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Abstract

This thesis is a compilation of three main studies with the common theme: point

process based high-frequency volatility estimation. The first chapter introduces a new

class of high-frequency volatility estimators and examines its asymptotic properties.

The second chapter studies the relative importance of market microstructure (MMS)

variables on high-frequency volatility estimation. The third chapter proposes a

Markov-switching model for high-frequency volatility estimation and provides intra-

day measures of information contents in the trading process using the proposed model.

In the first chapter, we propose a novel class of volatility estimators named the

Renewal Based Volatility (RBV ) estimator, and derive its asymptotic properties. This

class of estimators is motivated by the work of Engle and Russell (1998), Gerhard

and Hautsch (2002), Andersen, Dobrev, and Schaumburg (2008), Tse and Yang

(2012), Nolte, Taylor, and Zhao (2018), which use price durations to construct high-

frequency volatility estimators. We show that our RBV estimator nests the volatility

estimator using price duration, thus providing a theoretical framework to analyse its

asymptotic properties. Our theoretical results support the simulation and empirical

findings in Tse and Yang (2012) and Nolte, Taylor, and Zhao (2018) that: (1) both

the non-parametric duration (NPD) based and the parametric duration (PD) based

volatility estimators are more efficient than the Realized Volatility (RV) estimator;

(2) a parametric design can greatly improve the efficiency of volatility estimation;

(3) the PD estimator can provide accurate intraday volatility estimates. We provide

simulation evidence for the performance of the NPD estimator and propose an ex-

ponentially smoothed version that can outperform noise-robust RV-type estimators

under general market microstructure noise and jumps.

In the second chapter, we augment the PD estimator by including MMS variables in

the parametric model. Specifically, we use a lognormal version of the Autoregres-

sive Conditional Duration (ACD) model by Engle and Russell (1998), and include

trading volume, bid-ask spread, total quote depth, quote depth difference, number

of trades, order imbalance and order flow in the ACD model. Moreover, we use

a best subset regression (BSR) approach to rank and select the included MMS
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variables. Our empirical study based on high-frequency trade and quote data from

29 highly liquid securities and a market index ETF shows that, by benchmarking on

a Realized Kernel measure, the inclusion of MMS covariates significantly improves

the performance of volatility estimates on both daily and intraday levels. The BSR

approach is very effective in selecting the most relevant MMS covariates for volatility

estimation, and it suggests that contemporaneous number of trades and order flow

are the most important variables for intraday volatility estimation. More importantly,

intraday volatility estimates can be constructed from the ACD model even in the

case when the RV-type estimators cannot be reliably constructed due to a lack of data.

In the third chapter, we extend the Autoregressive Conditional Intensity (ACI)

model (Russell, 1999) with a Markov-switching (MS) structure. We propose to

use the Stochastic Approximation Expectation Maximization (SAEM) (Celeux and

Diebolt, 1992) to estimate the MS-ACI model, and provide simulation evidence

supporting the validity of the estimation procedure. We apply our MS-ACI model to

high-frequency trade and quote data from 9 highly liquid securities and a market

index ETF. Our empirical findings suggest that the MS-ACI model captures two

distinct volume-volatility regimes in the high-frequency data: a dominant regime

that spreads evenly throughout the trading day with strong correlation between

cumulative trading volume and price duration, and a minor regime that concentrates

at the beginning and end of a trading day with much weaker correlation between

cumulative trading volume and price duration. We link this phenomenon to the

firm-specific information arrival process into the market, and provide a measure of

intraday information content of the transaction process.
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Introduction

Volatility estimation is an important topic in the field of finance and financial econo-

metrics, as it is a crucial input for asset pricing, portfolio allocation, risk management,

etc. The availability of high-frequency data recently has led to a shift from volatility

modelling at low frequency (e.g the GARCH model by Engle (1982) and Bollerslev

(1986) and its extensions) to high-frequency volatility measures. Since the seminal

work of Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev,

Diebold, and Labys (2001), the Realized Volatility (RV)-type measures are popu-

larized and became one of the most widely applied high-frequency volatility measures.

The popularization of the RV estimator is not surprising, as it possesses many

desired properties of a volatility measure. Firstly, it is very easy to construct, as it

only involves summing up squared intraday returns sampled at equidistant intervals.

Secondly, assuming the log-price process to be a continuous semimartingale, the RV

measure converges to the integrated variance of the price process with well-established

asymptotic properties (see e.g. Barndorff-Nielsen and Shephard (2002)). Thirdly,

a large number of extensions to the RV estimator are developed to address the

issue that the RV measure is biased in the presence of observation errors and price

discontinuities (jumps). For example, in order to correct for the bias introduced

by market microstructure (MMS) noise, Zhang, Mykland, and Aı̈t-Sahalia (2005)

and Zhang (2006) advocate the use of subsampling and more than one sampling

frequency, Hansen and Lunde (2006) and Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008a) popularize the Realized Kernel estimator, and Jacod, Li, Myk-

land, Podolskij, and Vetter (2009) and Hautsch and Podolskij (2013) propose a

pre-averaging approach. Examples of jump-robust RV-type estimators can be found

in Barndorff-Nielsen and Shephard (2003) and Andersen, Dobrev, and Schaumburg

(2012).

Nevertheless, despite the aforementioned advantages of the RV-type estimator, it

suffers from the problems that it relies heavily on the amount of data available

within the estimation window, and that only price information is incorporated in the
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construction of RV measures. These two problems arise due to the non-parametric

nature of the RV-type estimators, and confine the use of the RV-type estimators

in situations where the amount of data is limited, i.e. less frequently traded stock

or intraday volatility estimation, or incorporating other observable information in

high-frequency volatility estimation.

An alternative high-frequency volatility estimator that has the potential to overcome

the above problems is the point process based volatility estimator initially proposed

by Engle and Russell (1998), and developed by Gerhard and Hautsch (2002), Tse and

Yang (2012) and Nolte, Taylor, and Zhao (2018). As Tse and Yang (2012) summarize,

this estimator enjoys a full parametric design, thus one can use data beyond the

window of volatility estimation to improve the quality of parameter estimates which

in turn leads to more precise volatility estimation. The parametric structure also

facilitates the inclusion of other MMS covariates, which can not only further improve

the quality of volatility estimation, but also provide a framework to analyse the

relationship between volatility and other MMS covariates on a high-frequency level.

These two properties are the key advantages of this estimator over the RV approach,

and evidence also supports the superior performance of this estimator over the RV

approach. Via simulation, Tse and Yang (2012) show that the point process based

volatility estimator is more efficient than the RV-type estimators, and Nolte, Taylor,

and Zhao (2018) find that it has better forecasting performance than the RV-type

estimators. However, this estimator did not receive equal attention as the RV-type

estimators, partly due to the fact that its theoretical properties are largely unknown.

This thesis is motivated by the potential of the point process based approach and

attempts to popularize this approach for wider applications. The thesis consists

of three individual chapters which contribute to the existing literature from both

theoretical and empirical perspectives. More importantly, the thesis aims to advocate

the use of the point process based approach by demonstrating that this approach is

superior to the RV approach in both quality of volatility estimation and the provision

of a powerful framework for MMS studies involving high-frequency volatility.

In the first chapter, we generalize the original estimator in Tse and Yang (2012) and

Nolte, Taylor, and Zhao (2018) and propose the Renewal Based Volatility (RBV ) class

of estimators. We also establish a theoretical framework to derive the asymptotic

properties of the RBV estimators. The RBV estimators are constructed based on the

idea that in the original estimator of Tse and Yang (2012) and Nolte, Taylor, and

Zhao (2018), the price change point process constructed in calendar time becomes a
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renewal process in business time under some mild assumptions. Asymptotic results

can be derived based on the renewal process in business time. Our theoretical findings

suggest that, firstly, the non-parametric point process based volatility estimator is

more efficient than existing RV-type estimators, and the RBV approach has the po-

tential to outperform RV-type estimators under any sampling scheme. Secondly, we

corroborate the advantages of using a parametric structure over the non-parametric

estimators such as the RV. Specifically, by augmenting the RBV estimators with a

parametric structure, the efficiency of volatility estimates can be further improved

without increasing the resolution of price process. This chapter provides a theoretical

foundation for the point process based volatility estimators in Tse and Yang (2012)

and Nolte, Taylor, and Zhao (2018), which will also be implemented in Chapters 2

and 3 of this thesis.

In addition to the theoretical considerations discussed above, Chapter 1 also provides

an in-depth analysis of the Non-Parametric Duration (NPD) based volatility estimator

by Nolte, Taylor, and Zhao (2018) in the presence of market frictions and jumps. We

quantify the effect of jumps, time discretization, MMS noise and price discretization

on the NPD estimator by a comprehensive simulation study. In our simulation results,

we demonstrate that the NPD estimator is indeed more efficient than calendar time

RV estimators sampled equally frequently when the sampling frequency is low, and

is very robust to jumps. However, as the sampling frequency increases, the NPD
estimator is more sensitive to MMS noise and thus more biased compared to the

calendar time RV estimators. To overcome this problem, we propose an exponentially

smoothed NPD estimator and show that it can mitigate the MMS noise bias and

has the potential to outperform common noise robust RV-type methods such as the

Realized Kernel and the pre-averaged RV.

In Chapter 2, we focus on exploiting information in the MMS covariates to im-

prove the quality of high-frequency volatility estimation with the point process based

approach, which is a feature that is not supported by the traditional RV approach.

In detail, we include trading volume, bid-ask spread, total quote depth, quote depth

difference, number of trades, order imbalance and order flow in a log specification

of the Autoregressive Conditional Duration (ACD) model (Engle and Russell, 1998)

to construct daily and intraday volatility estimates. We implement a Best Subset

Regression (BSR) approach to assess the relative importance of each variable and

select the optimal number of variables.

Using trade and quote data from 29 highly liquid stocks and a stock index ETF, our
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empirical findings suggest that, firstly, the inclusion of MMS covariates can to a great

extent improve the goodness-of-fit of the parametric model, and the BSR approach

can effectively select the most relevant variables to include in the ACD model. This

result is further reflected in the quality of daily and intraday volatility estimates.

Using the Realized Kernel measure as a benchmark, we show that the inclusion

of optimally selected MMS covariates significantly reduces the distance between

the volatility estimates from the ACD models and the benchmark on both daily

and intraday levels, and including all MMS covariates does not further improve the

result. More importantly, we demonstrate that with the inclusion of MMS covariates,

we can construct reliable intraday volatility estimates, even when the amount of

data is considered inadequate for a reliable RV-type estimator to be constructed.

Therefore, our results in the second chapter provide empirical evidence supporting

the theoretical findings in Chapter 1.

In Chapter 3, we develop the Markov-Switching Autoregressive Conditional In-

tensity (MS-ACI) model by extending the ACI model originally proposed by Russell

(1999) with a Markov-switching structure. We augment the stationarity condition

of the ACI and MS-ACI model, and show that the MS-ACI model can be reliably

estimated by the Stochastic Approximation Expectation Maximization (SAEM) al-

gorithm (Celeux, Chauveau, and Diebolt, 1996; Celeux and Diebolt, 1992). Our

results contribute to the literature by providing a frequentists’ method to solve the

path dependency problem in estimating the Markov-switching autoregressive models

without any simplification to the parametric structure of the model.

By combining the MS-ACI model with the point process based volatility estimator, we

are able to investigate the intraday regime-switching relationship between volatility

and trading volume empirically. This application of the MS-ACI model is motivated

by the related MMS literature that the trading volume submitted by traders who

possess information will have a much higher impact on price volatility than those

traders who trade only for liquidity purposes (see e.g. Copeland and Galai (1983),

Glosten, Jagannathan, and Runkle (1993), Andersen (1996), Easley, Kiefer, O’Hara,

and Paperman (1996) among others). Our empirical findings based on 9 highly liquid

stocks and a market index ETF are consistent with the literature as we detect two

distinct regimes in the intraday volume-volatility relationship by implementing the

MS-ACI model. Specifically, we detect a minor regime that concentrates at around

the beginning and end of trading days which corresponds to the regime of high

information content, and a major regime that spreads evenly across trading days,

which is considered to have lower information content. We cannot observe this effect



| 5

on the market index, and this suggests that what we capture may be associated

with firm-specific information arrivals into the market. Based on our empirical

investigation, we propose to use the posterior probability of regime classification as a

measure of intraday informativeness of the market.

The rest of this thesis is structured as follows: Chapter 1: Asymptotic Theory for

Renewal Based High-Frequency Volatility Estimation. Chapter 2: High-Frequency

Volatility Estimation and the Relative Importance of Market Microstructure Variables.

Chapter 3: High-Frequency Volatility Modelling: A Markov-Switching Autoregressive

Conditional Intensity Model. Chapter 4 concludes and discusses the limitations and

future researches from the thesis.





Chapter 1

Asymptotic Theory for Renewal

Based High-Frequency Volatility

Estimation

1.1 Introduction

Since the seminal paper by Engle and Russell (1998), a point process based high-

frequency volatility estimator provides an important alternative to the Realized

Volatility (RV)-type estimator as popularized by Andersen, Bollerslev, Diebold, and

Labys (2001). The main argument supporting the point process based volatility

estimator is its parametric structure and ability to provide intraday inference on local

volatility, as opposed to an integrated volatility estimator from the RV estimator.

The quality of volatility estimates from point process based estimators has be verified

by Tse and Yang (2012) and Nolte, Taylor, and Zhao (2018). In these papers, Tse

and Yang (2012) show that the volatility estimates from fitting an Autoregressive

Conditional Duration (ACD) (Engle and Russell, 1998) to the absolute price change

point process can outperform RV-type estimators under the assumption of various

stochastic volatility models. With the same volatility estimator, Nolte, Taylor, and

Zhao (2018) show that volatility estimates from the point process can provide better

predictability compared to those from the RV and RV variants. Despite these promis-

ing results showing a clear advantage of the point process based volatility estimators

over the RV-type estimators, its theoretical properties have not yet been established.

Closely linked to the parametric point process based volatility estimator, Andersen,

Dobrev, and Schaumburg (2008) and Nolte, Taylor, and Zhao (2018) propose two

different non-parametric volatility estimators that use the price duration, that is, the

time for the cumulative price change to surpass a given threshold, as a measure of
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volatility. They demonstrate that the duration-based volatility estimator can easily

outperform the RV-type estimator in ideal conditions with a smaller mean squared

error (MSE). Much of the theoretical properties of these non-parametric estimators

have been discussed in these papers respectively, but none of them generalize the

properties of these non-parametric estimators to a setting where both time-varying

volatility and a general market microstructure noise (MMS) are present. Moreover,

the duration based approach suffers from a truncation bias, when the price change

is not exactly the value of the threshold. Together with the market microstructure

noise, the consistency and asymptotic behaviour of these non-parametric estima-

tors are largely unknown, which greatly hinders their applications in empirical studies.

We propose a general class of volatility estimators that we will refer to as the

Renewal Based Volatility (RBV ) estimators, which provides a theoretical framework

for the aforementioned point process based volatility estimators (with the exception

of the estimators in Andersen, Dobrev, and Schaumburg (2008)). This class of

volatility estimators is constructed based on a renewal process in business time, which

is a time change that treats the integrated variance as a measure of time. Based

on this renewal process and the fact that the counts of events are shared by both

business and calendar clocks, we can construct an estimator that estimates the time

elapse in business time, which corresponds to the integrated variance in calendar

time. As we do not require any knowledge about the dynamics of the volatility

process, this estimator is by construction non-parametric. Moreover, we show that,

by specifying a dynamic structure on the observed point process in the calendar

time and defining a link function that maps the durations in calendar time to its

counterparts in business time, one can construct parametric RBV -class estimators that

can achieve a higher efficiency than their non-parametric counterparts. This includes

the parametric duration-based volatility estimator as in Engle and Russell (1998),

Tse and Yang (2012) and Nolte, Taylor, and Zhao (2018), and the intensity-based

volatility estimator (Gerhard and Hautsch, 2002; Li, Nolte, and Nolte, 2018c). We

derive the asymptotic distribution of both the non-parametric and parametric RBV
estimators, and show that they are consistent as long as one can construct a renewal

process in business time. One desirable property of this class of estimators is that, the

asymptotic variance can be constructed without another estimation step (such as the

estimation of integrated quarticity in the RV framework, see e.g. Barndorff-Nielsen

and Shephard (2004)), which allows one to construct more precise confidence bounds.

We examine Nolte, Taylor, and Zhao’s (2018) non-parametric duration-based volatility

estimator (NPD) in the RBV framework as a complement to our theoretical discussion.
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We formalize the properties of the NPD estimator for a general semimartingale setting

in the presence of jumps, time-varying volatility, irregular arrivals of observations,

price discretization and MMS noise. Our findings suggest that, firstly, the NPD esti-

mator is more robust to jumps than a realized bipower variation estimator. Secondly,

although the NPD estimator has a smaller asymptotic variance than the calendar

time RV-type estimators in the absence of noise, it is very sensitive to MMS noise.

Consequently, the NPD estimator will be biased upwards more heavily compared to

a calendar time RV-type estimators of similar sampling frequency, which significantly

weakens its relative performance.

By correcting the biases for the NPD estimator and exploiting its smaller asymptotic

variance, we propose to construct the NPD estimator on the exponentially smoothed

price process, which we will refer to as the exponentially smoothed NPD estimator,

denoted by NPDz. In our simulation we show that, if the smoothing parameter is cho-

sen optimally, the truncation bias due to time discretization can approximately offset

the smoothed MMS noise bias at moderate to large sampling frequencies. At these

sampling frequencies, the NPDz estimator exhibits a significantly higher efficiency

compared to the commonly used bias corrected calendar time sampling volatility

estimators, including the Realized Kernel (Barndorff-Nielsen, Hansen, Lunde, and

Shephard, 2008a), the pre-averaged RV and pre-averaged bipower variation (Hautsch

and Podolskij, 2013) estimators. Additionally, we demonstrate that, although the

optimal sampling frequency of the NPDz estimator is much smaller than its calendar

time competitors, its optimal efficiency is still better than the optimal performance

from its competitors, which requires a much larger sampling frequency.

The main contributions of this chapter are three-folded: Firstly, we develop a

theoretical framework on which the asymptotic properties of the aforementioned

point process based volatility estimators can be derived. Specifically, we show that,

the duration-based volatility estimator is indeed superior to RV-type estimators in

ideal conditions, and a parametric structure can lead to a substantial increase in

the efficiency of volatility estimation. Secondly, we propose a range-duration based

estimator that in theory is more efficient than any RV estimator under a stochastic

sampling scheme discussed in Fukasawa (2010b) and Fukasawa and Rosenbaum

(2012). However, the properties of this estimator in a more general setup is yet to

be verified. Finally, we evaluate the theoretical properties of the non-parametric

duration-based volatility estimator under a very general model. We propose the

exponentially smoothed NPD estimator which shows a clear efficiency advantage over

the commonly used bias corrected calendar time sampling volatility estimators.
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The rest of the chapter is structured as follows: Section 1.2 describes the gen-

eral theory for the renewal process and renewal reward process. Section 1.3 and

1.4 introduces the renewal based volatility estimator and the parametric renewal

based volatility estimator respectively. Section 1.5 gives some examples on both

the non-parametric and parametric estimators that belong to the class of renewal

based estimators. In Section 1.6, we examine the NPD estimator under a general

semi-martingale in the presence of various market imperfections. We conduct a

Monte Carlo simulation study in Section 1.7. Section 1.8 concludes.

