (Point Defect Model) 

b. The oxide-electrolyte interface 

For the two IFMs, the parameter controlling growth is the extra potential at the metal/film or film/solution 

interface and is shown in Equation (1.9). Note: This equation is independent of initial film thickness, ξ0, 

and there is no direct influence of the growth fraction.  

𝑑𝜉

𝑑𝑡
 =   ൫𝑘𝑖

൯𝑒   [௱()ିாబ௱క()] 
(1.9) 

Where i0
if and gif are the fit parameters. A full description of the HFM and IFM numerical simulations 

can be found in Reference [68] 

 

Figure 1-20 – Schematic showing the charge transfer reactions at the metal-oxide (1) and the oxide-

electrolyte interfaces (2) of a binary alloy AB [73] 

Recent work with the electrochemical quartz crystal microbalance (EQCM) has been used to investigate 

passive film growth [68], [73]. The EQCM provides in situ information that allows for the production of 



 

27 
 

real time growth curves of the passive film. Both the IFM and HFM were assessed, using type 304L 

material, and the IFM was found to provide a more satisfactory fit to the growth curves produced. 

1.3.3.3 Transpassive Behaviour of Stainless Steels 

Cr and Mo are employed in industry to minimise the localised corrosion risk in highly aggressive 

electrolyte environments. However, in highly oxidising environments the use of highly alloyed materials 

increases the risk of corrosion via the transpassive dissolution of Cr, Mo and to a lesser extent Ni from 

the alloy [74].  

 

Figure 1-21 –Transpassive dissolution of 304L austenitic stainless steel in nitric acid [75]. 

The transpassive oxidation of a metal can be defined as the formation of a chemical species in a valence 

state higher than that in the primary passive film formed on the material [74], [76]. In most cases, these 

species have higher solubility and are thus transferred to solution, resulting in uniform dissolution of the 

material or alternatively localised stable pit formation on the metal surface where the film has been 

weakened (discussed further in section 1.4). It is this process that is observed in the higher potential 

regions of Figure 1-19 and shown schematically in Figure 1-18 (trace F to G).  

As described in the previous section, when the metal passivates, Cr forms a passive film of chromium 

(III) oxide, Cr2O3, which is insoluble and provides and effective barrier against corrosion. At the 

transpassive potential the trivalent Cr2O3 is oxidised to hexavalent CrO3 which has a high solubility in 

aqueous media. Mixed iron-chromium oxides can also form in the passive region, most commonly 

exhibiting an AB2O4 stoichiometry with a spinel-type structure. In the transpassive region, the Cr(III) is 
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again oxidised to a soluble Cr(VI) compound, leaving an iron rich phase at the surface which may provide 

secondary passivation, as described below.  

Depending on the pH, CrO3 will form chromate ions CrO4
2- (under basic conditions) or bichromate ions 

Cr2O7
2- (under acidic conditions). The transpassive dissolution of Cr, therefore, corresponds to the 

following stoichiometric equations under basic and acidic conditions respectively: 

𝐶𝑟𝑂ସ
ଶି + 4𝐻ଶ𝑂 + 6𝑒ି ⇄ 𝐶𝑟 + 8𝑂𝐻ି          E0

 = 0.37 V/SHE (1.10) 

𝐶𝑟ଶ𝑂
ଶି + 14𝐻ା + 12𝑒ି ⇄ 𝐶𝑟 + 7𝐻ଶ𝑂         E0 = 0.29 V/SHE (1.11) 

Note, E0 is much less than that of O2 formation in either pH range therefore transpassive dissolution of 

Cr can occur before O2 evolution [53]. 

The point at which metal dissolution takes place from local sites where the passive film has broken down 

is called the transpassivation potential or breakdown potential. In the presence of corrosively aggressive 

anions, in particular chloride ions (that may complex with Fe, Cr or Ni ions, so disrupting their solubility 

and this disrupting the formation of passive oxide layers containing those ions), such a potential may be 

accessed at much lower potentials than in the absence of such anions. However, in the absence of 

aggressive anions and under solution conditions where the Fe oxides (in particular Fe2O3) or Ni oxides 

are stable at high potentials, the resulting Fe oxide or Ni oxide can provide some passivity (secondary 

passivation) in the absence of a Cr oxide layer. Such stable high oxidation state oxides have a transpassive 

potential that is higher than the reversible potential of oxygen evolution. As such Fe and Ni oxides are 

electron conducting in nature and when the metal is anodically polarised to a sufficiently high potential, 

anodic oxygen evolution is observed. Eventually, as the film breakdown potential is reached oxygen 

evolution gives way to rapid anodic dissolution.  
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1.3.4 Nitric Acid Reduction Mechanism – Theory 

Having discussed the general electrochemical mechanisms of corrosion of steel, we now briefly discuss 

the effect of the reprocessing media, principally nitric acid, on steel corrosion.  

Nitric acid undergoes partial thermal decomposition at room temperature [77]: 

4𝐻𝑁𝑂ଷ ⇄ 4𝑁𝑂ଶ + 2𝐻ଶ𝑂 + 𝑂ଶ (1.12) 

The nitrogen dioxide then disproportionates into nitric acid and nitrous acid [78]: 

2𝑁𝑂ଶ + 𝐻ଶ𝑂 ⇄ 𝐻𝑁𝑂ଶ + 𝐻𝑁𝑂ଷ (1.13) 

Nitric acid complicates the passive behaviour of stainless steels. Stainless steels may autocatalytically 

interact with HNO3 (see below) resulting in a variety of nitrogen-oxygen based reduction products, in 

particular strongly oxidising conditions, nitrous acid (HNO2). With increasing nitric acid concentration 

the reduction rate of the nitrate derived HNO2 (shown in Equations (1.12) and (1.13)), and thus the 

oxidising power of the electrolyte also increases. This behaviour accelerates the corrosion rate due to the 

nitrous acid-driven oxidation of alloying elements, such as Fe and Cr. Consequently Cr, which, as 

discussed, is important to passive film stability, depletes from the surface [6], [79].  

This HNO3 reduction process has been previously studied on Platinum and on 304L stainless steels in 

nitric acid condensates [80]. For concentrations of 1 to 10 mol dm-3 HNO3 two different mechanisms of 

nitric acid reduction have been proposed by Vetter and Schmid [81]–[87].  

Vetter [81]–[83] describes the autocatalytic reduction of HNO3 as a heterogeneous process, where the 

chemical regeneration of NO2 (electroactive species) occurs at the electrode surface. In this case, stirring 

has no influence on the current density due to the adsorbed nature of the reactions.  

𝐻𝑁𝑂ଶ(ௗ௦) + 𝐻ା ⇄ 𝑁𝑂ௗ௦
ା  +   𝐻ଶ𝑂  (1.14) 

𝑁𝑂ଷ(ௗ௦)
ି + 𝑁𝑂(ௗ௦)

ା ⇄ 𝑁ଶ𝑂ସ(ௗ௦) (1.15) 

𝑁ଶ𝑂ସ(ௗ௦) ⇄ 2𝑁𝑂ଶ(ௗ௦) (1.16) 
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𝑁𝑂ଶ(ௗ௦) + 𝑒ି ⇄ 𝑁𝑂ଶ(ௗ௦)
ି  (1.17) 

𝑁𝑂ଶ(ௗ௦)
ି + 𝐻ା ⇄ 𝐻𝑁𝑂ଶ(ௗ௦) (1.18) 

Schmid [84]–[87] describes the reduction of HNO3 as a homogenous process, where the chemical 

regeneration of NO+ (electroactive species), occurs in the bulk in a layer near the electrode.  

HNOଶ + Hା ⇄ 𝑁𝑂ା + HଶO (1.19) 

𝑁𝑂ା + 𝑒ି ⇄ 𝑁𝑂 (1.20) 

2𝑁𝑂 + 𝐻𝑁𝑂ଷ + 𝐻ଶ𝑂 → 3𝐻𝑁𝑂ଶ (1.21) 

If Schmid obtains, then stirring of the solution should provoke a decrease in the current density as the 

accelerating NO+ species is swept away from the electrode surface.  

More recently, Balbaud et al. suggested a mechanism that is dependent on the concentration of acid [5]. 

Balbaud et al. employed parallel thermodynamic studies (to determine reaction potential) and 

electrochemical experiments (to determine the key reduction step), resulting in a mechanism that has 

much in common with Schmid and can be described overall as follows: 

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ⇄ 𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 (1.22) 

𝐻𝑁𝑂ଷ + 𝑁𝑂(ௗ௦) ⇄ 𝐻𝑁𝑂ଶ() + 𝑁𝑂ଶ(ௗ௦) (1.23) 

2𝑁𝑂ଶ(ௗ௦) + 𝐻ଶ𝑂 ⇄ 𝐻𝑁𝑂ଷ + 𝐻𝑁𝑂ଶ() (1.24) 

Where el indicates solution based species in the near electrode solution volume and ads indicates a species 

adsorbed at the electrode surface. 

Side reactions were also identified:  

𝑁𝑂(ௗ௦) ⇄ 𝑁𝑂 (1.25) 

𝑁𝑂ଶ(ௗ௦) ⇄ 𝑁𝑂ଶ (1.26) 



 

31 
 

𝐻𝑁𝑂ଶ() ⇄ 𝐻𝑁𝑂ଶ (1.27) 

Balbaud et al. indicate that reactions (1.22) to (1.24) are the elementary steps in the reduction process 

that occur across the HNO3 concentration range. However, they identify two limiting cases depending on 

HNO3 concentration. 

At low HNO3 concentrations < 6 mol dm3, reaction (1.23) will be slow, leading to an accumulation of 

NO at the electrode surface which may eventually evolve via reaction (1.25). However, the accumulated 

NO may also react with HNO3 in accordance with reaction (1.29) below, leading to the following overall 

mechanism for HNO3 concentrations < 6 mol dm3, 

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ⇄ 𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 (1.28)  

𝐻𝑁𝑂ଷ + 2𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 ⇄ 3𝐻𝑁𝑂ଶ() (1.29) 

which is essentially a heterogeneous version of Schmid above with the NO being adsorbed at the electrode 

surface instead of present in solution near the electrode surface. 

At HNO3 concentrations > 6 mol dm-3, as a result of increased HNO3 concentration and increased 

thermodynamic stability of the intermediates such as NO2 [6] (see below), reaction (1.23) proceeds fast 

enough to produce, in concert with reaction (1.24), an autocatalytic cycle for HNO2 reduction and 

regeneration. This ultimately leads to enhanced rates of HNO3 reduction on the electrode surface, at HNO3 

concentrations > 6 mol dm-3 via: 

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ↔ 𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 (1.22)  

𝐻𝑁𝑂ଷ + 𝑁𝑂(ௗ௦) ⇄ 𝐻𝑁𝑂ଶ() + 𝑁𝑂ଶ(ௗ௦) (1.23) 

2𝑁𝑂ଶ(ௗ௦) + 𝐻ଶ𝑂 ⇄ 𝐻𝑁𝑂ଷ + 𝐻𝑁𝑂ଶ() (1.24) 

Whilst this mechanism can be considered heterogeneous with regard to the main product of the 

electrochemical reduction, NO, the following reactions are heavily dependent upon the supply of HNO3 

from homogenous bulk solution. 
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Thus, the mechanisms proposed by Balbaud et al. can be considered a hybrid, or surface and solution 

based reactions, as the regeneration step takes place at the electrode surface. The gaseous species NO and 

NO2 are adsorbed at the surface and HNO2 is a soluble compound that is formed at the electrode that 

diffuses into solution [5], [6], [88].  

A third mechanism, most recently described by Lange [7] and essentially revisiting some early studies 

by Carta and Pigford [8] and Abel and Schmid [89]–[91], suggests the following hybrid mechanism (in 

8 mol dm3 HNO3) based on the Schmid mechanism: 

𝐻𝑁𝑂ଶ() + 𝐻ା ⇄ 𝑁𝑂ௗ௦
ା + 𝐻ଶ𝑂 (1.30) 

𝑁𝑂(ௗ௦)
ା + 𝑒ି ⇄ 𝑣𝑁𝑂(ௗ௦) (1.31) 

𝑁𝑂(ௗ௦) ⇄ 𝑁𝑂 (1.32) 

𝐻𝑁𝑂ଶ + 𝐻ା + 𝑁𝑂ଷ
ି ⇄ 2𝑁ଶ𝑂ସ + 𝐻ଶ𝑂 (1.33) 

𝑁ଶ𝑂ସ → 2𝑁𝑂ଶ (1.34) 

𝑁𝑂ଶ + 𝑁𝑂 + 𝐻ଶ𝑂 ⇄ 2𝐻𝑁𝑂ଶ (1.35) 

Again, the Lange et al. mechanism reactions (1.30) to (1.35) are a hybrid of surface and solution based 

reactions.  

However, a common view amongst Balbaud et al, Schmid and Lange et al is that the common 

electrochemical reduction steps, be they homogeneous or heterogeneous, can be summarised as follows: 

𝐻𝑁𝑂ଶ + 𝐻ା ⇄ 𝐻ଶ𝑂 + 𝑁𝑂ା (1.36) 

𝑁𝑂ା + 𝑒ି ⇄ 𝑁𝑂 (1.37) 

With the reactions for NO, and thus the degree of autocatalysis in operation, being determined by HNO3 

concentration. This will be discussed further in Chapters 3 and 4. 

Whilst the electrochemical reduction of HNO3 on inert metals, such as Pt, is otherwise well understood, 

the effect of HNO3 concentrations > 5% wt. (>1.13 mol dm-3), typical of those found in aqueous 
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reprocessing streams, on nuclear process steel, such as 316L SS, has not been extensively explored, and 

that will be the subject of work presented later in this thesis. 

 Corrosion of Austenitic Stainless Steels 

Having discussed corrosion from an electrochemical standpoint, it is now necessary to describe the 

physical processes of corrosion. Different steel types, geometries and weld points will produce different 

physical corrosion characteristics that may lead to materials failure in a reprocessing stream. Common 

areas for materials failure occurs at grain boundaries. A grain boundary is the interface between two 

regions of the same crystal structure but of a different orientation. Grain boundaries are defects within 

the crystal structure and tend to be the preferred sites of the onset corrosion [92]. Another common area 

for material failure is where inclusions are present within the steel itself. Inclusions are local 

heterogeneities present in alloys. They are produced in the chemical reactions and physical processes that 

occur during the melting, pouring and rolling etc. of alloy metals [93].  

The common types of corrosion processes that may be encountered with stainless steel are described 

below. 

1.4.1 Uniform Corrosion 

In uniform corrosion, dissolution of the steel occurs at approximately the same rate across the entire 

exposed surface area. Electrochemically, this means the steel becomes a combined anodic and cathodic 

surface, with equal electrochemical activities [27], [38], [58]. The result is a relatively uniform 

penetration or thinning of the entire surface. Due to their excellent passivity stainless steels are normally 

subject to more localised forms of corrosion. However, in lower chromium content steels or under 

transpassive conditions uniform corrosion produces a somewhat roughened surface by removing a 

substantial amount of exposed metallic iron once the passive layer is penetrated. The iron will then either 

dissolve in the environment or produce a loosely adherent, porous coating of corrosion products (rust). 

Uniform corrosion in such materials can be prevented or reduced by appropriate material selection, such 

as the use of coatings or inhibitors or cathodic or anodic protection [27], [38].  
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1.4.2 Pitting Corrosion 

Pitting corrosion is a highly localised corrosive attack, resulting in the production of sharply defined 

holes (‘pits’) or defects, Figure 1-22.  

 

Figure 1-22 –Shape of corrosion pits (a) deep pit; (b) occluded pit; and (c) hemispherical pit [53] 

These holes may be small (1-2 µm) or large (10-20 µm) in diameter [94], but in most cases they are 

relatively small. Pits may be isolated from each other or close together where they may resemble a 

roughened surface. Pitting is a dangerous form of corrosion for the nuclear engineer as it can lead to the 

contamination of pipework and, in more severe cases, could cause the perforation of vessels or pipework. 

Due to the small scale of these perforations, such defects are difficult to detect [36], [38], [95]. Therefore, 

measurements of the level of pitting corrosion of a material are usually based on the number of pits per 

unit area, mean pit diameter and mean depth measurement, rather than individual pit characteristics [96]. 

The likelihood of steel pitting occurring in a reprocessing environment depends on a number of physical 

and chemical factors:  

 Chemical composition and microstructure of the metal 

 Surface states and presence of inclusions 

 Chemical composition of the electrolyte, especially the concentration of aggressive and non-

aggressive anions 

 Temperature 

 Convection conditions 

 

Chemically, initiation of pitting requires the presence of aggressive anions, most often Cl-, and an 

oxidising agent such as oxygen. Cl- ions compete with OH- and O2 for adsorption on site surfaces. If Cl- 



 

35 
 

ions are adsorbed on the oxide surface then Me-Cl- complexes are formed instead of oxyhydroxides and 

oxides. The Me-Cl- complexes are less strongly bound to the oxide matrix and their activation energy of 

transfer to the electrolyte is decreased. As a consequence localised film dissolution occurs and further 

film growth is restricted. After localised depassivation, Cl- ions will also compete with OH- ions for 

adsorption on the metal surface. Repassivation at the metal surface is then hindered/prevented and this 

can lead to pit nucleation at less restrictive sites (e.g. weaker areas such as grain boundaries) [36], [97].  

After pit initiation, the pit is metastable and may become inactive after a period of a few seconds or less, 

with minimal penetration of the metal surface. If the pit stabilises, then an autocatalytic corrosion process 

is setup, shown in Figure 1-23 [38], [58], [98].  

 

Figure 1-23 – Autocatalytic processes occurring in a corrosion pit .The metal, M, is being pitted by an 

aerated sodium chloride (NaCl) solution. Rapid dissolution occurs within the pit, while oxygen 

reduction takes place on the adjacent surfaces [58]. 

Figure 1-23 shows that rapid dissolution of the metal bulk occurs within the pit interior (anodic), with the 

reduction of oxygen taking place on the larger adjacent passivated surface (cathodic). The rapid 

dissolution of the metal within the pit produces an excess of positive charge in this area, causing the 

electromigration of negatively charged chloride ions into the pit. Therefore, in the pit there is a high 

concentration of metal chlorides (M+Cl-). M+Cl- is hydrolysed by water to the hydroxide and free acid as: 
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𝑀ା𝐶𝑙ି + 𝐻ଶ𝑂 → 𝑀𝑂𝐻 + 𝐻ା𝐶𝑙ି (1.38) 

The acid produced by reaction (1.38) keeps the pH value within the pit below pH 2. Cl- stimulates the 

dissolution of most metals and alloys and the whole process accelerates with time [58]. 

1.4.3 Crevice Corrosion 

Crevice corrosion is also a form of localised corrosion that occurs in narrow openings or at shielded 

surfaces where a stagnant solution is present [33]. Crevice corrosion usually occurs in two different 

engineering situations: Pooling of a corrosive solution in one area while the surrounding areas remain 

dry or, if the metal is in solution, the corrosive liquid within the crevice is stagnant.  

Crevice corrosion follows a similar mechanism to pitting corrosion and is initiated by changes in local 

chemistry within the crevice [99], for example: depletion of an inhibitor, depletion of oxygen, a shift to 

acidic conditions or a build-up of aggressive ions e.g. Cl-. 

An example of crevice corrosion at a steel joint in an oxygenated chloride solution is shown in Figure 

1-24. 

 

Figure 1-24 – Mechanism of crevice corrosion at a the steel joint shown immersed in an oxygenated 

chloride solution [38]. 



 

37 
 

Initially, the whole surface will be in contact with the oxygenated solution, with the reduction of oxygen 

providing the cathodic process for surface attack. However, while the freely exposed surface will have 

access to dissolved oxygen via convection and diffusion, the crevice will only have access to oxygen via 

diffusion. Furthermore, oxygen reduction will result in the rapid removal of oxygen from areas outside 

the crevice. Under these conditions the oxygen concentration within the crevice will become negligible 

and oxygen reduction inside the crevice will cease.  

The large cathodic reduction of oxygen on the external surface results in the anodic dissolution of the 

metal within the crevice. The generation of metal cations (M+) within the crevice results in the migration 

of Cl- and OH- from the bulk solution into the crevice to maintain neutrality, leading to the formation of 

a metal chloride (M+Cl-). As discussed in the previous section, the so-formed metal chloride is hydrolysed 

by water, resulting in the formation of a metal hydroxide (non-passivating) and free acid. This leads to a 

fall in pH which, in combination with the high chloride content, prevents the passivation and facilitates 

further dissolution of the metal, supporting crevice growth [38]. 

1.4.4 Intergranular Corrosion  

Intergranular corrosion is defined as the selective dissolution of grain boundaries, or closely adjacent 

regions, without appreciable attack on the grains themselves [58].  

Metals are polycrystalline by nature, with boundaries between individual crystallite grains. When a metal 

solidifies or is heat treated, the grain boundaries can take on chemical characteristics different to that of 

the bulk of the grain, resulting in areas between grains that are susceptible to corrosive attack. In stainless 

steels, the most common form of intergranular corrosion occurs through chromium carbide formation at 

grain boundaries. This can occur during manufacturing if the carbon concentration is too high, or if 

unfavourable heat treatment of the steel has occurred, e.g. the heat affected zone along a weld [27]. In 

either case a depletion of chromium in the steel occurs as chromium carbide is formed at grain boundaries 

from added carbon, as shown in Figure 1-25.   
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Figure 1-25 – Schematic of chromium depletion at grain boundaries due to the precipitation of 

chromium carbides [53]. 

Under corrosive conditions (e.g. mild acids), the grain bulk where chromium is not bound to carbon forms 

a protective oxide film. However, at the grain boundary where chromium carbide has formed there is not 

enough free chromium available to form a cohesive chromium oxide film, creating zones of local 

corrosion around the grain. [43], [100]. 

1.4.5 Stress Corrosion Cracking 

Stress corrosion cracking results from the combined action of a tensile or shear stress (applied or residual) 

and corrosion. Typically the stress initiates attack, with corrosion proceeding via an anodic process, as 

demonstrated in pitting or crevice corrosion [53].  

A tensile stress can be a residual stress remaining from earlier deformation or an applied stress from a 

direct load. The corrosive medium is specific to the metal concerned, e.g. chloride ions for austenitic 

stainless steels [27]. There are two main stages of stress corrosion cracking, initiation, which occurs 

before any crack is visible and propagation, where crack growth occurs and can results in a fracture, as 

shown in Figure 1-26.  
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Figure 1-26 -  Breakdown of oxide film leading to a pit and crack when a high-strength steel is 

subjected to a tensile stress in a chloride solution [38]. 

Different phenomena may be at the origin of a crack nucleus; mechanisms for crack initiation include: 

 Pitting 

 Intergranular corrosion 

 Hydrogen accumulation in the metal due to corrosion 

 Mechanical rupture of the passive film 

 Microstructural defects such as inclusions, voids or microcracks 

Pits can act as crack initiation sites if they lead to a higher local stress intensity (as shown in Figure 1-26). 

Precipitation reactions at grain boundaries can make an alloy more sensitive to intergranular corrosion, 

with the corroding grain boundary then serving as the crack initiation site [27], [38], [53]. Tensile stress 

at the crack tip could break the passive oxide film or selective dissolution of alloy components could also 

lead to activation of the crack by exposing the base metal to the electrolyte. 

The widely accepted model explaining the role of stress for crack growth is the slip dissolution model. 

The slip dissolution model assumes that introducing stress to the material under corrosion can lead to 

plastic deformation at the crack tip. This deformation can cause dislocations in the slip planes which can 

lead to fractures of the passive film. Fractures in the passive film leads to exposure of the bare metal to 

solution. Propagation of the crack can then occur via active dissolution at the crack tip, while a passive 

film protects the walls of the crack [53], as shown in Figure 1-27. 
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Figure 1-27 – Slip-dissolution model of stress corrosion cracking. Due to a slip the metal is 

unprotected by the passive film and comes into contact with the electrolyte allowing active dissolution 

at the crack tip for a period of time [53]. 

1.4.6 Erosion Corrosion  

The simultaneous action of erosive wear and corrosion is called erosion corrosion. Erosion corrosion is 

often encountered in pumps and pipes, or in the case of nuclear reprocessing, centrifugal contactors, 

exposed to turbulent flow in the presence of suspended particles. In practice, the term erosion corrosion 

is often used broadly to designate accelerated corrosion in turbulent flow systems, independently of 

whether solid particles are present or not [53]. 

A schematic of erosion corrosion of a stainless steel surface is shown in Figure 1-28.  
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Figure 1-28 –A schematic showing the sequence of events in erosion corrosion: (a) corrosion of the 

film;(b) corrosion of the metallic surface exposed to the flow; and (c) formation of pits with 

characteristic elongated shape [53].  

First erosion of the protective chromium oxide layer occurs through action of the turbulent flow on the 

metal, Figure 1-28(a). Alternatively if the metal has been newly exposed to corrosive media the formation 

of the protective oxide layer is disturbed, leaving areas with a weakened oxide film. The intensity of 

erosive action is affected by the presence of abrasive particles, air bubbles, metal composition and degree 

of flow turbulence. Once the film is breached a pit is formed via the mechanism described in section 

1.4.2, Figure 1-28(b). However, due to the flow dynamics of the erosive stream, pits formed in this 

fashion are usually significantly larger and elongated in the direction of flow compared to those formed 

under stagnant pitting conditions, Figure 1-28(c). [101]. 

Having described the principal mechanisms of corrosion, many of which may lead to the entrainment of 

adventitious radioactive contaminants, we now move to discuss the chemistry of the actinides that are 

relevant to such sorption/entrainment. 
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 Radionuclide Chemistry and Surface Contamination 

The development of cost effective decontamination strategies requires a fundamental understanding of 

the interfacial science of radionuclide contaminants and the way in which they are associated with 

surfaces to be decontaminated. Recent work in Hungary, the US and the UK [4], [102]–[107] has 

demonstrated the ease with which uranium (U) may be incorporated into, or adsorbed onto, corrosion 

product oxide layers on steels. The possibility of uranium incorporation into passive oxide layers on 

process steels has yet to be addressed and, given the radiotoxicity of U, has potentially profound 

implications for the disposal strategies of such steels. There is therefore a need to better understand the 

interaction of U with steels, both to quantify the problem and to develop more informed strategies for its 

remediation/decontamination. Thus, the following sections first briefly describe the general chemistry of 

the α-emitting actinides. This is followed by a review of recent work in the scientific literature on 

determining the behaviour of the extensively studied β/γ emitting fission products with oxide layers on 

steels. 

1.5.1 General Chemistry of the Actinides 

The actinide elements are characterised by the filling of the seven 5f orbitals (except Actinium and 

Thorium which are 6d filled only). There are 15 chemical elements with atomic numbers, 89 (actinium) 

through 103 (lawrencium) as shown in Figure 1-29.  

 

Figure 1-29 – Period 7, The Actinide Series, taken from the periodic table [108] 

The actinides are all radioactive elements. Actinium, thorium, protactinium and uranium are the only four 

actinides that have been found naturally in the environment, the others are artificial, being produced by 

particle accelerators or in nuclear reactors [11], [109]. The elements within the actinide series have 

several common properties [109]: 

 Most elements (heavier that U) were discovered by synthetic means 

 All actinide isotopes are radioactive 
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 Many have a large number of oxidation states. For example Pu can exist in aqueous solution 

simultaneously in four oxidation states (+3 to +6, with +7 exhibiting very different redox 

potentials) 

 Actinium and the elements americium through lawrencium are similar in many respects to the 

lanthanides (elements that fill the 4f subshell). Elements thorium through to neptunium have 

some properties similar to those of the d-block transition elements. 

Pu exhibits properties similar to both the lanthanides and d-block transition metals, presenting some 

unique challenges in the study of its chemical behaviour, as will be illustrated below.  

1.5.1.1 Oxidation States and Aqueous Electrochemistry 

Actinides in aqueous solution have several different oxidation states, as shown in Table 1-2: 

Table 1-2 – Known oxidation states of the actinides and species in solution. The bold number 

represents the most stable oxidation state in solution of each element  [110], [111]. 

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 

      2   2 2 2 2 2 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

 4 4 4 4 4 4 4 4 4     

  5 5 5 5 5        

   6 6 6 6        

    7 7         

Oxidation states up to +7 have been identified for some elements (Neptunium (Np), Plutonium (Pu) and 

Americium (Am)). This multivalent behaviour leads to very complex redox behaviour. For example, Pu 

has a wide variety of oxidation states ranging from +3 to +6 such as Pu3+, Pu4+, PuO2
+ or PuO2

2+ all of 

which can be present at the same time as a consequence of their very similar redox potentials [107], [111].  
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The aqueous speciation of the actinides in aqueous solution is shown in Table 1-3. 

Table 1-3 – Actinide speciation in aqueous solution [110], [111]. 

Oxidn 

State 

89 90 91 92 93 94 95 96 97 98 

+3 Ac3+ Th3+ Pa3+ U3+ Np3+ Pu3+ Am3+ Cm3+ Bk3+ Cf3+ 

+4  Th4+ Pa4+ U4+ Np4+ Pu4+ Am4+ Cm4+ Bk4+ Cm4+ 

+5   PaO2 UO2
+ NpO2

+ PuO2
+ AmO2

+    

+6    UO2
2+ NpO2

2+ PuO2
2+ AmO2

2+    

7     NpO2
5- PuO2

5-     

 

The oxidation state of an actinide may alter due to a change in redox potential. The redox potential can 

be influenced by chemical composition of the solution, concentration of dissolved O2 or pH [107]. 

Having discussed the general chemistry of the actinides, we now describe in more detail the solution 

chemistry of the three most likely to be encountered actinides in nuclear reprocessing streams: Uranium, 

plutonium and neptunium. 

1.5.1.2 Uranium Solution Electrochemistry 

Natural uranium occurs in three main isotopes, 234U (0.0055% wt.), 235U (0.72% wt.) and 238U (99.27% 

wt.). Globally, the fissile isotope 235U provides the most commonly used energy source of nuclear reactors 

and atomic weapons [112]. 

Uranium exists in aqueous solutions in the +3, +4, +5 and +6 oxidation states. U3+ is a powerful reducing 

agent which is slowly oxidised to U4+ in anoxic conditions and rapidly in the presence of oxygen. U4+ is 

regarded as a ‘stable’ species of U solution, but is slowly oxidised to UO2
2+ by air. UO2

+ has a short-lived 

existence in solution, it is most stable in the pH range 2-4. UO2
+ is prone to disproportionation at any pH 

to U4+ and UO2
2+ via the following reaction [110], [111]: 

2𝑈𝑂ଶ
ା + 4𝐻ା → 𝑈ସା + 𝑈𝑂ଶ

ଶା + 2𝐻ଶ𝑂 (1.39) 
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The general electrochemical behaviour of uranium in aqueous solutions is dominated by the reduction of 

the hexavalent ‘uranyl’ ion, UO2
2+. The uranyl ion is the most stable oxidation state and therefore difficult 

to reduce.   

Figure 1-30 gives the oxidation potentials for uranium in pH 0 aqueous solution (akin to what would be 

expected in high nitric acid concentrations). 

 

Figure 1-30 –Redox potentials (vs. SCE) of uranium in aqueous solutions at pH 0 [111], [113]. 

1.5.1.3 Plutonium Solution Electrochemistry 

Plutonium exists in five oxidation states in aqueous solution: Pu(III), Pu(IV), Pu(V), Pu(VI) and Pu(VII) 

which occur as the hydrated ions Pu3+, Pu4+, PuO2
+, PuO2

2+ and PuO5
3- respectively. Tetravalent 

plutonium is the most stable oxidation state [114], [115].  

Figure 1-31 gives the oxidation potentials for plutonium in pH 0 nitric acid solution. 

 

Figure 1-31 –Redox potentials (vs. SCE) of plutonium in a HNO3 solution of pH 0 [113]. 

Pu(III) is unstable at pH 0 and can be oxidised by a variety of oxidants to Pu4+. It can also be oxidised to 

Pu(IV) by the α radiation produced by plutonium isotopes. Pu(IV) is stable in concentrated acids, but in 

mild acids (free of complexing agents) Pu(IV) disproportionates to Pu(III) and (PuVI). Oxidation of Pu4+ 

in aqueous solutions produces hexavalent plutonium, PuO2
2+. 

UO2
2+ UO2

+ UO4+ UO3+-0.7950.205-0.157

0.025

PuO2
2+ PuO2

+ Pu4+ Pu3+0.6690.9430.675

0.756

0.809
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Pentavalent plutonium, PuO2
+, is only stable between pHs of 2 and 6, a pH value unlikely in strong nitric 

acid environments; thus its disproportionation, stoichiometrically analagous to that of uranium, is not 

considered here further. However, Hexavalent plutonium, PuO2
2+, while stable in strong acidic solutions 

(see above) is slowly reduced by the products of the radiolysis of water by the α-radiation produced by 

plutonium isotopes. In an acid solution, in the absence of complexing agents, the disproportionation of 

Pu(IV) follows the reaction [114]: 

3𝑃𝑢ସା + 2𝐻ଶ𝑂 ⇄ 2𝑃𝑢ଷା + 𝑃𝑢𝑂ଶ
ଶା + 4𝐻ା (1.40) 

The disproportionation is temperature dependent and the rate at which it occurs is proportional to the 

concentration of H+ [115]. 

The overall reaction of Equation (1.40) may be further split into two stages. The first stage involves two 

Pu(IV) combining to generate Pu(III) and Pu(V). The formation of Pu(V) is slow because it involves the 

formation of a Pu=O bond. In the second stage, the Pu(V) produced in the first stage reacts with Pu(IV) 

to produce Pu(III) and Pu(VI). This requires only an electron transfer which occurs rapidly. 

2𝑃𝑢ସା + 2𝐻ଶ𝑂 ⇄ 𝑃𝑢ଷା + 𝑃𝑢𝑂ଶ
ା + 4𝐻ା (1.41) 

𝑃𝑢𝑂ଶ
ା + 𝑃𝑢ସା ⇄ 𝑃𝑢ଷା + 𝑃𝑢𝑂ଶ

ଶା (1.42) 

Disproportionation is complete when reactions (1.41) and (1.42) have reached equilibrium [114], [115]. 

1.5.1.4 Neptunium Solution Electrochemistry 

In aqueous solution, neptunium exists as ions in all oxidation states from 3+ to 7+. The stability of these 

ions is strongly affected by pH, oxidants and reductants, complexing agents and the concentration of Np 

itself. 

In the absence of complexing agents, Np3+, Np4+, NpO2
+ and NpO2

2+ exist as hydrated ions. Np3+ is 

quickly oxidised to Np4+ by air. In aqueous solutions of low acidity Np3+ and Np4+ form insoluble 

hydroxides where, once again, Np(III) is oxidised to the more stable Np(IV) by oxygen. In acidic 

solutions the pentavalent and hexavalent Np ions act as Lewis acids and form dioxo species, NpO2
+ and 

NpO2
2+. NpO2

+ is stable in acidic solutions but is easily oxidised to NpO2
2+ [115], [116]. 
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NpO2
+ disproportionates to Np4+ and NpO2

2+ through the following reaction: 

2𝑁𝑝𝑂ଶ
ା + 4𝐻ା ⇄ 𝑁𝑝ସା + 𝑁𝑝𝑂ଶ

ଶା + 2𝐻ଶ𝑂 (1.43) 

The extent of the disproportionation is dependent on high solution acidity and high NpO2
+ concentration 

[116].  

Figure 1-32 gives the oxidation potentials for neptunium in pH 0 aqueous solution. 

 

Figure 1-32 –Redox potentials (vs. SCE) of neptunium in aqueous solutions at pH 0 [116]. 

1.5.2 Surface Contamination 

Surface contamination, which is generally derived from the ‘plating out’ of solids, colloids or metal ions 

from a liquid/solution phase, is broadly classified as being of 2 main types: Fixed and non-fixed.  