1.2 Prerequisites: Renewal Theory

This section summarizes the related renewal theory used in constructing the renewal

based volatility estimator. For a more comprehensive discussion, please refer to

standard point process textbooks, e.g. Wolff (1989), Ross (1996), etc.

We start with the definition of a renewal process:

Definition 1.1. Renewal Process: Let {Di}i=1,2,··· be a sequence of positive i.i.d.

random variables with 0 < µ = E[Di] < ∞ which represents the inter-event arrival

time, and let ti denote the arrival time of the i-th event (renewal epoch) given by:

ti =
i

∑
j=1

D j. (1.1)

A renewal process X(t) is defined as a random variable that counts the number of

event arrivals in the interval (0, t]:

X(t)≡
∞

∑
i=1

1l {ti≤t}. (1.2)

A renewal process has the following asymptotic properties:

Theorem 1.1. Elemental Renewal Theorem: Let X = {X(t)}t≥0 be a renewal

process with mean inter-arrival time 0 < µ < ∞ and renewal function m(t) = E[X(t)],
then

lim
t→∞

X(t)
t

a.s.→ 1
µ
, (1.3)

lim
t→∞

m(t)
t

→ 1
µ
. (1.4)
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Proof. See e.g. Feller (1941), Doob (1948) Theorem 3.3.4, Chapter 3 in Ross (1996).

A seemingly trivial result from the above theorem is that for a given 0 < µ < ∞,

limt→∞ X(t) → ∞. The renewal function, m(t) = E[X(t)], has the following second

order asymptotic expansion as t → ∞:

Proposition 1.1. Let X(t) be a renewal process defined in Definition 1 with mean

and variance of the inter-event arrival time denoted as 0 < µ < ∞ and 0 < σ2 < ∞

respectively. Let m(t) = E[X(t)] denote the renewal function. The process m(t) has
the following asymptotic expansion as t → ∞:

m(t) =
t
µ
+

σ2

2µ2 −0.5+o(1). (1.5)

Proof. E.g. Corollary 3.4.7 in Ross (1996)

It is useful to consider the distribution of time elapses since the last renewal epoch.

This is known as the age process of a renewal process, formally defined as follows:

Definition 1.2. Age Process of A Renewal Process: Let X(t) denote a renewal

process defined in Definition 1.1. The age process of a renewal process is defined as:

A(t) = t − tX(t) (1.6)

The moments of A(t) can be derived from the moments of the renewal process if

they exist:

Theorem 1.2. For an age process A(t) defined in Definition 1.2, and let the n-th
moments of the inter-epoch duration of the underlying be denoted by E[Dn

i ] = µn.

Provided that all µn exist, the moments of the age process A(t) can be expressed as:

E[An(t)] =
µn+1

(n+1)µ
(1.7)

Proof. See, e.g. Coleman (1982).

We will also use the property of a renewal reward process, which is defined as

follows:

Definition 1.3. Renewal Reward Process: Let X(t) denote a renewal process

with i.i.d. inter-event duration {Di}i=1,2,··· that has mean µ < ∞ and variance σ2 < ∞.

Let {Ri}i=1,2,··· denote a sequence of real-valued i.i.d. random variables with mean
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v < ∞ and variance σ2
r < ∞ associated with each Di. Then the renewal reward process

is defined as:

R(t) =
X(t)

∑
i=1

Ri. (1.8)

The expectation of this process, r(t) = E[R(t)], is defined as the reward function.

A renewal reward process has the following asymptotic properties:

Theorem 1.3. Renewal Reward Theorem: For a renewal reward process defined

in Definition 1.3, the following results hold:

lim
t→∞

R(t)
t

a.s.→ v
µ
, (1.9)

lim
t→∞

r(t)
t

→ v
µ
. (1.10)

Proof. E.g. Theorem 3.6.1, Chapter 3 in Ross (1996).

1.3 Renewal Based Volatility Estimator

We are now in the position of constructing the renewal based volatility (RBV )

estimator for financial price processes. We start with an assumption about the price

process and the associated volatility process of interest:

Assumption 1.1. Price Processes: Let the log price process {P(t)}t>0 be a stochas-

tic process with an adapted, càdlàg and strictly positive integrated variance (IV) process

defined by IV (0, t) =
∫ t

0 σ2
p(s)ds with IV (0, t)→ ∞ as t → ∞. We define a time change

τ(t) = IV (0, t) that converts the calendar time to the integrated variation time, which

is also known as the business time. We assume that the time changed price process

P̃(τ(t)) = P(t) is a Lévy process in business time.

In the above assumption, we do not need to specify a particular form for the

process σp(t) as long as it satisfies Assumption 1.1. In this section we will assume that

the complete trajectory of P(t) can be observed, and the effect of discrete observation

of the price process will be analysed in Section 1.6.

We can reverse the time change t 7→ τ(t) by using t = inf{u ∈ R+ : IV (0,u) ≥ τ(t)}.
It is clear that τ(t) is a stopping time for any t. Also, the time changed information

set has the relationship Ft = F̃τ(t). For a more rigorous discussion on the change of

time method, please refer to Chapter 1 in Barndorff-Nielsen and Shiryaev (2010).
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Assumption 1.1 may seem strict, but it is satisfied by a wide range of stochas-

tic processes that are used in modelling financial price processes. We give two simple

examples.

Example 1: Any continuous local martingale satisfies this assumption due to to

following theorem.

Theorem 1.4. (Dambis-Dubin Schwarz): Let (M(t))t≥0 be a continuous Ft-

local martingale such that its quadratic variation ⟨M⟩∞ = +∞, then there exists a

Brownian motion (B(t))t≥0, such that for every t ≥ 0, M(t) = B(⟨M⟩t).

Since the quadratic variation and integrated variance of M(t) coincide, the result-

ing Lévy process in business time is a standard Wiener process. Note that Theorem

1.4 still holds when the stochastic volatility and the price process are correlated,

which is known as the ‘leverage effect’ that is commonly observed in practice (see e.g.

Bollerslev, Litvinova, and Tauchen (2006)).

Example 2: A (inhomogeneous) compounded Poisson process as in Oomen (2005)

satisfies this assumption. The resulting Lévy process is a homogeneous compounded

Poisson process. See Appendix A.1 for details. 1

The connection from the Lèvy process in business time and the renewal theory

in the previous section is established by the following proposition:

Proposition 1.2. Let {Y (t)}t≥0 be a Lévy process on the filtered probability space

{Ω,F ,P}. Define a stopping time process that automatically renews once stopped as:

ti = inf
t≥ti−1

{Y (t) ∈ S (ti−1)}, (1.11)

in which S (ti) is the stopping condition for ti as a function of Fti. If, for any i, j and
t > 0, Prob(Y (ti + t) ∈ S (ti)) = Prob(Y (t j + t) ∈ S (t j)), then the sequence {ti}i=1,2,···

corresponds to arrivals of a renewal process.

Proof. The condition Prob(Y (ti + t) ∈ S (ti)) = Prob(Y (t j + t) ∈ S (t j)) ensures that

the stopping condition is equivalent to the paths of the Lévy process originating

from all the possible starting points ti ∈ (0,∞) regardless of when the previous event

occurred. Then clearly the distribution of ti − ti−1 is i.i.d., which follows from the

property of the Lévy process. As a result, {ti}i=1,2,··· is by definition a renewal

process.

1Relying on Theorem 1.4, we can account for the leverage effect if the latent price process follows
a continuous local martingale. However, it is not clear if this claim is still valid in the case of this
example, or other alternative specifications.
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Consequently, when the price process P(t) follows Assumption 1.1, we can obtain a

Lèvy process P̃(τ(t)) in business time. According to Proposition 1.2, we can construct

a renewal process {τ(ti)}i=1,2,··· in business time by choosing an appropriate S (τ(ti))
for each i. Effectively, we sample the price process at {ti}i=1,2,··· in calendar time in

such way that the business time counterpart {τ(ti)}i=1,2,··· is renewal. We therefore

refer to this sampling scheme as renewal sampling:

Definition 1.4. Renewal Sampling: For a price process P(t) satisfying Assump-

tion 1.1, a renewal sampling scheme samples P(t) at 0 < t1 < t2 < · · · where the

arrivals in business time {τ(ti)}i=1,2··· is a renewal process in business time. Denote

the unobservable renewal process in business time as X̃(τ(t)) = ∑i>0 1l {τ(ti)≤τ(t)} and

its observable calendar counterpart as X(t) = ∑i>0 1l {ti≤t}.

Note that the càdlàg property of the integrated variance guarantees that X(t) =
X̃(τ(t)). Using Proposition 1.2, we can construct X(t) in calendar time if the stopping

condition in calendar time is only a function of the paths of P(t), but not a function

of time. Heuristically, by observing the path of the price process in calendar time,

we can decide where to ‘stop’ the price process and obtain a sample. If the condition

in Proposition 1.2 for S (ti) is satisfied, then the stopping times in business time is

by construction a renewal process.

The central contribution of this chapter is the following novel volatility estimator by

sampling the price process P(t) with a renewal sampling scheme:

Definition 1.5. Renewal Based Volatility (RBV) Estimator: Let {P(t)}t>0 be

a price process that satisfies Assumption 1.1. Choose a S (ti) according to Propo-

sition 1.2, and apply renewal sampling on P̃(τ(t)) to obtain the renewal sampling

times {ti}i=1,2,··· and the point process X(t) = ∑i>0 1l {ti≤t}, which has a business time

counterpart X̃(τ(t)) that is a renewal process. Let 0 < µ < ∞ and 0 < σ2 < ∞ denote

the first two moments of the inter-epoch duration in business time, then the RBV
estimator is defined by:

RBV (0, t) = X(t)µ. (1.12)

The RBV estimator has the following asymptotic distribution:

Theorem 1.5. The Renewal Based Volatility estimator as defined in Definition 1.5

has the following asymptotic distribution:

lim
t→∞

RBV (0, t)− IV (0, t)√
X(t)σ

d→ N (0,1) (1.13)

Proof. See Appendix A.2.
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One remark on the RBV estimator is that we can compute standard errors of

the estimator without estimating the integrated quarticity as in the RV literature,

which implies less estimation bias for the standard errors and confidence bounds.

Similar to the RV-type estimators, the RBV estimator does not require any parametric

assumption on the IV process in calendar time. The obvious problem here is that

µ is not explicitly specified, and is dependent on the assumption of P(t) and the

stopping condition S (ti). In Section 1.5 we show that in some special cases µ is

available in closed form. Also, the process P̃(τ(t)) is usually very simple (for example,

a standard Wiener process). In this case the moments of the renewal process can be

simulated easily.

We would like to point out that in (1.13), the limiting distribution is obtained

when µ is fixed and t → ∞. This is known as the sprawl asymptotics, or the long-

span asymptotics, which is typical in the context of point processes. However, this

is different to the infill asymptotics usually applied in the RV context where the

time frame is fixed and the sampling frequency increases. To derive counterpart of

Theorem 1.5 in the infill asymptotics setting, more assumptions are required for the

asymptotic behaviour of P(t) and X(t), which is presented in Appendix A.3.

To distinguish between the two asymptotic settings, for the rest of the chapter,

the sprawl asymptotics is involved when the construction of the price durations is

fixed. Consequently, the moments of the price durations in business time, namely, µ ,

σ2, are fixed. Asymptotic results are derived by expanding the sampling window and

letting t → ∞. For the infill case, the time span is fixed and we allow the moments of

the price durations in business time to change. Asymptotic results in this case are

typically derived by letting µ → 0 for a fixed time frame.

1.4 Parametric Renewal Based Volatility Estima-

tor

The duration in business time D̃i is not directly observable, but we can observe its

calendar time counterpart Di. Using the fact that D̃i is i.i.d., the connection between

Di and the integrated variance process is that:∫ ti−1+Di

ti−1

σ
2
p(s)ds = D̃i. (1.14)
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If we can specify a parametric model g(t|Ft) that uses all the information available

in such a way that the following variable is i.i.d:

Ri =
∫ ti−1+Di

ti−1

g(s|Fs)ds, (1.15)

then we can use the quantity Riµ
E[Ri]

as an estimator for D̃i. Without any loss of

generality we set E[Ri] = µ to simplify notation. We will refer to this estimator as the

parametric renewal based volatility (PRBV ) estimator, formally defined as follows:

Definition 1.6. Parametric Renewal Based Volatility (PRBV) Estimator:

Let {P(t)}t>0, X(t), X̃(τ(t)), µ and σ2 be defined identically to Definition 1.5. Define

a parametric model g(t|Ft) and an i.i.d. variable Ri that follows (1.15) with 0 <

E[Ri] = µ < ∞ and 0 < V[Ri] = σ2
r < ∞. Then the PRBV estimator is defined as:

PRBV (0, t) =
X(t)

∑
i=1

Ri =
∫ t

0
g(s|Fs)ds. (1.16)

Recall that the RBV estimator is already consistent, therefore for any i.i.d. Ri

with finite moments, the PRBV estimator will still be consistent. However, the

randomness in Ri may introduce extra noise in the PRBV estimator, unless there

exists a substantial amount of positive correlation between Ri and D̃i, which requires

that g(t|Ft) is a good proxy of σ2
p(t) for all t. Thus, we can assess the efficiency of

the PRBV estimator by using the RBV estimator as a benchmark.

Conditioning on that we can observe the i.i.d. variable Ri, the asymptotic dis-

tribution of the PRBV estimator can be derived analogously to the derivation of

Theorem 1.5 noting that Ri − D̃i is a zero-mean i.i.d. variable, and the pair {Ri, D̃i}
forms a renewal reward process.

Theorem 1.6. The Parametric Renewal Based Volatility estimator as defined in

Definition 1.6 has the following asymptotic distribution:

lim
t→∞

PRBV (0, t)− IV (0, t)√
X(t)(σ2 +σ2

r −2ρσσr)

d→ N (0,1) (1.17)

where ρ is the correlation between Ri and D̃i.

Proof. This follows similarly from the proof in Appendix A.2 by using that the

variable Ri− D̃i is i.i.d. with zero mean. Note that V[Ri− D̃i] = σ2+σ2
r −2ρσσr.

Note that the variance of PRBV is zero when Ri = D̃i for all i, indicating that the

PRBV (0, t) can in theory be a perfect estimator for the integrated variance when Ri
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is known. The variance of the PRBV estimator can be written as:

V[PRBV (0, t)] =V [RBV (0, t)]+X(t)(σ2
r −2ρσσr), (1.18)

and as long as σ2
r −2ρσσr < 0, that is, ρ ∈ ( σr

2σ
,1], the PRBV estimator will always

be more efficient than the RBV estimator. Obviously, the value of ρ is determined

by the distance between g(t|Ft) and σ2
p(t), which is unfortunately model dependent.

We provide an example of g(t|Ft) which allows us to examine ρ directly. Initially

proposed by Gerhard and Hautsch (2002) derived from the instantaneous volatility

estimator of Engle and Russell (1998), the conditional intensity process of X(t) is
used as a proxy of the instantaneous volatility. We define g(t|Ft) as follows:

g(t|Ft) = µλ (t|Ft), (1.19)

where λ (t|Ft) is the Ft-conditional intensity of the process X(t) defined as:

λ (t|Ft)≡ lim
∆↓0

1
∆

E[X(t +∆)−X(t)|Ft ]. (1.20)

The corresponding renewal reward variable Ri is then defined as:

Ri = µ

∫ ti

ti−1

λ (s|Fs)ds ≡ µΛ(ti−1, ti). (1.21)

The i.i.d.-ness of Ri is guaranteed by the following theorem:

Theorem 1.7. Random Time Change Theorem (RTCT): Let X(t) be a simple

point process adapted to a history Ft with bounded, strictly positive Ft-conditional

intensity λ (t|Ft) and Ft-compensators Λ(t) =
∫ t

0 λ (u|Fu)du with Λ(∞) = ∞ almost

surely. Under the random time change t 7→ Λ(t), the transformed process

X̃(t) = X(Λ−1(t))

is a Poisson process with unit rate.

Conversely, suppose there is given a history Gt , a Gt-adaptive cumulative process

M(t) with a.s. finite, monotonically increasing and continuous trajectories, and a

Gt-adapted simple Poisson process X0(t). Let Ft denote the history of σ -algebras

Ft = GM(t). Then X(t) = X0(M(t)) is a simple point process that is Ft-adapted and

has Ft-compensator M(t).

Proof. See the proof in Theorem 7.4I in Daley and Vere-Jones (2003), Brown and

Nair (1988) and Bowsher (2007).
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Theorem 1.7 suggests that Λ(ti−1, ti)∼ i.i.d.exp(1), so we have Ri ∼ i.i.d.exp(µ−1).

The mean and variance of Ri are v = µ and σ2
r = µ2 respectively. We derive the

following important proposition that characterizes the relationship between the

conditional intensity processes in calendar time and business time:

Proposition 1.3. Let X(t) be a simple point process with conditional intensity process

λ (t|Ft), and let t 7→ τ(t) be a change of time from calendar time to business time.

The conditional intensity process λ̃ (τ(t)|F̃τ(t)) of the time-changed point process

X̃(τ(t)) follows:
λ̃ (τ(t)|F̃τ(t))σ

2
p(t) = λ (t|Ft). (1.22)

Proof. See Appendix A.4.

Proposition 1.3 has some very powerful implications that provide theoretical

foundations for intensity and duration based volatility estimation.

Corollary 1.1. In Definition 1.6 with g(t|Ft) = µλ (t|Ft), the rank correlation

between Ri and D̃i is 1. Additionally, if D̃i is i.i.d. exponentially distributed, then

g(t|Ft) = σ2
p(t).

Proof. See Appendix A.5.

Corollary 1.1 suggests that, firstly, the PRBV estimator is likely to perform well

due to the monotonic non-linear relationship between Ri and D̃i. Secondly, the

optimal renewal sampling scheme for g(t|Ft) = µλ (t|Ft) is a homogeneous Poisson

sampling scheme in business time. In this case, the conditional intensity of X(t) in
calendar time is proportional to the spot volatility, so that the conditional intensity is

a perfect estimator of instantaneous volatility for all t. However, the assumption that

D̃i is i.i.d. exponentially distributed requires further assumptions on the price process

(e.g. the compounded Poisosn process in Oomen (2006)), which is not desirable.

Alternatively, we can also correct for the discrepancy between the density of D̃i

and Ri:

Corollary 1.2. In Definition 1.6 with g(t|Ft) = µλ (t|Ft), let FD̃(x) and F−1
D̃ (x)

denote the CDF of D̃i and its inverse correspondingly. The following relationship

holds for all i:

D̃i = F−1
D̃ (1− exp(−Ri/µ)) (1.23)

Proof. This is straightforward from the proof in Appendix A.5.
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The expression F−1
D̃ (1− exp(−Ri/µ)) is effectively an exponential inverse proba-

bility integral transformation of D̃i, which is a perfect estimator for the volatility

between the two points (ti−1, ti]. However, this is a weaker result compared to Corol-

lary 1.1 because in general g(t|Ft) ̸= σ2
p(t). In this case, inference based on Ri only

reflects D̃i in expectation with E[Ri] = E[D̃i] with a rank correlation of 1, and g(t|Ft)

does not estimate the actual spot volatility.