Non-fixed contamination is loosely bound to the surface through weak electrostatic interactions and is 

easily removed by most clean-up techniques and, therefore, will not be considered further here [3]. 

However, fixed contamination is chemically or physically adhered to a surface, making decontamination 

more difficult. This form of contamination can be most readily detected by a radiological survey [117]. 

Studies of non-redox active Cesium (Cs) contamination of corroded and non-corroded stainless steel 

surfaces have also indicated that inter-conversion between fixed and non-fixed states is possible, 

depending on environmental conditions [3]. 

Fixed contamination of a steel surface may occur through a number of mechanisms [1]: 

 Strongly held on the surface through chemical bonds between surface metal oxides and the 

contaminant 

 Precipitation of a pure contaminant metal-oxide 

 Co-precipitation with Fe or Cr to form a new mineral phase  

NpO2
2+ NpO2

+ Np4+ Np3+-0.0260.3590.914

0.637

NpO3
+ 1.795
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 Channelling down grain boundaries  

The solution chemistry of the aqueous media has a predominant effect on the surface chemistry and the 

corrosion state of the contaminated surface as well as the chemical forms of the contaminant species. 

1.5.2.1 Uranyl (UO22)2+and Fission Product Accumulation on Steel Surfaces 

While there is limited accessible information available on the adsorption of uranyl on steels under 

reprocessing conditions, several studies have been published that deal with uranyl and fission product 

adsorption on nuclear plant materials in boric acid coolant and in geological repositories. 

A detailed overview of uranium accumulation into various ‘aged’ steels has been produced by Steele [1]. 

Using a combination of chemical modelling techniques (Forcite Molecular Mechanics (MM) and Castep 

Quantum Mechanics (QM)), Steele studied the uptake of contaminants (U(IV), Co(II), La(III) and Sr(II))  

into various iron oxides known to form on corroding steel structures. The main focus was on whether 

contaminant uptake or incorporation affects the stability of these iron oxides. Iron oxides were 

specifically investigated over chromium oxides due to their ability to trap contaminants by adsorption or 

incorporation within the bulk metal during formation of the oxide, and also their ability to re-release said 

contaminants. Thus, the following stages of contamination ingress and egress were modelled: 

1. Fe oxide formation by precipitation or co-precipitation 

2. Transformation of the Fe oxide to a more stable phase 

3. Susceptibility of the Fe oxide to dissolve again or release incorporated trace components 

The iron oxides assessed in the study were: magnetite (Fe3O4), wüstite (FeO), hematite (α-Fe2O3), 

lepidocrocite (α-FeOOH) and goethite (γ-FeOOH). Magnetite and wüstite are formed in oxygen deficient 

environments and are relatively dense Fe oxides found closest to the pure steel surface. Hematite is 

formed in oxygen rich environments and is usually an intermediate oxide layer. Goethite and 

lepidocrocite are found on the upper surface of the oxide layer in oxygen and moisture rich environments 

and are generally less dense than the other oxides, with goethite forming at a lower pH than lepidocrocite. 

This hierarchy of iron oxides on a steel surface is shown in Figure 1-33.  
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Figure 1-33 –A 4-layer model of oxide formation on steel surfaces. As you descend towards the steel 

surface, the ease with which these high Fe-oxides take up contaminants is reduced and the difficulties 

in removing the dense layers is increased, (recreated from [1]). 

Steele [1] concluded that the high density base layer oxides of wüstite and magnetite preferentially take 

up U(IV) from solution, potentially due to the similarity of the iron (II) and iron (II/III) sites to the U(IV) 

site in uranite. However, due to instabilities within the oxide structure, unfavourable reaction energies 

and a predicted high cell volume change for wüstite in particular (leading to oxide structure failure), 

actual uptake is predicted to be low. Uptake of U by hematite is very favourable at low concentrations, 

but at high concentrations of contaminant, uptake is unfavourable. Thus, uptake of U at high 

concentrations is greatest into the surface layers of lepidocrocite and goethite than the more dense iron 

oxides at the pure steel surface. Steele [1] also highlights that changes in environmental conditions could 

lead to a transformation from one iron oxide to another, either increasing the probability of contaminant 

uptake or decreasing it. This is important when considering changes in parameters such as pH along the 

reprocessing route and how this could affect oxide formation. 

Dombovari et al. [106] have studied uranyl adsorption chemistry in boric acid coolant solutions onto 

austenitic stainless steel type 08X18H10T (GOSZT 5632-61) and Zr(1%Nb) alloy) in PWR type nuclear 

reactors. Uranyl accumulation exhibits a time and pH dependence. After ~10 hours, adsorption of U 

species reaches a quasi-equilibrium condition. Accumulation of U species was also found to be greatest 

at pH 4.5 and 6. This is suggested by Dombovari et al. [106] to be due to the corrosion behaviour of the 

steel studied (AISI321) and the hydrolysis of uranyl cations in boric acid in this pH range. An increase 

in the accumulation of U species is attributed to the coadsorption of uranyl hydroxide and corrosion 

products containing Fe and Cr (likely Fe and Cr hydroxides) on the steel surface. The quantity and 

chemical forms of the Fe and Cr containing species dissolved from the steel surface plays a determinative 

role in the extent and kinetics of U accumulation. Modelling results in the same study support this, 

Goethite and Lepidocrocite 

Hematite 

Magnetite 

Wüstite 

Steel 

High Density 

Low Density 
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suggesting that specific adsorption and deposition of (mainly colloidal and disperse) uranyl hydroxide 

occurs over the accumulation of other hydroxo complexes at pHs between 4.5 and 6. XPS measurements 

confirmed the presence of U(VI), supporting observations that U accumulation on steel tubes occurs via 

some specific adsorption and deposition processes to yield a passive oxide layer contaminated with U(VI) 

species.  

Kádár et al. [107], [118] and Répánszki et al. [119], [120] have also studied the accumulation of U, 

transuranic elements and fission products on stainless steel surfaces in boric acid. Kádár et al. [107], 

[118] examined the behaviour of Pu, Cs, Cm, Ce and U isotopes in mildly acidic (pH 4.5) boric acid on 

two different steel types; stainless steel canister material, similar to AISI 321 and steam generator (SG) 

steel tube, similar to AISI 321H. AISI 321 is the basic austenitic 18/8 steel (304) stabilised with titanium, 

a choice material for applications with a temperature range up to ~900oC. AISI 321H is the same material 

but modified with a higher carbon content to improve high temperature strength. Considering first Pu and 

Cs, accumulation of cationic Pu and Cs on the canister was negligible and any interactions were non-

specific (electrostatic) in nature and could be easily removed from the steel surface. On the SG sample, 

Pu and Cs cation accumulation was detected on the surface, giving a strong indication that specific 

adsorption (chemisoption) occurs between Pu and/or Cs species and some constituents of the steel oxide 

layer. Considering next Cm and Ce, both isotopes accumulate significantly on both steel samples at such 

high values that the accumulation can be considered completely independent of sample morphology. 

Finally uranium accumulation again differs between the two steel samples. After a fast sorption period 

on the canister material (~1h), slow desorption takes place and solution concentration of U approaches 

initial, prior to rapid sorption, concentrations. In the SG tube samples the concentration of uranium in 

solution decreases continuously, suggesting constant accumulation of uranium. XPS analysis of U on the 

SG tube surface determined that the uranium oxidation state is +4 in the deeper region of the steel passive 

layer, in agreement with the work by Dombovari et al. [106].  

Geological repository based studies have also been conducted by Moyes et al. [102], Dodge et al. [104] 

and Eng et al. [105] to investigate U uptake onto synthesised iron oxides and corroded steel surfaces 

representative of corroding steel storage canisters containing U waste. U species have been found to 

behave differently in the presence of individual Fe oxide phases, with removal of U depending on its 

association with these oxides. Primarily, uranyl uptake on iron hydroxides, goethite and lepidocrocite 
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was found to occur in oxidised areas where the uranyl ion could form complexes; this ceased once these 

sites were saturated. As described above, such behaviour has also been seen by Dombovari et al [106], 

Kádár et al. [107], [118], Répánszki et al. [119], [120] and reported in the modelling studies of Steele 

[1], who observed that uranyl adsorption on oxide films reaches quasi-equilibrium after several hours. 

Also, steels that have been more heavily corroded retain more U species than steels that only possess a 

thin native oxide layer [121]. However, in the studies of Moyes, Dodge and Eng [102], [104], [105] U 

uptake on other mineral phases, such as, muscovite and mackinawite increases linearly with exposure 

time, suggesting the precipitation of a U phase on the surface [102]. Further, Dodge et al. [104] and Eng 

et al. [105] have shown that U is present in similarly exposed goethite, maghemite and magnetite, as its 

hexavalent form, uranyl oxyhydroxide. However, further studies with ferrihydrite and lepidocrocite, 

reveal U is present as a bidentate inner sphere complex, which resists dissolution in HCl, unlike the 

oxyhydroxide [104], [121].  

Having described how surfaces are contaminated we now describe the process of decontamination and 

the techniques that are currently available to the nuclear engineer. 

 Decontamination Techniques 

Decontamination is defined as the removal of contamination from surfaces of facilities or equipment  by 

washing, heating, chemical or electrochemical action, mechanical cleaning, or other methods [122]. The 

primary objectives of decontamination are [123], [124]: 

 Reduce the contamination from components to reduce dose level in the installation and reduce 

dose during dismantling 

 To remove loose radioactive contaminants to minimise the potential for spreading contamination 

during further dismantling 

 Reduce the volume of equipment and materials requiring storage and disposal in licensed 

disposal facilities 

 Reduce the contamination of components to such levels that they can be recycled or reused 
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 Reduce the magnitude of the residual radioactive source in protective storage for public health 

and safety reasons, to reduce storage period or to minimise long-term monitoring and 

surveillance requirements 

There is no single technique suitable for decontaminating surfaces, the selection of a technique depends 

on [123]–[125]:  

 Facility history (power plant, fuel fabrication, fuel reprocessing type); 

 Size, configuration and location of the contaminated surface (internal or external) and its 

relationship to other surfaces; 

 Type of isotopes involved; 

 Activity levels; 

 Nature of the contamination (oxide, sludge etc.); 

 Exposure level reduction requirements (recycling vs. disposal); 

 Secondary waste types and quantities; 

 Time to effect decontamination, 

 Cost 

Decontamination can be performed before dismantling to reduce dose rate and reduce the risk of 

contamination spread, after dismantling to change the waste category of the waste (reduce disposal cost) 

or to allow the material to be reused or recycled [123].  

Different techniques are also suitable depending on whether the objective is to decontaminate an open or 

closed system, as shown in Figure 1-34. 
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Figure 1-34 – Options for decontaminating open or closed systems. Adapted from Boing [123]. 

Techniques for decontamination can be split into 3 categories; Chemical, Electrochemical and Physical 

(Mechanical). The following sections will provide a high level description of these different 

decontamination categories and key techniques therein, their advantages and disadvantages and their 

applicability to the decontamination of steels and especially process pipework made from steel. 

1.6.1 Chemical Decontamination 

Chemical decontamination techniques use chemical reagents to dissolve the contamination layer covering 

the base material. Chemical solutions are generally most effective on non-porous surfaces, such as non-

corroded stainless steel. The choice of chemical agent/s is crucial and must take into account the 

chemistry of the contaminant, the chemistry of the substrate and the ability to manage the waste generated 

during the process [122].  

Chemical techniques are divided into two groups. Mild techniques involve non-corrosive reagents and 

are used for items where the objective is to remove contamination without attacking the base metal. 

Aggressive methods use chemicals including strong acids or alkalis and other corrosive agents. These 

techniques may involve one or more stages using different chemical solutions [122], [124].  

The main advantages of chemical decontamination techniques is that they are relatively simple to apply 

and similar to conventional cleaning techniques used in industry for which there is a lot of experience. 

Chemical techniques have also proven very effective in reducing the radioactivity of large surface areas 

and are suitable for use on complex geometries as well as the treatment of inner and outer surfaces of 

equipment [122], [126].   

Closed System
(Pipe Line System)

Open System
(Pool, Tank)

• Hydro Jet Method
• Blast Method
• Strippable coating Method

• Chemical Method
• Mechanical Method

Objective: Reduce Occupational Exposure
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Examples of single step chemical processes include [124]; 

 Processing using Ce4+ 

o REDOX (developed in Japan) – The REDuction-Oxidation process uses the oxidation 

power of Ce4+ and then electrochemically regenerates the reduced Ce3+. 

o SC - Sulphuric Acid Cerium process, similar to the REDOX process, uses the oxidation 

power of Ce4+ and then electrochemically regenerates the reduced Ce3+. SC uses a 

sulfuric acid environment, whereas REDOX uses a nitric acid environment. 

o SODP process (developed in Sweden) – The one-step Strong Ozone Decontamination 

Process which utilises Ce4+ as the oxidant, the reduced Ce3+ is then re-oxidised using 

ozone. 

o MEDOC (Developed in Belgium) – MEtal Decontamination by Oxidation with Cerium 

uses Cerium to rapidly attack the metal surface, the cerium is then regenerated using 

ozone. This process distinguishes itself from REDOX, SODP and SC by the continuous 

regeneration of the solution at the same temperature as the decontamination 

temperature, through the use of ozone in a gas-fluid contactor. 

 HNO3/HF washout – A sulfonitric mixture is applied either in a bath or pressure jet. Surface 

oxides are reduced and the metal beneath is attacked. 

 DECOHA process – Based on the use of fluoroboric acid in a bath at ~90oC or applied by 

pulverisation of a solution at a low temperature. 

 

Examples of multi-step processes include: 

 CORD – Chemical Oxidising Reduction Decontamination, a 3 step chemical process. Each cycle 

consists of: an oxidation step, using permanganic acid; a decontamination step using oxalic acid 

and a purification step by the addition of permanganic acid or hydrogen peroxide. 

 LOMI – Low Oxidation state Metal Ion. The process incorporates vanadium (II) as a reducing 

agent and picolonic acid as the complexing agent. 

The main disadvantage of chemical decontamination is the generation of high volumes of 

acidic/aggressive secondary waste. Other disadvantages of chemical decontamination include; the need 
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to handle corrosive and toxic chemicals, solutions usually have to be heated up to 70-90oC to improve 

the decontamination kinetics and relative inefficiency of porous surface decontamination [122]. 

1.6.2 Electrochemical Decontamination 

Electrolytic polishing is an anodic dissolution technique. The material, usually a metal, to be 

decontaminated is the anode and the cathode is a separate steel electrode or the tank itself. 

Electrochemical techniques may only be applied as a means to remove radionuclide contamination from 

conductive surfaces, such as iron based alloys (including stainless steel), aluminium, copper, lead and 

molybdenum [122]. 

Examples of different electrochemical processes are [124], [125]: 

 The Phosphoric acid process – this process can be applied to carbon and stainless steel. H3PO4 

concentration is 40-80% wt. vol. as an electrolyte, with a working temperature of 40-80oC. The 

potential difference is 8-12 Vdc and a current density of 60-500 mA/cm2. 

 The Nitric acid process – this process was developed for the decontamination of stainless steel. 

HNO3 is used at 1 mol dm-3 at ambient temperature with a current density from 2-3 mA/cm2.  

 The Sulphuric acid process – this process was developed in Japan for the decontamination of 

stainless steel pieces. H2SO4 is used at a concentration of 5% wt. at a temperature of 60oC with 

a current density of 300-1000 mA/cm2. 
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Figure 1-35 - Principle of Electropolishing using phosphoric acid [125]. 

Electropolishing techniques, such as those described above, are relatively inexpensive and can be used 

for the treatment of stainless steel, aluminium and carbon steel. However, as noted above, they require 

conducting surfaces; therefore any insulating coating, such as paint, must be removed from the workpiece 

before deployment. Removal of paint from a contaminated item may decontaminate a surface to a 

sufficient level. However, some paints are applied to contaminated surfaces to ‘fix’ contamination in 

place while a plant/area is still in use, effectively trapping any contamination underneath paint layers 

which would need removing prior to decontamination. While this technique is not suitable for small or 

complex geometry material with hidden parts and it does not remove any fuels, sludge or insulating 

material, it does have a relatively quick processing time with small amounts of secondary waste generated 

due to recycling of the tank electrolyte [125].  

1.6.3 Mechanical Decontamination 

Mechanical decontamination techniques can be classified as either surface cleaning (wiping and 

scrubbing) or surface removal (drilling, grit blasting and scarifying). Mechanical decontamination 

methods are less aggressive than chemical techniques but when used together they give good results 

[122]–[124].  

Mechanical decontamination methods include, but are not limited to [125]: 
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 Cleaning in an ultrasonic bath 

 Projection of CO2 ice pellets or water ice pellets 

 Pressurised water jetting 

 Wet or dry abrasive blasting 

 Mechanical action (grinding, polishing, brushing) 

Generally abrasive/blasting techniques are highly effective and give good results in a relatively short 

time. Several methods remove tightly adherent material, including corrosion layers. There are two main 

general disadvantages to mechanical techniques: 1) the production of air-born dust and 2) the need for 

the treated surface to be easily accessible [125]. As such, these techniques produce a large amount of 

secondary waste, particularly if recycling or abrasives and/or water is not available. 

As described above each decontamination technique, whether chemical or mechanical, has its advantages 

and disadvantages. In particular the most common problem is the generation of large volumes of 

secondary waste due to the indiscriminate attack of both chemical and mechanical techniques with 

regards to removing, in the specific case of the steels considered here, a contaminated oxide layer or base 

metal. Thus, by understanding the nature and size of the contamination layer formed at oxide films on 

stainless steel it is possible that either existing techniques can be improved with regards to application 

time (mechanical) or composition (chemical), or alternatively new techniques can be developed that 

allow more targeted surface decontamination, without damaging uncontaminated underlying substrate 

material and thus decreasing downstream, secondary waste loadings.   

This chapter has reviewed the nuclear fuel cycle, nuclear fuel reprocessing, introduced basic 

electrochemical, corrosion and radionuclide chemistry concepts and provided an overview of current 

decontamination techniques. The next chapter reviews experimental techniques used within this work. 

The rest of the thesis will then describe the experimental data obtained using these techniques. 
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Chapter 2 

Experimental Details 

 

  



 

59 
 

2 EXPERIMENTAL DETAILS 

 Reagents & Material 

Nitric acid (ACS reagent 70% wt.), Europium (III) Nitrate Pentahydrate and Cerium (III) Nitrate 

Hexahydrate were all purchased from Sigma-Aldrich Ltd. (Gillingham, Dorset, UK). Uranyl Nitrate stock 

solution was prepared using a 10 g/L uranyl nitrate ICP standard in 2% wt. HNO3 from Fisher Scientific 

(Loughborough, Leicestershire, UK). 

All solutions were prepared using doubly deionised water. All water used was Ultrapure from a Direct-

Q 3 UV Millipore water purification system (Millipore, Watford, UK) deionised to a resistivity of 18.2 

MΩ.cm.  

Type 316L SS, 2.54 cm diameter, polished planchets were purchased from Fisher Scientific. The 316L 

SS bars for rotating disk electrode experiments were purchased from Advent Research Materials Ltd. 

(Oxford, England). Stainless steel (SS2343) QCM crystals were purchased from Q-Sense (Biolin 

Scientific, Coventry, UK). The QCM crystals were quartz, AT cut, with a resonant frequency of 5 MHz 

and a 25 oC temperature profile. 

 

  Electrochemical Characterisation of Stainless Steel Behaviour in 

Nitric Acid 

In order to investigate the electrochemical corrosion behaviour of 316L SS in nitric acid, two different 

electrochemical characterisation techniques have been employed: Linear sweep voltammetry and 

Electrochemical Impedance Spectroscopy. 
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2.2.1 Linear Sweep Voltammetry 

In linear sweep voltammetry (LSV) the voltage is swept from a starting potential (Estart) to an end 

potential (Eend) at a set scan rate (V/s), as shown in Figure 2-1a. As with other voltammetric 

measurements, the LSV current response is plotted as a function of potential as seen in Figure 2-1b.  

 

Figure 2-1 – a) Voltage as a function of time and b) current as a function of voltage for LSV [127]. 

However, more commonly log current density vs. potential plots, often referred to as polarisation curves, 

are produced in corrosion studies. These allow active, passive and transpassive potential regions to be 

defined based on the working electrode type and aqueous media (see Chapter 1). An example polarisation 

curve is shown in Figure 2-2. 

 

Figure 2-2 – Example anodic polarisation curve for a metal. Region A-B describes active dissolution of 

the metal. B-C is the active/passive transition with passivity commencing at B. Passivation is complete 

only at potentials higher than C (Flade Potential). The metal is passive between C and D [38]. 

 

a) b) 
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2.2.1.1 LSV Experimental Setup 

Unless indicated otherwise, LSV experiments were conducted using an Autolab PGSTAT100 

potentiostat (Windsor Scientific Ltd.). Measurements were carried out at room temperature at a scan rate 

of 10 mV s-1, in a three electrode cell, with a platinum mesh counter electrode (Advent Research Materials 

Ltd., Oxford, England) and a saturated calomel reference electrode (SCE, Russell-pH, Auchtermuchty, 

Fife, Scotland). For use as a working electrode, a polished 316L stainless steel electrode was placed in 

solution so that only the electrode face was exposed to solution. The electrode was prepared by polishing 

using a series of abrasives with decreasing size/grade of grit. Specifically, sandpaper grades 240-1200 

and diamond abrasive compounds (Marcon, Codicote, Hitchin, Herts, UK) of 6 and 1 micron. Polishing 

was followed by rinsing the steel with acetone to remove any organic contaminants. After electrode 

immersion, but before any linear sweep voltammetric scan, the open circuit potential of the steel was 

monitored until it reached steady state (approximately 1 hour). All LSV scans reported here were started 

at -0.5 V and were scanned up to 1.5 V. A diagram of this experimental setup is shown in Figure 2-3.  

 

Figure 2-3 –Diagrammatic representation of the CV experimental setup. 

10mV s-1 is considered to be a high scan rate for potentiodynamic polarisation experiments. Results from 

LSV experiments described here will be compared to Electrochemical Quartz Crystal Microgravimetry 

(EQCM) experimental results. The SS2342 layer on the QCM electrodes is very thin (50nm) and LSVs 

recorded over the potential range described would result in the complete stripping of the crystal before 

the scan is completed. By using the faster scan rate the complete stripping of the electrode material is 

avoided and/or reduced, making the results obtained using the two electrode systems compatible.   
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2.2.1.2 Tafel Analysis 

Classic Tafel analysis is performed by extrapolating the linear portions of a Log I vs. E plot (aka. a Tafel 

plot) back to their intersection, as shown in Figure 2-4. The corrosion potential (Ecorr) and corrosion 

current density (icorr) can be found at the point of intersection [128].  

 

Figure 2-4 – An example of Tafel analysis performed on a Log I vs. E plot (316L SS in 10% HNO3). 

2.2.2 Electrochemical Impedance Spectroscopy 

Impedance, Z is a circuit’s tendency to resist the flow of an alternating current. Analogous to resistance, 

impedance is defined as the ratio between potential and current: 

𝑍 =
𝐸(𝑡)

𝐼(𝑡)
 

(2.1) 

Where Z is the impedance (ohms), E is the potential (volts) and I is the current (amperes).  

In electrochemical impedance spectroscopy (EIS) a small sinusoidal potential is applied to the working 

electrode. The resulting sinusoidal current response signal from the electrochemical cell is then measured 

and analysed [129].  
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Through Ohm’s law, the impedance response of the electrochemical cell to alternating potential signals 

of varying frequency can be calculated and interpreted on the basis of circuit models of the 

electrode/electrolyte interface. In turn these can be used to obtain insights into corrosion mechanisms 

such as passivation, pitting corrosion and active dissolution [130]. Typically, several cell elements and 

cell characteristics contribute to the system’s EIS spectrum including, electrode double layer capacitance, 

electrode kinetics, diffusion layer size and the solution resistance. 

2.2.2.1 Origin of the impedance signal 

As described above, initially a sinusoidal potential change is applied to the working electrode at a range 

of frequencies, ω. The sinusoidal potential, expressed as a function of time, has the form: 

𝐸௧ =  𝐸sin (𝜔𝑡) (2.2) 

Where Et is the potential at time t, E0 is the amplitude, and ѡ is the radial frequency of the applied 

signal [55], [131], [132]. 

Due to the inductance/resistance of the electrode, the resulting current response signal, It, is delayed 

leading to a shift in phase (θ) and has a different amplitude, I0. 

𝐼௧ =  𝐼sin (𝜔𝑡 + θ) (2.3) 

At each frequency the resulting sinusoidal current is out of phase with the applied potential by a certain 

amount known as, the phase angle, θ, shown in Figure 2-5. 

 

 

Figure 2-5 – Sinusoidal potential (V) perturbation, current (I) response and phase difference (θ) [132]. 
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Combining equations (2.2) and (2.3) together with equation (2.1) allows us to calculate the impedance as 

[129], [132]: 

𝑍 =
𝐸(𝑡)

𝑖(𝑡)
=

𝐸sin (𝜔𝑡)

𝐼sin (𝜔𝑡 + θ)
= 𝑍

sin (𝜔𝑡)

sin (𝜔𝑡 + θ)
 

(2.4) 

Impedance is therefore expressed in terms of a phase shift, θ, and a magnitude, Z0. 

Using Eulers relationship it is possible to express impedance as a complex function.   

𝑒𝑥𝑝(𝑗𝜃) = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 (2.5) 

Potential is described as: 

𝐸௧ = 𝐸𝑒𝑥𝑝(𝑗𝜔𝑡) (2.6) 

The corresponding current response is then described as: 

𝐼௧ = 𝐼𝑒𝑥𝑝(𝑗𝜔𝑡 − 𝜃) (2.7) 

Impedance is then represented as a complex number via the following equation: 

𝑍(𝜔) =
𝐸

𝑖
= 𝑍exp (𝑗θ) = 𝑍(𝑐𝑜𝑠θ + 𝑗𝑠𝑖𝑛θ) 

(2.8) 

From equation (2.8) it can be seen that the complex number impedance is described by a real component, 

Z0cosθ or Z’, and the imaginary component, Z0jsinθ or -Z’’. In electrochemical impedance analysis, two 

types of plots are commonly used: Nyquist plots and Bode plots. Nyquist plots, or complex plane plots, 

are plots of Z’ (real) versus –Z’’ (imaginary). An example nyquist plot is shown in Figure 2-6.  
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Figure 2-6 – Presentation of impedance in the complex plane (Nyquist plot). Z’’ and Z’ are the 

imaginary and real components of impedance, Z0 is the magnitude of the impedance and θ is the phase 

angle [132]. 

However, as shown in Figure 2-6, the issue with Nyquist plots is that they give no frequency information. 

Thus, a second type of plot of impedance that uses frequency information is often used in conjunction 

with Nyquist plots, the Bode plot. There are two different common types of Bode plots. One shows 

impedance magnitude versus log frequency and one shows phase angle versus log frequency. Both types 

are shown schematically in Figure 2-7.  

 

Figure 2-7 –An example of a Bode plot; where log ω is the logarithim of the frequency, θ is the phase 

angle and log Z0 is the logarithm of the magnitude of the impedance [132]. 
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2.2.2.2 Data analysis – Equivalent Circuit Modelling 

The most common method used to analyse EIS spectra is equivalent circuit modelling. The model should 

have a basis in the physical electrochemistry of the system. For example, a resistor that models the cell’s 

solution resistance. The behaviour of each element is then described in terms of ‘classical’ electrical 

components (resistors, capacitors, inductors) plus a few specialized electrochemical elements.  

 

Figure 2-8 – Nyquist plots for different equivalent circuits [132] 

If a sinusoidal voltage is applied to a pure resistor, R, then Z0 = R and θ = 0 for all frequencies as shown 

in the nyquist plot shown in Figure 2-8a. When a sinusoidal voltage is applied across a pure capacitor 

(Figure 2-8b) the impedance can be calculated as: 

𝑍 =
1

𝑗𝜔𝐶
= −

𝑗

𝜔𝐶
 

(2.9) 

Where C is the capacitance and the magnitude of the impedance is calculated as:  

𝑍 = −
1

𝜔𝐶
 

(2.10) 

The phase angle is θ = -π/2, i.e. the impedance depends on the frequency and is entirely imaginary [132], 

[133]. 
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When considering a resistor and capacitor in series, impedance can be calculated as: 

𝑍 = 𝑅 +
1

𝑗𝜔𝐶
 

(2.11) 

Where the real part of Z, Z’, is simply R and the imaginary part, Z”, is 1/ωC. Plotting Z = Z’ + Z” leads 

to the plot shown in Figure 2-8c [132], [134].  

An example of the use of two components in series would be a non-faradaic process (previously discussed 

in section 1.3.1.1) Due to the lack of charge transfer, non-faradaic processes can contain as few as two 

components [132], [135] as shown in  Figure 2-9. 

1. The resistance of the electrolyte solution between the working and reference electrodes, Rs. 

2. The electrochemical double layer, expressed as a double layer capacitance, Cdl 

 

Figure 2-9 – Equivalent circuit for non-Faradaic impedance spectroscopy measurements in the 

absence of a redox probe [135]. 

A resistor and capacitor in parallel produces a semi-circle, as shown in Figure 2-8d. At high frequencies 

total impedance is zero. At low frequencies the impedance is purely resistive [132], [134]. Impedance 

can be calculated as: 

1

𝑍
=

1

𝑅
−

𝜔𝐶

𝑗
      𝑍 = ൬

1

𝑅
−

𝜔𝐶

𝑗
൰

ିଵ

 
(2.12) 

The magnitude of the impedance is calculated as: 

   𝑍 = ൬
1

𝑅ଶ
+ 𝜔ଶ𝐶ଶ൰

ି
ଵ
ଶ
 

(2.13) 
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The phase angle is: 

  𝜃 = arctan (−𝑅𝜔𝐶) (2.14) 

For a faradaic process, in this case an electrode process such as oxide film formation or the deposition 

and corrosion of metals, an electrochemical equivalent circuit should contain at least three components 

[60], [132].  

1. The electrochemical double layer, expressed as a double layer capacitance, Cdl 

2. The resistance of the charge transfer process, Rp 

3. The resistance of the electrolyte solution between the working and reference electrodes, Rs 

The simple model for characterising the metal-solution interface during a faradaic process, known as a 

‘Randle cell’ and its equivalent Nyquist plot, is shown in Figure 2-10. Elements at the electrode-

electrolyte interface are modelled in parallel because the total current is the sum of the individual 

contributions of the components, Cdl  and Rp. All current must pass through the solution resistance, 

therefore, Rs is inserted into the equivalent circuit as a series to represent this effect [130], [132]. 

 

 

Figure 2-10 – Electrical equivalent circuit model and an example nyquist plot used to represent an 

electrochemical interface undergoing corrosion in the absence of diffusion control (Randle cell) [132]. 

Rs 

Rp 

Rp Rs 

Cdl 
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Realistically, many equivalent circuit models possess more components and are more sophisticated than 

this, containing more than one Randle cell or many parallel branches.   

Different electrode behaviours contain similar stages and processes, such as formation of the electrical 

double layer, charge transfer resistance of the electrochemical reaction, the presence of ohmic resistance, 

diffusion in solutions etc. The same equivalent circuit elements, but with different physical meaning, can 

simulate different processes occurring on the electrode.  

Once an appropriate equivalent circuit model has been established, computer modelling software can be 

used to fit the equivalent circuit model to impedance data obtained in EIS experiments. Analysis using 

equivalent circuit models provides values for the electrical properties (Rs, Cdl and Rp) needed to 

characterise the metal-solution interface. The computer modelling software also calculates a ‘goodness 

of fit’, often this is the chi-squared (2) statistical test, the sum of squares of differences between measured 

and modelled impedances. An ideal fit of the model to a dataset would result in a 2 statistic equal to 0. 

High 2 values suggest that the assumed equivalent circuit is not a good fit to the data [136]. 

2.2.2.3 EIS – Experimental Setup 

EIS experiments were set up using the same 3 electrode cell, as previously described in section 2.2.1.1. 

However, the EIS experiments were performed using an Autolab PGSTAT20 potentiostat equipped with 

frequency response analyser modules, driven by GPES 4.9 and FRA 4.9 software (Eco Chemie, The 

Netherlands).  All EIS measurements reported here were started at -0.5 V and were scanned up to 1.5 V. 

The potential was held every 0.1 V and the frequency scanned between 10,000-0.1Hz. 

  



 

70 
 

 Electrochemical Quartz Crystal Microbalance (EQCM) Studies 

of the Passive Behaviour on SS2343 (316L Analogue) in Nitric 

Acid 

2.3.1 Electrochemical Quartz Crystal Microgravimetry 

In many electrochemical experiments, mass change occurs as material is deposited or stripped from the 

cell working electrode. Quartz Crystal Microgravimetry (QCM) is a well-established method for the 

measurement of small changes in mass at the electrode surface. QCM can also be used in combination 

with potentiostat controlled electrochemical measurements (EQCM) to measure mass changes associated 

with electrochemical processes such as, adsorption, electro-deposition and corrosion [55], [137].  

Importantly, the EQCM has also been used to investigate passive film growth in situ on metallic surfaces 

[66], [67], [73], [138]–[140]. It provides information relating to the mass changes associated with film 

growth at the electrode surface with a time resolution sufficient to provide real time growth curves of the 

passive film, as established by Olsson et al. [68]. This makes microgravimetry useful in the study of the 

dynamic responses of passive metals and alloys to redox changes in the aqueous environment, particularly 

changed in response to solution oxidative stress or applied potential. For example, for a Fe-Cr alloy in an 

acidic electrolyte, shown in Figure 2-11, an increase in potential, either potentiostatically or via 

introduction of oxidising agents, leads to Cr enrichment within the passive film.  

 

Figure 2-11 - Mass transfer during anodic film growth (example of binary Fe-Cr alloy) [66]. 
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This implies either selective oxidation of chromium shown at interface 1 in Figure 2-11, or selective 

dissolution of Fe from the film into solution as shown in interface 2. Both processes would produce a 

similar increase in current in a standard LSV, making identification of which process was responsible for 

the current increase difficult. However, using the EQCM either a positive or negative mass change is 

observed depending on whether incorporation of anions into the anodic film or dissolution of the metal 

ions is dominating. It is important to note that while the EQCM provides additional data over LSV or CV 

techniques with regards to metal corrosion, the EQCM is not able to differentiate between the dissolution 

of the individual elements of an alloy, only the overall change in mass of the metal [73]. 

2.3.1.1 Principles 

Microgravimetry is based on the inherent piezoelectric properties of quartz crystal. In 1880, Jacques and 

Pierre Curie discovered that a mechanical stress applied to the surfaces of various crystals, including 

quartz, afforded a corresponding electrical potential difference across the crystal. The magnitude of this 

potential difference is proportional to the applied stress, this is referred to as the ‘piezoelectric effect’. 

The Curies also experimentally verified the ‘converse piezoelectric effect’ where an applied voltage 

across the crystal surface produces a corresponding crystal strain [98].  

This forms the basis of the QCM technique [55], [141]–[143]. In QCM a piezoelectrode comprised of a 

thin quartz crystal sandwiched between two metal electrodes (as shown in Figure 2-12) is used. This 

deforms when an electric field is applied to it.  

  

Figure 2-12 - The two faces of a quartz piezoelectrode used in QCM experiments A) front face, 

consisting of the working electrode B) rear face, consisting of both electrode contacts, connects to the 

frequency counter [144]. 

 

A) B) 
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Thus, by applying a small alternating voltage to the piezoelectrodes, highly stable oscillations are 

induced. The resonant frequency, fo, of these oscillations can be shown to be linearly proportional to the 

total rigidly coupled mass of the crystal piezoelectode. Key to the QCMs function is that interfacial mass 

changes at the electrode surface can be related to changes in the quartz crystal oscillation frequency, (fo). 

This relationship is typically expressed through the Sauerbrey equation [55], [145]:  

∆𝑓 =
−2𝑓

ଶ

𝐴ඥ𝜇𝜌

∆𝑚 
(2.15) 

Where Δf is the measured frequency shift (Hz), fo is the frequency of the quartz crystal prior to the mass 

change (Hz), Δm is the mass change (g), A is the piezoelectrically active area (cm2), Δρq is the density of 

the quartz (2.648 g/cm2) and μq is the shear modulus (2.947x1011 g/cm2). 

The term -2fo
2/A(μqρq)1/2 in the equation above is usually abbreviated to a sensitivity constant, Cf. 

∆𝑓 = 𝐶∆𝑚 (2.16) 

The value of Cf is usually determined experimentally by the electrochemical deposition and dissolution 

of a simple M/Mn+ couple via cyclic voltammetry. Theoretically for a 5 MHz crystal this value should be 

0.056 ng Hz-1 cm-2. However, in practise this value may vary slightly due to small manufacturing defects 

between crystal batches. Thus, before doing any measurements with the QCM, the calibration factor was 

experimentally determined using the electrodeposition and stripping of a single couple such as Cu/Cu2+ 

or Ag/Ag+. Here we have elected to use the Cu/Cu2+ system. 

2.3.1.2 EQCM Calibration Using the Cu/Cu2+ Couple 

The reduction of Cu2+ ions, leading to the deposition of a layer of Cu at the electrode surface, is commonly 

used for EQCM calibration [146], [147]. This is accomplished by obtaining the number of moles of 

electrons passed through the electrode surface from the CV current trace (charge passed) and comparing 

this to the simultaneously recorded frequency response (mass change). From these two results the mass 

sensitivity of the crystal can be determined [148]. These measurements were taken using the following 

procedure. 
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A solution of 10 mmol dm-3 copper (II) sulphate in 100 mmol dm-3 sulphuric acid was prepared in distilled 

deionised water. The solution was then degassed using nitrogen for 15 minutes so as to ovoid oxygen 

reduction interferences with the Cu2+ reduction current. A three electrode cell was employed featuring a 

platinum mesh counter with a Silver Chloride Electrode (Ag/AgCl). All potentials are referred to vs. SCE 

(-0.241 V vs. SHE). Using the QCM and combined potentiostat, a cyclic voltammogram (CV) and 

simultaneous voltamassogram (VM) were recorded. Figure 2-13 shows a typical CV and VM obtained 

under the conditions described above.  

The data set presented in Figure 2-13 shows an anomalous peak on the reduction going sweep at ~0.22 

V. This is believed to originate from a leaking Ag/AgCl electrode. The reaction AgCl(s) + e- → Ag(s) + 

Cl-(aq) has a standard electrode potential of 0.22V vs. SHE (0.02V vs Ag/AgCl) [57], this aligns with the 

onset of mass increase in Figure 2-13. The leak is not believed to have affected the EQCM calibration 

experiment. 

 

Figure 2-13 – Simultaneous CV and VM of a 10mmol dm3 CuSO4 and 100mmol dm3 H2SO4 solution in 

distilled, deionised water recorded on an Au QCM crystal at 50m Vs-1. 

In order to determine the sensitivity of the QCM (as noted above), it is first necessary to calculate the 

number of moles of Cu electrochemically reduced at the electrode surface. This is then compared with 
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the frequency response data. The former is done by calculating the charge passed through the electrode 

during either the Cu metal deposition (cathodic current response in Figure 2-13) or dissolution (anodic 

current response in Figure 2-13) steps. The charge Q is calculated by integrating the current passed as a 

function of time: 

0

( )
t

Q i t   
(2.17) 

Because the potential increment is small, it is possible to integrate this function into an Excel® spreadsheet 

using equation (2.18):  

2
j j l

j

i i E
Q

v
 

  
 

    
(2.18) 

Where Q is the total charge in C, ij is the current for data point j in A, ΔE is the potential step in V, and v 

is the scan rate of the experiment in V s-1.  

During the reduction going sweep of Figure 2-13, the mass change is entirely due to the deposition of Cu 

metal. Therefore, dividing the value obtained for the charge passed by the Faraday constant F gives access 

to the number of moles of electrons used to reduce Cu2+ ions to Cu metal. As the reaction is a two-electron 

process, the mass of Cu deposited on the QCM electrode can easily be calculated using the atomic weight 

of Cu. Finally by dividing the calculated mass of Cu deposited on the electrode by the total frequency 

change recorded by the QCM gives the mass sensitivity of the crystal.  

For the data set presented in Figure 2-13, the mass sensitivity calculated for all scans was found to be 

0.059 ng Hz-1 cm-2, the standard deviation being 6.1% wt., which is in good agreement with the 

theoretically predicted sensitivity constant of 0.056 ng Hz-1
 cm-2. 

2.3.1.3 QCM – Experimental Setup 

EQCM experiments were carried out using a quartz crystal microbalance from Maxtek (5980 Lakeshore 

Drive, Cypress, CA, USA) and a Q-Sense open module (Gothenburg, Sweden) with a combined Autolab 

PGSTAT20 potentiostat from Windsor Scientific Ltd and driven by GPES 4.9 software (Eco Chemie, 
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The Netherlands). QCM piezoelectrodes were left to equilibrate for 1 hour in air and then 1 hour in 

solution, at open circuit potential, prior to each electrochemical measurement. To prevent electromagnetic 

interference from the surroundings the electrochemical cell was placed in a Faraday cage. Current and 

mass-response profiles were always recorded simultaneously. After frequency equilibration, linear sweep 

voltammetry and potential step measurements were performed in 1.5 mL (1.5 cm3) solutions of 5 – 35% 

wt. The current transients were compared to those for 316L SS to assess the suitability of SS2343 as an 

analogue. Previous work by Donik et al has shown 316L SS and SS2343 to have almost identical 

potentiodynamic/electrochemical properties [149]. 

2.3.1.3.1 Potential Step Studies 

Using the EQCM, chronoamperometric-microgravimetric measurements were made by means of a 

potential ‘staircase’ experiment, Figure 2-14, in which the potential was stepped at 0.15 V intervals from 

an initial value of -0.2 to 1.15 V. At each step, t, on the ‘staircase’ the potential was held for 45 minutes 

and the resultant current transient and change in electrode mass was recorded. 

 

Figure 2-14 –Schematic showing the applied potential sequence. A potential (E1) was applied for a time 

(t1) then stepped to a higher potential (E2) to a time (t2). 
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 Hydrodynamic Studies on Stainless Steels in Nitric Acid 

2.4.1 The Rotating Disk Electrode 

In the absence of fluid turbulence, mass transfer can be accomplished in three different ways [150]: 

1. Migration – the movement of charged particles in an electric field 

2. Diffusion – the movement of species against a concentration gradient 

3. Convection – the movement of species induced by stirring or a density gradient 

The effects of migration can be discounted in the experiments reported here because the concentration of 

the supporting electrolyte (in this case HNO3) is sufficiently high to negate any effects of migration in 

the electrolyte [151], [152]. The effects of convection, which is deliberately introduced to the system in 

Rotating Disk Electrode (RDE) studies, are discussed below. 

A RDE is a hydrodynamic working electrode.  The electrode rotates during experiments inducing 

a flux of analyte to the electrode surface. Hydrodynamic working electrodes are used 

in electrochemical studies when investigating reaction mechanisms related to the coupling of 

redox chemistry to mass transfer and preceding or following chemical steps [153]. The main advantage 

of hydrodynamic electrodes over static electrodes is that steady state can be reached readily and 

measurements can be made with high precision, i.e the increased transport of electroactive species to the 

electrode, leads to a higher recorded current and therefore greater sensitivity and reproducibility [55], 

[60]. 

The rotation of a rotating disk electrode is expressed in terms of angular velocity (rad s-1), or, more 

commonly, full rotation per second (s-1 or Hz) or rotation speed (where 1 Hz equates to 2π rad s-1 [154]). 

As the disk turns it acts as a convective pump, drawing solution up towards the electrode surface. The 

result is a laminar flow of solution towards and across the electrode. The rate of the solution flow can be 

controlled by the electrode's rotation speed and can be modelled mathematically. This flow can quickly 

achieve conditions in which the steady-state current is controlled by the solution flow and so convectively 

assisted mass transport to the electrode surface. This is another advantage over static experiments where 
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the sole mode of mass transport supporting the steady-state current is the slower non-convectively 

assisted diffusion [60], [153].  

 

Figure 2-15 -Solution flow for RDE (a) along z-axis and (b) near disc surface [153]. 

Even when the electrode is rotating, near the electrode surface there is a thin diffusion layer of electrolyte 

in which there is no tendency for movement normal to or across the electrode (see Figure 2-15). Here, 

the only means of mass transport is diffusion across this so-called “diffusion layer”. The thickness of this 

layer, δ. varies inversely with rotation speed and is given by [153]: 

𝛿 = 0.643𝐷
ଵ

ଶൗ 𝑣
ଵ

ൗ 𝜔ିଵ
ଶൗ  (2.19) 

Where D is the diffusion coefficient, ω is the rotation speed (Hz) and ν is the kinematic viscosity              

(cm2 s-1) i.e. the viscosity divided by the density.  

The advantages of using electrodes with controlled hydrodynamics over static electrodes may be more 

easily understood by considering the general scheme for electrochemical reactions: 

 𝑅௨

ሱ⎯ሮ 𝑅௦௨

±ష
ሱ⎯⎯⎯⎯ሮ 𝑃𝑛ି 𝑛ା⁄  (2.20) 

Where R is the reactant which is converted to the product, P at an electrode surface by accepting or 

donating electrons (i.e. reduction or oxidation). The overall reaction requires mass transport of R from 

the bulk of the solution to the electrode, the rate of which can be considered to be governed by a first 

order rate constant kmt in cm s-1. The rate of mass transfer is then given by the flux of species to the 

electrode surface (mol cm-2 s-1), jmt [153]: 
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𝑗௧ = 𝑘௧(𝑐ஶ − 𝑐) (2.21) 

Where c is the concentration, mol cm-2, of R in the bulk (at near infinite distance from the electrode) or 

at the electrode surface (at distance, 0 cm, from the electrode). When the rate of mass transport is 

relatively slow (i.e. the electrode is not rotating) and, therefore, rate limiting, the overall flux is given by: 

𝑗௧ = 𝑘௧𝑐ஶ (2.22) 

At the electrode, the electrochemical reaction then occurs governed by the first-order electrochemical 

rate constant ke. Under steady state conditions, the electrochemical flux is equal to the overall flux, that 

is: 

𝑗 = 𝑘𝑐 = 𝑗 = 𝑗௧ (2.23) 

In a simple voltammetric experiment, reproducible currents can only be obtained in systems in which kmt 

and ke can be controlled. ke is easily controlled by controlling the electrode potential. However, in 

stagnant solutions kmt is not constant and is time dependant. The extent of which the reactant has depleted 

near the electrode governs the rate of mass transfer and therefore mass transfer is time dependent. This 

leads to irregular, unpredictable currents. Hydrodynamic electrodes generate reproducible and 

predictable solution convection currents through mechanical stirring. 

Thus, by running linear sweep voltammetry and other experiments at various rotation rates, different 

electrochemical phenomena can be investigated, including multi-electron transfer, the kinetics of a slow 

electron transfer, adsorption/desorption steps, and electrochemical reaction mechanisms. 

2.4.2 Construction of a Stainless Steel Rotating Disk Electrode 

Generally an RDE is constructed by imbedding the working electrode as a rod of material in Teflon, 

epoxy resin or another plastic. This construct is then attached to a motor directly by a chuck and is rotated 

at certain frequency, ω (revolutions per second) [55], as shown in Figure 2-16.  
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Figure 2-16 – Schematic of a rotating disk electrode [155]. 

For the work described here, the steel RDE was constructed using a cylindrical brass section as its core. 

A 10 mm diameter circular stainless steel tip (316L, Advent Research Materials Ltd, Eynsham, Oxford, 

UK) was attached to the brass section using a silver loaded epoxy adhesive (Stock no. 186-3616, RS 

Components Ltd, Corby, Northhants, UK). The entire electrode was then sealed in a resin layer (HY1300 

and CY1300, Aeropia Ltd, Newton Road, Crawley, UK) moulded into a cylindrical shape (Figure 2-17). 

Finally the stainless steel tip was polished using a series of abrasives with decreasing size/grade of grit. 

Specifically, sandpaper grades 240-1200 and diamond abrasive compounds (Marcon, Codicote, Hitchin, 

Herts, UK) of 6 and 1 micron. 

 

Figure 2-17 – Diagrammatic representation of a 316L SS rotating disk electrode. 

 

ω 
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2.4.3 Levich Study on 316L SS Rotating Disk Electrodes 

A Levich-type experiment was conducted using an Autolab PGSTAT20 potentiostat. Rotation speed was 

controlled by a rotating disk electrode rotator controller (Princeton Applied Research, Farnborough, UK). 

As before, the stainless steel rotating disk working electrode pre-treatment consisted of polishing on 

emery paper up to 1200 grade followed in turn by polishes using 6 and 1 micron diamond paste. The 

electrodes were then degreased in acetone and rinsed with purified water. The RDE was used in a three 

electrode system with a platinum mesh auxiliary and SCE reference electrode, as shown in Figure 2-18.  

 

Figure 2-18 –Schematic of RDE experimental setup. 

Before the Levich experiment was conducted, the open circuit potential of the system was monitored 

until it reached steady state (approximately 1 hour). Potential was then swept, at a scan rate of 10 mV s-

1, from 1 V down to the potential of interest (see Chapter 4). This potential is within the transpassive 

region for the 316L SS however the focus of this experiment was not the corrosion behaviour of stainless 

steel, but the reduction chemistry of HNO3. The potential was then held whilst the rotation of the electrode 

was varied from 100-3000 rpm. The current was recorded and allowed to stabilise for 5 minutes at each 

rotation speed before the rotation speed was increased. 
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 Surface Analysis Studies of Stainless Steel Oxide Layers 

2.5.1 X-ray Photoelectron Spectroscopy 

2.5.1.1 Introduction 

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis 

(ESCA) is a widely used surface analysis technique. XPS utilises x-ray photons to ionise surface atoms. 

When an atom absorbs an X-Ray photon, an electron can be ejected (Figure 2-19b). The kinetic energy 

(KE) depends on the photo energy (hv) and the binding energy (BE) of the electron (the energy required 

to remove the electron from the surface). Measuring the kinetic energy of the so-liberated electron 

provides information on: (1) the oxidation state of an element/elements, (2) the chemical state of a 

metal/metal oxide film and (3) the elemental profile through a material. A general schematic of XPS is 

shown in Figure 2-19a [156]. 

  

Figure 2-19 – a) Schematic of X-Ray photo electron spectroscopy showing (1) X-ray source, (2) 

sample, (3) electronic focusing system, (4) spectrometer, (5) electron detector or channeltron and (6) 

data acquisition system. b) The photoemission process involved for XPS surface analysis. The discs 

represent electrons and the bars represent energy levels within the material being analysed.[156]–

[158]. 

a) b) 
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In the analytical chamber the specimen (2) is bombarded by the x-ray photon source (1) and the ejected 

photoelectrons are focused on to the entrance slit of an electrostatic analyser by an electromagnetic lens 

system (3). The ejected electrons then pass through the analyser. Within the analyser, electrons pass 

between a pair of electrodes. Between the electrodes and the electrons is a series of lenses, which are 

used to reduce the kinetic energy of the electrons, only electrons of a specific energy are allowed  to pass 

through to the detector, the ‘pass energy’, PE. (4). The electrons then arrive at the detector and are counted 

using an electron multiplier, usually a channel electron multiplier (channeltron) (5) [159], [160].  

2.5.1.2 Sample Preparation 

Surface passivation was induced by electrochemical polarisation of stainless steel planchet samples in an 

electrolyte consisting of 5% wt. and 25% wt. HNO3. In order to determine the interaction of europium 

(analogue for americium), cerium (analogue for plutonium) and uranium with stainless steel sample, 

passivation experiments were also performed in solutions of 1 mmol dm-3 europium (III) nitrate, 30 mmol 

dm-3 cerium (III) nitrate hexahydrate or 10 mmol dm-3 uranyl nitrate, at both 5 and 25% wt. nitric acid 

concentrations. All solutions were degassed using nitrogen for 15 minutes prior to use.  

Polarisation measurements were performed using an Autolab PGSTAT20 potentiostat and three electrode 

cell detailed previously. As described for LSV experiments in section 2.2.1.1, polished 316L stainless 

steel planchets were placed in a QCM electrode holder so that only the electrode face was exposed to 

solution. These were prepared prior to use by rinsing the steel with acetone to remove any organic 

contaminants. Polarisation was performed at 0.2, 0.5 and 0.8 V vs. SCE respectively, for 20 min. After 

polarisation, the samples were taken out of solution with the potential switched on and quickly dipped in 

deionised water before immediately drying using nitrogen gas. Samples were then rapidly transferred to 

the ultrahigh vacuum chamber necessary to perform XPS in order to minimise the effects of 

environmental oxidation of the steel surface. 

2.5.1.3 Typical XPS Analysis Scheme 

X-ray photoelectron spectroscopy (XPS) analysis was carried out at the Nanotechnology & Integrated 

BioEngineering Centre (NIBEC) at the University of Ulster and the Surface Interface Analysis Centre at 
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the University of Bristol. At the University of Ulster, XPS analysis was performed on 316L SS after 

polarisation of the electrode in HNO3 concentrations of 5 and 25% wt. at 0.2 and 0.8 V vs. SCE. 316L 

SS was also analysed after being exposed to europium (III) nitrate and cerium (III) nitrate solutions under 

the same conditions. At the University of Bristol, XPS analysis was performed on 316L SS after 

polarisation in 5 and 25 wt. % wt. HNO3 at 0.2, 0.5 and 0.8 V vs. SCE as this was considered a more 

representative range for analysing compositional changes in the passive film. 316L SS samples were also 

analysed after being exposed to uranyl nitrate solutions under the same conditions.   

2.5.1.3.1 XPS Analysis Scheme at the University of Ulster 

XPS was carried out using a Kratos Axis Ultra DLD spectrometer (Kratos, UK) at <5 × 10−8 Torr. 

Measurements were made using a monochromated Al Kα X-ray (1486.6 eV) source operating at an anode 

voltage of 15 kV and current of 10 mA. A magnetic immersion lens was used to neutralise charging 

effects. Binding energy (BE) positions were calibrated to hydrocarbon (C1s) signal, set at 285.00 eV 

[161]. Initial wide energy survey scans (1–1300 eV) were recorded at a pass energy of 160 eV with 

subsequent high resolution spectra recorded at 20 eV.  

Quantitative analysis of three separate areas of each sample type, reported as relative atomic percentage 

(at.% wt.), was achieved using CasaXPS software (Casa software, UK) after subtraction of a linear 

background. Spectra were curve fitted after linear background subtraction using a mixed Gaussian–

Lorentzian (70:30) function [162]. 

2.5.1.3.2 Analysis Scheme at the University of Bristol 

A Thermo Fisher Scientific (East Grinstead, UK) Escasope equipped with a dual anode X-ray source 

(AlKα 1486.6 eV and MgKα 1253.6 eV) was used for XPS analysis. Samples were analysed under high 

vacuum (<5x10-8 mbar) with AlKα radiation at 250W (12.5 kV; 20 mA). Following the acquisition of 

survey spectra over a wide binding energy range, the C1s, O1s, Cr2p and Fe2p3 spectral regions were 

then scanned at a higher energy resolution such that valence state determinations could be made for each 

element. High resolution scans were acquired using 100 eV pass energy and 750 ms dwell times.  
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Data analysis was carried out using CasaXPS software (Casa software, UK) after subtraction of a linear 

background. Spectra were curve fitted after shirley background subtraction using a mixed Gaussian–

Lorentzian (70:30) function [162].   

Shirley background subtraction requires choosing two points, one at a kinetic energy and another below 

the peak. This leads to a simple, iteratively calculated background in which the background intensity at 

a given energy is directly proportional to the intrinsic peak area at the high kinetic energy side [163], 

[164]. 

The data collected at the University of Bristol appears to be contaminated (this was confirmed by Bristol 

University, although the source of contamination is unknown). Elements such as lead and fluorine were 

found to be present which was unexpected. This will be taken into account during analysis. 

2.5.1.4 XPS Limitations  

While XPS is a widely used technique there are limitations to its use [160], [165], [166]: 

 XPS equipment requires specialist training and years of experience in its use. 

 XPS requires an Ultra High Vacuum (UHV), typically in the range of 10-8 – 10-10 Torr. 

 The lateral resolution is limited to a range of a few to 100μm. 

 Sample size is restricted to a few cm2 and a few mm thick. Although, in some cases, e.g. 

radioisotope contamination studies, where there may be other restrictions (dose etc.), a small 

sample size is of benefit as only a small amount of material is required for analysis.  

 Depth resolution is only a few (~5) nm. Again, this could be regarded as advantageous in thin 

film studies, such as those carried out in this work. 

 XPS detection limits range from 0.1 to 1 atom % [167]. Figure 2-20, overleaf, shows how this 

relates to other spectroscopic techniques. 
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Figure 2-20 – Detection limits of different Spectroscopic Techniques [168]. 
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3 ELECTROCHEMICAL, MICROGRAVIMETRIC AND 

SURFACE CHARACTERISATION OF 316L STAINLESS 

STEEL BEHAVIOUR IN NITRIC ACID CONCENTRATIONS 

≤15% wt. 

This work is primarily interested in entrainment of radionuclides in steel under conditions typical of those 

found in nuclear reprocessing. However, an investigation into the baseline mechanistic changes of the 

corrosion behaviour of process steels in varying HNO3 concentrations and in the absence of potential 

contaminant radionuclides may, in itself, lead to a better understanding of how steels passivate/freely 

corrode in HNO3 – and therefore uncover the processes by which contaminants may become trapped. 

Furthermore, as described in Chapter 1, whilst the electrochemical reduction of HNO3 on inert electrodes, 

such as Pt, is well understood [6], [7], [87], [89]–[91], [8], [80]–[86] the electrochemical reduction of 

HNO3 concentration > 5% wt. (>1.13 mol dm-3) has not been extensively explored on 316L SS.  

As such, this chapter focuses on baseline electrochemical experiments conducted on 316L SS in HNO3 

concentrations ≤15% wt. (≤3.38 mol dm-3), typical of HNO3 concentrations found in primary separation 

cycles and fission product scrubbing [19]. 

 

 

 

 

 



 

88 
 

 Linear Sweep Voltammetry  

In order to provide a preliminary assessment of what effect ‘low’ HNO3 concentrations (for the purposes 

of this work, this is defined as [HNO3] ≥5% wt. but ≤ 15% wt.)  have on the electrochemical behaviour 

of 316L SS, linear sweep voltammetry was used to identify the point at which the steel corrodes, 

passivates and then transpassively dissolves in increasing HNO3 concentrations, for the purpose of this 

work, this is defined as [HNO3]. 

Figure 3-1 shows the measurements from LSV experiments for 316L SS electrodes recorded in solutions 

with HNO3 concentrations ranging from 5 – 15% wt. (1.13 – 3.38 mol dm-3) over the potential range -0.5 

– 1.5V.  

 

Figure 3-1 – Linear Sweep Voltammograms for 316L SS in 5-15% wt. HNO3 at room temperature (20 

±2oC). Plots were measured in the potential range -0.5 to 1.5 V (sweep rate, 10 mV s-1). 

The change in behaviour with increasing HNO3 concentration is seen in Figure 3-1. However, more 

information can be gathered from these measurements when the log of the current density is plotted 

against potential. Figure 3-2a shows potentiodynamic polarisation curves (log current density plotted 

against potential) for 316L SS electrodes recorded in solutions with HNO3 concentrations ranging from 

5 – 15% wt. (1.13 – 3.38 mol dm-3) over the potential range -0.5 – 1.5V.  
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Figure 3-2 - a) Potentiodynamic polarisation curves for 316L SS in 5-15% wt. HNO3 at room 

temperature (20 ±2oC). Plots were measured in the potential range -0.5 to 1.5 V (sweep rate, 10 mV s-1) 

b) Polarisation curve for 5% wt. HNO3, zones 1-5 are described in text. 

From Figure 3-2a it can be seen that five distinct regions may be identified at all HNO3 concentrations 

studied which, for the sake of illustrative clarity, are indicated on the annotated curve recorded at 5% wt. 

nitric acid, Figure 3-2b. These regions correspond to (1) hydrogen evolution/water reduction (2) active 

dissolution/onset of passivation, (3) passivity, (4) transpassive dissolution and (5) secondary passivation. 

Region 5 is a region that has been previously described by Betova [74] as being associated with the 

formation of a supplementary Fe(III) rich oxide layer, before oxygen evolution at ~1.3 V [169].  

Returning to Figure 3-2a it can be seen that the corrosion potential (Ecorr) gradually increases between 5 

and 15% wt. (1.13 and 3.38 mol dm-3) HNO3. This could be due to a greater availability of H+ for 

reduction to H2 at the higher acidities or increased prevalence of HNO2 reduction. The latter may be 
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explained as follows. According to Fauvet et al. and as discussed in detail in section 1.3.4 above, the 

corrosion potential of the 316L SS surface in the presence of HNO3 is controlled by the concentration of 

HNO2, present as a result of the thermal decomposition of HNO3 and disproportionation of NO2 [77], 

[78]: 

4𝐻𝑁𝑂ଷ ⇄ 4𝑁𝑂ଶ + 2𝐻ଶ𝑂 + 𝑂ଶ (1.12) 

2𝑁𝑂ଶ + 𝐻ଶ𝑂 ⇄ 𝐻𝑁𝑂ଶ + 𝐻𝑁𝑂ଷ (1.13) 

Thus, HNO2 is available to interact with the steel surface, as shown by reaction 1.22) [6]:  

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ⇄ 𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 (1.22) 

An increase in HNO3 concentration results in the observed slow increase in corrosion potential, as the 

availability of HNO2 for reaction 1.22 increases, resulting in further electron transfer from the steel. 

Considering now the anodic end of the polarisation curve of Figure 3-1a, once the metal has entered the 

transpassive dissolution region, ~0.9 V to ~1 V. The absolute current increases with increasing HNO3 

concentration. This is likely due to the increased availability of HNO3 increasing the acidity of the 

solution, driving the rapid transpassive dissolution of the Cr(III) rich passive film which has been 

oxidised to the more soluble Cr(VI). The increased acidity is also likely to inhibit secondary passivation 

of Fe2O3, this is described in more detail below. 

Moving further anodically into the region of secondary passivation (~1.1 V), from Figure 3-2a it can be 

seen that such passivation is most quickly established in 5% wt. HNO3, occurring at  E >1 V and log i > 

-3. At 10% wt. HNO3 the system fully passivates at both a higher potential, E> 1.2 V, and a higher 

transpassive current, log i > -2.5. This suggests that the onset of secondary passivation is restricted, 

presumably through the increased solubility of Fe2O3 with increasing HNO3 concentration. This trend is 

continued at 15% wt. HNO3 where full passivation is only achieved at E>1.3 V and log i > -2.  

3.1.1 Ecorr and icorr Analysis.  

Corrosion potential (Ecorr) and corrosion current density (icorr) were calculated using Tafel extrapolation 

of the linear segments of the measured potential-current density curves of Figure 3-2a, in the vicinity of 
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Ecorr. Ecorr and icorr are dependent on the autocatalytic reduction of nitric acid and increased availability of 

HNO2, as described above or the greater availability of H2. Both Ecorr and icorr are known to increase with 

higher autocatalytic contribution via reactions 1.22 and 1.29 (which increases with increasing HNO3 

concentration), which together describe the global reduction of HNO3 [157]: 

𝐻𝑁𝑂ଷ + 2𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 ⇄ 3𝐻𝑁𝑂ଶ() (1.29) 

 Figure 3-3a shows calculated Ecorr values obtained at 5 - 15% wt. HNO3 concentrations. From which it 

can be seen that Ecorr increases near linearly with HNO3 concentration. 

     

Figure 3-3 - a) Corrosion potential, Ecorr, values vs. HNO3 concentration b) Corrosion current density, 

icorr, values vs. HNO3 concentration and associated error bars calculated from Figure 3-2a for 316L SS 

in 5 - 15% wt. nitric acid. NOTE: Higher concentrations of HNO3 have been left on the x-axis and will 

be filled in in Chapter 4. 

Figure 3-3b shows the icorr values for 5 – 15% wt. HNO3. At the HNO3 concentrations seen here, icorr 

values decrease. The decrease in icorr suggests the formation of a stable passivating oxide film which then 

reduces the availability of surface sites for reaction (1.22). This is consistent with the observed increase 

in Ecorr, into the passive potential range of Figure 3-2b. This, in turn, suggests that system behaviour is 

governed by the coupling of the steel surface oxidation and nitrous acid catalysed nitric acid reduction 

half reactions. As HNO3 concentration increases, H+ or NO3
- reduction also increases leading to an 

increase in Ecorr, a greater extent of stainless steel oxidation and the formation of a thicker passive layer, 

leading to a lower icorr at equilibrium.  
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Figure 3-4 - icorr vs. Ecorr (data points minus error bars for clarity) calculated from LSV results in 

Figure 3-2a for 316L SS in 5 - 15% wt. (1-3 respectively) nitric acid. NOTE: Higher concentrations of 

HNO3 have been left on the x-axis and will be filled in in Chapter 4. 

Figure 3-4 shows a plot of icorr vs. Ecorr values calculated from LSV results of Figure 3-2a and initially 

shown in Figure 3-3. As discussed above, icorr decreases as Ecorr increases into the passive potential region. 

This shift into the passive region leads to a greater extent of stainless steel oxidation and the formation a 

thicker passive layer which, in turn, leads to a reduced icorr. Thus, overall, corrosion rate counter-

intuitively decreases with increase in HNO3 concentration in the range of 5-15% wt. This behaviour will 

be further examined below using other electrochemical techniques such as; Electrochemical Impedance 

Spectroscopy and Electrochemical Quartz Crystal Microgravimetry. 

In summary, icorr decreases with an increase in HNO3 concentration as Ecorr increases with an increase in 

HNO3 concentration. This indicates that the increase in HNO3 is allowing for higher cathodic currents to 

be accessed, either via H+ or NO3
- reduction which, through galvanic coupling, allows for higher anodic 

current to be supported. This leads to an Ecorr that resides deeper into the passive range and, in turn, thicker 

passive layers and lower icorr values at equilibrium. The increase in HNO3 is leading to an increase in Ecorr, 

which moves the system further into the steel’s passive region.  

Importantly, the LSV results indicate that in order to artificially ‘grow’ oxide layers on 316L SS surfaces 

in HNO3 concentrations of ≤15% wt. the applied potential needs to be <1 V to avoid transpassive 

dissolution of the Fe-Cr oxide film, and >-0 V to allow passivation to occur. Thus, differences in oxide 

layer growth modes in the passive region as a function of HNO3 concentrations are now investigated in 

further detail using Electrochemical Impedance Spectroscopy. 
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  Electrochemical Impedance Spectroscopy (EI S) Studies on 316L 

SS in Nitric Acid 

EIS is a very useful technique when assessing small changes at the metal solution interface which may 

indicate passive film growth. 316L SS was analysed in the same potential region (-0.5 to 1.5 V vs. SCE) 

and HNO3 concentrations (5-15% wt.) as the LSV studies in the previous section to allow for direct 

comparison with these results. Results detailed in this section are first presented using the raw 

experimental data, in the form of nyquist plots and E vs. Z’ plots, at low frequencies. The data is then 

modelled using physically relevant equivalent circuits in Z-View2 impedance software, with the results 

presented alongside LSV results from the previous section. Z-View2 is based on the method of nonlinear 

least squares, which allows non-ideal electrochemical behaviour (elements that exhibit a combination 

resistive, capacitive or inductive behaviours) to be modelled [170], [171].  

3.2.1 Nyquist Plots   

Figure 3-5 to Figure 3-7 shows Nyquist plots for 316L SS in 5-15% wt. HNO3, at potentials across the 

entire LSV range (-0.4 V, 0 V, 0.4 V, 0.8 V and 1.2 V). 
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Figure 3-5 – Nyquist plots for 316L SS in 5% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 V. 

-0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise variability 

visibility.  

 

   

Figure 3-6 – Nyquist plots for 316L SS in 10% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 
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Figure 3-7 – Nyquist plots for 316L SS in 15% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 

As discussed in Chapter 2, the resistive elements in the equivalent circuit can be estimated from the values 

at which the Nyquist plot crossed the real impedance axis (Z’). At potentials of -0.4V and 1.2V, 

representative of areas of hydrogen evolution and transpassive dissolution respectively, real impedance 

values are estimated to be very low, indicating the surface of the steel is freely reacting/dissolving. This 

is in line with equivalent LSV measurements shown in Figure 3-2a. At potentials within the passive 

region, 0V, 0.4V and 0.8V, impedance values are several orders of magnitude higher, indicating that a 

passivating film has formed on the steel surface, again in line with the LSV measurements of Figure 3-2a. 

However, at HNO3 concentrations 10 and 15% wt. real impedance values at 0V are significantly lower 

than at 5% wt., as shown in Figure 3-8. LSV measurements indicate that 0V should still be within the 

passive range for 5% wt. HNO3, at the onset of passivity for 10% wt. HNO3 and just within the range for 

H2 evolution for 15% wt. HNO3 Thus, this decrease in real impedance values could be due to either an 

increase in H2 evolution with increasing HNO3 concentration or due to the surface being in the active 

corrosion region, although Ecorr is below 0 V at 15% wt. HNO3. This will be discussed further in Section 

4.2.1. 
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Figure 3-8 - Nyquist plots for 316L SS in 0-15% wt. HNO3 solution at 0 V which has been extracted for 

clarity. Axis scales have been altered to maximise variability visibility. 

Figure 3-9 shows the Nyquist plots for measurements within the range 0V to ~1V, which was identified 

in earlier experiments as the passive region and is described in section 3.1. Generally this region is 

characterised by higher impedance values than that which obtain under conditions of hydrogen evolution 

or transpassive dissolution. Impedance is highest at 0.4 and 0.6 V in 5% wt. HNO3 indicating that this 

region is where the passive film is most developed. This is above the Ecorr and icorr values assessed in 

section 3.1.1 but is consistent with being well within the passive region indicated in Figure 3-2. 

Impedance values are also higher for 0, 0.2 and 0.8 V in 5% wt. HNO3 than in 10 and 15% wt. HNO3, 

where impedance values for 0 and 0.2 V are significantly lower. This shows that the passive film formed 

in these potential areas is more stable than that formed in 10 and 15% wt. HNO3, This supports the 

observation in LSV studies of a decrease in the potential window of passivity (increase in Ecorr) with 

increasing HNO3 concentration. 
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Figure 3-9 - Nyquist plots for 316L SS in a) 5% wt. HNO3 solution, b) 10% wt. HNO3 solution and c) 

15% wt. HNO3 as a function of film formation potential.  

3.2.2 Impedance vs. Potential Plots 

From the Nyquist plots in the previous section, it has been shown that differences in the real impedance, 

particularly in the low frequency region, may be directly related to resistive changes in the passivating 

layer on the steel. Thus, before applying equivalent circuit modelling to this data, simple real impedance 

vs. potential plots have been constructed and plotted alongside LSV data from the previous section in 

order to provide a broad semi-quantitative indication of system behaviour, as previously demonstrated 

by Fattah-alhosseini et al [76], [172]. Fattah-alhosseini et al [170] highlighted that the magnitude of 

impedance at low frequencies is several orders of magnitude higher than at high frequencies, thus any 

features are difficult to discern at higher frequencies [170]. Therefore, real impedance vs. potential plots 

are shown in Figure 3-10 for impedance data recorded at a low frequency value of 0.3 Hz. 
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Figure 3-10 – Potentiodynamic polarisation curves plotted alongside low frequency impedance data for 

316L SS in a) 5% wt. HNO3 solution, b) 10% wt. HNO3 solution and c) 15% wt. HNO3 as a function of 

potential. 