From above, it is clear that regardless of the value of µ, if we know the true

conditional intensity process in calendar time, we in principle know the underlying

integrated variance process. Therefore, in practice one does not need to sample at

ultra high-frequency to improve the precision of the volatility estimates, which is

the common approach in the RV literature. Instead, one only needs to append the

estimation window of the econometric model of the conditional intensity process to

obtain a more precise estimate of the conditional intensity, which in turn leads to a

more precise estimate of D̃i for each i. This is in stark contrast with the RV-type

estimators which relies heavily on the availability of data within the volatility estima-

tion window. We stress that this is a very important property of the PRBV estimator

that validates the intraday volatility estimates as in Engle and Russell (1998) and

Tse and Yang (2012), and also renders the PRBV estimator advantageous over the

RV-type estimator in the situation where the availability of data is limited.

To summarize our findings on the PRBV estimators, we have shown that, it is

possible to construct a PRBV estimator as in Corollary 1.2 that always has zero

variance if Ri is known. However, these properties are unlikely to hold in practice as

we do not observe g(t|Ft) and have to use a model to estimate ĝ(t|Ft) and R̂i instead.

This will inevitably introduce estimation noise in the model, even if the specification

of g(t|Ft) is correct. As this is more related to the properties of the econometric

model used for the observed point process that deserves individual investigations, we

will leave it for future research.

1.5 Some Examples

We give some concrete examples of RBV and PRBV in this section and summarize

their properties. Assume the efficient log-price follows a semi-martingale of the

following form:

dP(t) = α(t)dt +σp(t)dW (t), (1.24)

where α(t) is a continuous Ft-predictable process and σ(t) is assumed to be càdlàg

and strictly positive with
∫ t

0 σ2(s)ds → ∞ when t → ∞. For now, we assume α(t) = 0
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and no discontinuities in the diffusion process for simplicity, and will discuss the

effect of the drift term and jumps in the next section. The quantity of interest here

is the integrated variance of the process over an interval (0,T ):

IV (0,T ) =
∫ T

0
σ

2
p(s)ds. (1.25)

Example 1: The first example of an RBV estimator, which will also be examined

in detail in later sections, is the non-parametric duration-based (NPD) volatility

estimator proposed by Nolte, Taylor, and Zhao (2018). We start by defining the

absolute price change point process, firstly introduced by Engle and Russell (1998):

Definition 1.7. The Absolute Price Change Point Process: The absolute

price change point process {t(δ )i }i=0,1,··· for an observed price process P(t) and a given

price change threshold δ is constructed as follows:

1. Set t(δ )0 = 0 and choose a threshold δ .

2. For i = 1,2, · · · , compute the first exit time, t(δ )i , of P(t(δ )i−1) through the double

barrier [P(t(δ )i−1)−δ ,P(t(δ )i−1)+δ ] as:

t(δ )i = inf
t>t(δ )i−1

{|P(t)−P(t(δ )i−1)| ≥ δ}.

Iterate until the sample is depleted.

The arrivals of t(δ )i are referred to as price events. In the RBV framework, we can

write S (δ )(t(δ )i ) = {P(t(δ )i )−δ ,P(t(δ )i )+δ} and clearly it satisfies the condition in

Proposition 1.2. Define the time change as τ(t) =
∫ t

0 σ2(s)ds = IV (0, t), and P(τ(t)) is
a standard Brownian motion by Theorem 1.4. As a result from Theorem 1.2, under

business time, {τ(t(δ )i )}i=1,2,··· forms a renewal process, denoted by X (δ )(τ(t)).

Let D(δ )
i = t(δ )i − t(δ )i−1 and D̃(δ )

i = τ(t(δ )i )− τ(t(δ )i−1) denote the duration under cal-

endar time and business time respectively. Note that D̃(δ )
i is the stopping time for

a Wiener process (starting at zero) to exit a symmetric interval [−δ ,δ ]. We can

retrieve its moments from its moment generating function (see Table 1 in Andersen,

Dobrev, and Schaumburg (2008)). The first three moments are:

E[D̃(δ )
i ] = δ

2, E[(D̃(δ )
i )2] =

5
3

δ
4, E[(D̃(δ )

i )3] =
61
15

δ
6. (1.26)

The NPD estimator in Nolte, Taylor, and Zhao (2018) is of the following form:

NPD(0, t) = X (δ )(t)δ 2 = X (δ )(t)µ(δ ). (1.27)



1.5 Some Examples | 21

Note we use the notation µ(δ ) and σ2(δ ) to denote the mean and variance of the

price duration in business time for some δ . Therefore it is clear that the NPD
estimator belongs to the class of RBV estimators. The asymptotic distribution of the

NPD estimator can be derived easily from (1.13):

lim
t→∞

NPD(0, t)− IV (0, t)√
2
3X (δ )(t)δ 4

d→ N (0,1) (1.28)

Using the asymptotic relationship δ 2 = IV (0,t)
X (δ )(t)

, we see that V[NPD(0, t)]→ 2IV (0,t)2

3X (δ )(t)
.

This suggests that, given a common sampling frequency, on average the NPD esti-

mator will be more than six times as efficient as the RV sampled in calendar time,

exactly six times as efficient as the RV sampled in business time, and more efficient

than the RV under tick time sampling due to that IV (0, t)2 ≤ IQ(0, t) from Jensen’s

inequality (Fukasawa, 2010a).

The efficiency gain from the RV estimator is not surprising. Since the NPD es-

timator uses information in the path of the prices, it effectively uses more data than

the RV estimator under the same sampling frequency. Additionally, as discussed

in Section A.3.1, the NPD estimator is both an RBV estimator and a renewal RV

estimator. It achieves the optimal efficiency for the renewal RV estimators due to

the fact that the kurtosis of the return is 1.

Example 2: Inspired by Christensen and Podolskij (2007) and Andersen, Do-

brev, and Schaumburg (2008) and following the idea of the NPD estimator, we can

also construct a range duration-based RBV -type volatility estimator. Let r denote

a fixed range size, then the following sequence of stopping times forms a renewal

process in business time:

t(r)i = inf
t>t(δ )i−1

{P(t) ∈ S (r)(t(r)i )}, (1.29)

where S (r)(t(r)i ) = {P(t) : sup
t(r)i <s<t

P(s)− inf
t(r)i <s<t

P(s)≥ r}. Similar to the NPD es-

timator, let X (r)(τ(t)) denote the renewal process under business time. The first three

moments of D̃(r)
i = τ(t(r)i )− τ(t(r)i−1) is as follows (Andersen, Dobrev, and Schaumburg,

2008)):

E[D̃(r)
i ] =

1
2

r2, E[(D̃(r)
i )2] =

1
3

r4, E[(D̃(r)
i )3] =

17
60

r6, (1.30)
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and the non-parametric range duration-based volatility (NPR) estimator is simply:

NPR(0, t) =
1
2

X (r)r2, (1.31)

which has the following asymptotic distribution as t → ∞:

lim
t→∞

NPR(0, t)− IV (0, t)√
1

12X (r)(t)r4

d→ N (0,1) (1.32)

Using the asymptotic relationship r2 = 2IV (0,t)
X (r)(t)

, we have V[NPR(0, t)] = IV 2(0,t)
3X (r)(t)

. So

the NPR estimator is twice as efficient as the NPD estimator for a common sampling

frequency.

The efficiency gain of the range-based estimators compared to the RV-based es-

timators has been addressed by Christensen and Podolskij (2007) and Andersen,

Dobrev, and Schaumburg (2008), as price ranges exploit both the supremum and

infimum of the price process, which can measure volatility more precisely than using

price changes. We would like to stress that the asymptotic variance of the NPR
estimator is smaller than the asymptotic variance of a general RV estimator under

any sampling scheme (Fukasawa, 2010b; Fukasawa and Rosenbaum, 2012). With this

NPR example, it is clear that the RBV -class of estimators are in essence different

from the RV-type estimators.

Example 3: The parametric duration (intensity) based volatility estimator, initially

proposed by Engle and Russell (1998) and further developed by Gerhard and Hautsch

(2002), Tse and Yang (2012), Nolte, Taylor, and Zhao (2018) and Li, Nolte, and Nolte

(2018b) is an example of a PRBV estimator. Specifically, it specifies the dynamics

of D(δ )
i with a fully parametric model (for example, the Autoregressive Conditional

Duration model by Engle and Russell (1998)), and defines

g(δ )(t|Ft) = µλ
(δ )(t|Ft) = δ

2
λ
(δ )(t|Ft), (1.33)

in which λ (δ )(t|Ft) is the conditional intensity process of X (δ )(t) defined in (1.20).

Gerhard and Hautsch (2002) propose an instantaneous volatility estimator defined

as InsV (δ )(t) = g(δ )(t|Ft), and an estimator of the IV between the arrival of two price

events can be constructed as follows:

R(δ )
i =

∫ t(δ )i

t(δ )i−1

g(s|Fs)ds = δ
2
Λ
(δ )
i ∼ i.i.d. exp(δ−2), (1.34)
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with E[R(δ )
i ] = δ 2 and V[R(δ )

i ] = δ 4. As this quantity is i.i.d. from Theorem 1.7, the

parametric duration (intensity) based (PD) estimator of the following form:

PD(0, t) =
X (δ )

∑
i=1

R(δ )
i , (1.35)

is by definition a PRBV -class estimator. The asymptotic properties of the PRBV
estimator discussed in Theorem (1.6) and Proposition 1.3 can be applied directly to

derive the asymptotic distribution of the PD estimator:

lim
t→∞

PD(0, t)− IV (0, t)√
C ·X (δ )(t)δ 4

d→ N (0,1), (1.36)

in which C is a constant which cannot be solved analytically. From Proposition 1.3,

since D̃(δ )
i can be easily simulated based on a Wiener process, we can simulate the

constant C easily. Details of this simulation can be found in Appendix A.6. Based on

1000000 replications, we found that C ≈ 0.034. Therefore, the asymptotic variance of

the PD estimator is roughly one-twentieth of the NPD counterpart. It shows that, if

the parametric model of λ (δ )(t|Ft) is well-specified, then there can be a substantial

efficiency gain from the parametric estimation.

Based on the NPR estimator, we can construct a parametric range (PR) based

volatility estimator by defining the renewal variable R(r)
i as:

R(r)
i = 0.5r2

∫ t(r)i

t(r)i−1

λ
(r)(s|Fs)ds. (1.37)

The PR estimator is defined analogously to the PD estimator as:

PR(0, t) =
X (r)

∑
i=1

R(r)
i = R(r)(t), (1.38)

From the simulation in Appendix A.6 and the property of the PRBV estimator, we

can derive the asymptotic distribution of PD given R(r)
i :

lim
t→∞

PR(0, t)− IV (0, t)√
C ·X (r)(t)r4

d→ N (0,1), (1.39)

where C ≈ 0.024. Actually the PR estimator has a larger asymptotic variance than the

PD estimator if we control for the same sampling frequency (when r2 = 2δ 2). This is

due to the fact that the density D̃(r)
i deviates further from the exponential distribution.
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We would like to stress that, although the PD and PR estimators for the inte-

grated variance are unbiased and consistent in the sense of expectation, using R(·)
i as

an estimator of D̃(·)
i will introduce a non-zero error due to the discrepancy between

R(·)
i and D̃(·)

i . We plot the simulated ln(D̃(·)
i ) against ln(R(·)

i ) in Figure 1.1. The figure

suggests that, as the discrepancy between R(r)
i and D̃(r)

i is larger than that of R(δ )
i and

D̃(δ )
i , the PR estimator will be less efficient compared to the PD estimator. Also, based

on the simulated D̃(·)
i , one can correct this discrepancy by the method in Corollary

1.2. After the correction, both estimators will have zero variance conditioning on the

knowledge of R(·)
i .

Figure 1.1 Discrepancy between the density of R(·)
i and D̃(·)

i
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Note: N = 1000000. Descriptive statistics of {D̃(·)}i=1:N and {R(·)
i }i=1:N can be seen in Table A.1.

The results above suggest that, if the parametric model to estimate R(·)
i performs

equally well, then the two parametric estimators will have equal performance. This

is in contrast to the efficiency difference between the NPD and NPR estimators as

the NPD estimator is half as efficient as the NPR estimator. Because the variance of

the reward variable R(·)
i offsets the variance of D̃(·)

i completely, the advantage of a

lower variance for D̃(r)
i for the NPR estimator disappears. However, the PR estimator

might be still preferred over the PD estimator because in a finite sample, one can

obtain a larger sample size with range-based renewal sampling, resulting in more

precise estimates for R(·). Finally, as a result from Corollary 1.1, the instantaneous

volatility estimator proposed in Gerhard and Hautsch (2002) does not hold for all t
if the price process is assumed to follow (1.24), and can only serve as a proxy for the

instantaneous volatility.
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1.6 The NPD Volatility Estimator Under Market

Frictions

This section discusses the theoretical properties of the NPD volatility estimator defined

in (1.27) in the presence of drift, jumps, time discretization, market microstructure

noise, and rounding effect.

1.6.1 Drift Effect

This section aims to clarify that the drift will not bias our estimator in an infill

setting.2 As the drift effect is very small in empirical high frequency applications, we

will follow the approach by Barndorff-Nielsen and Shephard (2002) and discuss the

drift effect in this section and assume it to be zero in other sections.

Firstly, as discussed in previous section, the NPD estimator is also a renewal RV

estimator, and the quadratic variation theory can be applied. Therefore under the as-

sumption of (1.24) and as δ → 0, the drift term will not bias our estimator. Moreover,

we would like to note that there always exists a probability measure where the price

process does not possess a drift by the use of Girsanov-Maruyama transformation. As

the volatility remains unchanged after the change of measure and the NPD estimator

can also be constructed on that probability measure, the presence of a drift is not a

main concern under the infill setting.

1.6.2 Jump Effect

This section discusses the possible effect of jumps on the NPD estimator in the infill

asymptotics setting. The NPD estimator is by construction very robust to large

jumps, as pointed out by Andersen, Dobrev, and Schaumburg (2008), Tse and Yang

(2012) and Nolte, Taylor, and Zhao (2018), because of its truncation feature. For

simplicity, we consider the following diffusion process with jumps on the interval

(0,T ]:

P(t) = P(0)+
∫ t

0
σp(s)dW (s)+

J(t)

∑
j=1

L j, (1.40)

where J(t) is a counting process independent of W (t), and L j is the size of the

j-th jump. We assume that |L j − δ | > 0 almost surely for all j as δ → 0, so that

2Note that a drift in (1.24) can in general be estimated in the long-span asymptotics, and it will
also introduce a positive bias to the NPD estimator. We were unable to derive a bias correction
with the presence of drift in this setting.
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each arrival of jump will almost surely trigger a price event. For a simple RV-type

estimator under any sampling scheme, the IV (0, t) estimates will be positively biased

and include the jump variations. Let us consider the point process X̃ (δ )(τ(t)) under
business time with τ(t) = IV (0, t). Denote the number of jumps in the duration D̃(δ )

i

by Ji, then conditional on that there is no jumps in the duration, the conditional

mean and variance are δ 2 and 2
3δ 4 respectively. For the durations that contain a

jump, it will always end the duration with the jump.

We can split the durations in business time by whether they contain a jump. For the

durations that do not contain a jump, we have E[D̃(δ )
i |Ji = 0] = δ 2. For the durations

that contain a jump, we interpret the jump as a random inspection time to a duration

in business time, and the renewal process is immediately renewed when it is inspected.

The time travelled on the business clock till the inspection time but before the actual

price event would have occurred is therefore the length of the duration in business

time. The density of the duration that contains a jump then can be interpreted

as the age process of the renewal process defined in Definition 1.2. According to

Theorem 1.2, we have:

E[D̃(δ )
i |Ji = 1] =

µ2(δ )+σ2(δ )

2µ(δ )
=

5
6

δ
2 < δ

2 (1.41)

This suggests that each jump will on average shorten the distance travelled on the

business clock by 1
6δ 2. For a total of X̃ (δ )(τ(T )) events in which J(T ) of them are

jump-induced, the expected business time elapse is therefore:

IV (0,T ) = X̃ (δ )(τ(T ))δ 2 − 1
6

E[J(T )]δ 2. (1.42)

It is then clear that the bias introduced by a jump is just 1
6 E[J(T )]δ 2, which goes

to zero as δ → 0 given the jump process is of finite activity. It is interesting to see

that the NPD estimator is less affected by jumps when δ → 0, in contrast to an RV

estimator which is not robust to jumps at all regardless of the sampling scheme. As

empirically price jumps are found to be very infrequent (on average less than one

per week as documented in Andersen, Bollerslev, and Dobrev (2007) and Lee and

Hannig (2010)), we can safely conclude that the estimator is robust to jumps in infill

setting. Note that following the same notion, the NPR estimator is also very robust

to jumps in the infill setting.

It is worth noting that in the sprawl asymptotics setting, the presence of jumps biases

the NPD estimator upwards, and the bias is unbounded if E[J(t)]→ ∞ as t → ∞.



1.6 The NPD Volatility Estimator Under Market Frictions | 27

1.6.3 A More Realistic Model

Real data does not follow the model specified in (1.24), as it possesses various

types of market imperfections, including irregularly spaced observations, market

microstructure noise, price discretization, etc. It greatly complicates the analysis of

the theoretical properties of the NPD estimator as the properties of the RBV -class

estimators may not apply in some cases. In this section we attempt to derive some

asymptotic results for the NPD estimator under a general setting with random ar-

rival times of observations and a very general structure of market microstructure noise.

Our strategy here is to add features to the pure diffusion model in (1.24). We

firstly define the latent efficient log-price process as:

P∗(t) = P∗(0)+
∫ t

0
σp(t)dW (t). (1.43)

To account for the random arrival of observations, we define a sequence of random

arrival times of the tick changes3 (or revisions for quote data) 0 = t0 < t1 < t2 · · · , and
assume that the process P∗(t) is only observed at these random arrival times. The

sequence {t j} and the arrival times in business time {τ(t j)} with τ(t) =
∫ t

0 σ2
p(s)ds

are natural stopping times.

At each t j, the observed process P(t) is measured with noise Vj, commonly referred

to as the MMS noise:

Pj = P∗
j +Vj (1.44)

Whenever no confusion is caused, we suppress the notation of P(t) as a function of

calendar time and use Pj = P(t j) to denote the j-th observed price. We build our

assumptions of the MMS noise based on the noise assumptions in Zhang (2006),

Bandi and Russell (2008) and Aı̈t-Sahalia, Mykland, and Zhang (2011):

Assumption 1.2. The Market Microstructure Noise: The MMS noise compo-

nent Vj in (1.44) is assumed to possess the following properties:

1. Vj is strictly stationary with mean 0.

2. All moments of Vj exist and are finite.

3. Vj is mixing.

4. Vj ⊥⊥ P∗
j .

3Note that the NPD estimator will always sample data in tick time, and we only consider the
arrival of tick changes as the flat trades are irrelevant in the discussion.
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We exclude the case where the noise is correlated with the efficient price move-

ment as argued by Hansen and Lunde (2006). This is a common assumption in the

existing literature mentioned above, and to a large extent simplifies our analysis.

Note that the MMS noise in Assumption 1.2 does not include price discretization

effect caused by a minimum tick size. This will be discussed separately in Section 1.6.5.

The literature suggest that the trade durations in calendar time d j = t j − t j−1 have

seasonality patterns, are very persistent and are correlated with the volatility of

the efficient price (e.g. Easley and O’Hara (1992), Chen, Diebold, and Schorfheide

(2013)). However, we are more interested in the properties of the trade durations in

business time denoted by d̃ j = τ(t j)−τ(t j−1), which are more relevant to our analysis.