Considering first the results of Figure 3-10a, the impedance magnitude at 0.3 Hz, initially increases with 

potential, within the passive potential region, presumably as the passive magnetite/Cr2O3 film grows. 

This corresponds well with the increase in Ecorr as HNO3 concentrations is increase, identified in section 

3.1.1. However, at a sufficiently high passive potential (E >0.7 V) the impedance magnitude decreases 

with increasing potential. This region, where the current begins to increase but breakdown potential is 

not reached, is associated with formation, and subsequent dissolution, of high valency Cr(VI) from the 

Cr(III) passive film [53], as described by Betova [74] and reviewed in section 1.3.3.3. Thus, as the film 

begins to slowly dissolve and breakdown, the impedance decreases accordingly. The lowest impedance 

values occur at potentials where total film dissolution occurs at > 1V, in good agreement with the LSVs 

of Figure 3-2.  

Following the approach of Fattah-alhosseini et al [170], considering now the low potential region in more 

detail, smaller increases in impedance at potentials around Ecorr are observed during experiments 
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line with increasing potential, before falling back and then increasing again at E> 0 V. This may be more 

easily observed by plotting low frequency impedance vs. potential traces for all HNO3 concentrations on 

one plot. This is shown in Figure 3-11.  

 

Figure 3-11 – Effect of film formation potential on impedance magnitude of 316L SS in 5-15% wt. 

HNO3 at 0.3Hz. 

Figure 3-11 shows that this effect is most obvious at 5% wt. HNO3. As this occurs around Ecorr, it may be 

due to the formation of a precursor Cr or Fe oxide layer, that is then converted at higher potentials to a 

full Cr(III) oxide passive layer. Drogowska et al. identified similar behaviour on 304 SS using EIS, with 

the formation of a low potential passive film which subsequently dissolved and a different higher 

potential passive film was then formed. The study was conducted in pH 8 carbonate solution so further 

investigation would be required to confirm this behaviour for this work [173].  
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Figure 3-12 – Real impedance, Z’, values at Ecorr extrapolated from Figure 3-11 data. NOTE: Higher 

concentrations of HNO3 have been left on the x-axis and will be filled in in Chapter 4. 

Figure 3-12 shows real impedance values at Ecorr for 5-15% wt. HNO3. Impedance decreases with 

increasing HNO3 concentration, indicating that the putative precursor film must presumably increase in 

solubility with increasing HNO3 concentration, an effect akin to that described in LSV studies of 

secondary passivation in the transpassive region [74] (section 3.1). Observation of this precursor film 

formation in the LSV studies of section 3.1 is obscured as HNO3 concentration increases due to the 

progressively more facile reduction of H+ to H2. 

However, it is important to note that this interpretation using real impedance vs. potential data is a 

simplification and does not clearly define whether the change in impedance around Ecorr is directly related 

to changes in the passive oxide film resistance, double layer capacitance or solution resistance. Therefore, 

the next section describes modelling the data using an equivalent circuit model to extract information on 

the oxide film resistance only. 

3.2.3 Polarisation Resistance Measurements 

3.2.3.1 Equivalent Circuit 

Any electrochemical cell can be represented in terms of an equivalent electrical circuit that comprises a 

combination of resistances and capacitances. This circuit should contain at least four key components in 
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the case of a faradaic process occurring in the possible presence of a passivating film (which may itself 

result from the faradaic process) [60], [129], [132]: 

1. A capacitive element representing the electrochemical double layer, this could be either; 

a.  Double layer capacitance, Cdl, which best describes a system that approximates the 

behaviour of a simple parallel plate capacitor.  

b. A Constant Phase Element, CPE, which describes a system that approximates that of a 

distribution of capacitances.  For example, surface inhomogeneity of a resistive film or 

variable thickness of that film across the electrode surface. 

Thus, the double layer and the oxide layer grown at the steel surface can be described by either capacitive 

element, depending on the inhomogeneity/roughness at the electrode surface. 

2. The resistance of the charge transfer process, Rct 

3. The resistance of any passive film formed, Rp 

4. The resistance of the electrolyte solution between the working and reference electrodes, Rs 

In our modelling of the 316L SS system, two simple equivalent circuits could be considered appropriate 

for the results presented in this work. For potentials ≤0 V and ≥1 V a 3 component model containing Cdl, 

a simple capacitor, and Rct is considered the most accurate. The electrode is considered to be flatter and 

therefore behaves more like a parallel place capacitor. Whereas, at 0-1 V, the surface is passive and the 

more appropriate components would be CPE and Rp which better describe the behaviour of the protective 

oxide layer that forms in the passive region, as shown in Figure 3-13. 
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Figure 3-13 - Electrical equivalent circuit models used to represent an electrochemical interface 

undergoing corrosion at <0 V and >1 V and passivation in the region of 0-1 V. Rp is the polarization 

resistance, Rct is the charge transfer resistance, Cdl is the double layer capacitance, CPE is the 

Constant Phase Element and Rs is the solution resistance. 

However, as the main area of interest is the central passive region, the simplest model for characterising 

the metal-solution interface is the cell of Figure 2-13b. It includes the three essential parameters, Rs 

(solution resistance), CPE (the imperfect capacitance of the double layer) and Rp (the polarisation 

resistance) described above [130]. A simple model such as this is found to be appropriate for analysis 

here because the Nyquist plots of Figure 3-4 - Figure 3-6 exhibit a single time domain semi-circle, with 

no obvious inductor loops. Chi-squared values in the order of 1x10-2 - 3x10-2 were obtained when 

modelled using ZView2, as shown in Appendix 2. 

3.2.3.2 Polarisation Resistance (Rp) Plots 

Figure 3-14 (a-c) shows polarisation resistance, Rp, data obtained from the EIS data of Figure 3-5 - Figure 

3-7, plotted with potentiodynamic polarisation curves for 316L SS in 5, 10 and 15% wt. HNO3, over the 

potential range -0.5 – 1.5 V. Rp was calculated in ZView2, using the simple equivalent circuit model, 

shown in Figure 2-13b , described in section 3.2.3.1 to model the data (tabulated in Appendix 1). Rp 

represents the resistance of the passivating film that has been formed on the electrode surface. Thus, an 

increase in Rp is interpreted here as the formation, stabilisation and possible increase in the thickness of 

the surface oxide layer. Plotting Rp data alongside LSV data will allow for a direct comparison with LSV 

studies, this is shown in Figure 3-14. 
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Figure 3-14 - Potentiodynamic polarisation curve plotted with impedance data for 316L SS in a) 5% 

wt. HNO3 solution, b) 10% wt. HNO3 solution and c) 15% wt. HNO3 as a function of potential. 

Consider first the cathodic region of the Rp vs. potential plots in Figure 3-14. As with plots of the real 

impedance vs. potential, at 5% wt. HNO3 (Figure 3-14a) Rp increases rapidly as the metal enters the 

passive region at ~-0.25 V; however, there is a dip in Rp between 0.1 and 0.2 V. As the plotted parameter, 

Rp, is now, in principle, independent of double layer capacitance and solution resistance, the results of 

Figure 3-14, would suggest the previously theorised precursor layer of either Fe oxide or potentially 

Cr(OH)3, formed before a Cr2O3 layer is fully formed at higher potentials, is real. As in Figures 3-10 and 

3-11, the peak in the Rp value that occurs at ~0V in 5% HNO3 disappears at [HNO3] > 10%. The above 

postulated precursor film must therefore presumably increase in solubility with increasing HNO3 

concentration. However, the reduction of H+ could also be masking this feature and a precursor layer may 

still be present. One means by which to determine if this is the case if to obtain the capacitive parameter 

of the CPE. This will be derived from the capacitance of any passivating film present at the electrode 

surface in the passive range. Thus, Figure 3-15 shows polarisation curves plotted with both Rp and the 

capacitance parameter of the CPE. The presence of a thickening precursor film would lead to a decrease 

in the capacitance and this is clearly seen for 5% wt. HNO3 (Figure 3-15a). Capacitance appears to 

decrease in line with increasing Rp for 10 and 15% wt. plots indicating that there is the potential for a 
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thinner/less efficient precursor film to have formed or no precursor film forming at all at slightly higher 

HNO3 concentrations. The existence and potential composition of this film is returned to in the next 

chapter. 

As the potential is increased to > ~0.5 V, the current observed in the LSV starts to gently increase in the 

passive region, behaviour which as discussed in the previous section has been linked with the formation 

of high valency chromium from Cr(III) which leads eventually to the onset of transpassive dissolution. 

This behaviour coincides with the levelling off and subsequent decrease of Rp. Again, as high valency 

chromium Cr(VI) is more soluble, this dissolution of Cr reduces the effectiveness of the protective film 

leading to a consequent reduction in film resistance. The reduction in film resistance (Rp) can be seen 

clearly to correlate with an increase in capacitance in Figure 3-15, suggesting that the passive layer is 

thinning. 

  

 

 

Figure 3-15 - Potentiodynamic polarisation curve plotted with impedance (blue) and the capacitance 

element of CPE (red) data for 316L SS in a) 5% wt. HNO3 solution, b) 10% wt. HNO3 solution and c) 

15% wt. HNO3 as a function of potential. 

At ~1V high valency Cr is stripped from the passive film leading to the dissolution of underlying iron, 

observed as a consequent rapid reduction in Rp and increase in capacitance. It is interesting to note that 
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even though secondary passivation is apparent in the LSV results of Figure 3-2a, this behaviour is not 

shown clearly in the EIS results, with Rp remaining low at potentials >1V. Capacitance values do decrease 

at potentials >1.1V which may be indicative of the secondary passive film. However, capacitance values 

do not drop to values seen in the presence of the passive film 0.25 - 1V. These results suggest that the 

secondary film that forms above 1V may only be a thin film which is only partially passive in character 

[74].  

Rp peak values in the passive range decrease with increasing HNO3 concentration, indicating that the 

passive layer thickness is decreasing with increasing HNO3 concentration. The next section will discuss 

film layer thickness further. Microgravimetric experiments assess mass changes on the electrode surface 

related to electrochemical changes in passive layer formation with increasing HNO3 concentration. 

 In-situ Microgravimetric Studies of Passive Behaviour on SS2343 

(316L Analogue) in Nitric Acid 

3.3.1  Introduction 

In the previous section the electrochemical behaviour of 316L SS in nitric acid concentrations ≤15% wt. 

was characterised using LSV and EIS. This section deals with microgravimetric measurements of SS2343 

(316L SS equivalent, see Chapter 2) in nitric acid using the Electrochemical Quartz Crystal 

Microgravimetry (EQCM) and how recorded mass changes are related to the electrochemical behaviour 

of 316L SS in HNO3. 

3.3.2 Establishing 316L as a suitable analogue for 2343 

3.3.2.1 Introduction  

No 316L SS QCM crystals were not commercially available at the time of this study. The closest analogue 

was found to be SS2343. SS2343 may be regarded as a suitable analogue for 316L SS due to its similar 

chemical composition, Table 3-1. Work by Donik et al [149] compared the electrochemical and 
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potentiodynamic properties of 316L SS and SS2343 indicates that their corrosion behaviour is almost 

identical, only differing at high Cl- concentrations. 

Table 3-1 - Composition of various Stainless Steels (% wt.) [46] 

Metals Cr Ni C Mn Si P S Mo Nb 

316L 16.6 10.03 0.016 1.49 0.48 0.03 0.002 2.5 0.004 
SS2343 16.87 10.74 0.026 1.51 0.36 0.033 0.025 2.53 0.005 

 

From Table 3-1 it can be seen that some compositional differences do exist between the two steels, 

SS2343 has slightly higher Cr, Ni, C, Mn and S content, whereas 316L has a higher Si content. Thus, it 

is necessary to briefly compare their electrochemical behaviour in 5% wt. HNO3 electrolyte, in order to 

ensure the suitability of SS2343 as an analogue for 316L SS.  

3.3.2.2 Comparison of the Electrochemical Behaviour of 316L SS and SS2343 

Initial tests used linear sweep voltammetry across the same voltage window and at the same scan speed 

as that employed in LSV studies in section 3-1. The results of this experiment in the form of current 

density and log current density are shown in Figure 3-16.  

 

Figure 3-16 - Potentiodynamic polarisation curves showing a) potential vs. current density and b) 

potential vs. log current density of SS 2343 and 316L SS in 5% wt. HNO3 (sweep rate, 10 mV s-1). 

SS 2343 

316L SS 

a) b) 
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The polarisation curves in Figure 3-16 broadly show that the two steels are electrochemically similar, 

with passivity and transpassivity occurring at approximately the same point. This suggests that SS2343 

is suitable as an analogue for 316L SS in electrochemical experiments. However, there are slight 

differences between the two. In general, in Figure 3-16a, SS2343 has a lower current from ~-0.25 V to 1 

V compared to that of 316L SS i.e. SS2342 appears to be more passive. In Figure 3-16b, Ecorr is more 

positive (-0.17 compared to -0.25 V for 316L SS) and icorr is lower (-5.5 Log A cm-3 compared to -5 Log 

A cm-3).  Onset of transpassive dissolution occurs at 1V for SS2343 and ~0.9 V for 316L SS. The general 

difference in current and Ecorr is expected to be due to slight differences in the composition between the 

two steels. 

Thus, in order to further compare the two steels a series of potential step experiments were performed, 

whereby the potential is stepped by 150 mV every 45 minutes while the current is measured. Figure 3-17 

shows the results of this experiment in 5% wt. HNO3.  

  

Figure 3-17 – Current measured over time during potential step measurements of SS 2343 and SS 316L 

in 5% wt. HNO3. 

Again, there is good electrochemical agreement between the two alloys, although, as noted for Figure 

3-16, there are some minor differences at potentials <0.1 V and potentials >1 V. Specifically, current 

levels are lower for SS2343, again most likely due to slight compositional differences. However, these 

small differences aside, overall the results lead to the conclusion that SS2343 is a suitable analogue for 

316L SS in terms of its electrochemical corrosion behaviour. 
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3.3.3 EQCM LSV/Voltamassogram studies 

As described in Chapter 1, charge passed in linear sweep voltammograms may be related to mass changes 

at the electrode surface through application of Faraday’s law. However, changes in current in LSVs may 

also be due to hydrogen or oxygen evolution processes or oxidation/reduction of solution species, for 

example the electrochemical conversion of nitric acid to nitrous acid. Thus, it is important to separate 

corrosion processes from other charge transfer processes. In order to do this the QCM, which provides in 

situ nanogram measurements of mass changes that accompany electrode processes, is coupled with a 

potentiostat to allow simultaneous monitoring of mass change and current passed during LSV 

measurements.  

Using SS2343 piezoelectrodes, polarisation curves and simultaneous voltamassograms were recorded 

from 0 V (low passive potential) to 1 V (transpassive dissolution) at a scan rate of 10 mV s-1. Figure 

3-18a, Figure 3-19a and Figure 3-20a show the measured current density (A cm2) and the corresponding 

mass change for SS2343 in 5% wt.-15% wt. nitric acid.  

     

Figure 3-18 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 5% wt. HNO3. Sweep rate = 10 mV s-1. 
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Figure 3-19 - a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 10% wt. HNO3. Sweep rate = 10 mV s-1. 

      

Figure 3-20 - a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 15% wt. HNO3. Sweep rate = 10 mV s-1. 

Considering first the general relationship between the voltammogram and voltamassogram, using the 

lowest HNO3 concentration data of Figure 3-18 (i.e. 5% HNO3), at 0 V an initial small mass loss is 

observed with initiation of scanning. However, in the simultaneously recorded LSV it can be seen that 

the current decreases at this potential and this is more apparent in the log I vs. E data. This potential is 

below Ecorr identified in section 3.1.1 and thus water reduction and hydrogen evolution is occurring as 

well as slow dissolution of the steel/air formed passive film. The majority of the observed mass loss is 

thus expected to be due to the dissolution of the steel/air formed passive film on the electrode surface. 

This mass loss is arrested at a potential of ~0.1 V and a mass increase is observed. The current also 

achieves steady state at this point indicating that the passive film is establishing itself. As the potential 

increases above ~0.1 V mass slowly begins to increase as the protective oxide layer grows and 

reinforces. However, as the potential is increased towards the transpassive region, mass increase slows 

and mass then starts to decrease at ~0.75 V. As previously discussed in sections 3.1 and 3.2, at this 

potential, chromium begins to switch valence states from Cr(III) to Cr(VI). Cr(VI) is more soluble in 
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this environment, leading to chromium dissolution from the oxide layer. Finally, above 0.8 V the 

chromium oxide layer destabilises and oxidative dissolution of the underlying iron surface occurs, as 

shown by the large decrease in mass and concurrent increase in oxidative current.  

Differences between the voltammetric behaviour observed in 5%, 10% and 15% HNO3 are shown in 

Figure 3-18, Figure 3-19 and Figure 3-20. These may be more easily understood by plotting the 

voltamassograms only for each concentration on one plot. This is shown in Figure 3-21. 

 

Figure 3-21 – Voltamassograms of SS2343 piezoelectrodes in 5-15% wt. HNO3. 

At 5 and 10% wt. HNO3 the observed mass increase in the passive region is very similar, indicating that 

the film formation mechanism is the same in both concentrations. The main difference between these two 

concentrations is the earlier onset of Cr(III) oxidation (~0.6 V vs. ~0.75V), presumably due to the 

increased solubility of Cr oxides at a the lower pHs / higher HNO3 concentrations. 

At 15% wt. nitric acid the mass of the steel piezoelectrode slowly decreases at potentials > ~0.05V, which 

is quite different compared to the two lower concentrations (5 and 10% wt. HNO3) where film formation 

and growth results in a mass increase. Interestingly the log I vs. E results of Figure 3-20 suggest that Ecorr 

is significantly higher than at 5 and 10% wt. HNO3 and higher than expected when compared to LSV 

results in Figure 3-2. EQCM LSV experiments were repeated and a similar Ecorr was observed each time, 

the reason for this is currently unknown and will need to be investigated further. Even when the potential 

increases above Ecorr the film on the steel surface continues to decrease in mass, quite contrary to the 

voltamassogram results discussed above. Schmutz & Landolt have identified similar behaviour in the 

passive region on QCM crystals sputtered with an iron-chromium alloy [73]. Schmutz & Landolt 

attributed this behaviour to continuous metal dissolution occurring alongside film formation with the 
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associated two currents essentially cancelling each other out. Essentially, the Cr passive layer takes on a 

semi-porous character due to deterioration from Cr(III) to Cr(VI) conversion, allowing low level 

dissolution of underlying Fe/Fe3O4 through the usually protective Cr oxide. A net mass loss is observed 

because the negative mass change from the dissolution of iron exceeds the positive mass change resulting 

from chromium oxide film growth. Schmutz & Landolt also suggest that a relative increase in Cr content 

in the passive film is not due to the selective oxidation of Cr rather it is due to the selective dissolution 

of Fe at the metal-oxide interface. This behaviour does not occur at lower HNO3 concentrations, however, 

and thus appears to be HNO3 concentration dependant. This is most likely due to an increase in the 

solubility of Fe with a decrease in pH. 

EQCM and LSV have been used here as a rapid scanning technique. Whilst LSV is a useful 

electrochemical characterisation technique it does not allow for oxide layer growth kinetics to be 

determined, the primary area of interest for radionuclide uptake. Therefore, in the next section EQCM 

combined with slower potential-step measurements have been used to more fully understand Cr/Fe film 

formation and growth in the passive phase.  

3.3.4 EQCM Potential Step Studies 

Using the EQCM, chronoamperometric-microgravimetric measurements were made by means of a 

potential ‘staircase’ experiment in which the potential was stepped at 0.15 V intervals from an initial 

value of -0.2 to 1.15 V. At each step on the ‘staircase’ the potential was held for 45 minutes and the 

resultant current transient and change in electrode mass was recorded. 

 Figure 3-22 shows the time dependence of the changes in electrode mass (as determined by the use of 

the Sauerbrey equation, equations (2.15) and (2.16) above) [174]) that occur in response to the potential 

‘staircase’ as a function of HNO3 concentration, from  a HNO3 concentration of 5% wt. (Figure 3-22A) 

to 15% wt. (Figure 3-22C). As with the LSV studies of Figure 3-21, in general oxide layer growth 

decreases with increasing HNO3 concentration, seen most convincingly from the mass measurements 

made at +0.55V  However, more subtle observations as to differences between HNO3 concentrations may 

be made based on the shapes of each of the mass traces in Figure 3-23.  
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Considering first the cathodic region: broadly net mass gains are observed in the potential range -0.2 to 

0.25 V due to the formation of the Cr/Fe oxide passive film. Mass gains are higher at 5% wt. HNO3 and 

decrease gradually with increasing HNO3 concentration. It is interesting to note that in 15% wt. HNO3 

an increase in mass is observed, whereas in the previous LSV EQCM experiments an overall mass loss 

was recorded. This is most likely due to instabilities in the passive film formed in the low potential passive 

region at fast scan rates, with Cr(III) to Cr(VI) decreasing film stability, compared to slower scan rates in 

the potential step studies which allow the film to stabilise before a change in the environmental 

conditions. 

 

Figure 3-22 - Mass change of SS 2343 as a function of time during potential step experiments in 5-15% 

wt. (A-C respectively) HNO3. Polarisation conditions: Start potential = -0.2 V, end potential = 1 V, 

potential step = 0.15 V, time between steps = 45 mins. 

As the potential increases, no net mass losses or gains are observed from 0.4 and 0.7 V for 5 and 10% 

wt. HNO3 respectively and from 0.25 V for 15% wt. HNO3. As discussed in the previous section, this 

change in behaviour corresponds to the region where it has been suggested that slow Cr(III) to Cr(VI) 

begins to occur at high potentials in the passive region, immediately prior to transpassivity [56,65], 

resulting in a balance of Cr passive film growth and dissolution. At 15% wt. HNO3 this occurs at a much 
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lower potential in the passive region, presumably due to the increased concentration of HNO3 (and 

therefore HNO2 availability) and increased solubility of Fe/Cr precursor oxides (see section 3.2). 

In 5 and 10% wt. HNO3, a mass decrease is observed at higher potentials, ~0.85 to 1 V, indicating the 

early onset of transpassivity just before the breakdown potential (1 V) is reached and rapid dissolution of 

underlying iron occurs [65], [74]. In 15% wt. HNO3 this mass decrease occurs earlier, ~0.7 V. As 

discussed in the previous section this is presumably due to the increased solubility of Fe oxides at a lower 

pH, allowing more rapid dissolution through a weakened, semi-porous, Cr oxide passive film. 

In summary, EQCM studies have characterised passive film growth and stability in concentrations of 

HNO3 ≤ 15% wt. In 5 and 10% wt. HNO3 film formation, stabilisation and dissolution occurs at similar 

potentials throughout. However, in general the overall film thickness is lower at 10% wt.% wt. HNO3 

than at 5% wt. HNO3. In 15% wt. HNO3, film formation behaviour differs, in fast scan LSV studies a 

mass loss is observed at all potentials. This has been attributed to the semi-porous behaviour of Cr oxide 

at this HNO3 concentration, allowing the slow dissolution of underlying Fe, consequently resulting in an 

overall mass decrease. However, during potential step studies this behaviour is not observed. It is believed 

that the slower scan rate in the E-step studies allows the film to stabilise before any changes in 

environmental conditions occur. E-step studies observed a decrease in overall mass increase with 

increasing HNO3 concentrations and this matches well with decreasing Rp peak values observed in EIS 

studies of section 3.2. The decrease in both mass and Rp values indicates that the passive layer thickness 

is decreasing with increasing HNO3 concentration. 

 

 Compositional Analysis of the Passive Film Formed On 316L 

Stainless Steel in Nitric Acid 

3.4.1 Introduction 

In the preceding sections of this chapter we have electrochemically characterised the passive behaviour 

of 316L SS samples in HNO3 concentrations from 5-15 % wt. We have demonstrated that Ecorr increases 

with increasing HNO3 concentration (LSV data, section 3.1) and that passive layer thickness decreases 
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with increasing HNO3 concentrations (EQCM data, section 3.3). Passive oxide film formation slows at 

potentials ≥ 0.25 V vs. SCE due to a pre-passive Cr(III)/Cr(VI) dissolution reaction (EQCM data, section 

3.3).  

This chapter attempts to analytically determine, using X-ray Photoelectron Spectroscopy (XPS), any 

compositional changes that may occur in the so formed passive films as a function of applied potential in 

5% wt. HNO3. However, due to time and equipment access restrictions, measurements were only 

recorded in 5% wt. HNO3 in the ≤15% wt. HNO3 range. Nonetheless, the results do provide some useful 

information regarding layer composition changes as a function of applied potential. 

XPS measures the surface elemental composition, empirical formula and chemical state of the sample 

under interrogation [175]. Thus, it is invaluable for understanding the composition of thin films, oxidation 

processes, passivity and the interaction of materials with different electrochemical environments. 

Importantly, XPS has been used previously in several studies to assess the accumulation of uranium on 

stainless steel surfaces [106], [107], [118] and has also been used to characterise depth, distribution and 

chemical state of various contaminants in the passive oxide layer formed on process stainless steels [103], 

[176]. 

Based on these previous studies, here we specifically report on binding energy shifts for the key 

components of the passive oxide layer of 316L only, chiefly the Cr 2p3/2, Fe 2p3/2 and O 1s elemental 

orbital signals. 

3.4.2 Results 

Figure 3-23 shows the initial XPS survey scan of a 316L planchet sample polarised in the passive region 

at 0.2 V in 5% wt. HNO3.  
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Figure 3-23 – Wide survey spectra (main) and high resolution spectra (insets) of the surface oxide layer of a 316L sample polarised at 0.2 V in 5% wt. HNO3. All peaks were 

calibrated to hydrocarbon (C1s) signal, set at 285.00 eV. 
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The survey scan encompasses the entire energy range, showing characteristic peak intensities of all the 

elements that are present on the surface of the sample. After the initial survey scan high resolution scans 

of the chromium, iron and oxygen binding energy signals were taken in order to determine changes in 

their binding energy representative of oxide formation/dissolution. Examples of the high resolution 

spectra are shown in the insets of Figure 3-23. 

It should be noted that nickel is not shown in the high resolution scans of Figure 3-23 as when the spectra 

for nickel was analysed it was concluded that no nickel oxide was present in the passive film on the steel 

surface, with the XPS signal only coming from Ni metal in the steel bulk, as shown in Figure 3-24. 

Therefore, during the following discussion nickel is omitted from analysis. 

 

Figure 3-24 - XPS profile of Ni 2p3/2 after passivation of 316L SS at 0.2 V in 5% wt. HNO3. 

In order to determine the atomic percentage of the key elements shown in the high resolution spectra of 

Figure 3-23, curve fitting must be conducted to quantify and deconvolute the contribution of each 

chemical species to the recorded intensity. A typical curve fit of the Fe 2p region, assuming all possible 

iron species make up the observed intensity, is shown in Figure 3-25.  
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Figure 3-25 – Typical curve fitting for the Fe 2p region after applying linear background subtraction 

Fe 2p XPS profile after passivation of 316L SS at 0.2 V in 5% wt. HNO3. 

In the spectra shown above, curves for the iron species that are present in the Fe 2p region, metal (Fe0) 

and various iron oxides (mainly Fe2O3), have been fitted to the recorded spectra using CasaXPS software 

(CASA Software Ltd.). The spectra ‘envelope’, essentially a line of best fit along the recorded spectra, 

fits very well using this species combination.  

However, due to peak proximity, there is some difficulty in clearly classifying the contribution of each 

species to the identified peaks. The 4 layer model of Figure 1-33 showed how different oxides will be 

present simultaneously making it difficult to discern which peak can be attributed to which oxide. 

Therefore, to ease peak identification the Fe 2p spectra were fitted using only the two dominant Fe 2p 

components as illustrated in Figure 3-26.  
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Figure 3-26 – Curve fit to the Fe 2p3/2 region with only two components. Fe 2p XPS profile after 

passivation of 316L SS at 0.2 V in 5% wt. HNO3.  

It can be seen from Figure 3-26 that using this simplified component analysis technique the spectra 

‘envelope’ still maintained a good fit to the actual XPS spectra, validating the use of this type of reduced 

analysis.  

Thus, for the high resolution spectra of Figure 3-23 the peak binding energy (Eb) parameters of each of 

the dominant components of Fe, Cr and O have been used. The average binding energy and full width 

half maximum (FWHM) for these dominant components is shown in Table 3-2. Due to uncertainty, an 

adjustment of ± 0.5 eV to peak position was applied.  

Table 3-2 – Average peak positions and FWHM for Fe 2p, Cr 2p and O 1s curve fitted intensities. 

Component Assignment Average Peak Position FWHM 

Fe 2p 
Fe0 706.96 1 

Fe2O3/Fe3O4 710.32 5.1 

Cr 2p 

Cr0 573.97 1.13 
Cr2O3 575.82 0.7 

Cr(OH)3 576.84 2.2 
CrO3 578.60 2.5 

O 1s 
Fe2O3/Fe3O4/Cr2O3 530.11 1.2 

Cr(OH)3 531.72 2.1 
H2O/ O2

0 ads 533.80 2 
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During analysis peak positions were kept constant for each element and linear background correction was 

used to determine spectral baseline and peaks. Furthermore where the full width half maximum (FWHM) 

was wider than average it was assumed that two phases were present with a similar binding energy. Based 

on the parameters of Table 3-2, curve fitted high resolution spectra of 316L SS samples in 5% wt. HNO3 

polarised at 0.2 and 0.8V respectively are shown in Figure 3-27. 

Considering first the results of the samples polarised at 0.2 V, the iron profiles in Figure 3-27a show two 

peaks, the peak at 706.96 eV is due to elemental iron (Fe0) and the peak around 710.32 eV is attributed 

to either iron (III) oxide (Fe2O3) or iron (II,III) oxide (Fe3O4) in 316L SS [177]. The FWHM for the 

Fe(III) peak is quite large, most likely due to a multiphase oxide of Fe2O3 and Fe3O4 and unfitted peaks 

of FeO and elemental Fe interacting with Fe oxide [178] as discussed above and shown in Figure 3-25. 

From the absence of hydroxide species, such as Geothite (FeO(OH)) or Lepidocrocite (γ-FeO(OH)) it is 

not unreasonable to conclude that little Fe is present at the direct interface between the alloy and the 

electrolyte, suggesting a Cr-rich passive film.  

The chromium profiles in Figure 3-27b, show four peaks which are attributed to: Cr metal (573.97 eV), 

Chromium (III) oxide (Cr2O3) (575.82 eV), Chromium (III) hydroxide (Cr(OH)3) (576.84 eV) and 

Chromium (VI) oxide (CrO3) (578.60 eV).  

Finally, the oxygen profile shown in Figure 3-27c. The O1s spectra of Figure 3-27c taken independently 

from iron and chromium is not enough to confirm the presence of these species due to convolution. It is, 

however, useful to confirm the presence of mixed Cr/Fe oxides/hydroxides on the metal surface [105].  
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Figure 3-27 - XPS profile of a) Fe 2p3/2, b) Cr 2p3/2 and c) O 1s after passivation. 

Due to the large number of species involved in Figure 3-27, and described above, compositional 

differences between the two potentials may be more easily understood by plotting the relative atomic 

percentages of each species for both the iron profiles of Figure 3-27a and the chromium profiles of Figure 

3-27b. Such plots for both 0.2 and 0.8 V respectively are shown in Figure 3-28. 
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Figure 3-28 – Atomic Percentage data comparison for Fr (a) and Cr (b) results In both figures,, Bar 1 

relates to data recorded at 0.2 V, Bar 2 relates to data recorded at 0.8V.  

It can be seen from Figure 3-28 that increasing the potential to 0.8V leads to an increase in intensity of 

the Fe(III)/Fe(II/III) oxide peak at around 710.32 eV, suggesting an increase in Fe(III)/Fe(II/III) oxide 

concentration close to or at the steel surface.  

It is important to note that at higher potentials Fe(II) is oxidised to Fe(III) [57], [178], [179]. The oxide 

composition at 0.8 V and above is therefore proportionally most likely dominated by Fe(III) oxide [57], 

[179].  

Turning to the Cr results of Figure 3-28, it can be seen that increasing the potential to 0.8 V also increases 

the intensity of CrO3 (Cr(VI)), whilst decreasing the intensity of the Cr0 and Cr(OH)3 signal. As discussed 

previously, and described by Padhy [65], Cr is more soluble in its Cr(VI) oxidation state, CrO3, than its 

Cr(III) oxidation state Cr2O3/Cr(OH)3 at this higher potential. The presence of Cr(VI) in the film is a 

necessary prerequisite prior to dissolution from the film. Ring disk electrode experiments by Betova et 

al. [180] show Cr(VI) dissolution at potentials >0.8V which is in agreement with EQCM results shown 

in Figure 3-22, where mass loss is observed at E≥0.85V. Thus, as with LSV, EIS and EQCM results, XPS 

results support the theory that an increase in potential to 0.8V leads to the oxidation of Cr(III) to Cr(VI) 

which will subsequently lead to dissolution of Cr(VI) from the film and a decrease in surface Cr0/Cr(OH)3 
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content as more chromium is converted to the higher valency state. Interestingly, while Cr0/Cr(OH)3 

content decreases from 0.2 to 0.8 V, Cr2O3 content in the passive film increases from 0.2 to 0.8V. The 

origin of this increase is not described any further here, but in detail in the following chapter (section 

4.5). 

In conclusion, XPS investigation has shown that a passive film consisting of Cr hydroxide and Cr(III) 

oxide layers is formed at lower passive only potentials (0.2V), with said film having a higher 

concentration of Cr(VI) at potentials on the edge of the passive transpassive transition (0.8V), supporting 

previous results by Padhy [65] . The absence of a Fe(OH)3/FeOOH signal in the iron profiles indicates 

that no Fe is present at the alloy/electrolyte interface further supporting the presence of a Cr-rich passive 

film. 

 Summary 

In this chapter, the electrochemical behaviour of 316L SS in HNO3 concentrations ≤15% wt. has been 

studied. LSV and EIS results indicate that in order to passivate 316L SS surfaces in HNO3 concentrations 

of ≤15% wt. the applied potential needs to be <1 V to avoid transpassive dissolution of the Fe-Cr oxide 

film, and >-0.2 V to allow passivation to occur.  

Using electrochemical techniques, we have established the viability of SS2343 as an analogue for 316L 

SS for EQCM studies. Further, using information gleaned from the LSV and EIS studies it has been 

shown that the EQCM can follow the in-situ mass change during electrochemically driven passivation 

and transpassive dissolution of a SS2343 piezoelectrode. Current and mass-response curves show that as 

a function of potential, while the current trace may suggest the steel is passive, in reality the film may not 

be fully formed or semi-porous and therefore will not provide full protection for the steel surface.   

Through potential ‘staircase’ experiments, the potential was held for a longer time to assess mass change 

of SS 2343 as a function of HNO3 concentration (5% wt. to 15% wt.). At HNO3 concentration ≤15% wt., 

the maximum extent of oxide growth is observed at E=~0.55 V. Beyond this potential, transpassive 

processes, via either slow conversion of Cr(III) to Cr(VI) or full transpassive dissolution of 

Cr(OH)3/Cr2O3 leads to a mass loss from the electrode surface. 
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XPS studies in 5% wt. HNO3 have shown that at low potentials in the passive range (e.g. 0.2 V) a passive 

film consisting of Cr (III) hydroxide and Cr(III) oxide layers is predominant. At higher potentials on the 

edge of the passive-transpassive transition (0.8 V), the film shows a higher concentration of Cr(VI), in 

line with electrochemical and microgravimetric observations. 

Having considered the electrochemical corrosion behaviour of 316L SS process steel at HNO3 

concentrations <15% wt., in the next chapter we now consider the behaviour of said steel in nitric acid 

concentrations >15% wt., typical of those found at head end fuel pin dissolution in a reprocessing process. 
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316L Stainless Steel Behaviour in 

Nitric Acid ≥20% wt.  



 

125 
 

4 ELECTROCHEMICAL, MICROGRAVIMETRIC AND 

SURFACE CHARACTERISATION OF 316L STAINLESS 

STEEL BEHAVIOUR IN NITRIC ACID CONCENTRATIONS 

≥20% wt. 

In the previous chapter, results from electrochemical and XPS experiments performed on 316L SS were 

analysed in HNO3 concentrations ≤15% wt. Here, we examine the effect of HNO3 at concentrations ≥20% 

wt. Such concentrations are common at head end dissolution of fuel rods, in highly active liquor 

evaporators and in initial uranium scrub and backwash steps. As with chapter 3, here we examine the 

corrosion behaviour of 316L SS under such conditions using: Linear Sweep Voltammetry, 

Electrochemical Impedance Spectroscopy, Microgravimetry and X-ray Photoelectron Spectroscopy. 

 Linear Sweep Voltammetry 

In order to provide a preliminary assessment of what effect ‘high’ HNO3 concentrations (≥20% wt. but ≤ 

35% wt.)  have on the electrochemical behaviour of 316L SS, linear sweep voltammetry was used to 

identify the point at which the steel corrodes, passivates and then transpassively dissolves in increasing 

HNO3 concentrations. 

Figure 4-1 shows the measurements from LSV experiments for 316L SS electrodes recorded in HNO3 

concentrations from 20-35% wt. (4.51 to 7.91 mol dm-3) over the potential range -0.5 to 1.5 V. In order 

to provide comparison against lower HNO3 concentrations, LSV results for 5-15% wt. HNO3 have also 

been added to Figure 4-1. 

A change in behaviour with increase in HNO3 concentration is seen in Figure 4-1; however, due to the 

currents measured at higher HNO3 concentrations it is difficult to make any comparisons. More 

information can be gathered from these measurements when the log of the current density is plotted 

against potential, as shown in Figure 4.2. 
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Figure 4-1 – Linear Sweep Voltammograms for 316L SS in 5-35% wt. HNO3 at room temperature (20 

±2oC). Plots were measured in the potential range -0.5 to 1.5 V (sweep rate, 10 mV s-1). 

Figure 4-2 shows the potentiodynamic polarisation curves (log current density plotted against potential) 

for 316L SS electrodes recorded in HNO3 concentrations from 5-35% wt. over the potential range -0.5 to 

1.5 V.  

From Figure 4-2, it can be seen that whilst there is a gradual increase in Ecorr between 5% wt. and 15% 

wt. HNO3,this increase dramatically accelerates between 15% wt. and 20% wt. (3.38 and 4.51 mol dm-3) 

HNO3. This is consistent with previous results reported by Otero [181], on 316L SS, and Whillock [182], 

on 304L SS, and may be explained as follows.  

 

Figure 4-2 - Potentiodynamic polarisation plots of 316L SS in 5-35% wt. HNO3 at room temperature 

(20 ±2oC). Plots were measured in the potential range -0.5 to 1.5 V (sweep rate, 10 mV s-1). 
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As previously described in Chapter 3, the corrosion potential (Ecorr) of the 316L SS surface in the presence 

of HNO3 is controlled by the concentration of HNO2 available to interact with the steel surface [6]. At 

low concentrations of HNO3 (≤15% wt.) the autocatalytic regeneration of HNO2, reaction (1.19) and 

(1.21) (if homogenous according to Schmid et al.) or reactions (1.22) and (1.24) (if heterogeneous 

according to Balbaud et al.), is slow due to the low HNO3 concentration and associated low [HNO2].   

𝐻𝑁𝑂ଶ + 𝐻ା  + 𝑒ି ⇄ 𝑁𝑂 + 𝐻ଶ𝑂 (1.19) 

2𝑁𝑂 + 𝐻𝑁𝑂ଷ + 𝐻ଶ𝑂 ⇄ 3𝐻𝑁𝑂ଶ (1.21) 

However, at high HNO3 concentrations (≥20% wt.) the regeneration of HNO2 is fast due to the increased 

availability of HNO3 driving reaction (1.23), and the increased thermodynamic stability of NO2 at higher 

acidities [183].  

𝐻𝑁𝑂ଷ + 𝑁𝑂 ⇄ 𝐻𝑁𝑂ଶ + 𝑁𝑂ଶ (1.23) 

Reaction 1.19 is believed by Balbaud et al. to be heterogeneous (see reaction (1.22)) at all acidities, 

something Lange et al. agrees with at high acidities (see reaction (1.30)). Both Balbaud et al. and Lange 

et al. agree that the reactions occurring after (1.19)/(1.22)/(1.30) have at least some heterogeneous 

character (see reactions (1.23), (1.24) and (1.32)-(1.35) although they differ in view as to their exact 

nature. 

 

Nonetheless, the increase in HNO3 concentration to >20% wt. HNO3 leads to a change in the 

stoichiometric ratio for the reaction of (most likely adsorbed) NO with nitric acid from: 

(i) 1NO3
- to 2NO at [HNO3] < 15% wt. (reaction (1.21)) to  

(ii) 1NO3
- to 1NO at [HNO3] >20% wt. (reaction (1.23)) 

This means that HNO2 regeneration is easier/quicker at higher HNO3 concentrations as the ratio goes 

from 1:2 to 1:1. 

Thus, charge transfer at the steel surface is not limited by the concentration of HNO2, resulting in an 

increase in the observed corrosion potential and reduction in the window of passivation. The increased 

acidity may also lead to H+ reduction, also leading to an increase in Ecorr, whilst the surface of the steel 

may still be passive. This will be further investigated during EQCM, EIS and XPS experiments. 
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Considering now the region of transpassive dissolution, and specifically the region of secondary 

passivation (around 1 V in Figure 4-2), it can be seen that the thinning of  the secondary passive Fe(III) 

oxide film demonstrated at 15% wt. HNO3 continues at HNO3 concentrations up to 25% wt. Secondary 

passivation is completely inhibited at HNO3 concentrations ≥ 25% wt., as demonstrated by the almost 

completely linear current increase from the onset of transpassive dissolution (at ~0.9 V) to 1.5 V. As with 

our interpretation of this behaviour at 15% wt. HNO3, this may be explained by the increased solubility 

of Fe(III) oxide in the presence of increasing HNO3 and H+
 concentrations. 

4.1.1  Ecorr and icorr Analysis.  

Corrosion potential (Ecorr) and corrosion current density (icorr) were calculated using Tafel extrapolation 

of the linear segments of the measured potential-current density curves of Figure 4-2, in the vicinity of 

Ecorr. Figure 4-3a shows Ecorr values obtained at 5 - 35% wt. HNO3 concentrations. 

    

Figure 4-3 - a) Corrosion potential, Ecorr, values vs. HNO3 concentration b) Corrosion current density, 

icorr. Values vs. HNO3 concentration and associated error bars calculated from Figure 4-2a for 316L SS 

in 5 - 35% wt. nitric acid. 

From Figure 4-3a it can be seen that Ecorr varies sigmoidally with HNO3 concentration, with Ecorr 

increasing in the range 5 - 25% wt. HNO3 (1.13 - 5.53 mol dm-3) HNO3, before plateauing at HNO3 

concentrations ≥25% wt. Again, this increase in Ecorr may be explained by the increase in autocatalytic 

contribution of HNO2 (due to the fewer number of surface adsorbed NO molecules required to react with 

HNO3 at higher HNO3 concentrations, see above) via reactions (1.33) to (1.35) at HNO3 concentration ≥ 

15% wt. 
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Figure 4-3b shows the calculated icorr values for 5 – 35% wt. HNO3. It can be seen from Figure 4-2b that 

icorr values initially decrease with increasing HNO3 at HNO3 concentrations of ≤15% wt. Looking at 

Figure 4-2b it can be seen that the Ecorr values associated with this decrease in icorr increase with HNO3 

concentration. Assuming that Ecorr = open circuit potential then comparison with Figure 4-3b would 

suggest that the decrease in icorr with HNO3 concentration may be associated with an increase in the 

thickness of the passivating oxide film (increase in Ecorr into the passive region).  

At HNO3 concentrations ≥20% wt. (4.51 mol dm-3) icorr increases indicating that the passive oxide film 

on the surface of the steel is degrading resulting in an increase in the corrosion rate. Again assuming that 

Ecorr = open circuit potential and comparing with Figure 4-3b such a potential would suggest that onset 

of Cr(III) to Cr(VI) oxidation is occurring (as shown by the small increase in current in Figure 4-3b). 

Such a passive-transpassive transition may be more easily understood through the construction of a 

pseudo-polarogram, whereby Ecorr is plotted against icorr for HNO3 concentrations 5-35% wt. This is 

shown in Figure 4-4. 

 

Figure 4-4 – Pseudo-polarogram of icorr vs. Ecorr (data points minus error bars for clarity) calculated 

from Figure 4-2a for 316L SS in 5 - 35% wt. (1-7 respectively) nitric acid. 

Figure 4-4 shows that at HNO3 concentrations of >20% wt., where Ecorr >0.4 V, icorr increases with 

increasing concentration of nitric acid as Cr(III) oxidises to soluble Cr(VI) in the passive film due to 

onset of early transpassive dissolution. The increase in Ecorr and then icorr due to chromium oxidation can 

also be linked to the autocatalytic regeneration of HNO2. As described above, the increase in HNO3 

concentration to > 20% wt. changes the NO:HNO3 stoichiometric ratio from 2:1 below 15% wt. to 1:1 
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above 20% wt. HNO3 – meaning that nitrous regeneration is easier at the higher nitric concentration. In 

other words, HNO2, which is now in abundance due to the stability of NO2 at higher acidities, is no longer 

the limiting factor in the charge transfer at the steel surface, resulting in the increase in the observed 

corrosion potential. This passive to transpassive behaviour with increasing HNO3 concentration is 

discussed in more detail in the following EIS and EQCM result sections. 

 Electrochemical Impedance Spectroscopy (EIS) Studies on 316L 

SS in Nitric Acid 

In the previous chapter EIS was shown to be a useful technique when assessing small changes at the 

electrode surface, some of which may indicate passive film growth. Here, 316L SS in HNO3 

concentrations of  ≥ 20% wt. were analysed in the same potential region (-0.5 to 1.5V vs. SCE) as the 

previous electrochemical studies in lower concentrations of HNO3, to allow for comparison. Results 

obtained in this section are first presented using the raw experimental data in the form of Nyquist plots 

and E vs. Z’ plots at low frequencies. The data is then modelled using Z-View2 impedance software and 

equivalent circuit, with the results are presented alongside LSV results.  

4.2.1 Nyquist Plots 

Figure 4-5 to Figure 4-11 shows resultant nyquist plots at -0.4, 0, 0.4, 0.8 and 1.2 V. As previously 

discussed in Chapter 3, at HNO3 concentrations of ≤ 15% wt. the real impedance values obtained at 

potentials of -0.4V and 1.2V representative of the hydrogen evolution and transpassive dissolution 

regions of the steel are very low, indicating the surface of the steel is not fully passivated. However, at 

potentials of 0.4V and 0.8V, impedance values are several orders of magnitude higher indicating that a 

passive film has formed on the steel surface, as would be expected based on the LSV of Figure 4-2.  

At HNO3 concentrations ≥ 20% wt. impedance values in the passive region (0.4 and 0.8 V) decrease with 

increasing HNO3 concentration. This is particularly apparent at nitric acid concentrations ≥25% wt., 

where the impedance values recorded at 0.4V decreases rapidly with increasing concentrations of HNO3 

in the range of 25-35% wt. 
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Figure 4-5 – Nyquist plots for 316L SS in 5% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 V. 

-0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise variability 

visibility.  

   

        

Figure 4-6 – Nyquist plots for 316L SS in 10% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 
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Figure 4-7 – Nyquist plots for 316L SS in 15% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 

   

      

Figure 4-8 – Nyquist plots for 316L SS in 20% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 
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Figure 4-9 – Nyquist plots for 316L SS in 25% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 

 

      

Figure 4-10 – Nyquist plots for 316L SS in 30% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 
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Figure 4-11 – Nyquist plots for 316L SS in 35% wt. HNO3 solution at a) -0.4-1.2 V, b) -0.4 V and c) 1.2 

V. -0.4 V and 1.2 V have been extracted for clarity. Axis scales have been altered to maximise 

variability visibility. 
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Figure 4-12 - Nyquist plots for 316L SS in a) 5-15% wt. HNO3 solution and b) 20-25% wt. at 0V. Axis 

scales have been altered to maximise variability visibility. 

Changes in what has been identified as the passive region at 5% wt. HNO3 may be more easily assessed 

through analysis of impedance results taken in the passive region only (0, 0.2, 0.4, 0.6 and 0.8 V). Nyquist 

plots for these potentials are shown in Figure 4-13. 
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corroding.  
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At HNO3 concentrations ≥25% even impedance values recorded at 0.6 V are seen to decrease compared 

to those recorded at lower HNO3 concentrations; here Ecorr has risen to 0.67, with impedance values 

dropping from ~50,000 ohms to ~5,000 at 25% wt. to 35% wt. HNO3 respectively. This region has been 

identified as the pre-transpassive region where Cr(III) is oxidised to Cr(VI) which subsequently dissolves 

into solution. The area is still passive but the passive film may not be fully formed leading to reduced 

impedance. This passive/transpassive transition will be addressed further in Polarisation Resistance plots 

in Section 4.2.3 and Microgravimetric studies in Section 4.4. 
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Figure 4-13 - Nyquist plots for 316L SS in 5-35% wt. HNO3 (a-g) as a function of film formation 

potential. Axis Scales have been altered to maximise variability visibility. 
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4.2.2 Impedance vs. Potential Plots 

As described in Chapter 3, differences in the real impedance, particularly in the low frequency region, 

may be tentatively related to changes in passivation of the steel. Thus, before applying equivalent circuit 

modelling to this data, simple real impedance vs. potential plots have been constructed and plotted 

alongside LSV data from the previous section. Such plots are shown in Figure 4-14 for impedance data 

recorded at a frequency of 0.3 Hz.  

Considering first the plots at HNO3 concentrations ≤ 15% wt. (a-c), as previously discussed in Section 

3.2.2, impedance magnitude increases with potential as the passive region is entered and traversed. At 5 

and 10% wt. HNO3, there is an increase in impedance which then decreases before increasing into the 

main passive film. This is believed to be due to the formation of a precursor passive oxide film that is 

then converted at higher potentials to a full Cr(III) oxide passive film (see section 3.2.2 for a more detailed 

description).   

Now looking at plots for HNO3 concentrations > 15% wt. (d-g), while the passive window does decrease 

in width at higher HNO3 concentrations (20 - 35% wt.), as shown in Figure 4-14 and summarised in 

Figure 4-15, passivation appears to be occurring at potentials below Ecorr. For example, as can be seen 

from Figure 4-14d, for 20% wt. HNO3 Ecorr occurs at ~0.42 V whereas impedance is increasing at ~0.1 

V. Also, at 35% wt. HNO3 Ecorr is at ~0.73 V but real impedance is increasing in magnitude at ~0.35 V. 

Such a result seems unrealistic considering the polarisation plots of Figure 4-2. Thus, as described 

previously, this result is most likely due to interpretation using real impedance vs. potential data being 

too much of a simplification and therefore not clearly defining whether the change in impedance around 

Ecorr is directly related to changes in the passive oxide film resistance, double layer capacitance or solution 

resistance. For example, as discussed previously in Section 4.2.1, hydrogen evolution may have an effect 

on the real impedance values which may ‘hide’ the real behaviour of 316L SS in HNO3. As such, the next 

section describes modelling the data using an equivalent circuit model to extract information on the oxide 

film resistance only.  
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Figure 4-14 – Potentiodynamic polarisation curves plotted alongside low frequency impedance data for 

316L SS in 5-35% wt. HNO3 (a-g) as a function of potential. 
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Figure 4-15 – Effect of potential on impedance magnitude of 316L in 5-35% wt. HNO3 at 0.3 Hz. 

4.2.3 Polarisation Resistance Measurements 

4.2.3.1 Equivalent Circuit 

Equivalent circuits were discussed fully in Section 3.2.3.1. 

For lower HNO3 concentrations (5-15% wt.), two equivalent circuits were considered to be appropriate 

for the results presented in Section 3.2.3. For potentials ≤0 V and ≥1 V a 3 component model containing 

Cdl and Rct is considered the most accurate. The electrode is considered to be corroding, either actively 

or transpassively, therefore charge transfer at the electrode surface is occurring. At 0-1 V the surface is 

passive at these acid concentrations; thus, the more appropriate components would be CPE and Rp which 

measures the resistance and the imperfect capacitance of the surface formed passive film as shown in 

Figure 4-16. 
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Figure 4-16 - Electrical equivalent circuit models used to represent an electrochemical interface 

undergoing corrosion at <0 V and >1 V and passivation in the region of 0-1 V. Rp is the polarization 

resistance, Rct is the charge transfer resistance, Cdl is the double layer capacitance, CPE is the 

Constant Phase Element and Rs is the solution resistance. 

For higher HNO3 concentrations (20-35% wt.), three equivalent circuits were considered to be 

appropriate for the results presented here, as shown in Figure 4-17. Based on the work by Fattah-

alhosseini et al [170], a number of complex equivalent circuit models were tested to describe the 

impedance / corrosion behaviour in lower (≤15% wt.) and higher (≥20% wt.) HNO3 concentrations. The 

3 component models shown in Figure 4-16 (≤15% wt. HNO3) and Figure 4-17 (≥20% wt. HNO3) gave 

the best fit for the data. In the model of Figure 4-17a, R1 and R2 represent the polarisation resistance at 

the electrode surface (R1) and adsorption resistance (R2) caused by adsorbed species at the electrode 

surface, such as H2 or nitrate reduction species (e.g. NO). This model covers a wide potential range, from 

-1.5 V up to ~0.8 V.  
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Figure 4-17 - Electrical equivalent circuit models used to represent an electrochemical interface 

undergoing corrosion at <0.8 V and >1 V and passivation in the region of 0.8 – 1 V. Rp is the 

polarization resistance, Rct is the charge transfer resistance, Cdl is the double layer capacitance, CPE is 

the Constant Phase Element and Rs is the solution resistance. 

However, as the main area of interest is still the central passive region, the simplest model for 

characterising the metal-solution interface is again the Randle cell of Figure 4-17b. As described in 

Chapter 2, Section 3.2.3.1, it includes the three essential parameters, Rs (solution resistance), CPE (the 

imperfect capacitance of the double layer) and Rp (the polarisation resistance) described above [130]. A 

simple model such as this is considered appropriate for analysis here because the Nyquist plots within 

the area of interest exhibit a single time domain semi-circle, with no obvious inductor loops. Chi-squared 

values of the order of 1x10-2 - 8x10-2 were obtained when modelling the data in Zview2, as shown in 

Appendix 2.  

4.2.3.2 Polarisation Resistance (Rp) Plots 

Figure 4-18(a-g) shows potentiodynamic polarisation curves plotted with calculated polarisation 

resistance (Rp) data for 316L SS in HNO3 concentrations from 5-35% wt., over the potential range -0.5 – 

1.5 V. The polarisation resistance (Rp) was again calculated in ZView2, using the simple equivalent 

circuit model, Figure 4-17b, described in section 4.2.3.1 to model the experimental impedance data. Rp 

represents the resistance of any passivating film that has been formed on the electrode surface. Thus, an 

increase in Rp is interpreted here as the formation, stabilisation and possible increase in the thickness of 

the surface oxide layer. Plotting Rp data alongside LSV data allows for a direct comparison with LSV 
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studies. This is shown in Figure 4-18, along with data for HNO3 concentrations < 15% wt. from Chapter 

3 for comparison.  

       

      

        

 

Figure 4-18 - Potentiodynamic polarisation curves from Figure 4-2 plotted with impedance data for 

316L in 5-35% wt. (a-g respectively) nitric acid. 
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Consider first, the cathodic region of the Rp vs potential plots in Figure 4-18. Looking at the Rp vs 

potential plot obtained at 20% wt. HNO3, Figure 4-18d, it can be seen that the initial onset of the increase 

of Rp with potential, and the breadth and height of the Rp peak are all very similar to those features 

recorded at 15% wt. HNO3. Further, while the peak in the Rp plot still remains in the passive region at 

20% wt. HNO3, there appears to be some oxide growth just prior to Ecorr, a feature not seen at HNO3 

concentration < 20% wt. Comparing Figure 4-18d with the pseudo-polarogram of Figure 4-4 reveals that 

actually icorr (and thus the rate of corrosion) is low at 20% wt. HNO3 compared to values of Ecorr observed 

at > 20% wt. Thus, it is reasonable to conclude that 20% wt. HNO3, considered the onset of NO2 

thermodynamic stability by Lange et al. [7], is a transition point where Ecorr is increasing due to the 

increased participation of NO2 in the mechanism associated with HNO3 reduction (see Equations (1.19) 

- (1.23), page 125). It should be noted that whilst this transition in NO2 stability is occurring at 20% wt. 

HNO3, its effect on passivity and corrosion rate at this acidity is minimal, a conclusion supported by the 

icorr measurements of Figure 4-3b. Polarisation curves plotted with Rp and capacitance, shown in Figure 

4-19, also support this conclusion. Capacitance values decrease at potentials well before Ecorr values are 

reached at higher HNO3 concentrations, behaviour typical to a thickening oxide layer. This, the HNO3 

reduction reaction and its products may be electrochemically masking passivation at HNO3 

concentrations ≥20% wt. 

At ≥25% wt. HNO3 the breath and height of the Rp peak in the Rp vs potential plot begins to decrease 

with respect to that seen at 20% wt. HNO3 as Ecorr shifts evermore positive and Ecorr is pushed into the 

region of pre-transpassive dissolution. Such observations are in good agreement with the pseudo-

polarogram of Figure 4-4. 

The decrease in Rp at ~1 V in almost all of the Rp vs potential plots of Figure 4-19 has been previously 

attributed to the onset of transpassive dissolution. The oxidation of Cr(III) to Cr(VI) leads to the 

dissolution of the more soluble Cr(VI) subsequently reducing the effectiveness and effective thickness of 

the passive oxide film. This leads to the subsequent reduction in film resistance and simultaneous increase 

in capacitance, as shown in Figure 4-19.  

The results of Figure 4-19 also indicate that a secondary film is possibly being formed at high potentials 

in high HNO3 concentrations. Capacitance values decrease at ~1.25 V, a result that would be consistent 

with the thickening of a surface oxide film. This occurs in line with an increase in Rp values at >1V in 
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HNO3 concentrations ≤15%. This is not clear in the polarisation curve plots or Rp plots at higher HNO3 

concentrations (≥20% HNO3), this may be due to oxygen evolution masking the formation of this film in 

high HNO3, high potential conditions and the secondary passive film not being as effective as passive 

films formed at lower potentials.  

    

  

 

 

Figure 4-19 - Potentiodynamic polarisation curve plotted with impedance (blue) and capacitance (red) 

data for 316L SS in a-g (5-35% wt. HNO3 solution) as a function of potential. 
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 Analysis of the Nitric Acid Reduction Mechanism on 316L SS 

Using Rotating Disk Electrode Studies 

We have shown in the preceding sections that there is a distinct change in 316L SS corrosion behaviour 

at HNO3 concentrations ≥ 25% wt. This has been suggested to be due to the increased stability of the 

HNO3 reduction product NO2 at HNO3 concentrations ≥ 25% wt., which, via a solution phase hydrolysis 

reaction (1.35) significantly increases the concentration of active corrosion reagent HNO2. The 

electrochemical corrosion studies reported in this thesis have thus far been performed under stagnant 

conditions, where HNO2 diffuses to the electrode surface and is reduced to NO during the concomitant 

oxidation of the steel. However, under reprocessing conditions continuous flow would be induced which 

would therefore have two effects on the reduction of HNO2 and consequently the corrosion of the steel: 

(1) Increased diffusion of HNO2 to the electrode surface and (2) increased formation of NOads via HNO2 

oxidation of the steel. 

Therefore in order to investigate the effect of solution flow on the steel corrosion process and more 

closely examine the reduction of HNO2 at the steel surface, Rotating Disk Electrode (RDE) studies were 

performed using 316L SS disks. Importantly, passive oxide formation has been shown to inhibit nitric 

acid reduction on the steel surface [6]. Thus, in order to study the HNO3 reduction mechanism in more 

detail, polarisation curves were first run in reverse, scanning cathodically from the transpassive region, 

in order to remove, or at least compromise, the passivating layer on the steel first. Figure 4-20 shows an 

example of a non-rotating, cathodically scanned polarisation curve of 316L SS in a 5% wt. HNO3 solution.  

 

Figure 4-20 - Polarisation curve showing a cathodic scan of 316L SS in 5% wt. wt HNO3. Plots were 

measured in the potential range 1.5 to -0.5 V nitric acid at a rate of 10 mV s-1. 
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Figure 4-20 shows a cathodic scan of 316L SS in 5% wt. HNO3. Importantly, a new current peak is 

observed in the 0.1 to 0.4 V region, which for the reader’s convenience is shown in greater detail in the 

inset of Figure 4-20. This peak has been attributed to the surface electrode reaction from reactions 1.22 

and 1.24 [7]: 

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ⇄ 𝑁𝑂(ௗ௦) + 𝐻ଶ𝑂 (1.22) 

2𝑁𝑂(ௗ௦) +  𝐻𝑁𝑂ଷ + 𝐻ଶ𝑂 ⇄ 3𝐻𝑁𝑂ଶ() (1.24) 

Where HNO2 is reduced at the electrode to, in the first instance, Nitrogen Monoxide (NO) [7]. The 

decrease in the reduction current at potentials negative of the peak at 0.25 V has been attributed by Lange 

[7] to the further reduction of NO in a two-step mechanism to N2O. As such the maximum current density 

for the main HNO2 to NO reduction process observed at 0.25 V was selected as the applied potential for 

all subsequent rotation speed studies.  

Moving now to rotating disk electrode studies, Figure 4-21 shows a plot of current density vs. angular 

velocity at 0.25 V in 5, 20 and 35% wt. nitric acid. 

 

Figure 4-21 – Current Density vs. Angular Velocity at 0.25 V/SCE as a function of HNO3 concentration. 

Figure 4-21 shows that at nitric acid concentrations of 5 and 20% wt., current density is mostly 

independent of rotation speed. This indicates that the net HNO3 reduction reaction of equations (1.22) 

and (1.24) is mediated by electroactive species that are entirely adsorbed at the electrode surface. At a 

concentration of 35% wt. HNO3 the reduction current is substantially greater than that recorded at 5 and 
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formation of the electroactive species (or precursor) must be occurring in the bulk solution phase for such 

a dependency to be apparent. 

According to Abel & Schmid [89]–[91] and supported by Balbaud [5], Fauvet [6] and Lange [7] the 

electroactive species in this reaction is believed to be HNO2. At 5 and 20% wt. (1.13 and 4.51 mol dm-3) 

HNO3, the observed current increases slightly with increasing rotation speed. This is most likely due to the 

increased flux of HNO3 to the steel surface, allowing it to react with surface adsorbed NO via reaction 

(1.24). Compared to results recorded at 35% wt. HNO3, electrode rotation at 5 and 20% wt., HNO3 

concentration has little influence because the reaction is following the Balbaud [5] and Fauvet [6] reaction 

mechanism of reactions (1.22) - (1.24), where the electroactive reaction intermediates, or their immediate 

precursors, are adsorbed at the electrode surface.  

At 35% wt. (7.89 mol dm-3) the rotation of the electrode leads to a decrease in the current density. This 

inverse dependence of the current density on rotation speed is consistent with the loss, due to the stirring, 

of the electroactive species, or the species that reacts with said electroactive species, such as NO, which 

subsequently slows down the kinetics of the process. At the higher HNO3 concentration of 35% wt. NOads 

is rapidly produced at the electrode surface, the resultant excess of NOads leading to its subsequent 

desorption. This desorption allows NO2 formed in solution via reactions (1.32) and (1.33) [7] to react and 

regenerate the electroactive species, HNO2 via reaction (1.34). 

𝐻𝑁𝑂ଶ() + 𝐻ା ⇄ 𝑁𝑂(ௗ௦)
ା + 𝐻ଶ𝑂 (1.29) 

𝑁𝑂(ௗ௦)
ା + 𝑒ି ⇄ 𝑁𝑂(ௗ௦) (1.30) 

𝑁𝑂(ௗ௦) ⇄ 𝑁𝑂 {1.31)  

𝐻𝑁𝑂ଶ + 𝐻ା + 𝑁𝑂ଷ
ି ⇄ 2𝑁ଶ𝑂ସ + 𝐻ଶ𝑂 (1.32)  

𝑁ଶ𝑂ସ → 2𝑁𝑂ଶ (1.33)  

𝑁𝑂ଶ + 𝑁𝑂 + 𝐻ଶ𝑂 ⇄ 2𝐻𝑁𝑂ଶ (1.34)  
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As the angular velocity increases, the faster stirring of the solution leads to the dispersal of NO and NO2 

into the bulk solution, preventing the regeneration of HNO2, thus, retarding the autocatalytic cycle and 

leading to the decrease in the current density observed in Figure 4-21 [80].  

At 35% wt. HNO3 the mechanism proposed by Balbaud [5] and Fauvet [6] for HNO3 concentrations 

>20% wt., equations 1.22 and 1.23 (shown below), may still occur in parallel at the electrode surface 

with near-surface solution phase reactions [7], albeit more rapidly than at lower concentrations of nitric 

acid, due to the increased thermodynamic stability of NO2 at this higher HNO3 concentration. 

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ⇄ 𝑁𝑂(ௗ௦) + 𝐻ଶ𝑂 (1.22) 

𝐻𝑁𝑂ଷ + 𝑁𝑂(ௗ௦) ⇄ 𝐻𝑁𝑂ଶ() + 𝑁𝑂ଶ(ௗ௦) (1.23) 

Results from RDE studies on HNO2 regeneration support LSV and EIS studies in sections 4.1 and 4.2.  

The shift in Ecorr, icorr, corrosion rate and the decrease in Rp peak size and maximum peak values observed 

at HNO3 concentrations ≥20% wt. in section 4.1 can be explained by the increased stability and so ease 

of formation of NO2 in the solution phase. The NO that is produced in reaction (1.29), and then desorbed, 

will react with the now stable NO2 to produce more HNO2, thereby increasing the corrosion rate at the 

electrode surface. This increases the oxidative power of the nitric acid media which leads to the increase 

in Ecorr. With the introduction of ‘stirring’ the HNO2 would be removed from the near-surface region of 

the electrode, reducing the corrosion rate. 

 In-situ Microgravimetric Studies of Passive Behaviour on SS2343 

(316L Analogue) in Nitric Acid 

4.4.1  Introduction 

Through the previous LSV, EIS and RDE analysis we have now characterised the corrosion behaviour 

of 316L SS in HNO3 concentrations from 20-35% wt. However, we have only briefly studied the growth 

of the oxide film via EIS. Thus, the following EQCM and XPS sections focus on the passive region of 

the LSV’s of section 4.1 and attempt to further understand the level of growth and character of the so 
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formed oxide layer. This first section (4.4.2) deals with the EQCM measured mass change of SS2343 

(316L SS equivalent) in HNO3 concentrations of  ≥ 20% wt.    

4.4.2 EQCM LSV/Voltamassogram studies 

As per section 3.3.3, polarisation curves were recorded from 0 V (for comparison purposes, even though 

low passive potentials are higher at these HNO3 concentrations) to 1 V (transpassive dissolution) using 

the SS2343 piezoelectrode with simultaneous measurement of the associated mass change via EQCM. 

Figure 4-22 – Figure 4-28 shows the recorded voltamassograms for 316L SS in 5-35% wt. HNO3. 

Measurements performed at concentrations ≤15% wt. are previously discussed in Section 3.3.3, and are 

included here for comparison. 

As discussed in Chapter 3 and briefly described again here, EQCM studies at lower HNO3 concentrations 

(≤ 15% wt. HNO3) reveal that, as can be seen in Figure 4-22 and Figure 4-23, at 5 and 10% wt. HNO3 

the observed mass increase in the passive region is very similar, indicating that the film formation 

mechanism is the same in both concentrations. The main difference between these two concentrations is 

the earlier onset of Cr(III) oxidation (~0.6 V vs. ~0.75V), presumably due to the increased solubility of 

Cr oxides at a lower pH.  

At 15% wt. HNO3 film formation behaviour changes with, as can be seen in Figure 4-24, the mass of the 

steel piezoelectrode slowly decreasing with increasing potential at potentials > ~0.05V. An overall mass 

loss occurs at all potentials, this mass loss has been attributed to a porous Cr oxide allowing the 

continuous dissolution of Fe while maintaining primary passivity. A net mass loss is observed because 

the negative mass change from the dissolution of iron exceeds the positive mass change resulting from 

chromium oxide film growth, a behaviour previously observed by by Schmutz and Landolt [73].  
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Figure 4-22 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 5% wt. HNO3. Sweep rate = 10 mV s-1. 

      

Figure 4-23 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 10% wt. HNO3. Sweep rate = 10 mV s-1. 

      

Figure 4-24 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 15% wt. HNO3. Sweep rate = 10 mV s-1.       
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Figure 4-25 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 20% wt. HNO3. Sweep rate = 10 mV s-1. 

         

Figure 4-26 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 25% wt. HNO3. Sweep rate = 10 mV s-1. 

         

Figure 4-27 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 30% wt. HNO3. Sweep rate = 10 mV s-1. 
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Figure 4-28 – a) Linear Sweep Voltammogram and b) Potentiodynamic polarisation curves of SS 2343 

in 35% wt. HNO3. Sweep rate = 10 mV s-1. 

At 20% wt. HNO3  a change in current behaviour is observed (Figure 4-25). However, the mass change 

vs potential plot does not appear to be greatly affected compared to that seen at 15% wt.HNO3 (Figure 

4-24). It has previously been suggested, in sections 4.1 and 4.2, that 20% wt. HNO3 is a transitional 

concentration. At 20% wt. HNO3 the current behaviour alters due to a change in HNO3 reduction 

mechanism which is linked to increased NO2 thermodynamic stability in solution at higher HNO3 

concentrations. However, the effect on corrosion and, therefore, mass change is still minimal.  At ~0.4 

V, after an initial mass loss, mass begins to increase. This ties in well with LSV studies which show that 

in 20% wt. HNO3 above this potential the steel is passive. Mass increases to ~0.7 V and starts to rapidly 

decrease at ~0.8 V. This is also in good agreement with LSV studies which show that in this region the 

passive film begins to dissolve as the steel enters the transpassive regime. 

At HNO3 concentrations ≥25% wt. both current and mass traces are substantially different to those 

recorded at HNO3 concentrations ≤20% wt. However, both the current and mass trace then do not alter 

much at concentrations greater than 25% wt. Below Ecorr, 0.671 (25% wt.), 0.724 (30% wt.) and 0.734 

(35% wt.), each of the voltamassogram traces are very ‘noisy’ with large jumps between mass loss and 

mass gain. There are two processes that are potentially contributing to the ‘noisy’ voltamassograms 1) 

Hydrogen evolution and iron dissolution, with iron dissolution occurring below Ecorr and hydrogen 

evolution obtaining to ever higher potentials with increasing acidity; and 2) Metastable pitting. The 

formation of metastable pits and then repassivation could cause rapid fluctuations in mass loss and gain. 

It is likely that a combination of the two processes described above are contributing to the ‘noisy’ 

voltamassogram rather than just one process, however, deconvolution of these two processes is difficult. 