Since P∗(τ(t)) is a standard Wiener process, by the martingale stopping theorem,

P∗
j is a martingale, and the martingale difference sequence (MDS) r∗j = P∗

j −P∗
j−1 is

mixture normally distributed:

r∗j ∼ MN (0, d̃ j). (1.45)

It is therefore clear that the property of d̃ j is embedded in the property of the tick

returns of the efficient price r∗j . We make the following assumption on the MDS

process r∗j :

Assumption 1.3. Tick Return of the Efficient Price Process: The tick return

of the efficient price process r∗j is strongly mixing and strictly stationary with finite

moments.

Assumptions 1.2 and 1.3 will be used to quantify the influence of MMS noise on

the bias of the NPD estimator.

The NPD estimator is constructed by Definition 1.7 and (1.27) on the observed

price process Pj with the following form:

NPD(0, t) = X (δ )(t)δ 2, (1.46)

where X (δ )(t) = ∑
∞
i=1 1l {t(δ )i ≤t} and t(δ )i is the arrival time of the i-th price event.

Deviations from the continuous martingale setting results in a biased NPD esti-

mator, since the mean duration in business time is not δ 2 any more, and the point

process in business time ceases to be renewal due to the existence of MMS noise.

Fortunately the mixing assumptions for the MMS noise and the tick returns ensure

that when δ is large enough, d̃ j can be regarded as the stopping time from a Wiener

process due to the functional central limit theorem via martingale approximation in
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e.g. Gordin and Peligrad (2011). In the following section we analyse the bias of the

NPD estimator in detail based on our assumptions of the price process above, and

show that the bias diminishes as δ increases.

1.6.4 Bias of the NPD estimator

To derive the bias of the NPD estimator in the presence of MMS noise and time

discretization, we start from the renewal RV estimator based on X (δ )(t):

RV (δ )(0, t) =
X (δ )(t)

∑
i=1

(r(δ )i )2 (1.47)

Since the NPD estimator simply truncates (r(δ )i )2 to δ 2, we must have that (r(δ )i )2 ≥ δ 2.

Intuitively, if there is no MMS noise, RV (δ ) would be unbiased, and the difference

between the two estimators is the bias of the NPD estimator caused by time dis-

cretization. We will therefore use Bias(δ )T D(0, t) = NPD(0, t)−RV (δ )(0, t) to denote the

time discretization bias of the NPD estimator, which is always negative.

In the presence of MMS noise, let us decompose r(δ )i as:

r(δ )i = r(∗,δ )i +V (δ )
i −V (δ )

i−1 , (1.48)

in which r(∗,δ )i = P∗(t(δ )i )−P∗(t(δ )i−1) denotes the return of the efficient price. A well-

established result (see e.g. Hansen and Lunde (2006), Bandi and Russell (2008)) of

the RV estimator under autocorrelated noise is that:

E[RV (δ )(0, t)] = IV (0, t)+
X (δ )(t)

∑
i=1

E[(V (δ )
i −V (δ )

i−1)
2] (1.49)

And therefore:

E[NPD(0, t)] = IV (0, t)+E[Bias(δ )MMS(0, t)]+E[Bias(δ )T D(0, t)], (1.50)

in which Bias(δ )MMS(0, t) = ∑
X (δ )(t)
i=1 (V (δ )

i −V (δ )
i−1)

2 is the bias induced by the market

microstructure noise, which is strictly positive. The above results suggest that the

NPD estimator is generally biased with two sources of biases: the truncation bias

introduced by time discretization and the MMS noise bias.

For the T D bias, we are unable to derive an explicit expression in the general

case. We show in Appendix A.7 that an approximated version of Bias(δ )T D converges
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to zero in the absence of MMS noise with a rate of δ−1. If we believe that Bias(δ )T D is

of the order δ−1 in the general case, then Bias(δ )T D decays much slower than Bias(δ )MMS

as Bias(δ )MMS is of the order δ−2. Also, Bias(δ )T D will always bias the NPD estimator

towards zero when δ → 0, which is due to the fact that Xδ (t) is capped at the number

of observed tick changes. To give a graphical illustration of the bias of the NPD
estimator under the two sources of biases, we simulate a simple price model and

analyse the bias of the NPD estimator by adding the features to the price model.

The results are present in Appendix A.8.

The discussion above also suggests that, the NPD estimator will be less biased

compared to the RV (δ ) estimator if Bias(δ )MMS dominates Bias(δ )T D, but will perform

worse than the RV (δ ) estimator if there is no MMS noise at all. Interestingly, we

may find cases where Bias(δ )MMS approximately offsets Bias(δ )T D when δ is large (as in

Figure A.3 in Appendix A.8 for example). In this case the NPD estimator will have

a bias close to zero and thus very efficient, although the Bias(δ )MMS is not zero. This

suggests a potential bias correction technique if one can ‘adjust’ Bias(δ )MMS or Bias(δ )T D

in a way that the two biases approximately cancels as δ increases. We will exploit

this property in Section 1.6.6 to construct bias corrected NPD estimators.

1.6.5 Price Discretization

The observed price in practice is not continuously distributed, due to price discretiza-

tion. The minimum allowed quote change is known as the tick size, which is typically

1 cent for securities in the US market that are traded above $1. This is known as the

round-off error discussed in the RV literature (see e.g. Delattre and Jacod (1997), Li

and Mykland (2015) and the reference therein). We show, that this noise will also have

a very special impact on the NPD estimator with simulation evidence in Appendix A.8.

We write the discretized return as r̊ j = hε(Pj)−hε(Pj−1), where hε(x) is a rounding

function for the log price Pj. If we compare the discretized return r̊ j and the return

r j without discretization, we have the following expression:

r̊ j = r j +Ξ j −Ξ j−1

Ξ j = hε(Pj)−Pj,
(1.51)

and Ξ j is thus the price discretization error. Depending on the assumed rounding

function hε(x), the theoretical property of Ξ j will differ. Note that the bid-ask

bounce effect is already incorporated in the MMS noise component Vj, and the price

discretization error Ξ j merely reflects the effect of rounding.
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To simplify our analysis, we use the rounding function: hε(x) = εnint( x
ε
) and nint(x)

returns the nearest integer of x. This basically assumes that the price discretization

is in the log scale, which is reasonable if the price level is roughly constant within the

time period. We can interpret ε as the log tick size. The distribution of Ξ j is then

roughly identical for all j but can be potentially autocorrelated if ε is large, and we

also have Ξ j ∈ (−0.5ε,0.5ε). Thus we can regard Ξ j as another noise term in the

price process similar to the MMS noise component Vj and incorporate this in Bias(δ )MMS.

The price discretization has a more profound impact on the sampling scheme. Specif-

ically, when one takes δ to be between (xε,(x+1)ε] for some integer x, the resulting

sampling scheme X (δ )(t) will be exactly the same due to the discreteness in r̊ j. As

a result, choosing multiple δ in the range (xε,(x+1)ε] does not effectively change

the asymptotic property of X (δ )(t). An implication of this is that one can influence

the level of the truncation bias for a fixed sampling scheme X (δ )(t) by choosing a

δ within the range ((x− 1)ε,xε] for some integer x. When Bias(δ )T D dominates, we

should always choose δ = xε to minimize Bias(δ )T D . When Bias(δ )MMS is large, one can

choose δ → (x−1)ε to inflate Bias(δ )T D and counterbalance the positive Bias(δ )MMS. As is

shown in Figure A.4 in Appendix A.8, there can be a δ in the range of ((x−1)ε,xε]

that corrects the bias of the NPD estimator completely. However, this requires the

knowledge of Bias(δ )T D at any δ , which can be very difficult to estimate empirically.

1.6.6 A Possible Bias Correction Method for the NPD Esti-

mator

In this section we propose a bias correction method for the NPD estimator, and

compare the performance of this bias correction method in a simulation study in

Section 1.7 against some commonly used calendar time volatility estimators.

Inspired by the pre-averaging estimator in Jacod, Li, Mykland, Podolskij, and

Vetter (2009), we propose to smooth the transaction price before constructing the

NPD estimator. In detail, instead of constructing the NPD estimator based on

the observed discrete price hε(Pj), we construct a smoothed price process Z j, and

construct the NPD estimator based on Z j instead. We choose a simple exponential

smoothing structure for the process Z j:

Z1 = hε(P1)

Z j = (1− γ)Z j−1 + γhε(Pj), γ ∈ [0,1]
(1.52)
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where γ is a smoothing factor. Clearly when γ = 1, Z j = hε(Pj) so the process is not

smoothed, and when γ = 0, Z j = hε(P1) for all j. Intuitively, the variation of the noise

is diminished by this exponential smoothing to some extent, thus the NPD estimator

constructed on Z j is less affected by MMS noise. We will denote the exponentially

smoothed NPD estimator constructed on Z j as NPDz.

The exponentially smoothed price process Z j, is still contaminated by noise, al-

beit the magnitude of noise is reduced by the smoothing. Intuitively, the larger the

γ , the larger the impact of MMS noise on the NPDz estimator. Thus the exponential

smoothing provides a way to alter the impact of MMS noise on the NPDz estimator.

As is shown in the previous section, if we can choose a γ so that Bias(δ )MMS +Bias(δ )T D

is approximately zero for some moderate to large δ , we can greatly improve the

performance of the NPD estimator.

The price smoothing approach has two additional advantages over the original

NPD estimator: firstly, it is a natural solution to the price discretization, and the

sampling frequency will change more smoothly with respect to δ . Secondly, empirical

data contains a very large amount of flat trades which will be completely ignored by

the price change point process. By smoothing the price process, we can sample the

data at every transaction instead of every tick change, which greatly increases the

maximum sampling frequency.

Nevertheless, in this chapter we do not provide an analytical solution to choose

γ optimally, as the truncation bias is not available in closed form. In practice, we can

choose γ by benchmarking the NPDz estimator on some unbiased volatility estimator

and minimize the MSE, as documented in Hautsch and Podolskij (2013). Moreover,

the estimator will be less robust to jumps compared to the NPD estimator, simply

because the exponential smoothing distributes a jump to all previous transactions,

which will have a larger chance to be absorbed into a price event. This is however

not a significant problem if the jumps are assumed to be large and rare, so that the

smoothed jumps still trigger price events as they occur.

1.7 Simulation Study

1.7.1 Simulation Design

We conduct a simulation study to demonstrate the properties of the price duration

based volatility estimators (NPD and RV (δ )) and compare their performance to

existing calendar time methods. We list all volatility estimators considered in this
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chapter in Table 1.1.

Table 1.1 List of all volatility estimators considered in the simulation study

Acronym Description Type MMS Jump

NPD See Section 1.5 δ N Y

RV (δ ) Renewal RV δ N N
NPDz See Section 1.6.6 δ N Y

RV Realized Variance CTS N N
RBip Realized Bipower Variation CTS N Y
RK Realized Kernel CTS Y N
PRV Pre-averaged Realized Variance CTS Y N
PBip Pre-averaged Bipwer Variation CTS Y Y

Note: The column Type shows the type of sampling schemes: δ stands for the δ -associated price change point
process sampling and CTS refers to calendar time sampling. The column MMS describes whether the estimator
is robust in the presence of MMS noise, and the column Jump shows the robustness to jumps for the volatility
estimators.

We consider a one-factor stochastic volatility (1FSV) model4 with jumps to simulate

the efficient price process, a model commonly used in this literature (see e.g. Huang

and Tauchen (2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a), etc.).

The log-efficient price is specified as:

dP∗(t) = µdt +σp(t)dW (t)+dJ(t), σp(t) = exp(β0 +β1υ(t))sp(t)

dυ(t) = αυ(t)dt +dB(t), corr(dW (t),dB(t)) = ϕ,
(1.53)

in which J(t) = ∑
NJ(t)
i=0 Ji is a pure jump process. We assume that NJ(t) is a homo-

geneous Poisson process with rate λJ, and Ji is i.i.d. normal with zero mean and

variance σ2
J . Note that we augment the original 1FSV model by a time deterministic

function sp(t) to accommodate the well-documented L or U-shaped pattern of intra-

day volatility. In the simulation study we set t ∈ [0,1] to represent fractions of time

from a trading day from 9:30 to 16:00, and the process τ(t) is initialized by a random

draw from its unconditional distribution. The function sp(t) in our simulation study

is specified as:

sp(t) =
1

a1t +a2
−

ln(a1
a2
+1)

a1
+1, a1 > 0,a2 > 0. (1.54)

This function has the property that
∫ 1

0 s(t)dt = 1. When a1 and a2 are properly

chosen, the function can produce a L-shaped pattern.

4We will use the subscript 1FSVJ to denote a 1FSV model with jump.
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We build the MMS noise component in transaction time instead of calendar time.

Specifically, we assume that the point process of transaction arrivals (or quote up-

dates), denoted by N(t), follows a inhomogeneous Poisson process where the intensity

function λ (t) is specified as a time-deterministic function to mimic the empirical

U-shaped pattern of transaction arrivals. We specify the intensity function as:

λ (t) =
1
∆t

(
b1(b2t −1)b3 − b1(b2 −1)b3+1 +1

b2(b3 +1)
+λ0

)
, (1.55)

in which b1 > 0, b2 > 0 and b3 = 2,4, · · · , λ0 is the baseline arrival rate of transactions.

The quantity ∆t is the discretization step size of the simulation. The expected number

of transactions in the interval (0,1) is therefore E[N(t)] =
∫ 1

0 λ (t)dt = λ0
∆t .

Let t j denote the j-th arrival of transaction, and P∗
j = P∗(t j) denote the efficient price

at the j-th transaction. Empirically we cannot observe P∗
j due to the presence of

MMS noise, and the following decomposition is frequently used in the literature:

Pj = P∗
j +Vj, (1.56)

in which Vj is a MMS noise term satisfying Assumption 1.2, and Pj is the log-price

process measured with error. We assume that Vj follows an Gaussian AR(1) process

specified as follows:

Vj = ρVj−1 + v j, v j ∼ N (0,(1−ρ
2)σ2

v ) (1.57)

For the sake of stationarity we require that |ρ|< 1. The unconditional variance of

the noise is therefore V[Vj] = σ2
v .

Empirically, the transaction returns contain a large amount of flat trades where the

transaction price do not move at all. For example, in Liesenfeld, Nolte, and Pohlmeier

(2006), the proportion of flat trades for two stocks traded in NYSE is over 60%. Jacod,

Li, and Zheng (2017) reports an over 70% of flat trades in the transaction data from

Citigroup. For the mid-quote data the proportion of flat price changes will be even

larger, as the best quotes can remain constant even when the transaction price moves.

As a result, the empirical transaction returns are typically found to have excess

kurtosis due to the amount of flat trades that cannot be reasonably explained by

the normal assumption. To account for this effect, we follow the approach of Griffin

and Oomen (2008) and assume that the tick change of price process is governed

by a first order Markov chain. Let S j be a stationary and recurrent two-state first

order Markov chain with transitional parameters P(S j+1 = n|S j = m) = pmn where
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m,n ∈ {0,1}. We rewrite (1.56) as:

Pj =

P∗
j +Vj, S j = 1

Pj−1, S j = 0
(1.58)

Therefore, when S j = 1, the observed price change is updated by the rounded efficient

price process plus noise, and remains constant whenever S j = 0.

The observed log-price process, hε(Pj) is specified as follows:

hε(Pj) =

(
εnint

(Pj

ε

))
, (1.59)

in which nint(x) returns the nearest integer of a real number x. Note that the rounding
will introduce additional flat trades to the observed price process when the price

change is rounded to zero. We set ε = ln(P0 +0.01)− ln(P0) to represent the log tick

size.

The parameters for the 1FSV model we use are: µ = 0, β0 =−4.3711, β1 = 0.05934,
α =−0.011, ϕ =−0.3, λJ = 2, a1 = 10, a2 = 0.5, and σJ = 0.01. The unconditional

mean of the annualized daily volatility is roughly 27%, and the expected jump

variation is about 0.0002 per day. The transaction and tick arrival parameters are set

as b1 = 0.5, b2 = 2, b3 = 4, λ0 = 0.4, p11 = 0.6 and p22 = 0.8. We set the Euler step

size of the simulation to be ∆t = 1
23400 , so that the expected number of transactions

within a trading day is 9360. The diurnal patterns of intraday volatility and the

arrivals of transactions are plotted in Figure 1.2. From the figure we can clearly see

that the intraday volatility has a L-shaped pattern and the arrivals of observations

possess a U-shaped pattern. An example of a simulate price path of the 1FSVJ is

presented in Figure 1.4.

For the MMS noise parameters, we set ρ = −0.5 and σ2
v = ωIV , where ω is the

noise-to-signal ratio. Empirically ω is found to be quite small (typically smaller

than 0.1% as documented in Hansen and Lunde (2006)). We therefore choose

ω = 0.005,0.001 and 0.0002 to represent high, moderate and low noise scenarios.

The resulting σ2
v ≈ 0.001152,0.000522 and 0.000232 respectively. The expected num-

ber of flat trades implied by the Markov chain is about 67% of the total transactions.

The actual amount of flat trades in hε(Pj) depends on the initial price P(0), as the
rounding error is smaller when P(0) is large, and vice versa. We set P(0) = 20, and
the resulting proportion of flat trades is approximately 70%. We plot a histogram
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Figure 1.2 Simulated diurnal pattern of intraday volatility and transaction arrival
rate

Note: sp(t) is specified in (1.54) with a1 = 10, a2 = 0.5. λ (t) is specified in (1.55) with b1 = 0.5, b2 = 2, b3 = 4, λ0 = 0.4
and ∆t = 1. t is the fraction of time in a trading day.

and the correlogram for the simulated price change hε(Pj)−hε(Pj−1) in Figure 1.3

with J(t) = 0 and ∆t = 1
23400 for the moderate noise case. It is clear that the observed

price change is leptokurtic with a sample kurtosis of approximately 15. This closely

resembles the empirical density of the price changes as in Liesenfeld, Nolte, and

Pohlmeier (2006). The autocorrelation for price changes suggests that the price

changes follow an ARMA-type process with negative first order autocorrelation,

which is consistent with the findings in e.g. Oomen (2006).

Figure 1.3 Histogram and correlogram for the simulated price change with moderate
level of MMS noise and no jumps

Note: The histogram is on the left side and the correlogram is on the right.. The histogram is constructed based
on simulated price changes for 10000 days without jumps. The correlogram is constructed based on the average
autocorrelation for 10000 days without jumps. ∆t = 1

23400 in the simulation. The noise-to-signal ratio is set to be
ω = 0.001.

We use the bias, the mean squared error (MSE) and the QLIKE measure to compare

the performance among estimators. For the true integrated variance IV (0, t) and an
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Figure 1.4 An example of simulated price path of the IFSVJ model with moderate
level of noise

Note: t is the fraction of time in a trading day. ∆t = 1
23400 in the simulation. The noise-to-signal ratio is set to be

ω = 0.001.

estimate of IV denoted by ÎV (0, t), the three measures are defined as follows:

Bias(ÎV (0, t)) = E[ÎV (0, t)− IV (0, t)], (1.60)

MSE(ÎV (0, t)) = E[(ÎV (0, t)− IV (0, t))2], (1.61)

QLIKE(ÎV (0, t)) = E
[ ÎV (0, t)

IV (0, t)
− ln

ÎV (0, t)
IV (0, t)

−1
]
. (1.62)

1.7.2 1FSV Model Without Noise and Price Discretization

Firstly, we would like to show that price duration based volatility estimators, namely

NPD and RV (δ ) are indeed superior to calendar time RV and realized bipower (RBip)

estimators when we can observe P∗(t) in continuous time without noise or price dis-

cretization.5 We simulate 10000 replications of P∗(t) for t ∈ (0,1) with and without

jump. We construct the NPD and RV (δ ) estimators on a grid of δ s with δ = xδ0,

in which δ0 = 0.1ε and x ∈ Z+. The calendar time sampled (CTS) RV and RBip

estimators are constructed based on the average sampling frequency of the NPD
estimator for each x, so that CTS estimators will have a fixed sampling frequency

that is comparable to that of the NPD estimator.6 The Bias, MSE and QLIKE of

the four estimators are plotted in Figure 1.5 against the log sampling frequency.