The change in behaviour from a stable passive steel surface, to a less stable corroding steel surface nicely 

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

Potential (V)

C
ur

re
n

t D
en

si
ty

 (
A

 c
m

2 )

-1200

-1000

-800

-600

-400

-200

0

200

 M
as

s 
C

ha
ng

e 
(n

g
)

0.0 0.2 0.4 0.6 0.8 1.0
-6

-5

-4

-3

-2

-1

Potential (V)

L
og

 C
ur

re
nt

 D
e

n
si

ty
 (

L
og

 A
 c

m
2
)

-1200

-1000

-800

-600

-400

-200

0

200

 M
a

ss
 C

h
an

ge
 (

n
g)

a) b) 



 

154 
 

matches data obtained in EIS studies in section 4.2, where Rp decreases suddenly at HNO3 concentrations 

≥25% wt. as shown in Figure 4-18. The formation of metastable pits on the surface of the stainless steel 

EQCM crystal will need to be investigated further to support these conclusions. 

Above Ecorr, HNO3 concentrations ≥25% wt. show an increase in mass followed by a stabilisation in the 

mass oscillation. This suggests that above Ecorr iron dissolution/hydrogen evolution and/or pitting 

corrosion has ceased and passive film formation has occurred. This supports observations made in LSV 

and EIS measurements that a thin passive film may form at higher HNO3 concentrations, albeit in a much 

narrower potential range i.e. above Ecorr but before transpassive dissolution. 

Differences between HNO3 concentrations shown in Figure 4-22 – Figure 4-28 may be more easily 

understood by plotting the voltamassograms for each concentration on a single plot. This is shown in 

Figure 4-29 below. There is a clear transition in behaviour in HNO3 concentrations >20% wt. Mass plots 

become ‘noisier’ with less identifiable trends. 

 

Figure 4-29 – Voltamassograms of SS2343 piezoelectrodes in 5-35% wt. HNO3. 

EQCM and LSV have been used here as a rapid scanning technique, whilst LSV is a useful technique it 

does not allow for slow oxide layer growth. Therefore, in the next section EQCM and potential-step 

measurement techniques have been used to more fully understand growth rates in the passive region at 

all HNO3 concentrations.  
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4.4.3 Potential Step Studies 

Using the EQCM, chronoamperometric-microgravimetric measurements were made by means of a 

potential ‘staircase’ experiment in which the potential was stepped at 0.15 V intervals from an initial 

value of -0.2 to 1.15 V. At each step on the ‘staircase’ the potential was held for 45 minutes and the 

resultant current transient and change in electrode mass was recorded. Figure 4-30 shows the time 

dependence of the changes in electrode mass that occur in response to the potential ‘staircase’ at a range 

of HNO3 concentrations, from a HNO3 concentration of 5 to 35% wt. (Figure 4-30).  

Measurements performed at concentrations <20% wt. are previously discussed in Section 3.3.4, and are 

included here for comparison. However, briefly the general behaviour of 316L SS at these concentrations 

may be described thus. Net mass gains are observed in the potential range -0.2 to 0.25 V due to the 

formation of the Cr/Fe oxide passive film. The mass gain then slows between 0.4 and 0.7 V. This 

corresponds to the region where it has been suggested that slow Cr(III) to Cr(VI) begins to occur at high 

potentials in the passive region immediately prior to transpassivity [63], [76]. At higher potentials, ~0.85 

to 1 V, a mass decrease is observed, indicating the onset of transpassivity, most likely due to faster 

formation of Cr(VI) ions and rapid dissolution [65], [74].  

 

Figure 4-30 - Mass change of SS 2343 as a function of time during potential step experiments in 5-35% 

wt. HNO3. Polarisation conditions: Start potential = -0.2 V, end potential = 1 V, potential step = 0.15 

V, time between steps = 45 mins. 
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Consider now the mass change observed in response to the potential step staircase at a HNO3 

concentration of 20% wt. The pattern of mass change behaves in a similar manner to 5-15% wt. HNO3. 

From the LSV and EIS data of sections 4.1 and 4.2 and initial EQCM experiments of section 4.4.2, we 

have previously shown that HNO3 concentration 20% wt. is a transition point where behaviour starts to 

change due to the change in HNO3 reduction mechanism. The potentials associated with the onset of 

oxidation current (an increase in Ecorr values shown in Figure 4-3) and the onset of Rp value increases 

shift in a manner that indicates a change in HNO3 reduction mechanism (previously discussed in more 

detail in sections 4.1 and 4.2). However, the effect on corrosion and, therefore, mass change was shown 

to be minimal. At potentials ≥0.4 V, mass decreases more quickly at 20% wt. HNO3 than at lower HNO3 

concentrations and this is in good agreement with the pseudo-polarogram shown in Figure 4-4 which 

shows icorr increasing over 20% wt. HNO3 with Ecorr rising above 0.4 V under these conditions. 

The ‘noisy’ mass change behaviour observed at lower potentials at ≥25% wt. HNO3, Figure 4-30, agrees 

with similar behaviour seen in rapid LSV studies on SS2343, Figure 4-28. As discussed in reference to 

Figure 4-26, under these high HNO3 concentrations and low applied potential conditions, simultaneous 

hydrogen evolution, iron dissolution and/or metastable pitting leads to apparent rapid mass losses and 

gains (‘noise’) and a general decrease in mass due to the inhibition of a passive layer formation (potential 

< Ecorr). Interestingly it can also be seen from the traces recorded at HNO3 concentrations >30% wt., 

Figure 4-30, that at potentials ≥0.25 V there is a small net increase in mass. Again such mass increases 

are concurrent with the decrease in the current density in Figure 4-2a, suggesting some passive film 

formation over a significantly reduced potential window is occurring. Interestingly the smaller size of 

this mass increase compared to that obtained in the passive region at HNO3 concentration < 25% wt. 

indicates either that: 1) a much thinner film is formed or 2) the film is still not fully formed and is only 

partially passive in character.  

One consistent pattern of behaviour across all HNO3 concentrations is the rapid decrease in mass at 1 V, 

corresponding to the passive-transpassive transition. This does not appear to be affected by the increase 

in HNO3 concentration and is associated with the onset of transpassive dissolution of the passive film.  

Results from EQCM studies (both LSV and E-step) relate well to LSV and EIS studies on 316L SS. At 

lower HNO3 concentrations (≤15% wt.), where HNO2 regeneration has been shown to occur slowly, oxide 

growth has been recorded using the QCM, said growth decreasing with increasing HNO3 concentration. 
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At these HNO3 concentrations LSV and EIS studies recorded Ecorr values at ≤0 V, icorr values are low and 

Rp values are high. Thus, under these conditions there is the potential for contaminant entrainment, with 

contaminants potentially being taken up into the so grown passive oxide film. This will be explored in 

Chapter 5 . 

To summarise, 20% wt. HNO3 has been identified as a transition point where at HNO3 concentrations 

above this threshold, NO2 plays a greater role in the mechanism associated with HNO3 reduction. At 20% 

wt. HNO3 Ecorr is increasing compared to lower HNO3 concentrations due to the associated NO2 

mechanism change, but the effect on passivity and corrosion rate is minimal, a conclusion supported by 

the icorr measurements and Rp extrapolation.  

At HNO3 concentrations ≥20% wt. Ecorr has been shown to shift to significantly higher potentials. EQCM 

studies showed that passive film formation does not occur below Ecorr; this is most likely due to 

pitting/active dissolution/hydrogen evolution which is accessed at much lower potentials, significantly 

restricting oxide layer growth and the region of passivity. Above Ecorr this behaviour stabilises and a mass 

gain is observed although the reduced scale of this mass increase compared to the mass measured in the 

passive region at HNO3 concentrations < 25% wt. indicates either that: 1) a much thinner film is formed 

or 2) the film is still not fully formed and is only partially passive in character. Under these conditions, it 

is unlikely that contaminant entrainment will occur due to reduced ability to form a strong passive oxide 

film. This will be explored in section 4.5. 

Whilst electrochemical techniques are a valuable tool for measuring changes in corrosion behaviour at 

the electrode surface, it provides no information on the compositional nature of the film that has formed 

on the stainless steel surface. As such, next section discusses XPS analysis of the surface film formed on 

316L SS in 25% wt. HNO3, said concentration chosen to represent the higher HNO3 concentrations 

studied in this section, i.e. where NO2 is thermodynamically stable. 
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 Compositional Analysis of the Passive Film Formed On 316L 

Stainless Steel Nitric Acid 

4.5.1 Introduction 

This section attempts to analytically determine, using X-Ray Photoelectron Spectroscopy (XPS), any 

compositional changes that may occur in the so formed passive films as a function of HNO3 concentration 

and applied potential. As described above, 20% wt. HNO3 is the point at which a mechanism change can 

be seen to occur in the reduction of HNO3. Said mechanism change significantly accelerates the rate of 

HNO3 reduction and decreases the potential range over which passivity is observed at HNO3 

concentrations >20% wt. Thus, the following section presents XPS results recorded at 5 and 25% wt. 

HNO3 as examples of system behaviour at HNO3 concentrations below and above 20% wt. respectively. 

Results observed at 5% HNO3 have already been discussed is detailed in section 3.4.2. Key findings are 

represented here for the convenience of the reader. 

4.5.2 Results 

Curve fitted high resolution spectra of 316L SS samples in 5% wt. (an example of low HNO3 

concentration) and 25% wt. (an example of high HNO3 concentration) HNO3 polarised at 0.2 (low passive 

potential) and 0.8 V (high passive potential) respectively are shown in Figure 4-31, Figure 4-32 and 

Figure 4-33.  

Consider first the Fe, Cr and O species observed at low and high over potentials at both HNO3 

concentrations. The iron profiles in Figure 4-31 show two peaks: a peak at 706.96 eV, due to elemental 

iron (Fe0); and a peak around 710.32 eV attributed to either iron (III) oxide (Fe2O3) or iron (II,III) oxide 

(Fe3O4) in 316L SS (see section 3.4.2 for the detail of this assignment). 

The chromium profiles in Figure 4-32, show four peaks which can be attributed to: Cr metal (573.97 eV), 

Chromium (III) oxide (Cr2O3) (575.82 eV), Chromium (III) hydroxide (576.84 eV) and Chromium (VI) 

oxide (CrO3) (578.60 eV).  
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Figure 4-31 - XPS profile of Fe 2p3/2 after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3 at 

0.2 and 0.8 V. 

 

Figure 4-32 - XPS profile of Cr 2p3/2 after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3 at 

0.2 and 0.8 V. 
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Figure 4-33 - XPS profile of O 1s after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3 at 0.2 

and 0.8 V.  

Two broad, compound peaks due to oxygen are observed at 530 and 532 eV, shown in Figure 4-33. In 

and of themselves, they are not enough to confirm speciation due to deconvolution issues. They are, 

however, useful to confirm the presence of mixed Fe/Cr oxides/hydroxides on the metal surface [105].   

Due to the large number of species involved, steel surface compositional differences between the two 

nitric acid concentrations may be more easily understood by plotting the relative atomic percentages of 

each species for both the Fe profiles of Figure 4-31 and the chromium profiles of Figure 4-32. Such plots 

for both 5 and 25% wt. HNO3 at 0.2 and 0.8 V respectively are shown in Figure 4-34. 
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Figure 4-34 – Atomic Percentage data comparison for Fe (a) and Cr (b) results.  

Considering first the iron profile of Figure 4-34a, at both HNO3 concentrations increasing the potential 

from 0.2 V to 0.8V leads to an increase in intensity of the Fe3O4/Fe2O3 peak at around 710.32 eV, 

suggesting an increase in iron oxide concentration. Unfortunately due to signal quality it is impossible to 

identify the exact oxidation state of the iron oxide at each potential. However, electrochemically it is 

known that at higher potentials Fe(II) is oxidised to Fe(III), generating Fe2O3 (see Pourbaix diagram of 

Figure 1-12)  [57], [178], [179]. As such, it is not unreasonable to assume that the iron oxide signal at 

0.8V may be dominated by Fe(III) oxide (hematite, α-Fe2O3,or maghemite, γ- Fe2O3). Importantly there 

is little difference in atomic percentage between either 5% wt. or 25% wt., suggesting that it is differences 

in the Cr oxide film that is crucial to the observed electrochemical differences in corrosion behaviour. 

Considering now the chromium profile of Figure 4-34b, at both HNO3 concentrations increasing the 

potential from 0.2 to 0.8 V increases the intensity of Cr2O3 and CrO3 peaks as well as decreasing the Cr0 

and Cr(OH)3 peak intensities. As described in Chapter 3, this is due to chromium being more soluble in 

its Cr(VI) oxidation state (CrO3) than its Cr(III) oxidation state (Cr2O3/Cr(OH)3 [65]. Therefore, the 

increase in potential leads to the production of Cr(VI) within the film, which is a necessary prerequisite 

for  dissolution of Cr(VI) from the film, and a decrease in Cr0/Cr(OH)3 as more chromium is converted 

to oxide/hydroxide and stripped out of the film.  
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From Figure 4-34 (b), the main difference between 5 and 25% wt. HNO3 is the atomic percentage of 

Cr2O3 present in the passive film. At 0.8V. Cr2O3 is ~10% more intense in 25% wt. HNO3 than in 5% wt. 

HNO3. This may be explained as follows. 

The formation of a chromium hydroxide/oxide passive layer on steel originates from the formation of 

Cr2+ ions and subsequent Cr(OH)2 hydrate in the pre-passive stage (low potentials) [184]: 

𝐶𝑟௦ → 𝐶𝑟()
ଶା + 2𝑒ି (4.1) 

𝐶𝑟()
ଶା + 2𝐻ଶ𝑂 → 𝐶𝑟(𝑂𝐻)ଶ(௦) + 2𝐻ା (4.2) 

With increasing potential towards passivation Cr2+ ions are converted to Cr3+ ions which subsequently 

form Cr(OH)3: 

𝐶𝑟()
ଶା + 𝑒ି → 𝐶𝑟()

ଷା  (4.3) 

𝐶𝑟()
ଷା + 3𝐻ଶ𝑂 → 𝐶𝑟(𝑂𝐻)ଷ(௦) + 3𝐻ା (4.4) 

Thus, Cr(OH)3 forms the stable passive layer in mild non-oxidising acidic environments and neutral 

alkaline conditions [157].  

However, under oxidising acidic conditions Cr(OH)3 may convert to chromium oxide, Cr2O3, via the 

following solid state reaction [185]: 

𝐶𝑟(𝑂𝐻)ଷ(௦) + 𝐶𝑟(௦) → 𝐶𝑟ଶ𝑂ଷ(௦) + 3𝐻ା + 3𝑒ି (4.5) 

Thus, under the oxidising acidic conditions employed in Figure 4-34 it would be expected that in the 

passive region a significant portion of the stable Cr(OH)3 film would be converted to Cr2O3. Focussing 

on Figure 4-34b it can be seen that this is indeed the case. However, at 0.2V, in both concentrations of 

HNO3, the percentage of Cr2O3 is low (< 3%). The reason for this is described in more detail below. 

Considering first 25% wt. HNO3 at 0.2 V, it can be seen from the LSV and EQCM data of sections 4.1 

and 4.4 that the surface is corroding actively, presumably through acid dissolution of the existing air 

formed Cr(OH)3 passive layer. As such the potential is not positive of Ecorr, a point which would allow 
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Cr2O3 formation, resulting in a lower atomic percentage of Cr2O3 compared to 5% wt. HNO3, where both 

the potential is above Ecorr and the pH are within the region of passivity.  

Turning now to 5% wt. HNO3 at 0.2V, the lack of comparative Cr2O3 may be due to the lack of a 

significantly oxidising environment to convert the more stable Cr(OH)3 film into the less stable 

intermediate oxide, Cr2O3. Such an observation is in line with the EIS derived polarisation resistance 

measurements of Chapter 3. Here a small spike in Rp is observed at ~0.25V before the main passivation 

peak is apparent. Considering the XPS results described above this may be assumed to be a transition of 

Cr(OH)3 to Cr2O3 in the passive layer as the applied potential becomes more oxidising. This is supported 

by observations that this spike disappears at HNO3 concentrations > 10% wt., presumably because the 

environment has become too oxidising to support a pure or high percentage Cr(OH)3 film. 

Considering now the data for 5% wt. HNO3 at 0.8V, it can be seen that in this pre-transpassive area a 

much higher percentage of Cr2O3 is present as well as CrO3 from Cr(III) to Cr(VI) derived pre-

transpassive dissolution. Again this supports the above analysis of transition from pure/near pure Cr(OH)3 

to a higher percentage Cr2O3 passive film at higher potentials (>0.25V)  in 5% wt. HNO3.  

At 25% wt. HNO3 at 0.8V the atomic percentage of Cr2O3 is greatly increased compared to 5% wt. HNO3. 

Comparison with the LSV and EQCM traces of sections 4.1 and 4.4 reveals that this potential is within 

the limited range where a passive film can exist. Due to the much more oxidising environment generated 

by the higher HNO2 present at higher nitric acid concentrations (due to NO2 stability) the film here has a 

much higher Cr2O3 character, but is still in part Cr(OH)3. The higher degree of Cr2O3 may also account 

for the limited oxide layer thickness in this region noted in the EQCM results of section 4.4 and EIS 

results of section 4.2. Single step oxidation of Cr(OH)3 to CrO3 is mechanistically more difficult than 

single step oxidation of Cr2O3 to CrO3, the former usually involving oxidation to intermediate Cr2O3 first, 

i.e. Cr(OH)3 to Cr2O3 to CrO3 [157][186]. As such, unlike the much higher Cr(OH)3 content primary 

passive layer formed in 5% wt. HNO3, the primary passive layer formed in 25% wt. HNO3 is thinner and 

potentially partially porous, as the high percentage Cr2O3 component is readily converted to CrO3. 

In summary, X-ray photoelectron spectroscopy investigation in the above concentrations and potentials 

has revealed the generation of a passive film consisting of hydroxide rich layer and oxide layers at lower 

potentials in both 5 and 25% wt. nitric acid. 
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With the transition from low to high concentrations of HNO3 the Fe signal is believed to shift from a 

Fe(II) dominant oxide to a Fe(III) oxide with no observed change in concentration. This has led to the 

conclusion that Cr behaviour is more crucial to the electrochemical changes identified in sections 4.1 and 

4.2 and the microgravimetric changes observed in section 4.4.  

With an increase in potential and HNO3 concentration, the Cr film shifts from a Cr(OH)3 dominant film 

to a passive film consisting of hydroxide (Cr(OH)3) and oxide (Cr2O3) layers. Cr2O3 concentrations 

increase greatly at higher potential due to the oxidation of Cr(OH)3 in more oxidising conditions. At low 

HNO3 and low potential the HNO3 is not oxidising enough to convert the Cr(OH)3 to Cr2O3 and at high 

HNO3 and low potential the surface of the steel is below Ecorr and is , therefore, not passive. CrO3 increases 

in concentration when potential is increased due to the oxidation of Cr(III) species to Cr(VI).  

The changes in Cr speciation described above may also account for the reduced film thickness observed 

in EQCM studies. Cr2O3 more readily converts to CrO3 than Cr(OH)3, therefore, at high HNO3 

concentrations where Cr2O3 is more prevalent, conversion to CrO3 is likely to be easier leading to 

increased dissolution of Cr from the passive film. Reducing Cr from the passive film will reduce the 

efficacy of the film which also supports the decrease in Rp observed in EIS studies and the increase in 

icorr observed in LSV studies. 

 Summary 

In this chapter, we have described the electrochemical characterisation of 316L SS in HNO3 

concentrations ≥20% wt. alongside plots from 316L SS in HNO3 concentrations ≤15% wt.  

LSV studies have demonstrated that Ecorr and icorr increase with increasing HNO3 concentration (shown in 

Figure 4-4). This is attributed to a change in the HNO2 regeneration mechanism at ~20% wt. HNO3. At 

lower concentrations, regeneration of HNO2 is believed to occur primarily on the stainless steel surface. 

This is a slow process which is dependent on the diffusion of HNO3 to the surface of the steel. At higher 

concentrations, the mechanism shifts to near-surface solution based regeneration. The abundance of 

HNO3 and stability of NO2 at higher HNO3 concentrations leads to the rapid production of HNO2 which 

results in the observed increase in Ecorr and icorr. EIS studies nicely support this assessment, with high Rp 

values over a wide range of potentials at lower concentrations (<20% wt.) and over a narrower range at 
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higher HNO3 concentrations (>20% wt.). Onset of the Rp increase on the potential axis occurs at higher 

potentials in higher HNO3 concentrations, following the increase in Ecorr values observed in LSV studies. 

Lower Rp values coincide with an increase in icorr, this is most likely due to increased production of HNO2 

with increased thermodynamic stability of NO2 in solution. This leads to the increased oxidation of Cr(III) 

to Cr(VI), which is more soluble, and the subsequent dissolution of Cr(VI) reducing the efficacy of the 

passive film. Onset of transpassive dissolution occurred at ~1 V for a HNO3 concentrations.  

EQCM has been shown to follow the in-situ mass change of a passive stainless steel electrode resulting 

from the application of a potential. We have used EQCM to study the induced formation of the passive 

oxide layer at SS 2343 (a 316L analog). Polarisation curves were recorded on QCM crystals with 

simultaneous measurements of mass change. Current and mass-response curves show that at HNO3 

concentrations ≥20% wt., passive film formation does not occur below Ecorr. Above Ecorr mass traces were 

noisy showing large mass losses and gains. This is believed to be due to either hydrogen evolution with 

the concurrent stripping of iron from the electrode surface or metastable pitting. The rapid formation of 

metastable pits and then repassivation could cause rapid fluctuations in mass loss and gain. When the 

potential reached Ecorr mass increased at each HNO3 concentration and the mass trace stabilised. The 

narrower region of passivity agrees nicely with LSV and EIS studies which suggest that at HNO3 

concentrations ≥20% wt. a rapid autocatalytic regeneration of HNO2 is occurring due to increased 

thermodynamic stability of NO2 in solution and the increased rate of HNO3 reduction. This, in turn, 

inhibits passive film formation and leads to an increase in Ecorr. 

In the potential ‘staircase’ EQCM experiments, the potential was held for a longer time to assess mass 

change of SS 2343 as a function of HNO3 concentration (5% wt. to 35% wt.). At HNO3 concentrations 

≤15% wt., the maximum extent of oxide growth is observed at E=~0.55 V. Beyond this point, the 

transpassive processes lead to a mass loss from the electrode surface, the first time such a feature has 

been observed on passivated stainless steel. Oxide growth is significantly reduced at HNO3 

concentrations ≥20% wt., with all samples presenting substantial mass loss at E=0.7 V, a transpassive 

process also seen in the case of samples studied at ≤15% wt. This has repercussions for the use of stainless 

steels in highly oxidising environments, such as those that may occur in the concentrated HNO3 highly 

active raffinate liquor solutions that are found in evaporators. 
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These studies have provided us with information that will allow us to artificially ‘grow’ oxide layers in 

any concentration of HNO3. Overall it is more likely that contaminant entrainment is going to occur in 

lower concentrations of HNO3 (<20% wt.) where a strong passive oxide film forms, rather than at higher 

HNO3 concentrations (>20% wt.) where the ability to produce a passive oxide film appears greatly 

reduced. 

XPS analysis showed that at low concentrations of HNO3 and low potentials the passive layer formed is 

dominated by Cr(OH)3. An increase in potential in low concentrations of HNO3 leads to the conversion 

of Cr(OH)3 to Cr2O3 in low concentrations of HNO3. At high concentrations and potentials the passive 

layer shifts to a passive film consisting of Cr(OH)3 and increased Cr2O3 content. At low HNO3 

concentrations and low potential the HNO3 is not oxidising enough to convert the Cr(OH)3 to Cr2O3 and 

at high HNO3 concentrations and low potential the surface of the steel is below Ecorr and is, therefore, not 

passive.  

The changes in Cr speciation can be linked to the reduced film thickness observed in EQCM studies. 

Cr2O3 more readily converts to CrO3 than Cr(OH)3, therefore, at high HNO3 concentrations where Cr2O3 

is more prevalent, conversion to CrO3 is likely to be easier, leading to increased dissolution of Cr from 

the passive film. Reducing the Cr content within the passive film will reduce the efficacy of the film 

which also supports the decrease in Rp observed in EIS studies and the increase in icorr observed in LSV 

studies. 

Having described the effect of HNO3 only on 316L stainless steel dissolution at two different 

concentration regimes (i)  15% wt.  typical of that found in reprocessing actinide ‘strip’ steps and (ii) > 

15% wt. typical of that found in ‘head end’ fuel pin dissolution, highly active liquor evaporators and in 

initial uranium scrub and backwash steps, it is now of importance to describe the effect of radionuclides 

on SS316L corrosion behaviour and the incorporation of said radionuclides into the so formed passive 

film in both concentration regimes. Thus, the next chapter applies LSV and XPS analytical techniques 

used in both this and the previous chapter to HNO3/316L SS systems in the presence of both active 

radionuclides (Uranium) and radionuclide surrogates (Europium/Cerium, acting as a surrogates for 

Americium/Plutonium respectively). 
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5 ELECTROCHEMICAL AND COMPOSITIONAL ANALYSIS 

OF THE PASSIVE FILM FORMED ON 316L STAINLESS 

STEEL IN THE PRESENCE OF RADIOACTIVE AND NON-

RADIOACTIVE CONTAMINANTS 

 Introduction 

In the previous two chapters we have established, using LSV, EIS, EQCM and XPS, that a passive film 

forms on 316L SS when exposed to nitric acid. These experiments have provided us with detailed 

information on the passive potential region. Using EQCM we have demonstrated a level of 

‘controllability’ for oxide growth on our steels within this passive region.  Also, we have seen how 

different HNO3 concentrations effect this growth and the composition of the so formed passive layer. 

In this chapter we now take this approach a step further and introduce both non-active radionuclide 

surrogates (Eu and Ce) and actual radionuclides (U) into solution in order to attempt to determine their 

uptake into the steel passive film and to some extent their effect on the corrosion behaviour of said passive 

film. 

 Stainless Steel Passivation in the Presence of Non-Radioactive 

Surrogates 

In this study Cerium (III) Nitrate Hexahydrate has been used as a non-radioactive a surrogate for 

Plutonium and Europium (III) Nitrate Pentahydrate as a non-radioactive surrogate for Americium. Both 

have been shown to be suitable surrogates for their respective radionuclides in previous studies [187], 

[188]. As with previous chapters, LSV is first used to determine any change in electrochemical 

behaviour/corrosion rate of SS316L in the presence of radioactive surrogates in the same concentration 

ranges of nitric acid described previously. After these initial electrochemical experiments, ex situ XPS is 

again used to determine the degree of uptake of the surrogates into the stainless steel passive film. 
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5.2.1 Stainless Steel Passivation in the Presence of Cerium (III) Nitrate 

5.2.1.1 Polarisation Curve Results  

Figure 5-1 shows potentiodynamic polarisation curves for 316L SS electrodes recorded in a) 5-35% wt. 

HNO3 concentrations (from Chapters 3 and 4 respectively) and b) 5-35% wt. HNO3 concentrations 

containing 30 mmol dm3 Ce(NO3)3·6H2O over the potential range -0.5 to 0.5 V. 

 

 

Figure 5-1 – Potentiodynamic polarisation plots of 316L SS in a) 5-35% wt. HNO3 and b) 5-35% wt. 

HNO3 containing 30mmol dm3 Ce(NO3)3·6H2O at room temperature (20±2oC). Plots were measured in 

the potential range -0.5-1.5 V (sweep rate, 10 mV s-1). 

From Figure 5-1b, it can be seen that the shift in behaviour between low (≤15% wt. HNO3) and high 

(≥20% wt. HNO3) HNO3 concentrations, previously discussed in section 4.1, is less pronounced in the 
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presence of Ce(III) than in HNO3-only solutions. This is because the addition of Ce(III) to the nitric acid 

media has led to a positive shift in corrosion potential for lower HNO3 concentrations (5-20% wt.). Ce(III) 

salts are used as corrosion inhibitors to improve corrosion resistance in aluminium alloys. Ce(III) salts 

form an insoluble film at cathodic sites, whilst the exact mechanism may change in the presence of 316L 

SS, the switch from improving corrosion resistance to increasing corrosion was not expected.  Previously, 

the positive shift in Ecorr for HNO3 was believed to be associated with the increased stability of NO2 at 

higher HNO3 concentrations, which led to an increase in HNO2 content and therefore an increase in Ecorr. 

The increase in Ecorr at lower HNO3 concentrations suggests that NO2 stability is no longer the only factor 

influencing Ecorr.  

HNO2 and NO2 can both act as a reducing agents, as shown in equations (5.1) [189] and (5.2) [6], [111] 

respectively, which would ensure that Ce(III) would remain in its lower oxidation state, 3+.  

 𝑁𝑂ଶ
ି + 𝐻ଶ𝑂 → 𝑁𝑂ଷ

ି + 2𝑒ି + 2𝐻ା E0
25

o
C = 0.558 V vs. SCE (5.1) 

2𝑁𝑂ଶ + 2𝐻ଶ𝑂 ↔ 2𝑁𝑂ଷ
ି + 4𝐻ା + 2𝑒ି E0

25
o

C = 0.553 V vs. SCE (5.2) 

If this was the case then at lower HNO3 concentrations, where less HNO2 and NO2 are present, the 

oxidative power of the media may be higher than in the presence of HNO2 and NO2 [190]. In this situation 

Ce(III) would be oxidised to Ce(IV) in the following reaction: 

𝐶𝑒ଷା ↔ 𝐶𝑒ସା + 𝑒ି E0
25

o
C = 1.365 V/SCE (5.3) 

Ce(IV) is known to act as a corrosion accelerant [190] which would explain the positive shift in Ecorr in 

lower HNO3 concentrations. Once the HNO3 concentration is increased to >20% wt., and subsequently 

the NO2 stability increases then the HNO2 concentrations will increase sufficiently to reduce Ce(IV) to 

Ce(III).  

Ce(III) has no significant impact on corrosion rate [190], leading to no change in behaviour at higher 

HNO3 concentrations in the presence of Ce as Ce is no longer influencing Ecorr.  

A major flaw in this argument is the potential at which the Ce(III)/Ce(IV) couple reacts (1.365 V/SCE). 

However, Johnson et al [191] have reported the oxidation of Ce(III) in concentrated HNO3, where E0 for 

HNO2 reduction (Equation (5.4)) is about +1.2V [192].    
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𝐻𝑁𝑂ଶ + 𝐻ା + 𝑒ି → 𝐻ଶ𝑂 + 𝑁𝑂 (5.4) 

E0 for Ce3+/4+ is approximately 1.4V, see equation (5.3) on the previous page, however as: 

𝐸 = 𝐸 +
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝐶𝑒ସା]

[𝐶𝑒ଷା]
 

(5.5) 

The initial lack of Ce(IV) in solution may reduce E to less than ~1.4 V, potentially as low as 1.2 V. E for 

the HNO2/NO process may also increase above +1.2V due to the electrogeneration of HNO2 at low 

applied potentials. These concentration induced changes in E for the Ce(IV)/Ce(III) couple and the 

HNO2/NO couple may then result in Ce(III) reducing HNO2, producing NO and Ce(IV). The latter may 

then act in its established manner as a steel corrosion accelerator, resulting in the increase in Ecorr at low 

HNO3 concentrations seen in Figure 5-1b. 

Using equation (5.5) [27] we can calculate how much Ce(IV) would be required for the above shift in 

potential. The Nernst equation above (5.5) can be rearranged so: 

𝑙𝑛
[𝐶𝑒ସା]

[𝐶𝑒ଷା]
= (𝐸 − 𝐸)

𝑅𝑇

𝑛𝐹
 

(5.6) 

Where; 

E=1.2V 

E0 = 1.4V 

R (Universal Gas Constant) = 8.314 J K-1 mol-1 

T (Temperature) = 298 K 

n (number of electrons) = 1  

F (Faraday Constant) = 96,485 C mol-1 

The concentration of Ce(IV) required would be approximately 29.99 mmol dm3. It is unrealistic to assume 

that >99% of the available Ce in solution will be oxidised to Ce(IV) in the above scenario. Therefore, 

something else is either oxidising Ce(III) to Ce(IV) or causing the increase in corrosion rate. Further 

experimentation is required to confirm whether any Ce(IV) is present and, if so, what the cause is. 

A detailed analysis on the effect on Ecorr is discussed in the next section. 
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5.2.1.2 Ecorr and icorr Analysis 

The corrosion potential (Ecorr) and corrosion current density (icorr) were calculated using Tafel 

extrapolation in the vicinity of Ecorr of the linear segments of the measured potential-current density 

curves of Figure 5-1b. Results of Ecorr and icorr vs. HNO3 concentration are shown in Figure 5-2: 

 

  

Figure 5-2 –a) Corrosion potential, Ecorr, values and associated error bars vs. HNO3 concentration b) 

Corrosion current density, icorr. values and associated error bars vs. HNO3 concentration calculated 

from Figure 5-1a for 316L SS in 5 - 35% wt. HNO3 and Figure 5-1b  for 316L SS in 5 - 35% wt. HNO3 

containing 30mmol dm3 Ce(NO3)3·6H2O. 

From Figure 5-2a it can be seen that, in the presence of cerium, Ecorr increases in a near-linear fashion 

with increasing HNO3 concentration and, for most HNO3 concentrations, is greater in the presence of 

cerium than in its absence. In both the absence and presence of Ce, Ecorr plateaus at approximately the 

same HNO3 concentration value of  ≥25% wt. As described in previous chapters, in HNO3 only media, 

the increase in Ecorr with increasing HNO3 concentration is directly related to the greater availability of 

the electrochemically active species HNO2 arising from the increased stability of NO2. As discussed in 

the previous section, the increase in Ecorr at lower HNO3 concentrations in the presence of cerium can be 

attributed to the increased oxidative power of the nitric media due to the presence of Ce(IV) [44], [190]. 

At higher HNO3 concentrations, the increased concentration of HNO2 and, particularly NO2 (due to the 

dual, concentration-dependant roles that HNO2 plays in Ce(III) oxidation and Ce(IV) reduction) reduces 
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Ce(IV) to Ce(III), in accordance with the reverse of equation (5.3), the latter species being known to not 

significantly affect corrosion. Therefore, at higher HNO3 concentrations, Ecorr is being only being 

influenced by HNO2 as with HNO3 only media. 

Figure 5-2b shows the calculated icorr values for 5-35% wt. in both the absence and presence of 30 mmol 

dm3 Ce(III) (as Ce(NO3)3·6H2O). It can be seen from Figure 5-2b that icorr values increases linearly with 

increasing HNO3 concentration in the presence of Ce, with no clear transition between behaviour at low 

and high HNO3 concentrations. icorr values are higher than in HNO3 only media, indicating a higher 

corrosion rate in the presence of cerium – presumably due, at least in part, to cerium (VI)’s role as a 

corrosion accelerator on steel as described above.  At higher HNO3 concentrations, in the presence of Ce, 

icorr values plateau whilst the corresponding Ecorr values continuing to increase with increasing nitric 

concentration, albeit more slowly than at lower nitric concentrations. The values of Ecorr in this higher 

HNO3 concentration range indicate that, at HNO3 concentrations ≥25% wt, the passive film is dissolving 

and intergranular corrosion is ongoing. This behaviour may be more easily understood through the 

pseudo-polarogram plot shown in Figure 5-3, where Ecorr is plotted against icorr for HNO3 concentrations 

5-35% wt. for both HNO3 only solutions and solutions containing Ce. 

 

Figure 5-3 – Pseudo-polarogram of icorr vs. Ecorr (data points minus error bars for clarity) calculated 

from Figure 5-1a for 316L SS in 5 - 35% wt. HNO3 and Figure 5-1b for 316L SS in 5 - 35% wt. HNO3 

containing 30mmol dm3 Ce(NO3)3·6H2O. 

Figure 5-3 shows that, in the presence of Ce, icorr increases linearly with increasing Ecorr in the range -0.1 

V to +0.6 V. This is in contrast to HNO3-only solutions where icorr only increases when Ecorr >0.4 V. This 
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indicates that passivity is limited in the presence of cerium and may be breaking down at HNO3 

concentrations <25% wt.  

The results of Figure 5-3 also show that, in the presence of cerium, the corrosion rate is higher than in 

HNO3 only solutions. As previously discussed, this may be due to the oxidation of Ce(III) to Ce(IV) in 

lower HNO3 (≤20% wt.) concentrations, the presence of Ce(IV) then accelerating corrosion. At higher 

HNO3 concentrations (>20% wt.) the increased presence of HNO2 and stability of NO2 leads to the 

reduction of Ce(IV) back to Ce(III) . The corrosion rate is now being influenced by the remaining HNO2 

which is lower in concentration than in HNO3 only media, due to its role in the reduction of Ce(IV). Thus, 

the corrosion rate is slightly lower at higher HNO3 concentrations in the presence of Ce.  

Further experimentation is required to confirm whether any Ce(IV) is present due to electrogenerated 

HNO3 in lower potentials and why, for example, the use of in situ UV-vis spectroscopy. 

Whilst electrochemical techniques are a valuable tool for measuring changes in corrosion behaviour at 

the electrode surface but they provide no information on the compositional nature of the film that has 

formed on the stainless steel surface. The next section discusses XPS analysis of the surface film formed 

on 316L SS in 5 and 25% wt. HNO3, said concentrations have been chosen to represent the lower and 

higher HNO3 concentrations studied in this section i.e. where NO2 is not present and where NO2 is stable. 

5.2.1.3 XPS analysis of 316L SS in Nitric Acid Media Containing Cerium Nitrate 

Curve fitted high resolution spectra of 316L SS samples in 5% wt. HNO3, with 30mmol dm3 Ce(III) (as 

Ce(NO3)3·6H2O), polarised at 0.2 and 0.8 V are shown in  Figure 5-4, Figure 5-5 and Figure 5-6. 

The iron profiles in  Figure 5-4 show two peaks, the peak at 706.9 eV is due to elemental iron (Fe0) and 

the peak around 710.7 eV is attributed to either iron (III) oxide (Fe2O3) or iron (II,III) oxide (Fe3O4), the 

same as the iron profiles under nitric acid only conditions described in Chapter 3 and 4.  

The chromium profiles in Figure 5-5, show four peaks which based on previous analysis can be attributed 

to: Cr metal (573.9 eV), Chromium (III) oxide (Cr2O3) (575.7 eV), Chromium (III) hydroxide (576.8 eV) 

and Chromium (VI) oxide (CrO3) (578.8 eV).  
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Two broad, compound peaks due to oxygen are observed at 530 and 532 eV, shown in Figure 5-6. As in 

chapter 4, in and of themselves they are not enough to confirm speciation due to deconvolution issues. 

They are, however, useful to confirm the presence of mixed Fe/Cr oxides/hydroxides on the metal surface 

[105]. 

 

Figure 5-4 – XPS profile of Fe 2p3/2 after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3, 

both with 30mmol dm 3 of 30mmol dm3 Ce(NO3)3·6H2O, at 0.2 and 0.8 V. 
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Figure 5-5 - XPS profile of Cr 2p3/2 after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3, 

both with 30mmol dm3 Ce(NO3)3·6H2O, at 0.2 and 0.8 V. 

 

Figure 5-6 - XPS profile of O 1s after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3, both 

with 30mmol dm3 Ce(NO3)3·6H2O., at 0.2 and 0.8 V. 
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Due to the number of species involved, and the presence of different radionuclide surrogates, the data of 

Figure 5-4 to Figure 5-6 may be more easily understood by plotting the relative atomic percentage of 

each species. For the Fe profiles of Figure 5-4, the relative atomic percentage plot is shown in Figure 5-7. 

For the Cr profiles of Figure 5-5 for Ce, the relative atomic percentage plot is shown in Figure 5-8. Results 

from section 4.5 on 316L SS in HNO3 only media have been included for comparison purposes. 

 

Figure 5-7 –Iron XPS component concentrations for a) HNO3 solutions, b) HNO3 solutions containing 

30mmol dm3 Ce(NO3)3·6H2O. 

 

Figure 5-8 –Chromium XPS component concentrations for a) HNO3 solutions, b) HNO3 solutions 

containing 30mmol dm3 Ce(NO3)3·6H2O. 
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Considering first the iron percentages of Figure 5-7. Increasing the HNO3 concentration from 5% wt. to 

25% wt. does not affect the iron oxide composition significantly at 0.2 or 0.8V. As discussed in Chapter 

4, electrochemically it is known that at higher potentials Fe(II) is oxidised to Fe(III), generating Fe2O3 

[57], [178], [179]. As such, the iron oxide signal at 0.8 V may be assumed to be dominated by Fe(III) 

oxide (hematite, α-Fe2O3,or maghemite, γ-Fe2O3). Importantly, there is little difference in atomic 

percentage between either 5% wt. or 25% wt., suggesting that it is differences in the Cr oxide film that 

are crucial to the observed electrochemical differences in corrosion behaviour. Furthermore, the effect of 

Ce on the iron component of the passive film is also minimal, with no significant differences in wt. % 

compared to experiments in HNO3 only. This is consistent with the conclusion that it is the chromium in 

the film that mainly determines the overall electrochemical / corrosion behaviour of the steel surface. 

Consider now the chromium profiles for HNO3 in Figure 5-11. As with the HNO3 only results, increasing 

the potential from 0.2 to 0.8 V increases the intensity of the CrO3 peak as well as decreasing the intensity 

of the Cr0 and Cr(OH)3 peaks. As previously described in Chapters 3 and 4, this is due to chromium 

oxidising from its Cr(III) oxidation state (Cr2O3/Cr(OH)3) to its more soluble Cr(VI) oxidation state 

(CrO3). The increase in potential leads to the dissolution of Cr(VI) from the film and a decrease in 

Cr0/Cr(OH)3 as more Cr is converted to oxide/hydroxide and stripped out of the film.  

In HNO3-only solutions, the Cr speciation profiles obtained at 0.2 V are similar for both nitric acid 

concentrations studied i.e. 5 and 25% wt.  

In the presence of Ce, there is a large difference in the composition of the Cr profile for 0.2 V in 25% wt. 

when compared to that of 5% wt. HNO3 – the composition observed at 0.2 V at 5% wt. nitric in the 

presence of Ce being broadly similar to that recorded in the absence of Ce. The change at 25% wt is likely 

due to the formation of Ce(IV) at this HNO3 concentration in accordance with the mechanism suggested 

above. The absence of any analogous difference in behaviour in the absence and presence of cerium at 

0.2 V in 5% wt. HNO3 indicates no Ce(IV) is formed at this HNO3 concentration, a conclusion in keeping 

with Figure 5-1 - wherein a shift in Ecorr in the presence of Ce is only observed at HNO3 concentrations 

≥10% wt., suggesting that the Ce(IV) generation mechanism described above only operates at HNO3 

concentrations greater than 10% wt.  
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Turning now to measurements at 0.8 V, the increase in Cr(VI) (in the presence and absence of Ce) in 5% 

wt. HNO3 at this potential compared to 0.2 V is likely due to the increasing the oxidative stress on the 

electrode, therefore, increasing the likelihood that Cr(III) will oxidise to Cr(VI) (as explained above, see 

section 4.5.2). Increasing the HNO3 concentration to 25% wt. leads to oxidation of Cr(III) to Cr(VI) either 

via electrochemical or Ce mediated means which will cause the passive film that has formed to undergo 

transpassive dissolution. 

While the above analysis describes the effect Ce on the passive film, whether Ce is incorporated as part 

of their action on the Cr film has not been addressed. As such high resolution spectra of the cerium region, 

860-900 eV in each set of respective experiments were taken. Figure 5-9 shows the XPS profile for cerium 

in 5 and 25% wt. HNO3 at 0.2 and 0.8 V. 

 

Figure 5-9 - XPS profile of Ce 3d5/2  after passivation of 316L SS in 5 and 25% wt. HNO3, with 30mmol 

dm3 Ce(NO3)3·6H2O, at 0.2 and 0.8 V. 

A peak for Ce should occur within the 883 to 884 eV region. The spectra clearly show no Ce has been 

detected on the surface of the 316L SS electrode at both HNO3 concentrations and potential ranges studied 

indicating that either no incorporation of Ce has occurred or that any Ce that has been incorporated is 

below the limit of detection of the XPS (0.1 atom%). This is most likely due to the Ce increasing the 

oxidative power of the media, as demonstrated by the higher Ecorr values in the LSV studies, which leads 

to Cr(III) oxidation to Cr(VI) and film dissolution. As Cr is the primary component of the passive film 

formed at the steel surface at these pHs (see above) any effect that causes the dissolution of that film will 
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suppress Ce absorption/incorporation into that film. In this case, Ce appears to be working against itself, 

especially at 25% wt. HNO3 when the conversion to Ce(III) to Ce(IV) is at its greatest (see Figure 5-1)  

Overall, the work in this section has highlighted the possibility that the presence of Pu in nitric acid media 

may lead to an increase in corrosion especially at HNO3 concentrations of 10% wt. or greater. This may 

affect the overall lifetime of the pipework in reprocessing plants. However, Pu is not likely to be taken 

up into the passive film, indicating that contamination of pipework by Pu is unlikely. 

The next section discusses the influence of Am surrogate Eu on the behaviour of 316L SS in HNO3 media. 

5.2.2 Stainless Steel Passivation in the Presence of Europium Nitrate 

5.2.2.1 Polarisation Curve Results  

Eu has been used extensively as a surrogate for Am; studies tend to focus on the extraction of Eu/Am 

from reprocessing streams and improvement of vitrification techniques [188], [193]. Investigation of the 

effect of the presence of Eu/Am on stainless steel corrosion in reprocessing conditions has not been 

explored. The work here will serve as a brief investigation into the effect of the presence of Eu in HNO3 

on passivation in nitric acid media and whether Eu, and therefore Am, will become entrained in the 

passive film formed on 316L SS in XPS experiments. 

Figure 5-10 shows potentiodynamic polarisation curves for 316L SS electrodes recorded in a) 5-35% wt. 

HNO3 concentrations and b) 5-35% wt. HNO3 concentrations containing 10mmol dm3 Eu(NO3)3·5H2O 

over the potential range -0.5 to 1.5 V.  
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Figure 5-10 – Potentiodynamic polarisation plots of 316L SS in a) 5-35% wt. HNO3 and b) 5-35% wt. 

HNO3 containing 10mmol dm3 Eu(NO3)3·5H2O at room temperature (20±2oC). Plots were measured in 

the potential range -0.5-1.5 V (sweep rate, 10 mV s-1). 

From Figure 5-10b it can be seen that the shift in behaviour between high and low HNO3 concentrations 

(15 and 20% wt), previously discussed in section 4.1, is less distinct in the presence of Eu. Overall lower 

concentrations of HNO3 (5-20% wt.) have shifted Ecorr to slightly more positive potentials in the presence 

of Eu, as shown in Figure 5-11. In HNO3-only studies this region was shown to be passive. This would 

initially suggest that the presence of Eu may increase the metal’s tendency to passivate at these HNO3 

concentrations.  
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5.2.2.2 Ecorr and icorr Analysis  

Corrosion potential (Ecorr) and corrosion current density (icorr) were calculated using Tafel extrapolation 

of the linear segments of the measured potential-current density curves of Figure 5-10b, in the vicinity of 

Ecorr. Figure 5-11a shows Ecorr values obtained at 5 - 35% wt. HNO3 concentrations in the presence of Eu. 

 

Figure 5-11 – a) Corrosion potential, Ecorr, values and associated error bars vs. HNO3 concentration b) 

Corrosion current density, icorr.  values and associated error bars vs. HNO3 concentration calculated 

from Figure 5-10a for 316L SS in 5 - 35% wt. HNO3 and Figure 5-10b for 316L SS in 5 - 35% wt. 

HNO3 containing 10mmol dm3 Eu(NO3)3·5H2O. 

From Figure 5-11a it can be seen that Ecorr variation with HNO3 concentration at HNO3 concentrations 

<25% wt. is more linear with increasing HNO3 concentration in the presence of Eu than in HNO3-only 

solutions, before plateauing at HNO3 concentrations ≥25% wt. In HNO3-only media this increase in Ecorr 

was attributed to the increased HNO2 content, leading eventually to transpassive dissolution of the passive 

film. However, in the presence of Eu, the more positive Ecorr values at lower concentrations may be 

attributed to the steel entering into its passive region more rapidly at lower concentrations. This is 

supported by icorr values in Figure 5-11b which, unlike 316L SS in HNO3-only, do not show a rapid 

increase with HNO3 concentrations ≥20% wt. Instead, they show a small slow increase with increasing 
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HNO3 concentrations. Interestingly icorr values are higher at HNO3 concentrations < 30% wt. and >10% 

wt. in the presence of Eu than in HNO3 only media. 

 It is possible that in the presence of Eu, 316L SS passivity is wider than in HNO3-only solutions due to 

an alteration in the composition of the passive film, i.e. the film that is forming is less effective as a 

protective film, resulting in higher icorr values, but provides a greater resistance to corrosion in highly 

oxidising conditions that corresponds to the pre-transpassive region of the polarisation curve i.e. E > 

~+0.5 V. Previous analysis of LSV and XPS results (Sections 4.1 and 4.5) showed that the rapid increase 

in icorr was due to the oxidation of Cr(III) to Cr(VI) which subsequently led to transpassive dissolution of 

the protective passive film. Previous studies have investigated the use of Lanthanides, such as cerium, 

lanthanum and samarium, as possible corrosion inhibitors[194], [195]. It has been suggested that 

lanthanides act as a thin barrier, by forming an insoluble film (La(OH)3) on the surface of the stainless 

steel [194], [196]–[198]. However, no specific reference was found referring to Eu as a corrosion 

inhibitor, neither in the transpassive or pre-transpassive regions or otherwise..  

From the results shown here it is possible that Eu is acting as a corrosion inhibitor under the conditions 

studied, most especially the transpassive and pre-transpassive regions. Further investigation into this is 

required. The presence of Eu on the surface of the steel will be further investigated in the XPS analysis 

in section 5.2.2.3. 

Returning to the behaviour of 316L SS in HNO3 in the presence of Eu, Ecorr/icorr variations may be more 

easily understood through the pseudo-polarogram plot shown in Figure 5-12, where Ecorr is plotted against 

icorr for HNO3 concentrations 5-35% wt. for both HNO3 only solutions and solutions containing Eu. 
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Figure 5-12 - Pseudo-polarogram of icorr vs. Ecorr calculated from Figure 5-10a (red) for 316L SS in 5 - 

35% wt. HNO3 and Figure 5-10b (black) for 316L SS in 5 - 35% wt. HNO3 containing 10mmol dm3 

Eu(NO3)3·5H2O.  

Figure 5-12 shows that compared to icorr values recorded for 316L SS in the presence of HNO3 only, in 

the presence of Eu three major differences are apparent: Firstly, at Ecorr <0.6 V and >0 V, icorr values are 

higher in the presence of Eu that in HNO3 alone. Previously, an increase in icorr has been linked to a 

change in passive film composition which has led to a less efficient protective film on the surface of the 

steel. As mentioned previously, lanthanide species are known to be good corrosion inhibitors [194], 

[196]–[198]. Lanthanide species form an insoluble film on the surface of metal, allowing them to act as 

a diffusion barrier, hindering the corrosion process. 316L SS already contains species which form an 

effective passive film, in particular Cr. By hindering corrosion it is possible that an insoluble Eu film, 

likely Eu(OH)3 or similar [198], is also hindering the metals own passivation process. Therefore icorr does 

not increase with increasing Ecorr because the metal is passive, but via formation of a different passive 

film leads to higher icorr values.  

Secondly, when compared to icorr measurements in HNO3 only, icorr values measured in the presence of 

Eu show only a small increase with increasing Ecorr. As mentioned above, it is likely that the Eu in solution 

acting as a corrosion inhibitor by forming an insoluble film which is preventing corrosion on the surface 

of the metal. The so formed film is passive at a wider range than the passive film formed on 316L SS in 

HNO3 only, therefore icorr remains lower at higher HNO3 concentrations. 

Finally, unlike icorr measurements in HNO3 only, there is no rapid increase in icorr at HNO3 concentrations 

≥ 30% wt.  This behaviour suggests that the Eu layer that is formed on the 316L SS surface is more 
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effective at higher potentials (i.e. in the pre-transpassive and transpassive regions) and HNO3 

concentrations than the Cr film that forms in HNO3 solutions. 

Whilst electrochemical techniques are a valuable tool for measuring changes in corrosion behaviour at 

the electrode surface, it provides no information on the compositional nature of the film that has formed 

on the stainless steel surface. As such, next section discusses XPS analysis of the surface film formed on 

316L SS in 5 and 25% wt. HNO3. These concentrations have been chosen to represent the lower and 

higher range of HNO3 concentrations that stainless steels are exposed to in reprocessing streams. 

5.2.2.3 XPS analysis of 316L SS in Nitric Acid Media Containing Europium Nitrate 

Curve fitted high resolution spectra of 316L SS samples in 5% wt. HNO3 and 10mmol dm3 

Eu(NO3)3·5H2O polarised at 0.2 and 0.8 V are shown in Figure 5-13, Figure 5-14 and Figure 5-15. 

The iron profiles in Figure 5-13 show two peaks, the peak at 706.9 eV is due to elemental iron (Fe0) and 

the peak around 710.7 eV is attributed to either iron (III) oxide (Fe2O3) or iron (II,III) oxide (Fe3O4), the 

same as the iron profiles under nitric acid only conditions described in Chapter 3 and 4.  

The chromium profiles in Figure 5-14, shows four peaks which based on previous analysis can be 

attributed to: Cr metal (573.9 eV), Chromium (III) oxide (Cr2O3) (575.7 eV), Chromium (III) hydroxide 

(576.8 eV) and Chromium (VI) oxide (CrO3) (578.8 eV).  

Two broad, compound peaks due to oxygen are observed at 530 and 532 eV, shown in Figure 5-15. As in 

chapter 4, in and of themselves they are not enough to confirm speciation due to deconvolution issues. They 

are, however, useful to confirm the presence of mixed Fe/Cr oxides/hydroxides on the metal surface [105]. 
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Figure 5-13 - XPS profile of Fe 2p3/2 after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3, 

both with 10mmol dm3 Eu(NO3)3·5H2O, at 0.2 and 0.8 V. 

 

Figure 5-14 - XPS profile of Cr 2p3/2 after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3, 

both with 10mmol dm3 Eu(NO3)3·5H2O, at 0.2 and 0.8 V. 
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Figure 5-15 - XPS profile of O 1s after passivation of 316L SS in a) 5% wt. and b) 25% wt. HNO3, both 

with 10mmol dm3 Eu(NO3)3·5H2O, at 0.2 and 0.8 V. 

Due to the number of species involved, and the presence of different radionuclide surrogates, the data of 

Figure 5-13 to Figure 5-15 may be more easily understood by plotting the relative atomic percentage of 

each species. For the Fe profiles of Figure 5-13, the relative atomic percentage plot is shown in Figure 5-16. 

For the Cr profiles of Figure 5-14, the relative atomic percentage plot is shown in Figure 5-17. Results from 

section 4.5 on 316L SS in HNO3 only media are also included to aid in the readers comparison. 
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Figure 5-16 –Iron XPS component concentrations for a) HNO3 solutions, b) HNO3 solutions containing 

10mmol dm3 Eu(NO3)3·5H2O. 

 

Figure 5-17 –Chromium XPS component concentrations for a) HNO3 solutions, b) HNO3 solutions 

containing 10mmol dm3 Eu(NO3)3·5H2O. 

Considering first the Fe percentages of Figure 5-16, increasing the HNO3 concentration from 5% wt. to 

25% wt. does not affect the iron oxide composition significantly at 0.2 or 0.8V. As discussed in Chapter 

4, electrochemically it is known that at higher potentials Fe(II) is oxidised to Fe(III), generating Fe2O3 

[57], [178], [179]. As such, the iron oxide signal at 0.8 V may be assumed to be dominated by Fe(III) 

oxide (hematite, α-Fe2O3,or maghemite, γ-Fe2O3). Furthermore, there is little difference in atomic 
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percentage between either 5% wt. or 25% wt., suggesting, as also described in Chapters 3 and 4, that it 

is differences in the Cr oxide composition that control the observed electrochemical differences in 

corrosion behaviour. Again, this is consistent with the conclusion that the primary constituent of the film 

determining electrochemical behaviour at these pHs is chromium, Importantly, the effect of Eu on the 

iron component of the passive film is also minimal, with no significant differences in wt. % compared to 

experiments in HNO3 only. This suggests that no mixed Fe/Eu oxide/hydroxide is being formed on the 

surface of the steel and that Eu is forming a separate film on the surface of the metal, either as a single 

component Eu oxide film or as a mixed metal oxide film with chromium.. 

Considering now the chromium profiles for HNO3 containing 10 mmol dm-3 Eu(III) (as Eu(NO3)3·5H2O) 

in  Figure 5-17b, the behaviour is different to that of Figure 5-17a containing HNO3 only. In the presence 

of Eu, there is only a small decrease in Cr0 content and a small increase in Cr2O3 content at both 5 and 

25% wt. nitric acid concentrations when increasing the potential from 0.2 to 0.8 V. CrO3 does not increase 

with potential in the lower concentration of nitric acid. However, it does increase at 0.8 V from 0.2 V in 

25% wt. nitric acid concentration.  

In comparison to the Eu free system, these results indicate that chromium and Cr(III) in particular being  

more stable towards oxidation in the presence of Eu, with Cr (III) not rapidly oxidising to Cr (VI). Thus, 

the passive film is more stable as chromium is less likely to dissolve. The electrochemical results 

suggested that Eu was forming a protective layer on the surface of the metal at the expense of the Cr 

passive film. It has been suggested that the Eu film hindered corrosion but also the regular passivation 

process, it is possible that the film that is being measured here is the initial air formed film on the surface 

of the steel which is then being protected by the Eu passive layer. The lack of increase in Cr(VI) content 

suggest that the surface is not being attacked by HNO3 and thus not going transpassive; this is in 

agreement with LSV results which showed little increase in icorr at higher potentials. 

While the above analysis describes the effect of Eu on the Cr passive film, whether a detectable Eu film 

is present on the surface has not been addressed. As such high resolution spectra of the europium region, 

1115-1150 eV, for each experiment shown in Figure 5-17a were taken, with results shown in Figure 5-18. 
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Figure 5-18 - XPS profile of Eu 3d5/2  after passivation of 316L SS in 5 and 25% wt. HNO3, with 

10mmol dm3 Eu(NO3)3·5H2O, at 0.2 and 0.8 V. 

A peak for Eu should occur within the 1135 eV region. The spectra clearly show no Eu has been detected 

on the surface of the 316L SS electrode at both HNO3 concentrations and potential ranges studied 

indicating that no incorporation of Eu has occurred or that any Eu that has been incorporated is below the 

limit of detection of the XPS (0.1 atom%).. Studies on lanthanides as corrosion inhibitors indicated they 

form thin films in the surface of the metal they are protecting. It is likely that the thin Eu film was only 

loosely adsorbed on the steel surface and that the film was washed off or fell off in the sample preparation 

process for XPS analysis, leaving the steel surface analysed here. Further in situ investigation will be 

needed to determine what whether a thin Eu film does indeed form on the surface of 316L SS and that 

this is what has reduced corrosion in high HNO3 concentrations. 
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 Stainless Steel Passivation in the Presence of Uranyl Nitrate 

Having discussed the effect of radionuclide surrogates on process steel corrosion and their degree of 

uptake within the passive film, we now discuss preliminary studies using an actual radionuclide 

contaminant, uranium. As with surrogate studies, we first describe the electrochemical behaviour of 316L 

SS in the presence of uranyl nitrate using LSV before analysing the surface passive film using XPS. 

5.3.1 Polarisation Curve Results 

Figure 5-19b shows the potentiodynamic polarisation curves for 316L SS electrodes recorded in 10 mmol 

dm-3 uranyl nitrate in HNO3 concentrations from 5% wt. to 35% wt. For the reader’s convenience 

polarisation curves for 316L SS electrodes in 5-35% wt. HNO3, previously shown in Figure 4-1, are 

shown in Figure 5-19a. 

From Figure 5-19b it can be seen that Ecorr shows little shift at lower HNO3 concentrations of 5-20% wt. 

before increasing to more positive potentials at ≥25% wt. This is in contrast to 316L SS in HNO3 only, 

Figure 5-19a, where Ecorr shifts to more positive potentials between 15 and 20% wt. HNO3.  

It is apparent from Figure 5-19 that the addition of uranyl is, in some way, inhibiting the nitrous mediated 

reduction of nitrate at 15 and 20% wt. HNO3. At these concentrations of HNO3, the higher concentration 

HNO3 mechanism starts to obtain due to greater stability of NO2 at higher acidities. This, in turn, 

regenerates the HNO2, allowing the catalytic cycle to continue. This is shown below in equations (1.22) 

and (1.23). 

𝐻𝑁𝑂ଶ() + 𝐻ା + 𝑒ି ⇄ 𝑁𝑂ௗ௦ + 𝐻ଶ𝑂 (1.22) 

𝐻𝑁𝑂ଷ + 𝑁𝑂(ௗ௦) ⇄ 𝐻𝑁𝑂ଶ() + 𝑁𝑂ଶ(ௗ௦) (1.23)  

There are two ways that uranyl can interrupt this cycle. 

 Reaction with HNO2 

 Reaction with NO 



 

192 
 

Work by Chimes [199] investigated HNO2 behaviour in uranyl nitrate solution and observed no reaction 

of any note.  This is not surprising as, if uranyl did scavenge HNO2 then there would be no need to add 

hydrazine to the PUREX process in order scavenge HNO2 and so stabilise U(IV) and Pu(III) to nitrous-

driven oxidation to U(VI) and Pu(IV) [200]. 

With regard to NO, the NO/NO+
 couple has an E0 of ~0.6 V vs NHE (0.36 V vs SCE) [192].  Comparison 

of this E0 with the Pourbaix diagram for uranium [201] indicates that this E0 sits right at the UO2
2+/U4+ 

boundary. There is thus the potential for uranyl to react with NO, disrupting the catalytic cycle in 

equations (1.22) and (1.23) and thus preventing the catalytic regeneration of HNO2 and so supressing the 

reduction of nitrate. 

Thus, at low HNO3 concentrations the scavenging of NO by uranyl may interfere with the global 

reduction of HNO3 to HNO2, previously discussed in Chapters 3 & 4, causing the lack of shift in Ecorr. 

However, once the HNO3 concentration increases sufficiently, the abundance of HNO3 and stability of 

NO2 at higher HNO3 concentrations leads to the rapid production of HNO2 which results in the observed 

increase in Ecorr and icorr at higher HNO3 concentrations.  
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Figure 5-19 - Potentiodynamic polarisation plots of 316L SS in a) 5-35% wt. HNO3 and b) 5-35% wt. 

HNO3 containing 10 mmol dm-3 uranyl nitrate at room temperature (20 ±2oC). Plots were measured in 

the potential range -0.5 to 1.5 V (sweep rate, 10 mV s-1). 

The presence of uranyl has no effect on the transpassive behaviour of 316L SS, with the onset of 

transpassive dissolution occurring at ~1 V in Figure 5-19b, the same as that for HNO3 only shown in 

Figure 5-19a.  

More information will be gleaned from this data by extracting Ecorr and icorr values from the polarograms 

shown in Figure 5-20.  
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5.3.2 Ecorr and icorr Analysis 

Corrosion potential (Ecorr) and corrosion current density (icorr) plots for Figure 5-19 were calculated using 

Tafel extrapolation of the linear segments of the measured potential-current density curves in the vicinity 

of Ecorr. Both plots are shown in Figure 5-20.  

As HNO3 concentration increases, Ecorr increases sigmoidally for both HNO3 only solutions and HNO3 

solutions containing uranyl. In uranyl containing colutions, Ecorr remains steady from 5 – 20% wt. HNO3 

and increases in between 20 and 25% wt. HNO3 before plateauing at 30% wt. HNO3. Generallly, these 

Ecorr values are lower in the presence of uranyl for HNO3 concentrations 10-25% wt. than in HNO3 only. 

This supports the idea that the uranyl cation is interfering with the reduction of HNO3, potentially by 

scavenging the surface adsorbed NO intermediate in HNO3 reduction so reducing the HNO2 content and 

therefore Ecorr and icorr. As previously mentioned, when the HNO3 concentration increases sufficiently the 

abundance of HNO3 and stability of NO2 at higher HNO3 concentrations leads to the rapid production of 

HNO2 which results in the observed increase in Ecorr and icorr, albeit at higher HNO3 concentrations that 

HNO3 only conditions.  

      

 

Figure 5-20 - a) Corrosion potential, Ecorr, values vs. HNO3 concentration b) Corrosion current 

density, icorr. Values vs. HNO3 concentration calculated from Figure 5-19a for 316L SS in 5 - 35% wt. 

HNO3 and Figure 5-19b for 316L SS in 5 - 35% wt. HNO3 containing 10 mmol dm-3 uranyl nitrate. 

NOTE: Uranyl nitrate experiments were only performed once, therefore no error bars are presented. 
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Figure 5-21 shows a pseudo-polarogram with Ecorr plotted against icorr for 316L SS in 10 mmol dm-3 

uranyl nitrate and 5 - 35% wt. HNO3. Figure 5-21 shows, overall, that 316L SS behaves in a similar 

manner in HNO3 only media and in the presence of uranyl. What is apparent from looking at Figure 5-21 

is that there is a more significant jump in Ecorr in the presence of uranyl and then a rapid increase in icorr 

after this jump in Ecorr further supporting the conclusion that reaction with uranyl is interfering with HNO3 

reduction and HNO2 cycling in lower HNO3 concentrations which is only overridden once there is 

sufficient HNO3 available.  

 

Figure 5-21 – Pseudo-polarogram of icorr vs. Ecorr calculated from Figure 5-19a (red) for 316L SS in 5 - 

35% wt. HNO3 and Figure 5-19b (black) for 316L SS in 5 - 35% wt. HNO3 containing 10 mmol dm-3 

uranyl nitrate. 

As previously discussed, whilst electrochemical techniques are a valuable tool for measuring changes in 

corrosion behaviour at the electrode surface, it provides no information on the compositional nature of 

the film that has formed on the stainless steel surface. As such, next section discusses XPS analysis of 

the surface film formed on 316L SS in 5 and 25% wt. HNO3. These concentrations have been chosen to 

represent the lower and higher range of HNO3 concentrations that stainless steels are exposed to in 

reprocessing streams. 

It is anticipated that U is more likely to be incorporated into the passive film in lower concentrations of 

HNO3. From the LSV results and Ecorr and icorr analysis, it is possible that U, if incorporated at all, may 

even be present in 25% wt. HNO3. XPS will be used in the following sections to assess the changes in 

composition of the passive film on the electrode surface. 
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 XPS analysis of 316L in Nitric Acid Media Containing Uranyl 

Nitrate 

Previous XPS spectra were recorded at the Nanotechnology and Integrated Bioengineering Centre 

(NIBEC), Ulster. Because of the use of uranium in the experiments described in this section, all 

subsequent XPS spectra were recorded in the uranium active labs at the University of Bristol. 

Figure 5-22 shows the multiplet peaks for Cr 2p1/2 and Cr 2p3/2 after passivation in 25% wt. HNO3 at 0.5 

V. Multiplet splitting arises when an atom contains unpaired electrons [160]. An additional peak at 572-

574 eV, which is not associated with the Cr multiplet peak, has been identified; there are two possible 

explanations for this peak, both associated with potential contaminants. 1) The peak is a Cu LMM auger 

transition [202], the peak matches the CuF2 auger signal, ~571 eV BE, however there are no strong XPS 

peaks for Cu making this unlikely. 2) The peak is possibly Ag (~572-574 eV BE) [203], Ag also has 

secondary peaks which makes this a more likely candidate. However, without performing a survey scan 

using a Mg X-Ray source it is impossible to say for certain. 

What is apparent is that the presence of foreign contaminants is evidence that the samples have been 

contaminated during sample preparation or whilst in storage awaiting analysis at Bristol University and 

subsequently confirmed by them. This has been taken into account during the assessment. 

 

Figure 5-22 - XPS profile of Cr 2p1/2 and 2p3/2 after passivation of 316L SS in 25% wt. HNO3 at 0.5 V. 
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Figure 5-23a shows the profiles for Cr 2p3/2 after passivation of 316L SS in 5 and 25% wt. HNO3 at 0.2, 

0.5 and 0.8 V. Figure 5-23b shows the profiles for Cr 2p3/2 after passivation of 316L SS in 5 and 25% wt. 

HNO3 with 10 mmol dm-3 of U, at 0.2, 0.5 and 0.8 V. The chromium profiles in Figure 5-23a, shows one 

peak which is attributed to a combined Chromium (III) oxide/hydroxide peak (~578 eV). Previously in 

e.g. Figure 4-33 and all subsequent XPS of the chromium region in chapters 4 and 5, this peak was 

resolved into three peaks – two minor peaks at 578.6 eV and 575.82 eV, attributed to CrO3 and Cr2O3 

respectively, and a major peak at 576.84 eV, attributed to Cr(OH)3 – see Table 3.2 for detailed 

assignment. Such deconvolution is not attempted for the data of Figure 5-23 due to the presence of the 

above-mentioned contaminant peak at 572-574 eV that is believed to mask the Cr2O3 peak at 575.82 eV– 

as well as the separate peak for metallic Cr0 that, on the basis of Figure 4-33, might be expected at 573.97 

eV. 
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Figure 5-23 - XPS profiles of Cr 2p3/2 after passivation of 316L SS in 5 and 25% wt. HNO3 at 0.2, 0.5 and 0.8 V, with a) containing HNO3 only and b) with 10 mmol dm-3 of 

uranyl nitrate. 
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Figure 5-24 - XPS profiles of  Fe 2p3/2 after passivation of 316L SS in 5 and 25% wt. HNO3 at 0.2, 0.5 and 0.8 V, with a) containing HNO3 only and b) with 10 mmol 

dm-3 of uranyl nitrate. 
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Figure 5-25 - XPS profiles of O 1s after passivation of 316L SS in 5 and 25% wt. HNO3 at 0.2, 0.5 and 0.8 V, with a) containing HNO3 only and b) with 10 mmol dm-

3 of uranyl nitrate. 
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Figure 5-24a shows profiles for Fe 2p3/2 after passivation of 316L SS in 5 and 25% wt. HNO3 at 0.2, 0.5 

and 0.8 V. Figure 5-24b shows profiles for Fe 2p3/2 after passivation of 316L SS in 5 and 25% wt. HNO3 

with 10 mmol dm-3 of U, at 0.2, 0.5 and 0.8 V. All spectra of Figure 5-24 show one peak at ~711 eV. This 

is in agreement with earlier spectra recorded under similar conditions e.g. Figure 3-26 et seq. wherein the 

peak was assigned to a compound feature primarily associated with Fe2O3 / Fe3O4. The data of Figure 5-

24 allow for this peak to be similarly broken down into two contributions: one peak associated with the 

Fe(II, III) ions of Fe2O3 and Fe3O4, centred at ~715 eV, and a second peak associated with the Fe(III) 

ions of Fe2O3 centred at ~711 eV. Noticable by its absence from Figure 5-24 is a peak at 706.96 eV, due 

to elemental iron (Fe0) previously observed in earlier spectra recorded under similar conditions e.g. Figure 

4-32 et seq. The XPS machines at the Universities of Bristol and Ulster used the same monochromated λ 

= 1486.6 eV / 0.83 nm X-ray source and thus both machines will have similar 3λ penetration depth of 2.5 

nm. The absence of the Fe0 peak in the data of Figure 5-24 therefore suggests that oxide layer on those 

samples is thicker than on those studied in the earlier spectra, so masking the uncorroded alloy beneath. 