5Technically, when P∗(t) is observed in continuous time, NPD and RV (δ ) coincide in the absence
of jump. Due to that we use an Euler method to approximate the continuous time P∗(t), NPD will
be different from RV (δ ) even in the absence of jump as a result of time discretization.

6Note that it is not always possible to construct a NPD estimator from a sample if the maximum
range of the price is smaller than the threshold. A similar issue arises when constructing kernel and
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Figure 1.5 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPD, RV (δ ), RV and RBip for 1FSV model without noise and price

discretization

Panel 1: 1FSV

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for NPD and RV (δ ), or the log sampling frequency of the equidistant
intraday return per day for RV and RBip. The subscript J represents an estimator constructed on the 1FSV model
with jumps. The Euler discretization step ∆t = 1

23400 .
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From the plots on the first column in Figure 1.5, we can see a strong negative

bias for the NPD estimator at the maximum frequency when δ is small due to time

discretization in the simulation. In theory the NPD estimator should converge to

the integrated variance as δ decreases, but in simulation whenever we use a discrete

approximation to the continuous efficient price process, the truncation bias will affect

the performance of the NPD estimator when δ is small. Since RV (δ ) is unaffected by

this truncation, it converges to the theoretical quadratic variation as δ decreases.

Comparing the efficiency of RV (δ ) with RV and RBip in the absence of jump, we can

see clearly that RV (δ ) is indeed superior to RV and RBip at any sampling frequency

considered in this simulation, as discussed in Section A.3.1. NPD and RV (δ ) have

similar efficiency when δ is large, but the performance of NPD deteriorates as δ

shrinks and the truncation bias becomes larger. However, even in the presence of

truncation bias the NPD estimator is still more efficient than CTS estimators for

sampling frequencies less than roughly 140 per day. When the jumps are present,

RV (δ ) and RV are not robust to jumps and their efficiency drops sharply. We also see

that the NPD estimator is more robust to jumps compared to RBip estimator as the

jump variation for the NPD estimator is of a much smaller magnitude. Consequently,

the efficiency advantage of the NPD estimator is even larger in the presence of jumps.

1.7.3 Full 1FSV Model: Primal Volatility Estimators

We proceed to add irregular transaction arrivals, price discretization and MMS noise

to the 1FSV model, and compare the performance of price duration based volatility

estimators NPD and RV (δ ) to the calendar time estimators RV and RBip. Note that

these estimators are all ‘primal’ estimators without any correction for MMS bias.

The average (log) sampling frequency for the NPD estimator is presented in Figure

1.6 for the 1FSV and 1FSVJ model.

From Figure 1.6 we see that the sampling frequency of NPD estimators always

decreases at multiples of 10δ0 = ε due to price discretization. The sampling frequency

ranges from roughly 3000 (exp(8)) which is the average number of tick returns per

day, to roughly 7 (exp(2)) for all three levels of noise. The presence of jumps does not

have a large impact on the average sampling frequency for small δ s as expected, and

will increase the sampling frequency slightly when δ is large. Similar to the previous

case, we use the average sampling frequency of the NPD estimator to construct

pre-averaging estimators as they are not guaranteed to be positive. The computation of Bias, MSE
and QLIKE is only based on valid volatility estimates and ignores all invalid volatility estimates.
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Figure 1.6 Average sampling frequency of the NPD estimator for the 1FSV and
1FSVJ models

Note: For the high, moderate and low levels of noise, the δ ranges from δ0 to 200δ0, 150δ0 and 120δ0 correspondingly.
The step size is set to be δ0 = 0.1ε, with ε = ln(20.01)− ln(20). For each δ , we compute the average sampling
frequency by averaging the number of price durations over 10000 Monte Carlo draws of 1FSV and 1FSVJ model.
The noise-to-signal ratios for the high, moderate and low levels of noise are ω = 0.005, 0.001 and 0.0002 respectively.

the calendar time RV and RBip estimators for each δ . The performance of these

estimators under moderate noise can be viewed in Figure 1.7, and results for the high

and low levels of noise cases can be found in Figure A.7 and A.8 in Appendix A.11.

From Figure 1.7 we can observe that, due to the price discretization, for δ ∈
((x − 1)ε,xε] the sampling scheme does not change. As a result, there will be

multiple volatility estimates from the NPD for a given sampling frequency as δ

changes within the range ((x−1)ε,xε]. It is clear that the RV (δ ) is the worst estima-

tor among all 4 estimators that has a significantly larger bias and is not robust to

jumps at all. Although NPD performs better than RV (δ ), the efficiency advantage

of NPD over RV and RBip is greatly weakened by the MMS noise bias as calendar

time estimators outperforms the NPD estimator for a very large range of δ . For RV

and RBip, we see that the optimal sampling frequency is around exp(4.4), which
corresponds to a sampling frequency of 84 per day. It is evident that RBip has

the overall best performance when sampled optimally due to its smallest MSE and

QLIKE and its robustness to jumps. Note that the optimal sampling frequency is

close to the theoretical optimal sampling frequency as proposed by Bandi and Russell

(2008): (2ω)−2/3 ≈ 63.

The inferior performance of price duration based estimators to the calendar time

estimators is due to that the price duration returns have a much more pronounced
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Figure 1.7 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPD, RV (δ ), RV and RBip for 1FSV model with moderate level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for NPD and RV (δ ), or the log sampling frequency of the equidistant
intraday return per day for RV and RBip. The truncation threshold δ ranges from δ150 to δ0 with a step size of
δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an estimator constructed on the 1FSV model with
jumps. The noise-to-signal ratio is set to be ω = 0.001.
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autocorrelation structure than the calendar time returns with the same sampling

frequency. We plot the average correlogram for the calendar time returns and price

duration returns sampled at RV’s optimal sampling frequency in Figure 1.8.

Figure 1.8 Average correlogram of calendar time returns and price duration returns

Note: The results are based on averaging the first 20 autocorrelations of calendar time and price duration returns
from 10000 replications of the 1FSV model with moderate noise. The sampling frequency for the calendar time
return is 84 per day. The corresponding threshold of price duration is δ = 51δ0.

Figure 1.8 shows a MA(1) dependence structure for the calendar time returns,

and an ARMA-type dependence structure for the price duration returns that clearly

has a higher magnitude. This suggests that the MMS noise under calendar time

sampling can be regarded as i.i.d. when we sample sparsely, thus the calendar

time estimators are much less affected by the MMS noise. For the renewal based

estimators, we see that the RV (δ ) performs the worst due to the dependence in

the noise structure, and NPD performs better simply because the truncation bias

mitigates part of the MMS noise bias. More importantly, the performance of NPD
is more sensitive to the size of MMS noise than calendar time methods when the

sampling frequency is on the same level. The sensitivity to the size of noise for

the NPD estimator can also be seen from Figure A.7 and A.8 in Appendix A.11.

In the low noise case NPD performs significantly better than the calendar time

methods with smaller MSE and QLIKE if the sampling frequency is smaller than

84, similar to the no noise case. This advantage quickly diminishes as the size of the

MMS noise increases, and in the large noise case the performance of NPD is com-

pletely dominated by the CTS methods for any sampling frequency smaller than 1000.

Interestingly, when size of the noise is large, one may choose a very small δ in
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such a way that the truncation bias exactly offsets the MMS noise bias, which

explains why the NPD estimator has better performance when δ is small. However,

even if we can reliably choose such a δ , the performance of this NPD estimator is still

inferior to an optimally sampled CTS estimator. Moreover, it is difficult to choose a

δ that can maximize MSE or QLIKE for a δ ∈ ((x−1)ε,xε]. If the goal is to choose

an estimator that has a smaller MSE or QLIKE, then for the NPD estimator one

needs to choose a large δ that are less affected by the truncation bias, and hopes

that the MMS bias does not outweigh the smaller asymptotic variance of renewal

sampling. As a result, CTS primal estimators are preferred over the NPD estimator

due to that the optimal sampling frequency already has closed form approximations

(See e.g. Bandi and Russell (2008) and Hansen and Lunde (2006)) and their optimal

performance dominate the NPD estimator in the presence of moderate to high level

of MMS noise.

1.7.4 Full 1FSV Model: Bias Corrected Estimators

The discussion above suggests that, to fully exploit the smaller asymptotic variance

of the price duration based estimators, it is necessary to mitigate impact of the MMS

noise bias for the NPD estimator. To this end, we compare the performance of the

exponentially smoothed NPDz estimator to calendar time bias corrected methods,

namely RK, PRV and PBip estimators, which are state-of-the-art calendar time

volatility estimators that are known to be highly efficient and robust to MMS noise

(also robust to jumps for PBip). Similar to the previous comparison, we compare the

NPDz estimator to the calendar time rivals with the same average sampling frequency.

The choice of tuning parameters for theses estimators are non-trivial, as they have a

very large impact on the performances of these estimators. Our aim here is to com-

pare the optimal performance of all these estimators, therefore we will use optimized

tuning parameters assuming they are known in advance. For the RK estimator the

optimal choice of the bandwidth is provided in Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008a), but there is no analytical solution to the optimal tuning

parameters for NPDz, PRV and PBip estimators. We therefore choose the tuning

parameters for NPDz, PRV and PBip by a grid search method that minimizes the

simulated MSE of the estimators. Details of tuning parameter selection and imple-

mentation of all estimators considered is presented in Appendix A.10.

Figure 1.9 shows the average sampling frequency of the NPDz estimator under

optimal γ compared to that of the NPD estimator. It is clear that as the level of

noise increases, the sampling frequency of the NPDz estimator deviates from that
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Figure 1.9 Average sampling frequency of the NPD and NPDz estimator for the
1FSV and 1FSVJ models under optimal γ

Note: For the high, moderate and low levels of noise, the δ ranges from δ0 to 200δ0, 150δ0 and 120δ0 correspondingly.
The step size is set to be δ0 = 0.1ε, with ε = ln(20.01)− ln(20). For each δ , we compute the average sampling frequency
by averaging the number of price durations over 10000 Monte Carlo draws of 1FSV and 1FSVJ model. The noise-
to-signal ratio is set to be ω = 0.001. See Appendix A.10 for the values of the tuning parameter γ under different
levels of noise.

of the NPD estimator. As the impact of noise is alleviated by the smoothing, it is

expected that the sampling frequency for the NPDz estimator is smaller than that

of the NPD estimator to reduce the positive MMS bias. It is also interesting to

see that the sampling frequency of NPDz can exceed the average number of ticks

in a day as smoothing removes all the flat trades. The sampling frequency is also

a smoother function of δ due to exponential smoothing. Finally note that in the

low level of noise case, we can still observe a step-shaped sampling frequency curve

for the NPDz, as the optimal γs are very close to 1. This suggests that smooth-

ing does not improve the MSE of the NPD estimator in the low level of noise case,

similar to the optimal θ s for the pre-averaged estimators for sparsely sampled returns.

We plot the Bias, MSE and QLIKE of NPDz, RK, PRV and PBip for the mod-

erate level of noise case in Figure 1.10, and the other two cases can be viewed in

Figure A.9 and A.10 in Appendix A.11. In Figure 1.10, we see that the bias correction

leads to a significant improvement in the MSE and QLIKE of volatility estimates

compared to the primal estimators, especially at larger sampling frequencies. The

RK estimator performs worse than the pre-averaged estimators because the window

length H is optimized for convergence rate instead of MSE, thus the MMS noise

bias is not fully corrected for at high sampling frequencies. For PRV and PBip,

we see that these two estimators are very robust to MMS noise in the absence of
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Figure 1.10 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPDz, RK, PRV and PBip for 1FSV model with moderate level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for the NPDz model, or the log sampling frequency of the equidistant
intraday return per day for RK, PRV and PBip. The truncation threshold δ ranges from δ150 to δ0 with a step size
of δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an estimator constructed on the 1FSV model with
jumps. The noise-to-signal ratio is set to be ω = 0.001.
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jump. The performance of PRV is however affected by jumps as θ ∗ is optimized

to minimize the MSE which uses the actual IV instead of QV. As a result, optimal

PRVJ underestimates the QV so that it is less biased.

Comparing the MSE and QLIKE for the four estimators in Figure 1.10 we can

see that, the NPDz estimator has a clear advantage of efficiency at any sampling

frequency smaller than approximately exp(5) ≈ 150. The NPDz is biased towards

zero when the sampling frequency is large due to the truncation bias. Similar to

a NPD estimator, the truncation bias diminishes as δ increases. As is discussed in

Section 1.6.4, the optimal γ shrinks the MMS bias in a way that it approximately

offsets the truncation bias when one samples relatively sparsely. As a result, the

smaller asymptotic variance of the RBV -class estimators leads to a more efficient

NPDz estimator compared to its calendar time rivals for a moderate to small sam-

pling frequency. Interestingly, the smoothed price process Z j itself is not noise free,

so constructing RV-type estimators based on Z j is still inferior to the NPDz estimator.

We provide a comprehensive comparison of the optimal MSEs of all volatility estima-

tors considered under various model settings in Table 1.2. A similar comparison of

optimal QLIKEs can be found in Table A.2 in Appendix A.11. From Tables 1.2 and

A.2, we see that despite a much smaller optimal sampling frequency of the NPDz

estimator compared to the pre-averaged estimators, its optimal MSE and QLIKE

still outperform those of the pre-averaged estimators. Moreover, the exponential

smoothing to some extent preserves the robustness to jumps of the NPD estimator,

and it is evident that the efficiency advantage of the NPDz estimator over the calendar

time competitors is more pronounced in the presence of jumps.

From the discussion above we can conclude that NPDz has the overall best MSE and

QLIKE which is also very robust to jumps. Its performance is closely followed by

the pre-averaging estimators PRV and PBip in the absence of noise. It is suboptimal

to use a very high sampling frequency for the NPDz estimator due to the truncation

error, but the NPDz estimator under a sparse sampling frequency can still beat the

pre-averaged estimators that uses much more observations in terms of efficiency. Also

note that the optimal MSE and QLIKE for the NPDz is even lower than the optimal

MSE and QLIKE of NPD in the absence of noise. This is because the smoothed

MMS noise bias serves as a bias correction to the truncation bias, which reduces the

bias of the NPD estimator without greatly affecting its variance.
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Table 1.2 Comparison of the optimal MSEs for all volatility estimators in Table 1.1
for the 1FSV and 1FSVJ models with low, moderate and high levels of noise

Estimator NPD RV (δ ) RV RBip NPDz RK PRV PBip

1FSV model with low level of noise

Optimal log MSE -20.9544 -18.1988 -19.3120 -19.3286 -20.9757 -20.2790 -20.7407 -20.8603
δ/δ0 34 101 21 21 35 6 5 1

Sampling Freq. 93 10 189 189 93 2160 2160 2160

1FSV model with moderate level of noise

Optimal log MSE -17.0324 -15.3145 -18.3553 -18.3411 -20.2637 -19.6876 -20.1954 -20.1100
δ/δ0 11 141 51 51 47 9 5 5

Sampling Freq. 1356 7 84 84 146 2955 2955 2955

1FSV model with high level of noise

Optimal log MSE -16.5537 -11.6995 -17.2449 -17.3405 -20.1142 -18.6052 -19.4332 -19.4418
δ/δ0 6 191 151 151 49 12 7 6

Sampling Freq. 3529 9 21 21 841 2618 3529 3529

1FSVJ model with low level of noise

Optimal log MSE -21.0187 -15.8231 -15.9375 -18.3767 -21.0195 -16.0064 -16.2491 -20.0609
δ/δ0 34 111 31 21 34 10 17 8

Sampling Freq. 93 9 93 187 93 2142 517 2142

1FSVJ model with moderate level of noise

Optimal log MSE -17.0643 -14.8169 -15.8456 -17.3982 -19.7464 -15.9891 -16.2552 -19.3642
δ/δ0 11 141 61 51 37 11 11 3

Sampling Freq. 1322 8 52 83 272 1322 1322 2929

1FSVJ model with high level of noise

Optimal log MSE -16.5834 -11.7460 -15.5769 -16.4333 -19.6157 -15.8562 -16.1501 -18.5307
δ/δ0 6 191 151 151 39 19 7 8

Sampling Freq. 3491 9 20 20 1159 2524 3491 3491

Note: Optimal log MSE for an estimator is the smallest log MSE among all the sampling frequencies considered. The smallest value is
highlighted in bold. The entries for the rows δ/δ0 represents the value of the threshold as multiples of δ0 = 0.1ε, with ε = ln(20.01)− ln(20).
The sampling frequency is the average sampling frequency at the optimal δs for NPD, RV (δ ) and NPDz, and is the calendar time sampling
frequency for RV, RBip, RK, PRV and PBip.
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1.8 Concluding Remarks

This chapter proposes the class of renewal based volatility estimator for high fre-

quency volatility estimation, and develops its asymptotic theory of the estimator

based on renewal theory. The renewal based volatility estimator differs from RV-type

estimators as it does not require an equidistant deterministic sampling grid and

does not rely on computing squared returns. Our theory opens up a wide range of

possibilities to construct alternative volatility estimators such as range duration-based

RBV -type estimators with more efficiency compared to RV-type estimators, while

providing consistency and asymptotic distribution for the entire class of renewal based

volatility estimators. Moreover, the stochastic sampling duration in calendar time is

allowed to be parametrized, which can potentially lead to a significant efficiency gain

compared to non-parametric renewal based volatility estimators.

Using the theory of renewal based volatility estimators, we prove theoretically the

consistency and provide the asymptotic distribution for the point process based

volatility estimator as in Engle and Russell (1998), Gerhard and Hautsch (2002), Tse

and Yang (2012), Nolte, Taylor, and Zhao (2018) and Li, Nolte, and Nolte (2018b)

under a continuous martingale setting. We examine Nolte, Taylor, and Zhao’s (2018)

NPD estimator in detail, showing its robustness to drifts and jumps, and establishing

its bias structure under MMS noise, time discretization and price discretization. In

our simulation study we show that: (1) it is suboptimal to choose a very small δ due

to truncation bias. (2) When the MMS noise level is small, the NPD estimator is

more efficient than the calendar time estimators. (3) The NPD estimator in general

is more robust to jumps than the RBip estimator. (4) The NPD estimator is much

more sensitive to the level of noise compared to the calendar time methods. (5)

Exponentially smoothing the contaminated price process can yield an approximately

unbiased NPDz estimator that provides high efficiency compared to optimized RK

and pre-averaged estimators while preserving the robustness to jumps.

This chapter has several limitations that provide rooms for future research. Firstly,

the idea of a range duration-based volatility estimator can be further developed as

it is showing some very promising properties under the pure diffusion assumption.

Different from the realized range estimator proposed by Christensen and Podolskij

(2007), the normalizing coefficient for the NPR estimator is just 0.5, and the asymp-

totic properties follow directly from our theory. However, the properties of this

estimator under various noise structures are yet to be verified, but it is promising that

its properties can be analysed following the same approach for the NPD estimator

presented in this paper. Secondly, the properties of the PRBV estimator require
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further analysis, as we assume that the renewal reward process Ri is known. Therefore

it is also helpful to examine the impact of estimation noise of Ri on the efficiency

of the PRBV estimator. Finally, theoretical properties of the NPDz estimator and

a data-driven method to select the optimal smoothing parameter γ are also worth

separate investigation.





Chapter 2

High-Frequency Volatility

Estimation and the Relative

Importance of Market

Microstructure Variables

2.1 Introduction

Volatility is an important topic in financial econometrics and a crucial input for any

asset pricing, portfolio allocation and risk management framework. It is considered

as a latent process that describes the variability of the return process over a given in-

terval, and thus requires estimation from the observed price process. The availability

of high-frequency financial data has led to a shift of volatility estimators from low

frequency volatility models such as GARCH-type models (Bollerslev, 1986; Engle,

1982) to high-frequency volatility measures, with the realized volatility (RV)-type

estimators (Andersen, Bollerslev, Diebold, and Labys, 2001) being the most represen-

tative and widely applied high-frequency volatility measures. The RV-type volatility

estimators have the advantages of well-established mathematical properties and can

be modified to provide precise volatility measures that are robust to various market

frictions. However, this type of estimators suffer from the problem of heavy reliance

on the availability of data and its non-parametric design also restricts the user to

only use price information for volatility estimation.

Restricting ourselves to only price data results in large information loss for intraday

volatility estimation, due to the fact that information about volatility contained

in observable market microstructure (MMS) variables is completely ignored. To

overcome this problem, we apply the duration-based volatility estimator initially
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proposed by Engle and Russell (1998) and subsequently developed by Tse and Yang

(2012), Nolte, Taylor, and Zhao (2018) and Li, Nolte, and Nolte (2018a). This

estimator provides a flexible parametric structure to incorporate other explanatory

variables and also produces precise volatility estimates on both daily and intraday

levels.

In this chapter, we consider the following MMS variables: trading volume, bid-

ask spread, total quote depth, quote depth difference, number of trades, order flow

and order imbalance1. By coupling a variant of the Autoregressive Conditional Dura-

tion (ACD) model (Engle and Russell, 1998) with the best subset selection regression,

we conduct a novel analysis of the relative importance of the MMS variables based

on their contribution to volatility estimation and provide guidance on the optimal

selection of MMS variables for volatility estimation, followed by a study of the effect

of inclusion of MMS variables on the quality of volatility estimates.

Our main empirical findings based on 29 highly liquid securities and a market

index ETF (SPY) suggest that, firstly, order flow and number of trades possess the

most important information for volatility estimation, followed by total quote depth,

quote depth difference, bid-ask spread, order imbalance and trading volume. Both

the ranking and the optimal choice of MMS covariates vary considerably across stocks.

More importantly, we demonstrate that, by benchmarking on a realized kernel (RK)

estimator, the volatility estimates obtained from the ACD model with the inclusion

of optimally selected MMS covariates significantly outperform those obtained from an

ACD model without any MMS covariates on both daily and intraday levels. Moreover,

including all MMS covariates does not further improve the results. These findings

have two important implications: (1) our variable selection procedure can to a great

extent extract the most relevant information for volatility estimation; (2) MMS

covariates indeed contain invaluable information about the latent price volatility

process and should not be overlooked.

The contribution of this chapter is three-folded. Firstly, we develop a framework for

ranking and choosing various MMS variables for high-frequency volatility estimation.

Secondly, we are among the first to provide rankings and optimal choices of a universe

of MMS variables based on their relative importance for volatility estimation, which

provides new insights into the relationship between intraday volatility and other

variables. Thirdly, we demonstrate that it is possible to obtain more precise volatility

estimates by including MMS covariates, which is an important alternative to the

1The definitions of these MMS variables are given later on in Table 2.1
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RV-type volatility estimators, especially when the number of observations are limited.

The rest of this chapter is structured as follow: A literature review on the re-

lated theoretical and empirical findings on the relationship between volatility and

other MMS variables is given in Section 2.2. Section 2.3 introduces the duration-

based volatility estimator. Section 2.4 describes the main methodology used in this

chapter. Data and descriptive statistics are given in Section 2.5. Our main findings

are presented in Section 2.6. Section 2.7 concludes.

2.2 Literature Review

This section discusses the rationale for our choice of MMS variables. The intraday

relationship between price change dynamics and MMS variables has been studied

extensively in the past two decades. These studies typically model intraday price

dynamics by incorporating variables that summarize high-frequency trading mecha-

nisms (e.g. trades, trade durations, information asymmetry) into the high-frequency

price formation process based on some standard market microstructure models (e.g.

Glosten and Milgrom (1985), Kyle (1985), among others). Since the seminal work

by Brennan and Subrahmanyam (1996) and Madhavan, Richardson, and Roomans

(1997), various models have been proposed that examine the market microstructure

effects on a transaction level, for example Ghysels and Jasiak (1998), Dufour and

Engle (2000), Rydberg and Shephard (2003), Manganelli (2005), Sadka (2006), Nolte

(2008), Jondeau, Lahaye, and Rockinger (2015) amongst others. These studies mainly

focus on a comprehensive structure and trading mechanism rather than focusing on

volatility estimation. However, this research is closely linked to our study as it also

examines the relationships between market microstructure covariates and volatility

in a high-frequency context, and rationalizes our inclusion of MMS covariates by

providing both theoretical and empirical evidence to the relationship.

In the existing literature, the relationship between volatility and trading volume

has been discussed in various contexts. Since the seminal work of Copeland (1976),

the relationship between trading volume and return volatility has attracted a lot of

attention (see Epps and Epps (1976), Tauchen and Pitts (1983), Lamoureux and

Lastrapes (1990), Andersen and Bollerslev (1997a), Suominen (2001), Kalev, Liu,

Pham, and Jarnecic (2004), Darrat, Zhong, and Cheng (2007) among others). In these

papers, trading volume is regarded as a proxy for information arrival which drives the

price volatility. In a high-frequency context, information-based MMS models suggest

that a high trading volume is associated with a subsequent trade that has a high
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return variance (Easley and O’Hara, 1992). Manganelli (2005) supports the results in

Easley and O’Hara (1992) for only the most frequently traded stocks. Using a copula

approach, Nolte (2008) documents a positive simultaneous effect between price change

and trading volume. Concluding from the above studies, it is clear that volume is

considered as an important determinant of volatility at both low and high frequencies.

Trading frequency, or the number of trades in a given interval, connects to price

volatility in a different way. Diamond and Verrecchia (1987) assert that given a

short-selling constraint, informed traders cannot sell short when the bad news arrives.

This results in a reduced trading frequency, but larger price adjustments afterwards.

On the other hand, Easley and O’Hara (1992) suggest that higher trading frequency

is associated with more informed traders participating, which subsequently triggers

price movements. In a different context, Oomen (2006) proposes a model for the

observed price process where the volatility within a time interval is proportional to

the number of transactions within the interval. Engle and Russell (1998) document

a negative relationship between price durations and the number of trades per second

in a duration.

Order flow and order imbalance, which measures the information flow revealed

through trading (Easley, Kiefer, O’Hara, and Paperman, 1996; Hasbrouck, 1991;

Opschoor, Taylor, van der Wel, and van Dijk, 2014), are also closely linked to return

volatility. In our study, order imbalance is defined as the difference between the

number of buy and sell orders in a specific time interval, and order flow is referred to

as the difference between the buyer-and seller-initiated volume (or volume-weighted

order imbalance). The measure has a close link to market liquidity, and MMS theories

predict that return volatility is induced by net order flow (Admati and Pfleiderer, 1988;

Kyle, 1985), which has been confirmed empirically in various studies (e.g. Madhavan,

Richardson, and Roomans (1997), Chan and Fong (2000), Opschoor, Taylor, van der

Wel, and van Dijk (2014)). Chordia, Roll, and Subrahmanyam (2002) show that a

daily order imbalance is strongly related to contemporaneous volatility and the effect

is asymmetric for order imbalances with excess buy or sell orders. These studies, how-

ever, mainly focus on relationships between volatility and order imbalance at a daily

or lower frequency. Following these studies, we examine the relationship between a

measure of order flow/imbalance and local volatility in a high-frequency context. It is

worth noting that the order flow/imbalance measure is also related to the Probability

of Informed Trading (PIN) measure, as order imbalance and order flow reveal the

information content in the trades which, in turn, updates the price and triggers

price volatility (Easley, López de Prado, and O’Hara, 2012; Easley and O’Hara, 1992).
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Bid-ask spreads and quote depths link to price volatility from the liquidity per-

spective. Classic information-based MMS theory (e.g. Copeland and Galai (1983),

Easley and O’Hara (1992)) predicts a positive relationship between the bid-ask spread

and return volatility, due to the arrival of private information, which increases the

degree of information asymmetry in the market. Kyle (1985) and Rahman, Krish-

namurti, and Lee (2005) assert that market depths are negatively affected by the

information asymmetry, and for larger depths, it is less likely that orders can ‘walk

the book’, and therefore are associated with lower return volatility. Parlour (1998)

suggests that, when the bid (ask) side of the limit order book has excess liquidity

over the ask (bid) side, traders will submit market buy (sell) orders instead of limit

buy (sell) orders for prompt execution, which will subsequently move up (down)

the price and cause a contemporaneous increase in return volatility. Thus, these

theories suggest that bid-ask spread and the difference between bid depth and ask

depth should move in the same direction as price volatility, while the quote depths

per se will move in the opposite direction. These theoretical findings are supported

by many empirical studies, for instance Bollerslev and Melvin (1994), Handa and

Schwartz (1996), Foucault (1999), Ahn, Bae, and Chan (2001), Næs and Skjeltorp

(2006), Nolte (2008) and Hussain (2011), among others.

Concluding from above, all MMS variables contain information about price volatility.

We expect a positive relationship between volume, order imbalance, order flow, bid-

ask spread and volatility, and a negative relationship between quote depth difference

with volatility. The relationship between number of trades and volatility is mixed,

but the results in Engle and Russell (1998) are very close to our approach, and

suggest a positive relationship. In this chapter, we provide a clear picture of the

relationship between these variables and local volatility in a high-frequency setting,

and assess their relative informativeness in volatility estimation.

2.3 Price Duration and Volatility Estimation

We follow the general framework of point process-based volatility estimation in Engle

and Russell (1998), Gerhard and Hautsch (2002), Tse and Yang (2012) and Nolte,

Taylor, and Zhao (2018). Let P(t) denote an observed price process, and suppose a

decision maker in need of a risk measure is concerned about the size of a significant

price change, δ . Construct the absolute price change point process (Engle and Russell,

1998) as follows:
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Definition 2.1 (The Absolute Price Change Point Process). Based on a realization

of the observed price process in level P(t), we construct a point process by:

1. Set t(δ )0 = 0 and choose a threshold δ .

2. For i = 1,2, · · · , compute the first exit time, t(δ )i , of P(t(δ )i−1) through the double

barrier [P(t(δ )i−1)−δ ,P(t(δ )i−1)+δ ] as:

t(δ )i = inf
t>t(δ )i−1

{|P(t)−P(t(δ )i−1)| ≥ δ}.

Iterate until the sample is depleted.

The point process {t(δ )i } describes the arrival times of transactions that result in

a price change of at least δ . We will refer to the arrival times {t(δ )i } as the δ -related

price events, or price events for short. Intuitively, for a given price series, more

frequent arrivals of price events in a given time frame can be translated into higher

price volatility.

To construct a volatility measure from the absolute price change point process,

we introduce three related concepts that are considered as equivalent representations

of the point process.

Definition 2.2 (Counting Representation). For the absolute price change point

process defined by the arrival times of price events {t(δ )i }, the counting process of this

point process is defined by:

N(δ )(t)≡
∞

∑
i=1

1l {t≥ti}. (2.1)

Definition 2.3 (Price Duration Representation). The price duration process of {t(δ )i }
is defined by:

x(δ )i ≡ t(δ )i − t(δ )i−1. (2.2)

Definition 2.4 (Conditional Intensity Representation). Let Ft denote the natural

filtration of the point process {t(δ )i }. The Ft-conditional intensity process of {t(δ )i } is

defined by:

λ
(δ )(t|Ft)≡ lim

∆↓0

1
∆

E[N(δ )(t +∆)−N(δ )(t)|Ft ]. (2.3)

Definitions 2.2 to 2.4 are three equivalent characterizations of the point process

{t(δ )i }. Specially, the Ft-conditional intensity process can be interpreted as the

expected number of price events for the next instant, which has a close connection to

an instantaneous volatility measure as given by the formula below (Hautsch, 2012):

σ
2
(δ )(t) = λ

(δ )(t|Ft)
(

δ

P(t)

)2
. (2.4)
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Intuitively, each price event is associated with
(

δ

P(t)

)2
amount of price volatility. The

above formula simply uses the expected number of price events multiplied by the

price volatility contribution of each price event as an instantaneous volatility measure.

To model the latent object λ (δ )(t|Ft) using the observable price durations x(δ )i ,

we introduce an alternative definition of the conditional intensity (Daley and Vere-

Jones, 2003):

λ
(δ )(t|Ft) =

fx(t − t(δ )i−1|Ft(δ )i−1
)

1−Fx(t − t(δ )i−1|Ft(δ )i−1
)
, t ∈ (t(δ )i−1, t

(δ )
i ], i = 1,2, . . . (2.5)

in which fx(·|Ft(δ )i−1
) and Fx(·|Ft(δ )i−1

) are the conditional densities of x(δ )i conditioning

on the information set F
t(δ )i−1

. Thus, by modelling the conditional cumulative density

function (CDF) of x(δ )i , we can make inference about instantaneous volatility within

the spell of a price duration.2

Usually we are more interested in the integrated conditional variance over some

period (0,T ). It is then natural to integrate (2.5) to obtain an estimate of the

integrated conditional variance (ICV). Suppose that t(δ )I ≤ T is the last arrival of

price events in the dataset, then an estimate of the ICV can be constructed as:

ICV (0,T )≡
∫ T

0
σ

2
(δ )(t)dt =−

I

∑
i=1

ln
(

1−Fx(x
(δ )
i |F

t(δ )i−1
)
)(

δ

P(t(δ )i−1)

)2

(2.6)

In practice, we will replace the conditional CDF Fx(·|Ft(δ )i−1
) in the above estimator by

an empirical estimate. The performance of the ICV estimator then depends crucially

on the goodness-of-fit of the model for the conditional density of x(δ )i .

In the discussion above, when we consider the conditional distribution of x(δ )i , we

restrict ourselves to only condition on the natural filtration F
t(δ )i−1

, which contains

all the internal history of the point process up to time t(δ )i−1. However, as discussed

in the literature section, there are various MMS covariates that are considered to

be related to price volatility. Therefore, it is expected that by conditioning on an

extended information set, we can model the conditional distribution of x(δ )i with

better accuracy, which in return improves the quality of volatility estimates. In our

2The information about the conditional intensity is updated upon arrival of every price events,
but not between two price events.
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study, we model the following conditional density by extending the information set

to:

Fx(x
(δ )
i |F

t(δ )i−1
∪G

t(δ )i
), (2.7)

in which G
t(δ )i

is the information set of some MMS covariates up to time t(δ )i . We will

use F̃
t(δ )i

= F
t(δ )i−1

∪G
t(δ )i

to denote the extended information set. Note that we are

essentially using contemporaneous information in other MMS covariates to fit the

conditional density of x(δ )i . As our main interest is to provide a precise ex post price

duration-based volatility estimator, exploiting information in the contemporaneous

covariates can to a large extent improve the goodness-of-fit of the duration density,

which in turn yields a more precise volatility estimator. We would like to stress

that although contemporaneous information is not permitted in a forecasting setting,

here it does not does not contradict our method. In the same way as RV estimates,

we focus on the construction of an input for a forecasting model rather than the

specification of the forecasting model, and volatility estimates obtained from our

model can always be used in volatility forecasting specifications such as the HAR

model (Corsi, 2009).

The use of F̃
t(δ )i

in volatility estimation is also motivated by the fact that we

can analyse the interactions between contemporaneous MMS variables and price

volatility. To see this, firstly note that under correct specification of Fx(x
(δ )
i |F̃

t(δ )i
),

the following holds:

− ln
(

1−Fx(x
(δ )
i |F̃

t(δ )i
)
)
∼ i.i.d.exp(1). (2.8)

The above relationship is known as the exponential probability integral transform.

Let us define ICVi ≡ ICV (t(δ )i−1, t
(δ )
i ), then from (2.6) and (2.8) it is immediate that

ICVi is a process of i.i.d. exponential random variables. If we define the average

instantaneous volatility within the i-th price duration as:

σ
2
i = ICVi/x(δ )i , (2.9)

then by taking logarithm on both sides of (2.9), it follows that:

E[lnσ
2
i ]+E[lnx(δ )i ] = lnC+ γ, (2.10)

Cov(lnσ
2
i , lnx(δ )i ) =

π2

12
−

V[lnσ
2
i ]+V[lnx(δ )i ]

2
, (2.11)
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where C = δ 2/P(t(δ )i−1)
2 and γ ≈ 0.5772 is the Euler-Mascheroni constant.3 Since

empirically Cov(lnσ
2
i , lnx(δ )i ) is almost always negative due to the large variations

in the price durations (in our data, V[lnx(δ )i ] is around 2 for all securities), we can

interpret price durations as an inverse measure of the average instantaneous volatility

within the duration. Intuitively, the longer the price duration, the longer it takes

for the price to change by δ amount, and consequently the lower is the average

instantaneous volatility therein.

By examining the correlation between price durations and other MMS covariates, we

can therefore infer the correlation between other MMS covariates and the average

instantaneous volatility. For example, if the trading volume per second in a price

duration is negatively correlated with price duration, then we would expect it to

be positively correlated with the average instantaneous volatility, and vice versa.

However, there are some caveats in the interpretation of the correlation between

covariates and price durations. Since a price duration is also a measure of time, if an

included MMS covariate also scales up with time, then the correlation between that

covariate and price duration will be strongly positive. These MMS covariates include

trading volume, number of trades and total quote depths submitted within a price

duration. To ensure that we can translate the relationship between covariates and

price durations into the relationship between covariates and average instantaneous

volatility, we use a per second measure of these variables by dividing them by the

length of the corresponding price duration.

The (price) duration-based volatility estimator has an intrinsic link to the pop-

ular RV approach. The RV approach typically relies on the assumption that the

log-price process follows a jump-diffusion process with observation error (discretiza-

tion, MMS noise4, etc.), and estimates the integrated variance of the log-price process

non-parametrically. Thus, based on a specific log-price model, asymptotic properties

of the RV-type estimators can be derived, and biases introduced by observation error

and jumps can be corrected. On the contrary, the price-duration based volatility

estimator does not impose any assumptions on the log-price process, and simply

treats the price events as a proxy of volatility. This approach is apparently less

vulnerable to specification error of the log-price model, but no theoretical results

can be derived without any assumptions about the underlying price process. Li,

3Note that to derive the above relationships, we used the fact that if εi is i.i.d. unit exponential,

then E[lnεi] = γ and V[lnεi] =
π2

12 .
4In the RV literature, MMS noise or market microstructure noise refers to the deviation of

observed price from the latent efficient price process caused by microstructure effects such as the
bid-ask bounce effect, strategic trading and imperfections in the trading mechanisms, etc.
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Nolte, and Nolte (2018a) prove that if we assume that the log-price process follows

a jump-diffusion process, then the ICV estimator consistently estimates integrated

variance of the jump-diffusion process with a much higher efficiency compared to

the RV-type estimators, if the conditional intensity process is known.5 This re-

sult establishes the theoretical foundation of the ICV estimator, and suggests that

the quality of the volatility estimates of the ICV estimator depends crucially on

the goodness-of-fit of the parametric model of the absolute price change point process.