This is surprising as all samples sent for study by XPS underwent exactly the same sample preparation 

i.e. 20 mins polarisation at the potential in question in the solution under study. The absence of the 

elemental Fe0 peak at 706.96 eV leads to concerns regarding the validity of the data. As previously 

mentioned, the samples were contaminated during sample preparation or, most likely, whilst in storage 

awaiting analysis at Bristol University. Analysis and conclusions in previous sections show that the 

passive film formed on 316L SS is dominated by chromium and its behaviour, therefore it is not 

unreasonable to conclude that further analysis of the Fe spectra is unnecessary. In addition, the proximity 

of peaks shown in Figure 5-24 shows how different oxides will be present simultaneously making it 

difficult to discern which peak can be attributed to which oxide. Clearly classifying the contribution of 

each species to the identified peaks is considered to be unreliable and therefore the Fe 2p3/2 profiles will 

not be analysed any further. 

Again reflecting the poorer quality of the XPS data presented in Figures 5-23 to 5-25 compared to that in 

the rest of this thesis, the oxygen profiles shown in Figure 5-25 are comprised of one single broad feature 

centred at 531 eV, rather than the two overlapping peaks seen at 530 and 532 eV in all other spectra 

recorded in this region using the same samples presented elsewhere in this thesis. As for the two peak 

oxygen spectra, the single peak spectra of Figure 5-25 are not enough to confirm speciation due to 
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deconvolution issues. They are, however, useful to confirm the presence of mixed Fe/Cr 

oxides/hydroxides on the metal surface [103]. 

As previously mentioned, the samples are believed to have been contaminated during analysis. Further 

analysis of uncontaminated samples is necessary in the future to confirm the behaviour of Cr in the 

presence of U.  

The main objective of this work was to assess the presence of U in oxide films, Figure 5-26 shows the 

XPS profile for U in 5 and 25% wt. HNO3 at 0.2, 0.5 and 0.8 V. A peak for U should occur in the 379 to 

381 eV region. The spectra shows no clear U peak detected under any of the conditions studied, indicating 

that there is no incorporation of U when 316L SS is passivated in HNO3 under these conditions. 

 

Figure 5-26 – XPS profile of U 4f7/2  after passivation of 316L SS in 5 and 25% wt. HNO3, with 10 

mmol dm-3 of uranyl nitrate, at 0.2 and 0.8 V. 

 Summary 

In this chapter, we have described the electrochemical and surface compositional characterisation of 316L 

SS electrode in HNO3 at various concentrations containing non-radioactive surrogate’s cerium nitrate and 

europium nitrate and radioactive surrogate uranyl nitrate.  

LSV studies in the presence of non-radioactive surrogate Ce, showed that the corrosion rate is higher than 
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rate is significantly higher than in HNO3 only solutions. It is believed that under these conditions, Ce(III) 

is oxidised to Ce(IV) which is a corrosion accelerator, thus leading to an increase in Ecorr, icorr and 

corrosion rate.  

HNO2 and NO2 can both behave as reducing agents. The increase in HNO3 concentration (≥20% wt.) 

increases the concentration of HNO2 and the presence of NO2, which is more stable in higher HNO3 

concentrations. Ce(IV) is reduced by these reducing agents to Ce(III) which has no effect on the corrosion 

rate. Thus, at higher HNO3 concentrations it is HNO2 and NO2 that once again influence Ecorr, icorr and 

corrosion rate.  

XPS spectra showed that no Ce was detected on the surface of the 316L SS electrode at both HNO3 

concentrations and potential ranges studied, suggesting that no incorporation of Ce occurs under these 

conditions. Again, this is most likely due to Ce increasing the oxidative power of the media in lower 

concentrations, as demonstrated by the higher Ecorr values in the LSV studies, rather than being 

incorporated into the film. At higher concentrations Ce(III) has no influence on film formation and, 

therefore, also does not become entrained within the film.  

These results have significant repercussions for Pu in HNO3 media in reprocessing environments. The 

presence of Pu in nitric acid media may lead to an increase in corrosion at lower HNO3 concentrations, 

affecting the overall lifetime of the pipework in reprocessing plants. However, Pu is not likely to be taken 

up into the passive film, indicating that contamination of pipework by Pu is unlikely and would not need 

to be considered during post operational clean out. 

In the presence of Eu, the corrosion rate only increases slightly with HNO3 concentration leading to the 

conclusion that Eu may be acting as a corrosion inhibitor. It has been suggested in previous studies that 

lanthanides make good corrosion inhibitors. Here, icorr was higher in lower concentrations of HNO3 than 

in HNO3 only media. This suggests the formation of a passive film that is completely different to the one 

formed in HNO3 only solutions, namely a Eu hydroxide which forms a thin protective layer on the surface 

of 316L SS. XPS spectra showed that no Eu was detected on the surface of the 316L SS electrode at both 

HNO3 concentrations and potential ranges studied. This suggests that the film was loosely adsorbed on 

the surface of the steel rather than incorporated into a pre-existing film. Further in-situ investigation will 
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be required to define the effect Eu, and therefore Am, has on the formation of the passive film formed on 

316L SS in HNO3. 

LSV studies showed in the presence of uranyl, that Ecorr values were lower in the presence of uranyl for 

HNO3 concentrations 10-25% wt. than in HNO3 only. Corrosion rates were lower in 15-25% wt. HNO3 

in the presence or uranyl. It was concluded that uranyl ion, UO2
2+ is likely scavenging NO and interfering 

with the global reduction of HNO to HNO2, causing the lack of shift in Ecorr, icorr and corrosion rate. 

However, once the HNO3 concentration increased sufficiently, the abundance of HNO3 and stability of 

NO2 at higher HNO3 concentrations will lead to the rapid production of HNO2 which results in the 

observed increase in Ecorr and icorr at higher HNO3 concentrations. The presence of U in solution had no 

effect on the onset of transpassive dissolution, which occurs at ~1 V.  

XPS analysis was carried out on 5 and 25% wt. nitric acid containing 10mmol dm-3 uranyl nitrate at 0.2, 

0.5 and 0.8 V and acid containing 30 mmol dm-3 Cerium (III) nitrate and 10mmol dm-3 Europium (III) 

nitrate at 0.2 and 0.8 V. Results showed that for HNO3 solutions containing Ce and Eu, Fe oxide levels 

increased with an increase in potential in all solutions. At higher potentials Cr(III) will be oxidised to 

Cr(VI), which is more soluble. The dissolution of Cr(VI) will lead to a relative increase in iron content 

in the passive film which is observed here. This behaviour could not be identified in the spectra in the 

presence of uranyl, where a peak for Fe metal could not be identified.     

Overall, Cr hydroxide dominated the passive film in lower potentials and HNO3 concentrations and 

increase in both potential and HNO3 led to the formation of a more oxide rich layer. As potentials 

increased further the Cr(III) is oxidised to Cr(VI). The dissolution of Cr(VI) and oxidation of Cr(III) 

reduced the efficacy of the passive film which leads it’s subsequent transpassive dissolution. However, 

In HNO3 solutions containing Eu the oxidation of Cr(III) to Cr(VI) appears reduced, indicating continued 

stability of the passive film at the potentials and HNO3 concentrations studied. Ce increased the oxidation 

of Cr(III) to Cr(VI) at higher potentials. Within this chapter we were unable to fully analyse the U data 

due to the contamination of the U samples. Further analysis is necessary to fully understand the behaviour 

of oxides in the presence of U.  

The results from this chapter suggest that there is no incorporation of radionuclide surrogate contaminants 

in the passive film formed on 316L SS. This implies that steel types that are chosen specifically for their 
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passivity for use in extreme acid environments in the presents of radionuclide contaminants may not be 

contaminated within their passive film. There are a wide range of radionuclides within reprocessing 

streams and the detection range of XPS (0.1 to 1 atomic %) may not be sensitive enough to detect the 

radionuclide surrogate contaminants studied here. Therefore, further in-situ investigation is required to 

ascertain whether this inference is correct. This is discussed further in section 6.3. 
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6 CONCLUSIONS AND FURTHER WORK 

 Project Objectives 

The key objective of this project was to assess the possibility of contaminant entrainment in passive oxide 

films formed on stainless steel surfaces in HNO3 conditions representative of reprocessing flow sheet. 

Entrainment of radionuclide contaminants in corrosion products had been extensively studied. Mainly nuclear 

plant materials, such as coolant circuits, or geological repository environments, such as corroding steel 

canisters. However, studies have not looked at the possibility of contaminant sorption/co-deposition on 

passive oxide films formed in HNO3 conditions representative of reprocessing. 

 Conclusions 

Initial experiments have focused on the characterisation of 316L SS in HNO3 concentrations ≤15% wt. 

Regions for active dissolution, onset of passivation, passivity, transpassive dissolution and secondary 

passivation/oxygen evolution were identified. 

LSV studies showed that Ecorr and icorr increased with increasing HNO3 concentration. This behaviour has 

been attributed to a change in the HNO2 regeneration mechanism. At lower concentrations, regeneration of 

HNO2 is believed to occur on the stainless steel surface. This is a slow process which is dependent on the 

diffusion of HNO3 to the surface of the steel. At higher concentrations, the mechanism shifts to near surface 

dominated based regeneration. The abundance of HNO3 and stability of NO2 at higher HNO3 concentrations 

leads to the rapid production of HNO2 which results in the observed increase in Ecorr and icorr.  

EIS studies nicely support this assessment, with wide Rp peaks and high Rp values at lower concentrations 

(<20% wt.) and narrower peaks and lower Rp values at higher HNO3 concentrations (>20% wt.). Onset of Rp 

increase occurs at higher potentials in higher HNO3 concentrations, following the increase in Ecorr observed 

in LSV studies. Lower Rp values coincide with an increase in icorr values, this is most likely due to the 

oxidation of Cr(III) to Cr(VI), which is more soluble, and the subsequent dissolution of Cr(VI) reducing the 

efficacy of the passive film. Onset of transpassive dissolution occurred at ~1 V for a HNO3 concentrations.  
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Figure 6-1a, produced by Fauvet et al. [6], shows a comparison between the domains of stability of 316L SS 

and 304L SS and 310L SS in nitric acid as a function of concentration and temperature (originally shown in 

Section 1.2.2.2.3). Figure 6-1a shows 316L SS with no region of stability above 3mol/L. The LSV and EIS 

work presented here has shown that 316L SS actually has a narrow region of passivity in HNO3 up to 8mol/L 

at room temperature (25oC). Figure 6-1a has been updated to include this region and is shown in Figure 6-1b.  

 

Figure 6-1 – a) Comparison between the domains of stability of a Mo containing steel (316L SS) and two 

low Mo steels is (304L SS and 310L SS ) in nitric acid as a function of concentration and temperature [6] b) 

an updated figure to include information gathered in the work presented here.. 

The HNO3 reduction mechanism was investigated using 316L SS Rotating Disk Electrodes. The HNO3 

reduction mechanism description can be found in Section 1.3.4. 

RDE studies indicate two forms of Schmid’s mechanism obtain on steels: 1) At HNO3 concentrations ≤20% 

wt., the reaction of surface adsorbed intermediates such as NO and NO2 dominate (as proposed by Balbaud 

[5] and Fauvet [6]) and the associated reduction current then shows no dependence on electrode rotation 

speed. 2) At HNO3 concentration ≥20% wt., the reaction of NO and NO2 intermediates in the solution near 

the electrode surface dominate (proposed by Lange [7], and Carta & Pigford [8]) and the associated reduction 

current then decreases with increasing rotation speed. 

The latter behaviour is important when considering stainless steel pipework within nuclear environments that 

contain high concentrations of HNO3. At higher concentrations any stagnation or reduction in the flow rate 

may lead to an increase in the autocatalytic reduction process of nitric acid which, in turn, will lead to an 

a) b) 
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increase in the corrosion potential, moving towards transpassive behaviour. This will over time lead to 

intergranular corrosion and subsequent pipework failure.  

EQCM has been shown to follow the in-situ mass change of a passive stainless steel electrode resulting from 

the application of a potential. We have used EQCM to study the induced formation of the passive oxide layer 

at SS 2343 (a 316L analog). Using electrochemical techniques, we have established the viability of SS2343 

as an analogue for 316L SS. Polarisation curves were recorded on QCM crystals with simultaneous 

measurements of mass change. Current and mass-response curves show that at HNO3 concentrations ≤15% 

wt. the current trace may suggest that the steel is passive, however, the mass loss in the mass trace indicates 

that, at low potentials, the film may not be fully formed and therefore will not provide full protection for the 

steel surface. At higher potentials mass increases indicating stable passive film formation. At HNO3 

concentrations ≥20% wt., passive film formation does not occur below Ecorr. Below Ecorr mass traces were 

noisy showing large mass losses and gains. This is believed to be mainly due to hydrogen evolution at the 

electrode surface. When the potential reached Ecorr mass increased at each HNO3 concentration and the mass 

trace stabilised. The narrower region of passivity agrees nicely with LSV and EIS studies which suggest that 

at HNO3 concentrations ≥20% wt. a rapid autocatalytic regeneration of HNO2 is occurring in solution. This 

inhibits passive film formation and leads to an increase in Ecorr. 

In the potential ‘staircase’ experiments, the potential was held for a longer time to assess mass change of SS 

2343 as a function of HNO3 concentration (5% wt. to 35% wt.). At HNO3 concentrations ≤15% wt., the 

maximum extent of oxide growth is observed at E=~0.55 V. Beyond this point, the transpassive processes 

leads to a mass loss from the electrode surface, the first time such a feature has been observed on passivated 

stainless steel. Oxide growth is not seen at HNO3 ≥20% wt., with all samples presenting substantial mass loss 

at E=0.7 V, a transpassive process also seen in the case of samples studied at ≤15% wt. This has repercussions 

for the use of stainless steels in highly oxidising environments, such as those that may occur in the 

concentrated HNO3 highly active raffinate liquor solutions that are found in evaporators. 

These studies provided us with information that will allow us to artificially ‘grow’ oxide layers in any 

concentration of HNO3 for XPS studies. Overall it is more likely that contaminant entrainment is going to 

occur in lower concentrations of HNO3 (<20% wt.) where a strong passive oxide film forms, rather than at 

higher HNO3 concentrations (>20% wt.) where the ability to produce a passive oxide film appears greatly 

reduced. 
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XPS analysis showed that in both 5 and 25% wt. HNO3 the passivation of 316L SS formed a passive film 

consisting of hydroxide rich layer and oxide layers at lower potentials. Fe is believed to shift from an Fe(II) 

dominant oxide to  Fe(III), no discernible shift was identified therefore Cr is believed to play a more crucial 

role in the electrochemical changes observed. With an increase in potential and HNO3 concentration the 

passive film shifted to a relatively more dominant Cr oxide layer due the preferential formation of Cr2O3 from 

Cr(OH)3 at low pH. At higher HNO3 concentrations this leads to an increase in the formation Cr(VI), at high 

potentials Cr(VI) intensity decreased, this has been attributed to rapid dissolution into solution.  

Electrochemical studies exhibited a shift in behaviour between 15 and 25% wt. nitric acid. It was expected 

that this would affect the composition of the passive film. Further studies on 316L SS in HNO3 using XPS 

will allow for clarification as to why this occurs. It is likely that the shift in electrochemical behaviour is 

mostly due to the nitric acid autocatalytic reduction interactions with 316L SS but the exact mechanism has 

yet to be determined. 

The effect of HNO3 on 316L stainless steel dissolution at two different concentration regimes,  15% wt. 

typical of that found in reprocessing actinide ‘strip’ steps and > 15% wt. typical of that found in ‘head end’ 

fuel pin dissolution, highly active liquor evaporators and in initial uranium scrub and backwash steps was 

established. The effect of radionuclides on 316L SS corrosion behaviour and the incorporation of said 

radionuclides into the so formed passive film in both concentration regimes was investigated. Using the same 

electrochemical and analytical analysis techniques were used on HNO3/316L SS systems but in the presence 

of both radionuclide surrogates (Europium/Cerium, acting as a surrogates for Americium/Plutonium 

respectively) and non-active radionuclides (Uranium). 

LSV studies in the presence of non-radioactive surrogate Ce, showed that the corrosion rate is higher than in 

HNO3 only solutions. In the presence of Ce, at lower HNO3 concentrations (<20% wt.), the corrosion rate is 

significantly higher than in HNO3 only solutions. It is believed that under these conditions, Ce(III) is oxidised 

to Ce(IV) which is a corrosion accelerator, thus leading to an increase in Ecorr, icorr and corrosion rate. Further 

experimentation will be required to confirm the presence of Ce(IV) within solution in the conditions described 

above. 

HNO2 and NO2 can both behave as reducing agents. The increase in HNO3 concentration (≥20% wt.) increases 

the concentration of HNO2 and the presence of NO2, which is more stable in higher HNO3 concentrations. 
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Ce(IV) is reduced by these reducing agents to Ce(III) which has no effect on the corrosion rate. Thus, at 

higher HNO3 concentrations it is HNO2 and NO2 that once again influence Ecorr, icorr and corrosion rate.  

XPS spectra showed that no Ce was detected on the surface of the 316L SS electrode at both HNO3 

concentrations and potential ranges studied, indicating that no incorporation of Ce occurs under these 

conditions. Again, this is most likely due to Ce increasing the oxidative power of the media in lower 

concentrations, as demonstrated by the higher Ecorr values in the LSV studies, rather than being incorporated 

into the film. At higher concentrations Ce(III) has no influence on film formation and, therefore, also does 

not become entrained within the film.  

The results here have significant repercussions for Pu in HNO3 media in reprocessing environments. The 

presence of Pu in nitric acid media may lead to an increase in corrosion at lower HNO3 concentrations, 

affecting the overall lifetime of the pipework in reprocessing plants. However, Pu is not likely to be taken up 

into the passive film, indicating that contamination of pipework by Pu is unlikely and would not need to be 

considered during post operational clean out. 

In the presence of Eu, the corrosion rate only increases slightly with HNO3 concentration leading to the 

conclusion that Eu may be acting as a corrosion inhibitor. It has been suggested in previous studies that 

lanthanides make good corrosion inhibitors. Here, icorr was higher in lower concentrations of HNO3 than in 

HNO3 only media. This suggests the formation of a passive film that is completely different to the one formed 

in HNO3 only solutions, namely a Eu hydroxide which forms a thin protective layer on the surface of 316L 

SS. XPS spectra showed that no Eu was detected on the surface of the 316L SS electrode at both HNO3 

concentrations and potential ranges studied. This suggests that the film was loosely adsorbed on the surface 

of the steel rather than incorporated into a pre-existing film. Further in-situ investigation will be required to 

define the effect Eu, and therefore Am, has on the formation of the passive film formed on 316L SS in HNO3. 

LSV studies showed in the presence of uranyl, that Ecorr values were lower in the presence of uranyl for HNO3 

concentrations 10-25% wt. than in HNO3 only. Corrosion rates were lower in 15-25% wt. HNO3 in the 

presence or uranyl. It was concluded that at the uranyl ion, UO2
2+ is likely to be scavenging NO and thus 

interfering with the global reduction of HNO3 to HNO2, causing the lack of shift in Ecorr, icorr and corrosion 

rate. However, once the HNO3 concentration increased sufficiently, the abundance of HNO3 and stability of 

NO2 at higher HNO3 concentrations will lead to the rapid production of HNO2 which results in the observed 
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increase in Ecorr and icorr at higher HNO3 concentrations. The presence of U in solution had no effect on the 

onset of transpassive dissolution, which occurs at ~1 V.  

XPS analysis was carried out on 5 and 25% wt. nitric acid containing 10mmol dm-3 uranyl nitrate at 0.2, 0.5 

and 0.8 V and acid containing 30 mmol dm-3 Cerium (III) nitrate and 10mmol dm-3 Europium (III) nitrate at 

0.2 and 0.8 V. Results showed that for HNO3 solutions containing Ce and Eu, Fe oxide levels increased with 

an increase in potential in all solutions. At higher potentials Cr(III) will be oxidised to Cr(VI), which is more 

soluble. The dissolution of Cr(VI) will lead to a relative increase in iron content in the passive film which is 

observed here. This behaviour could not be identified in the spectra in the presence of uranyl, where a peak 

for Fe metal could not be identified. Contamination of the samples prevented further assessment of the data.     

Overall, Cr hydroxide dominated the passive film in lower potentials and HNO3 concentrations and increase 

in both potential and HNO3 led to the formation of a more oxide rich layer. As potentials increased further 

the Cr(III) is oxidised to Cr(VI). The dissolution of Cr(VI) and oxidation of Cr(III) reduced the efficacy of 

the passive film which leads it’s subsequent transpassive dissolution. However, In HNO3 solutions containing 

Eu the oxidation of Cr(III) to Cr(VI) appears reduced, indicating continued stability of the passive film at the 

potentials and HNO3 concentrations studied. Ce and U both increased the oxidation of Cr(III) to Cr(VI) at 

higher potentials.  

Overall the results have shown that HNO3 concentration, and subsequently the HNO2 regeneration 

mechanism, plays a key role in the formation and composition of the passive film on 316L SS. No 

contaminants were detected in the passive films formed on the steel in passive conditions indicating that if 

the steel remains passive in HNO3 conditions representative of reprocessing that the risk of contaminant 

uptake is low. HNO3 RDE studies show that stagnation of HNO3 could lead to the intergranular corrosion 

and subsequent failure of the pipework. 

 There are many avenues of research to be explored to help supplement this theory which will be discussed 

in 6.3.     



 

213 
 

 Further work 

Whilst initial work has been carried out to electrochemically characterise 316L SS in a range of HNO3 

concentrations that are representative of nuclear reprocessing streams and to analyse surface composition of 

the passive film formed under these conditions in the presence of radionuclide surrogates. Further exploration 

into the electrochemical behaviour of steel in HNO3 and in the presence of radionuclides is required. This can 

be separated into four key areas of study: (i) further investigation in the effect of HNO3 on the passivation of 

316L SS. (ii) further investigation into the effect of the addition of single radionuclide surrogates into HNO3 

media, (iii) use of electrochemistry to characterise the behaviour of stainless steel types in the presence of 

reprocessing stream simulants and (iv) temperature dependency on the formation of the passive film in HNO3 

and in the presence of radionuclides. 

In the first (i), there are several key fields identified:  

 Further development of the EQCM for use in passive film formation studies on steels. The EQCM 

has been shown to be a viable tool for measuring film formation on steel piezoelectrodes. 

Improvement in the experimental setup may allow for the measurement of film formation under 

flowing solution, more closely simulating pipework conditions.   

 Investigation into the secondary passivation of 316L SS with focus on film composition, using XPS 

and other suitable techniques (potentially those with a greater detection limit, as shown in Figure 

2-20), and investigations into Fe oxide formation and solubility at high potentials and HNO3 

concentrations.  

 The use of detailed XPS and other suitable techniques (potentially those with a greater detection 

limit, as shown in Figure 2-20) at various HNO3 concentrations and potentials to investigate HNO3 

reduction behaviour ‘shift’ and the effect this has on passive film formation. Work in Chapter 4 

investigated film formation at high HNO3 concentration and low HNO3 concentrations at high and 

low passive potentials. More detailed studies into wider potential regions, in particular at Ecorr where 

current increases with increasing HNO3 concentration and the region of secondary passivation at 

potentials >1 V.  
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 Further investigation into HNO3 reduction kinetics using koutecky-levich analysis to allow for a 

complete numerical treatment of all processes taking place at the metal/solution interface. With 

particular interest on the HNO3 reduction mechanism ‘shift’ from surface based to a solution based 

mechanism.  

For the second (ii), further electrochemical characterisation of stainless steels in the presence of 

radionuclide surrogates in HNO3. Further use of techniques such as: Linear Sweep Voltammetry, 

Electrochemical Impedance Spectroscopy, Quartz Crystal Microgravimetry, X-ray Photoelectron 

Spectroscopy and in-situ spectroscopic techniques, such as Raman Spectroscopy and UV-vis 

Spectroscopy, will be used to investigate the inhibitive effects of Am and Eu. In-situ techniques will be 

useful for investigation of the formation of inhibitive films on the surface of 316L SS and the presence 

of these species in solution. Also, further investigation into the apparent corrosive behaviour of Ce in 

high HNO3 concentrations on 316L SS. 

For the third (iii), electrochemical characterisation of stainless steels used in reprocessing using 

techniques such as: Linear Sweep Voltammetry, Electrochemical Impedance Spectroscopy, Quartz 

Crystal Microgravimetry and X-ray Photoelectron Spectroscopy. Rather than using HNO3 solutions with 

a single radionuclide surrogate, a solution representative of reprocessing stream liquors should be used 

to allow for any accumulative effects or other influential behaviour to be taken into account.  

Finally, for the fourth (iv), investigation into the effect of temperature on the formation of the passive 

film in HNO3 and in the presence of radionuclide surrogates. Work by Armstrong [204] suggests that icorr 

increases with increasing temperature. This has clear implications for passivation of stainless steel types 

used in reprocessing. If icorr increases this could lead to a decrease in passivity, followed by corrosion of 

the steel surface. This could lead to pipe or vessel failure for liquors containing high HNO3 concentration 

liquors with a wide range of radionuclide contaminants.  
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Electrochemical Impedance Spectroscopy (EIS) Zview 
Data 
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Table 8-1 – Best fit parameters of 316L SS surface at various potentials in 5% HNO3 solution. 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.439 2.649 6.02E-05 0.8057 
-400 2.8 3.658 6.77E-05 0.7348 
-300 2.5 11060 2.97E-05 0.85098 
-200 2.612 18948 1.76E-05 0.9243 
-100 2.907 48186 1.21E-05 0.98496 

0 2.578 70011 1.59E-05 0.93879 
100 2.5 78000 1.75E-05 0.90961 
200 2.7 65000 1.31E-05 0.925 
300 2.8 102490 1.09E-05 0.95 
400 2.644 135720 1.06E-05 0.9312 
500 2.644 139720 8.66E-06 0.97769 
600 2.644 130600 9.05E-06 0.97115 
700 2.5 115000 7.42E-09 0.95 
800 2.6 55013 7.14E-07 0.95 
900 2.5 21583 1.53E-05 0.92045 

1000 2.3 3497 2.84E-05 0.89626 
1100 2.335 505.1 3.85E-05 0.88345 
1200 2.321 224.5 3.28E-05 0.89179 
1300 2.241 166.6 2.55E-05 0.89486 
1400 2.211 139.4 2.58E-05 0.88249 
1500 2.304 112.4 4.76E-06 0.83783 
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Table 8-2 – Best fit parameters of 316L SS surface at various potentials in 10% HNO3 solution. 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.278 1.317 0.00010286 0.8347 
-400 1.332 2.694 0.0001037 0.84628 
-300 1.503 9.798 0.00010061 0.8461 
-200 1.802 244.4 0.00010057 0.82 
-100 1.619 6544 1.63E-04 0.70696 

0 1.5 2253 7.12E-05 0.80509 
100 2.796 1606 7.28E-05 0.89997 
200 1.393 7311 2.65E-05 0.89956 
300 1.654 47622 1.35E-05 0.96253 
400 1.66 67056 1.12E-05 0.96832 
500 1.643 67184 8.07E-06 0.99588 
600 1.63 69269 6.81E-06 1.001 
700 1.6 57409 6.82E-06 0.99601 
800 1.601 45033 9.68E-06 0.96115 
900 1.644 23859 1.37E-05 0.94143 

1000 1.628 4097 2.83E-05 0.89124 
1100 1.5 3850 1.19E-05 1.014 
1200 1.457 231 5.15E-05 0.87384 
1300 1.477 81.9 4.28E-05 0.89071 
1400 1.461 42.14 3.19E-05 0.89907 
1500 1.423 33.54 4.81E-05 0.83335 
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Table 8-3 – Best fit parameters of 316L SS surface at various potentials in 15% HNO3 solution. 

. 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.156 1.163 0.00011712 0.80622 
-400 1.283 2.268 9.09E-05 0.85489 
-300 1.487 7.456 8.56E-05 0.86089 
-200 1.719 72.08 0.00010007 0.81989 
-100 1.049 59.45 5.90E-05 0.81297 

0 1.288 295.6 2.84E-05 0.89097 
100 1.459 2570 2.47E-05 0.91055 
200 1.72 10775 1.55E-05 0.96197 
300 1.536 39431 1.58E-05 0.94554 
400 1.639 55694 1.20E-05 0.96935 
500 1.49 70793 1.19E-05 0.95411 
600 1.888 75974 9.69E-06 0.95 
700 1.864 55078 7.00E-05 1.002 
800 1.841 46514 8.51E-06 0.98541 
900 1.869 25758 2.08E-05 0.97869 

1000 1.433 5310 2.46E-05 0.91002 
1100 1.448 250.6 6.63E-05 0.86738 
1200 1.463 48.59 5.53E-06 0.88567 
1300 1.406 19.11 4.21E-05 0.89492 
1400 1.508 9.501 2.81E-05 0.91267 
1500 1.464 10.3 3.72E-05 0.86996 
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Table 8-4 – Best fit parameters of 316L SS surface at various potentials in 20% HNO3 solution/ 

 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.158 0.86608 9.66E-05 0.83752 
-400 1.237 1.693 8.67E-05 0.86292 
-300 1.406 5.121 0.00011931 0.82138 
-200 1.192 39.43 0.00017178 0.74621 
-100 0.98948 25.28 0.00010306 0.75278 

0 1.119 21.33 2.70E-05 0.89002 
100 1.253 444.9 2.39E-05 0.90871 
200 1.319 4663 2.02E-05 0.9263 
300     
400 1.451 56615 1.30E-05 0.96067 
500 1.61 50898 8.42E-06 1.002 
600 1.502 95921 9.21E-06 0.97543 
700 1.507 70899 1.41E-05 1 
800 1.419 55718 1.53E-05 0.99261 
900 1.5 27153 1.28E-05 0.95946 

1000 1.279 6553 2.32E-05 0.90861 
1100 1.329 267.1 8.24E-05 0.85905 
1200 1.335 32.83 6.51E-05 0.88143 
1300 1.349 10.85 4.66E-05 0.91027 
1400 1.434 3.989 2.85E-05 0.94745 
1500 1.488 2.596 2.20E-05 0.95967 
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Table 8-5 – Best fit parameters of 316L SS surface at various potentials in 25% HNO3 solution. 

 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.23 0.72492 8.14E-05 0.8619 
-400 1.375 0.86195 9.34E-05 0.86195 
-300 1.246 4.444 0.00016924 0.75981 
-200 0.6859 22.15 0.00023458 0.69438 
-100 1.026 5.358 3.70E-05 0.85143 

0 1.136 6.731 2.66E-05 0.88707 
100 1.203 17.96 1.94E-05 0.92361 
200 1.263 283.5 1.87E-05 0.93169 
300 1.379 3318 1.45E-05 0.95446 
400 1.578 14290 1.01E-05 0.98759 
500 1.36 39000 7.36E-06 0.96 
600 1.492 47536 8.58E-06 0.98186 
700 1.437 49781 8.60E-06 0.97315 
800 1.568 48539 8.04E-06 0.98168 
900 1.456 34008 1.07E-05 0.95 

1000 1.367 7614 2.15E-05 0.90518 
1100 1.334 218.9 8.65E-05 0.86267 
1200 1.342 23.79 6.71E-05 0.88791 
1300 1.378 6.909 5.25E-05 0.92225 
1400 1.408 2.376 3.56E-05 0.95849 
1500 1.494 1.215 1.99E-05 1.017 
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Table 8-6 – Best fit parameters of 316L SS surface at various potentials in 30% HNO3 solution. 

 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.341 0.85483 4.68E-05 0.95576 
-400 1.488 1.31 9.75E-05 0.85492 
-300 1.347 4.997 0.0001637 0.76522 
-200     
-100     

0     
100 1.138 6.147 2.26E-05 0.90314 
200 1.212 30.04 1.75E-05 0.93433 
300 1.243 487.8 1.71E-05 0.93519 
400 1.268 3154 1.50E-05 0.94196 
500 1.511 9811 1.04E-05 0.97885 
600 1.315 22003 1.09E-05 0.95 
700 1.304 34455 8.28E-06 0.98642 
800 1.35 37699 7.49E-06 0.99569 
900 1.311 26759 1.23E-05 0.94701 

1000 1.35 8036 1.93E-05 0.92668 
1100 1.331 241.4 9.67E-05 0.86063 
1200 1.348 22.36 8.10E-05 0.88112 
1300 1.378 6.066 6.47E-05 0.92039 
1400 1.458 1.896 3.03E-05 1 
1500 1.565 0.87766 1.23E-05 1.098 
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Table 8-7 – Best fit parameters of 316L SS surface at various potentials in 35% HNO3 solution. 

 

mV Rs (ohm) Rp (ohm) CPE-T CPE-P 
-500 1.349 0.94102 4.69E-05 0.94102 
-400 1.457 1.358 0.00011168 0.82547 
-300 0.98659 5.106 0.00027304 0.68604 
-200     
-100     

0 0.61508 2.64 3.29E-05 0.80275 
100 1.231 3.125 1.83E-05 0.91797 
200 1.226 7.117 1.57E-05 0.93789 
300 1.311 112.4 1.49E-05 0.94338 
400 1.318 1073 1.35E-05 0.94682 
500 1.445 4735 1.41E-05 0.96961 
600 1.431 16125 9.23E-06 0.9534 
700 1.3 32092 5.54E-06 0.99057 
800 1.4 38608 9.83E-06 0.97197 
900 1.468 37781 9.29E-06 0.96904 

1000 1.333 11413 1.68E-05 0.92244 
1100 1.364 404.8 6.80E-05 0.88048 
1200 1.374 24.08 9.39E-05 0.8717 
1300 1.366 4.769 8.94E-05 0.90022 
1400 1.429 1.601 4.89E-05 0.97626 
1500 1.516 0.7773 2.35E-05 0.7773 
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Appendix 2 

Electrochemical Impedance Spectroscopy Zview2 
Modelling Example Chi Square Values 
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Figure 8-1 – Screenshot of Zview2 EIS analysis of 316L in 5% wt. nitric acid at 1.1V vs. SCE. Chi-Squared 

value highlighted in red. 

 

Figure 8-2 – Screenshot of Zview2 EIS analysis of 316L in 10% wt. nitric acid at -0.2V vs. SCE. Chi-

Squared value highlighted in red. 
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Figure 8-3 – Screenshot of Zview2 EIS analysis of 316L in 15% wt. nitric acid at 1.2V vs. SCE. Chi-

Squared value highlighted in red. 

 

Figure 8-4 – Screenshot of Zview2 EIS analysis of 316L in 20% wt. nitric acid at 0.4V vs. SCE. Chi-

Squared value highlighted in red. 
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Figure 8-5 – Screenshot of Zview2 EIS analysis of 316L in 25% wt. nitric acid at 0.3V vs. SCE. Chi-

Squared value highlighted in red. 

 

Figure 8-6 – Screenshot of Zview2 EIS analysis of 316L in 30% wt. nitric acid at 0.9V vs. SCE. Chi-

Squared value highlighted in red. 

  



 

239 
 

 

Figure 8-7 – Screenshot of Zview2 EIS analysis of 316L in 35% wt. nitric acid at 0.4V vs. SCE. Chi-

Squared value highlighted in red. 
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Appendix 3 

Published work: 

“Fixed Contamination on Steel Surfaces - First Use of 

QCM to Measure Oxide Growth on Process Steels Under 

Conditions Typical of Nuclear Reprocessing” [205] 
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Appendix 4 

Published work: 

“Nitric Acid Reduction on 316L Stainless Steel Under 

Conditions Representative of Reprocessing” [183] 
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