We would like to conclude our discussion of the duration-based volatility estimator

by summarizing the advantages of the ICV estimator over the RV estimator. Firstly,

a parametric structure can be specified for the price durations or the conditional

intensity process. This allows us to include more data outside the window for which

volatility needs to be estimated. For example, we could use monthly data to construct

daily volatility estimators. This can lead to efficiency gains as the RV-type approach

is confined to the data within the estimation window of volatility. Moreover, this

parametric structure allows the inclusion of other MMS covariates, which can poten-

tially improve the accuracy of intraday volatility estimates. Also, intraday volatility

estimates or even instantaneous volatility estimates can be constructed based on the

price durations or conditional intensity process. This can be particularly challenging

for RV-type estimators as smaller estimation windows results in a much smaller

amount of data, which greatly affects the performance of the RV-type estimators.

2.4 Price Duration Modelling

We model x(δ )i using a modified version of the Lognormal Log-ACD (LL-ACD) model

proposed by Allen, Chan, McAleer, and Peiris (2008). The LL-ACD(p,q) model is

specified as follows:

xi = exp(c+ γ
′Zi +Ψi), (2.12)

Ψi =
p

∑
j=1

β jΨ j−1 +
q

∑
j=1

α jεi− j + εi, (2.13)

εi ∼ i.i.d.N (0,σ2
ε ), (2.14)

in which Zi and γ are some covariates and the associated parameter vector. It is obvi-

ous that the model is equivalent to a log-linear regression of xi on Zi with ARMA-type

5In Li, Nolte, and Nolte (2018a), it is proven that a non-parametric duration-based volatility
estimator is more than 6 times more efficient than a RV estimator, while the parametric duration-
based volatility estimator is more than 20 times more efficient than the non-parametric duration-
based volatility estimator.
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error terms Ψi. Let us define the parameter vector θ = {c,γ ′,β , . . . ,βp,α1 . . . ,αq,σ
2
ε }′.

Based on the dataset {X,Z} where X = {x(δ )i }i=1:I and Z = {Zi}i=1:I, the model

can be easily estimated via Quasi Maximum Likelihood (QML) with the following

conditional log-likelihood function:

lnL (θ ;X,Z) =− I
2

ln2π − I
2

lnσ
2
ε −

1
2

I

∑
i=1

ε2
i

σ2
ε

. (2.15)

It is then clear that the density Fx(·|F (δ )
ti−1

,θ) estimator is simply a log-normal density.

We can then construct the ICV estimator based on the estimated parameter vector

θ̂ and the estimated error term ε̂i as:

ICV (0,T ) =−
I

∑
i=1

ln
(

1−Φ(ε̂i/σ̂ε)
)(

δ

P(t(δ )i−1)

)2

, (2.16)

in which Φ(·) is the CDF of a standard normal distribution.

The LL-ACD model is chosen because of the following rationales: Firstly, the

log-linear form allows us to include seasonality components and other explanatory

variables freely with a guaranteed positive fitted duration x̂(δ )i . Secondly, the QML es-

timation of the LL-ACD model, as derived by Allen, Chan, McAleer, and Peiris (2008)

using the results in Bollerslev and Wooldridge (1992), ensures that the parameter

estimates are consistent even when the log-normal density is misspecified. This is a

crucial property of the model that validates our analysis especially when explanatory

variables are included. It is worth noting that estimates of γ are still vulnerable to

endogeneity bias due to simultaneity or omitted variables, which is likely to be the

case in our analysis. However, since we mainly focus on the goodness-of-fit of the

model in general to improve the quality of volatility estimates instead of the marginal

effects of the included variables, this is not our major concern. Thirdly, (2.12) permits

a method to estimate γ conveniently via OLS regressions, since the dynamic structure

in the residuals does not alter the unbiasedness of the OLS estimator. This allows

us to examine the relative importance of explanatory variables using simple OLS

regressions without estimating the dynamic parameters. Also, the OLS estimates

can be used to initialize the LL-ACD estimation, which can speed up the estimation

significantly.

2.4.1 Inclusion and Selection of Variables

Empirically price durations are subject to diurnal effects which are usually filtered

out prior to model estimation (Engle and Russell, 1998). The LL-ACD model allows
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Table 2.1 Description of MMS variables

Name Notation Parameter Description

Volume VOLi γVOL Logarithm of the total trading volume per

second in (t(δ )i−1, t
(δ )
i ].

Total quote depth T Qi γT Q Logarithm of the sum of the best bid and

ask depth per second in (t(δ )i−1, t
(δ )
i ].

Number of transactions NTi γNT Logarithm of the number of transactions

per second in (t(δ )i−1, t
(δ )
i ].

Bid-ask spread BASi γBAS Mean bid-ask spread in (t(δ )i−1, t
(δ )
i ].

Quote depth difference QDi γQD The absolute difference between the loga-
rithm of the sum of the best bid and the
(sum of) best ask depth in (t(δ )i−1, t

(δ )
i ].

Order imbalance OIi γOI The absolute difference between the loga-
rithm of the sum of the number of buyer-

and seller-initiated orders in (t(δ )i−1, t
(δ )
i ].

Order flow OFi γOF The absolute difference between the loga-
rithm of the sum of the buyer- and seller-

initiated volume in (t(δ )i−1, t
(δ )
i ].

for joint estimation of seasonality parameters and the ACD parameters, which can

potentially lead to efficiency gains in parameter estimation (Hautsch, 2012).

We specify the seasonality regressors in a flexible Fourier form as proposed by

Andersen and Bollerslev (1997b):

si =
P

∑
j=1

υ jt
j
i +

Q

∑
j=1

(
υc, j cos(t i ·2π j)+υs, j sin(t i ·2π j)

)
, (2.17)

in which P and Q are predetermined degrees of the polynomials, and t i is the calendar

time of the i-th event divided by the total length of a trading day. υ j,υc, j and υs, j

are parameters to be estimated. We can include each component of si into Zi to

estimate the seasonality parameters. In all of our model estimations, the degree of

polynomials for the flexible Fourier regressors are set to be P = 1 and Q = 3.

A key contribution of this chapter is the inclusion and selection of MMS covari-

ates in intraday volatility estimation. Based on our discussion in the literature review

section, we include the following covariates in the estimation procedure: trading

volume, total quote depth, quote depth difference, order imbalance, order flow and

the number of transactions. The definitions of these variables are summarized in

Table 2.1. As discussed in Section 2.3, for the VOLi, T Qi and NTi variables, we use a

measure of accumulated speed instead of the exact quantity to ensure a meaningful
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interpretation of the associated parameters. We include both the contemporaneous

MMS covariates and their one-duration lagged version in the LL-ACD model to

control for potential lead-lag relationships between price durations and these covari-

ates. However, we would like to note that, in this setting there is no clear economic

interpretation of the coefficients of the lagged covariates due to the randomness of

the length of the past duration.

As a summary to the discussion above, the γ ′Zi component in (2.12) can be written

as follows:

γ
′Zi = si + γVOL,0VOLi + γT Q,0T Qi + γNT,0NTi + γBAS,0BASi + γQD,0QDi + γOI,0OIi + γOF,0OFi

+ γVOL,1VOLi−1 + γT Q,1T Qi−1 + γNT,1NTi−1 + γBAS,1BASi−1 + γQD,1QDi−1 + γOI,1OIi−1 + γOF,1OFi−1.

(2.18)

In empirical studies, one can include a richer set of explanatory variables in γ ′Zi that

may further improve the goodness-of-fit of the model. However, as the number of

parameter increases, the efficiency of the parameter estimates deteriorates, which

leads to less efficient volatility estimates for a given sample size. To improve the

performance of volatility estimation, we propose to only include the most relevant

covariates in the estimation of the LL-ACD model. The relevance of the covariates is

determined adaptively using an OLS regression as specified in (2.12) by treating Ψi

as a correlated error term.

We use the best subset regression (BSR) to select the MMS covariates that are

most relevant to price duration modelling. BSR is a classical statistical method

(see, e.g. Beale, Kendall, and Mann (1967) and Hocking and Leslie (1967)) that is

frequently used in variable selection problems. It has recently regained attention

due to the development of optimization methods in Bertsimas, King, and Mazumder

(2016). To discuss this selection method in detail, let γ = {ν ,γZ} where ν is the

(P+ 2Q)-by-1 seasonality parameters, and γZ is the 14-by-1 vector of the MMS

parameters. Starting with the regression model:

lnx(δ )i = c+ γ
′Zi +Ψi. (2.19)

For each K ranging from 1 to 14, we solve the following nonconvex problem:

min
c,γ

|| lnx(δ )i − c+ γ
′Zi||22 subject to ||γZ||0 ≤ K (2.20)

where ||(·)||2 is the l2 norm and ||γZ||0 denotes the pseudo-norm of γZ that counts

the number of non-zero elements in γZ. The problem above can be expressed as a

Mixture Integer Optimization (MIO) problem, as suggested by Bertsimas, King, and
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Mazumder (2016), and can be solved very efficiently using MIO optimizers. The

detailed optimization setup is documented in Appendix B.3.

In essence, BSR for a given K finds the optimal combination of K different co-

variates that minimizes the mean squared error. We will refer to the optimized model

for a given K as the K-optimal model. Intuitively, as K ranges from 1 to 14, more im-

portant MMS covariates will be included first in K-optimal models and less important

MMS covariates will only be included when more important ones are already in the

model. Therefore, the number of inclusions of each MMS covariate in the K-optimal

model serves as a natural ranking of relative importance of each MMS variable. To

determine the overall optimal combination of MMS covariates to be included, we can

pick the best model among all K-optimal models using information criteria, such as

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). We

will refer to the overall best model among all the K-optimal models as K∗-optimal

model, where K∗ is the number of regressors that optimizes some model selection

criteria.

Other choices of variable selection schemes are also available, for example, reg-

ularization methods such as the LASSO by Tibshirani (1994) or the elastic net by

Zou and Hastie (2005), dimension reduction methods such as principal component

regression (PCR) or partial least square (PLS) regressions (Wold, Sjöström, and

Eriksson, 2001). The best subset selection approach has the advantage that it has

a very straightforward economic interpretation without many tuning parameters.

The relative performance of BSR and shrinkage estimators remain an open debate

(see, e.g. Bertsimas, King, and Mazumder (2016) and Hastie, Tibshirani, and Tibshi-

rani (2017)), but the BSR approach provides a simple solution to rank the relative

importance of the variables based on their inclusions in the optimal model. For

shrinkage estimators, it is not immediately clear what criteria should be used to rank

the contribution of the variables, and the performance of these estimators depends

crucially on the choice of the tuning parameters. As to the PCR and PLS approaches,

one may argue that these estimators can extract some latent factors in the system

of regressors, but latent factors lack a clear economic interpretation as they are

just linear combinations of the regressors. A summary in Hastie, Tibshirani, and

Friedman (2009) shows that the variable selection methods described above have

similar in-sample performance, and we choose the best subset regression method due

to its simplicity and more straightforward economic interpretations.

To summarize our estimation strategy of the LL-ACD model, we firstly ‘pre-select’



2.5 Data and Descriptive Statistics | 65

the MMS covariates via BSR in (2.19), and include the selected MMS covariates

to construct the LL-ACD model. This two-step approach may not be necessary, as

one can attempt to jointly select the covariates and estimate the LL-ACD model

via penalized maximum likelihood. Our two-step approach has the advantage over

the joint approach that BSR can be estimated very efficiently via MIO optimizers,

while the joint approach can be very computationally intensive since the likelihood

function needs to be optimized numerically for every different combination of MMS

covariates.

2.5 Data and Descriptive Statistics

The data used in our empirical investigation is the most recent tick-by-tick trade

and quote data from 29 assets, namely AA, AIG, AXP, BA, BAC, C, CAT, CVX,

DD, DIS, GE, GM, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT,

PFE, PG, T, UTX, VZ, WMT, XOM and a stock index, SPY.6 The sample period

is from January 2011 to December 2014, including 1006 trading days starting from

9:30 in the morning to 16:00 in the afternoon. Both trade and quote data have

time stamps in seconds. The trade data consists of trade prices and volumes at

all timestamps and the best quote price contains bid and ask prices and depths

at their own timestamps. To determine whether a trade price is buyer- or seller-

initiated, and the exact bid-ask spread for certain trade prices, it is necessary to

merge the quote data with the trade data according to trade timestamps. We

apply a refined Lee and Ready (1991) algorithm, as proposed by Nolte (2008), to

determine the trade direction. We present some descriptive statistics of the daily

transaction data in Table B.2 in Appendix B.2. The table summaries the liquidity

of the 30 securities within the sampling period. The table shows that SPY is the

most liquid security with the largest amount of transactions per day, dollar volume

per day and smallest Amihud’s (2002) measure, whereas AA is the most illiquid stock.

We then construct the absolute price change process from the transaction price

data according to Definition 2.1. We choose δ on a daily basis by letting the daily

mean duration to be as close to 5 minutes as possible, in the spirit of the choice

in Tse and Yang (2012) and the 5-minute RV measure (see E.g. Liu, Patton, and

Sheppard (2015)). The rationale of our choice of δ is that, firstly, the price process is

sampled equally sparsely for each day, so that the MMS noise does not have a large

6We follow the choice of assets in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), and
only consider data from the primary listing of security exchanges where these stocks are traded.
We use data from the New York Stock Exchange for all the stock listed except for INTC, MSFT
and SPY, for which data from NASDAQ is used.
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impact on the price durations. Secondly, this choice provides comparability across

securities and trading days. We plot the daily selected δ for each security in Figure

2.1. From the figure we see that the chosen δ is very different across stocks, and

also varies considerably over time. Generally, for each day, securities with a smaller

bid-ask spread, lower price volatility and less liquidity tend to exhibit a smaller δ .

Note that the stock C had a one-for-ten stock split on 9th May, 2011, which results

in a drastic change in the δ chosen.

Figure 2.1 Daily price change threshold δ for all thirty stocks from 2011-Jan to
2014-Dec
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Note: The x-axis represents a day index for the sample period mounting up to 1006 days. The y-axis is the value of
δ . The value of δ on a day is calculated by the value that makes the average duration to be closest to 5 minutes.

We present an example of price durations in Figure 2.2. The figure shows that

there is a clear diurnal pattern in the price duration process as documented in Engle

and Russell (1998). We plot the correlogram and histogram for the log price durations

for SPY in Figure 2.3. Figure 2.3 confirms the seasonal effect in the price duration,

with a cycle of approximately 78 lags, corresponding to a daily seasonal effect. It

also suggests that the log price duration is very persistent if we only look at the

peaks of the correlograms, which is also a common feature of the price duration data.

From the histogram we see that the unconditional distribution of log price durations

appears skewed with a discrete left tail, but is generally not leptokurtic. We present

some additional correlograms and histograms in Figure B.1 in Appendix B.2, which

shows that the unconditional density and the correlograms of price durations are

similar across different securities.



2.5 Data and Descriptive Statistics | 67

Figure 2.2 An example of the price duration process

0 50 100 150 200 250 300 350

Observation Index

0

200

400

600

800

1000

1200

1400

1600

1800

L
e

n
g

th
 o

f 
P

ri
c
e

 D
u

ra
ti
o

n
s
 i
n

 S
e

c
o

n
d

s

04-Jan-2011 05-Jan-2011 06-Jan-2011 07-Jan-2011

Note: The example is extracted from SPY, 4/1/2011 to 7/1/2011, consisting of 4 consecutive trading days.

Figure 2.3 Correlogram and histogram of log price durations for SPY

Note: The correlogram and histogram are constructed based on the log price duration of SPY for the whole sample.
In the histogram, the red solid line represents a fitted normal density.
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We conclude our data section by providing some descriptive statistics for the price

durations and the MMS covariates. A detailed table of descriptive statistics of all

variables can be found in Tables B.3 and B.4 in Appendix B.2. We present a cross-

correlation table between the log price durations and the MMS covariates averaged

over 30 securities in Table 2.2. From the first row of Table 2.2 we see that, all the

variables have a negative contemporaneous relationship with log price duration. Our

predictions in the literature review section are in line with the findings except for

the T Qi variable. It is also evident that the MMS covariates are highly correlated,

especially for VOLi, NTi and T Qi which are all measured in arrivals per second, and

OFi and OIi which are measures of imbalance between order arrivals. The lagged

variables have a considerably weaker cross-correlation with their contemporaneous

counterparts.

Table 2.2 Cross-correlation table between log price durations and MMS covariates

lnx(δ )i VOLi QDi BASi OIi OFi NTi T Qi

lnx(δ )i−1 0.4826 -0.4590 -0.2430 -0.4343 -0.2774 -0.5344 -0.5994 -0.2121 lnx(δ )i
VOLi−1 -0.2587 0.6151 0.1143 0.1846 0.0653 0.1838 0.8041 0.7167 VOLi
QDi−1 -0.1119 0.0797 0.2088 0.1354 0.2304 0.2449 0.1016 0.2357 QDi
BASi−1 -0.3609 0.2220 0.1226 0.6571 0.0520 0.2203 0.3078 -0.0233 BASi
OIi−1 -0.0294 0.0143 0.0500 0.0279 0.0911 0.6523 0.1055 0.1351 OIi
OFi−1 -0.1721 0.0748 0.0887 0.1502 0.0576 0.1213 0.1558 0.0824 OFi
NTi−1 -0.3859 0.5947 0.0726 0.2384 0.0329 0.0848 0.6941 0.6082 NTi
T Qi−1 -0.0443 0.4667 0.0691 -0.0821 0.0641 0.0137 0.3354 0.6827 T Qi

Note: The table reports sample autocorrelation between the row variables and column variables for the whole
sampling period averaged over 30 securities. Numbers in shaded cells use the column variables on the right hand
side. Numbers in bold are the first order autocorrelations of each variables.

2.6 Empirical Results

2.6.1 Analysis of the Relative Importance of MMS Covari-

ates

In this section we analyse the relative importance of all the MMS covariates in

modelling price durations. We use the best-subset regression as described in (2.19)

and (2.20) in Section 2.4.1. We compute monthly K-optimal models for each stock-

month and obtain monthly rankings of each MMS covariate and a monthly overall

K∗-optimal model chosen as the K-optimal model with minimum BIC7. We present an

example of the BSR output in Table 2.3. Table 2.3 shows that for SPY 2011-01, the

contemporaneous volume is the most important MMS covariate as γVOL,0 is included

7We standardize all the MMS covariates and the seasonality variables to ensure that the
magnitude of the parameter estimates are comparable.
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in all the K-optimal models, while the one-duration lagged quote difference is the

least important variable. BIC suggests that K∗ = 8, so the optimal model only uses

8 out of all 14 MMS covariates.

Table 2.3 Best-subset regression outputs for SPY, 2011-01

K γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q,0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q,1 BIC

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3906.24
2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 3357.14
3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 3268.17
4 1 0 0 1 1 1 0 0 0 0 0 0 0 0 3221.35
5 1 0 0 1 1 1 0 0 0 0 0 0 1 0 3198.42
6 1 1 0 1 1 1 0 0 0 0 0 0 1 0 3181.67
7 1 1 0 1 1 1 1 0 0 0 0 0 1 0 3175.03
8 1 1 0 1 1 1 1 0 0 0 0 1 1 0 3169.44
9 1 1 0 1 1 1 1 0 0 0 0 1 1 1 3174.27
10 1 1 0 1 1 1 1 1 0 0 0 1 1 1 3178.52
11 1 1 0 1 1 1 1 1 0 0 1 1 1 1 3183.34
12 1 1 0 1 1 1 1 1 0 1 1 1 1 1 3189.13
13 1 1 1 1 1 1 1 1 0 1 1 1 1 1 3196.15
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3203.46

Sum 14 9 2 13 12 11 8 5 1 3 4 7 10 6

Note: for each K, we present the parameters included in the K-optimal model as discussed in Section 2.4.1. The
K-optimal models are obtained via (2.19) and (2.20). BIC is the Bayesian Information Criterion. The K∗-optimal
model is highlighted in red.

The relative importance of MMS covariates and the specification of K∗-optimal

models vary over time and across securities. To summarize our findings, for each

security we present the average number of inclusions of every MMS covariate in the

monthly K-optimal model and the average monthly K∗ in Table 2.4. In this table, we

see that γOF,0 and γNT,0 are on average included in more than 13 K-optimal models,

and are considered the most important MMS covariates for monthly price duration

modelling. γT Q,0 and γQD,0 follow closely behind, suggesting that the quote depth

information is also very important in modelling price durations. The one-duration

lagged variables are much less important than the contemporaneous variables as

expected. Interestingly, γVOL,0 is the least important variable among the contem-

poraneous variables overall. K∗ suggests that on average we would only include

7 to 8 MMS covariates in the monthly regression, which implies that most of the

one-duration lagged variables are actually discarded.

To see the effect of a larger estimation window, we present the relative impor-

tance of MMS variables based on quarterly, half-yearly and yearly regressions in

Tables B.5 to B.7 in Appendix B.2. Tables B.5 to B.7 show that the relative im-

portance of the variables are fairly consistent across different lengths of estimation

window. We also observe that as the estimation window expands, K∗ increases as a

result of a larger sample size.
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Table 2.4 Average of monthly relative importance of MMS covariates

Ticker γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q,0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q,1 K∗

AA 9.44 10.04 4.73 11.42 13.35 13.52 7.75 5.40 2.92 2.65 5.69 6.56 5.40 6.13 7.71
AIG 4.56 10.88 10.29 6.79 13.38 13.63 11.10 3.42 3.94 4.10 3.40 5.94 7.56 6.02 6.96
AXP 5.85 10.58 10.83 7.00 13.29 13.67 10.81 3.00 3.98 4.19 3.54 5.92 7.04 5.25 7.17
BA 7.56 10.42 10.77 8.13 13.27 13.73 10.52 3.46 3.46 5.42 3.38 5.73 5.19 3.85 6.90
BAC 9.48 10.42 2.96 11.77 13.92 12.71 8.29 5.58 3.04 2.96 5.67 7.48 4.46 6.27 7.35
C 7.06 9.56 9.19 10.04 13.35 13.31 9.98 4.02 3.81 2.88 3.00 5.83 7.42 5.52 8.44

CAT 5.04 10.65 10.79 7.00 13.48 13.48 10.92 3.73 3.42 6.38 3.38 5.13 6.56 5.04 6.77
CVX 5.19 10.46 11.13 7.90 13.42 13.33 10.69 3.44 4.38 5.15 2.90 4.96 6.50 5.56 6.92
DD 5.25 10.75 10.27 7.56 13.35 13.56 10.96 3.79 4.10 3.73 3.35 5.08 7.10 6.10 6.90
DIS 5.60 10.56 10.65 6.88 13.35 13.65 10.94 3.71 3.79 3.69 3.23 5.92 7.31 5.71 7.56
GE 9.56 10.27 5.67 11.29 13.81 13.08 9.79 3.52 2.56 3.10 3.96 6.38 6.21 5.77 7.21
GM 5.42 10.38 9.50 7.33 13.29 13.71 11.29 3.21 3.33 2.90 3.75 6.08 8.33 6.35 7.79
HD 5.40 10.75 10.50 5.69 13.48 13.52 10.83 4.31 3.56 5.31 3.19 5.42 6.88 6.15 6.98
IBM 6.75 10.17 11.63 8.33 13.65 13.35 10.31 3.69 3.31 5.83 3.73 5.60 4.40 4.23 6.52
INTC 6.10 10.54 4.58 11.06 13.17 13.83 10.42 3.90 3.10 3.48 4.75 6.81 7.29 5.90 6.50
JNJ 6.06 10.38 10.77 6.54 13.29 13.65 11.21 3.50 3.65 3.48 3.77 5.71 6.56 6.42 7.29
JPM 7.56 10.15 9.44 8.44 13.42 13.42 10.85 3.08 3.42 3.58 3.21 5.73 7.42 5.23 7.85
KO 7.17 9.81 10.15 8.88 13.29 13.65 10.56 2.81 3.48 3.58 3.44 5.31 6.83 6.02 7.81
MCD 3.96 10.85 10.65 6.56 13.31 13.63 11.19 3.52 4.10 5.27 3.71 5.77 6.38 6.08 6.44
MMM 6.54 10.63 10.67 7.85 13.10 13.77 10.69 3.67 3.40 4.75 4.10 5.77 4.79 5.19 6.79
MRK 6.88 10.00 10.10 9.38 13.23 13.71 10.54 3.10 3.02 2.98 3.46 5.60 7.00 5.98 7.73
MSFT 5.08 10.63 5.46 10.77 13.06 13.94 10.52 3.08 3.17 3.02 4.96 7.27 7.69 6.33 6.56
PFE 9.69 9.73 7.48 11.19 13.56 13.19 10.60 3.08 2.96 2.77 3.79 5.42 5.98 5.52 7.88
PG 5.38 10.48 10.65 6.90 13.35 13.65 11.13 3.44 3.38 4.17 3.46 5.56 7.04 6.42 7.21
SPY 12.27 9.50 3.96 13.23 11.31 11.42 8.08 4.69 3.15 3.54 3.65 5.40 9.65 5.13 7.92
T 9.79 9.79 6.44 11.00 13.38 13.35 10.63 3.13 3.04 3.10 3.54 5.67 6.23 5.90 8.21

UTX 7.83 10.69 10.52 8.21 13.23 13.77 10.52 2.96 3.15 4.02 3.75 5.90 5.54 4.90 6.63
VZ 6.77 10.23 9.63 9.21 13.31 13.67 10.83 2.73 2.75 2.98 3.77 6.42 7.00 5.71 8.02

WMT 5.90 10.52 10.83 5.96 13.33 13.65 11.13 3.15 4.02 4.06 3.56 5.52 7.21 6.17 7.19
XOM 5.81 10.23 10.13 9.52 12.90 13.44 11.08 3.19 3.63 4.63 3.02 4.52 7.21 5.65 7.81

Average 6.83 10.33 9.01 8.73 13.29 13.47 10.47 3.58 3.43 3.92 3.74 5.81 6.67 5.68 7.30

Note: For each security, we report the averaged number of inclusions in the monthly K-optimal models for every
MMS covariate. K∗ is the average number of MMS covariates in the monthly K∗-optimal model, averaged over 48
months. Covariates that receive top five average inclusions are highlighted in bold.
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Our findings regarding the relative importance of MMS variables show that the

rankings of variables can be very different cross-sectionally, especially for the contem-

poraneous volume and order imbalance. Although it is not the focus of this chapter,

we provide some possible explanations to the heterogeneous rankings in our results.

Findings in Li, Nolte, and Nolte (2018c) suggest that there exists regime-switching

behaviour in the intraday volume-volatility relationship for individual stocks, but not

for the SPY. Therefore volume information is more noisy and contain less information

for other stocks, but is more important for the SPY. Since this effect is likely to be

driven by the firm-specific information content according to Li, Nolte, and Nolte

(2018c), we suspect that the rankings of these MMS variables are highly related to

the information content of each variables. Also, NTi and OFi are almost always the

most important variables. Thus if one is not interested in selecting the optimal MMS

variables, we recommend to just include these two variables for volatility estimation.

2.6.2 Estimation of the LL-ACD model

After identifying the most relevant MMS covariates, our next step is to build the

LL-ACD model based on the K∗ model by specifying an ARMA structure for the

residuals Φi from the least square regressions used in the variable selection process.

The LL-ACD model is summarized in (2.12) to (2.14). In our empirical analysis we

choose p = q = 1, so that the residual Φi is estimated with an ARMA(1,1) structure,

and we will refer to this model as the LL-ACD(1,1) model. The model is estimated

via QML with the likelihood function specified in (2.15).

We estimate the LL-ACD(1,1) model monthly for all 30× 48 stock months. To

compare between the performance of LL-ACD(1,1) models with or without MMS

covariates, we estimate the plain LL-ACD model (LL-ACD(1,1)-P) with only season-

ality covariates, LL-ACD(1,1)-K model with the optimal number of MMS covariates

obtained from BSR, and the LL-ACD(1,1)-A model which includes all 14 MMS

covariates8. We also compare the LL-ACD models with the OLS regressions used

in the variable selections, and denote these models as OLS-P, OLS-K and OLS-A

respectively. To conserve space, we only present an example of estimation outputs

for the stock-months 2011-01 SPY in Table 2.5.9

Table 2.5 presents the estimated dynamic parameters and MMS parameters for

8Throughout this chapter, we will use the capital letters in suffixes or superscripts ‘P’ to denote a
plain model without MMS covariates, ‘K’ to denote a model with optimally selected MMS covariates,
and ‘A’ to denote a model which includes all MMS covariates.

9Full estimation outputs from all models for each stock-month are available upon request.
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Table 2.5 Examples of LL-ACD(1,1) estimation outputs for 2011-01, SPY

Model OLS-P LL-ACD(1,1)-P OLS-K LL-ACD(1,1)-K OLS-A LL-ACD(1,1)-A

Dynamic Parameters

c 5.1756*** 5.1746*** 5.1756*** 5.1863*** 5.1756*** 5.1890***
(0.0339) (0.0385) (0.0218) (0.0621) (0.0219) (0.0599)

β1 0.7885*** 0.9742*** 0.9729***
(0.1297) (0.0112) (0.0119)

α1 -0.6657*** -0.8970*** -0.8955***
(0.1660) (0.0202) (0.0212)

σ2
ε 0.9787 0.9704*** 0.4007 0.6152*** 0.3982 0.6130***

- (0.0199) - (0.0105) - (0.0105)

MMS Parameters

γVOL,0 -0.3188*** -0.3227*** -0.3352*** -0.3313***
(0.0375) (0.0364) (0.0376) (0.0366)

γQD,0 -0.0975*** -0.0995*** -0.1034*** -0.1044***
(0.0173) (0.0173) (0.0173) (0.0175)

γBAS,0 0.0115 0.0117
(0.0192) (0.0197)

γOI,0 -0.2554*** -0.2502*** -0.2578*** -0.2476***
(0.0227) (0.0223) (0.0230) (0.0222)

γOF,0 -0.2349*** -0.2090*** -0.2317*** -0.2105***
(0.0340) (0.0301) (0.0337) (0.0302)

γNT,0 -0.4119*** -0.6109*** -0.4618*** -0.6370***
(0.0500) (0.0581) (0.0521) (0.0586)

γT Q,0 0.1142*** 0.2629*** 0.1746*** 0.2898***
(0.0367) (0.0455) (0.0434) (0.0470)

γVOL,1 0.0576* 0.0662*
(0.0345) (0.0341)

γQD,1 -0.0041 0.0011
(0.0177) (0.0163)

γBAS,1 0.0233 0.0158
(0.0226) (0.0215)

γOI,1 0.0356 0.0484**
(0.0217) (0.0213)

γOF,1 -0.0589*** -0.0277 -0.0888*** -0.0679**
(0.0192) (0.0203) (0.0255) (0.0264)

γQD,1 0.1717*** 0.1343*** 0.1764*** 0.1191***
(0.0285) (0.0276) (0.0377) (0.0349)

γT Q,1 -0.0794** -0.0655**
(0.0371) (0.0302)

Diagnostic Statistics

#Obs. 1587 1587 1587 1587 1587 1587
LL -2234.27 -2202.74 -1525.76 -1479.90 -1520.66 -1474.25
BIC 4527.49 4486.55 3169.44 3099.83 3203.46 3132.73
R2 0.1481 0.1804 0.6512 0.6706 0.6534 0.6729
JB 115.3318*** 121.4586*** 2.1850 7.1971** 1.9947 5.8690*

LL(20) 116.8915*** 21.5502 140.4901*** 12.9367 149.0443*** 13.4882

Note: For the OLS models, the Newey-West standard errors are reported in parentheses. For the LL-ACD mod-
els, QML standard errors are in parentheses. For all estimated parameters and tests, ***: p-value<0.01, **: p-
value<0.05, *: p-value<0.1. Seasonality parameters are suppressed. LL: maximized log-likelihood. BIC: Bayesian

Information Criterion. R2 is computed by ρ(lnx(δ )i , ln x̂(δ )i )2, where ln x̂(δ )i is the fitted log price duration from the
model. JB: Jacque-Bera test. LB(20): Ljung-Box test at 20 lags.
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three example stock-months and the post-estimation statistics. Seasonality parame-

ters ν are suppressed as they do not have meaningful interpretations. We present

the diurnal patterns implied by the estimated seasonality parameters from the six

models in Figure 2.4. Figure 2.4 clearly shows a reverse U-shaped pattern when no

MMS covariates are included, as is documented by Engle and Russell (1998). The

inclusion of MMS covariates dampens the diurnal pattern of price durations and

appears to have an increasing trend over the day. The OLS and the corresponding

ACD estimates are very similar, suggesting that the estimated seasonality parameters

are not largely affected by the dynamic specifications.

Figure 2.4 Estimated diurnal patterns from models in Table 2.5
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Note: The x-axis denote the fraction of time computed as x/23400, where x is the seconds since the beginning of the
trading day. Diurnal pattern curves are reconstructed by plugging in the parameter estimates from the six models
into (2.17) .

From the dynamic parameter panels in Table 2.5, we observe a large β̂1 that is

close to 1, especially when the MMS covariates are included. This shows that the

price durations are very persistent, and this persistence cannot be explained by the

MMS covariates. Interestingly, α̂1 is largely negative. This suggests that an over-

prediction of the previous price duration is associated with a shorter price duration,

and vice versa. The estimated variance of the error terms are reduced by the inclusion

of MMS covariates, as can be seen from σ̂2
ε . For the MMS parameters, it is clear that

both parameter estimates and standard error estimates from OLS models are close

to those obtained from the LL-ACD models for most of the variables. Also, for those

MMS parameters included in the -K models, the corresponding estimates in the -A

models are also similar. The signs of the contemporaneous parameters all match our
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predictions in the literature review, and are highly significant except for γ̂BAS,0.

As to the diagnostic statistics, it is evident that models with more parameters

have higher log-likelihood and R2 statistics as expected, and the inclusion of MMS

covariates greatly improves the performance of both the OLS and the LL-ACD

models. From the BIC we see that indeed the LL-ACD(1,1)-K model outperforms

all 5 other models. Diagnostic tests of the residuals show that, the inclusion of MMS

covariates can greatly improve the Jacque-Bera test statistics, and the residuals are

much closer to be normally distributed for the -K and -A models compared to the -P

models. The LL-ACD structure seems to slightly worsen the fit of the log-normal

density, but it can to a great extent capture the dependence structure in the residuals

of the OLS models, as can be viewed from the Ljung-Box statistics. The dynamic

structure also improves the LL, BIC and R2.

We proceed to summarize our main empirical findings on the MMS parameters

for all stock-month estimations, which shed new lights on the intraday interaction

between price volatility and the MMS covariates considered. To be concise we only

present results for the contemporaneous MMS variables in the main text as their

one-duration lagged counterparts are generally less important and are usually not in-

cluded in the -K model. For all 30×48 stock-months, we present parameter estimates

(in the order of their overall relative importance) of γNT,0, γOF,0, γT Q,0, γQD,0, γBAS,0,

γOI,0, and γVOL,0 from the LL-ACD(1,1)-K model in Figures 2.5 to 2.7. Estimation

results for other parameters can be found in Figures B.2 to B.6 in Appendix B.2. We

also present summaries of average MMS parameter estimates for each stock based on

-K and -A model in Tables B.8 and B.9.

Figure 2.5 presents results for γNT,0 and γOF,0, the two most important parameters

that are almost always included in every K-optimal model. We clearly see that the

two parameters are always included in the K∗-optimal model and the LL-ACD(1,1)-K

model. The parameter estimates are all negative and highly significant, suggesting

a positive contemporaneous relationship between the trade arrivals and order flow

with price volatility, which is consistent with the theoretical prediction of Easley and

O’Hara (1992). Estimates of the two parameters are relatively stable for most of

the stocks, suggesting that the relationships we detect do not vary significantly over

time. Interestingly we see that the stock split in C results in a structural break in

the parameter estimates in Figures 2.5 to 2.7.

In Figure 2.6 we present the parameter estimates for the quote depth informa-
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Figure 2.5 Summary of estimated contemporaneous MMS parameters of the
LL-ACD(1,1)-K model for all stock-months, part 1

Panel 1: Contemporaneous number of trades, γNT,0
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Panel 2: Contemporaneous order flow, γOF,0
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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Figure 2.6 Summary of estimated contemporaneous MMS parameters of the
LL-ACD(1,1)-K model for all stock-months, part 2

Panel 1: Contemporaneous total quote depth, γT Q,0
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Panel 2: Contemporaneous quote difference, γQD,0
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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Figure 2.7 Summary of estimated contemporaneous MMS parameters of the
LL-ACD(1,1)-K model for all stock-months, part 3

Panel 1: Contemporaneous bid-ask spread, γBAS,0
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Panel 2: Contemporaneous order imbalance, γOI,0
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Panel 3: Contemporaneous trading volume, γVOL,0
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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tion, γT Q,0 and γQD,0, which are ranked in the third and fourth places among all

the parameter estimates. The parameter estimates for γT Q,0 and γQD,0 generally

follow our prediction that total quote depths per second co-move positively with

price durations, implying a negative relation with average instantaneous volatility,

while quote difference has the exact opposite effect on price durations and volatility.

Similar to the results in Figure 2.5, parameter estimates of γT Q,0 and γQD,0 are almost

always included in the LL-ACD(1,1)-K model and are highly significant with a

relatively stable path. However, the magnitude of these parameter estimates are

smaller compared to the estimated γNT,0 and γOF,0, and we observe more exclusions

of γT Q,0 and γQD,0 in the LL-ACD(1,1)-K model, suggesting that they are not as

important as the parameters in Figure 2.5. These results are also consistent with the

aforementioned theoretical predictions by e.g. Kyle (1985) and Parlour (1998).

Figure 2.7 shows three parameters that are considered less important among all the

contemporaneous parameters, namely γBAS,0, γOI,0 and γVOL,0. Our general obser-

vation is that the relationship between price durations and these covariates varies

both cross-sectionally and in time. Our findings with the contemporaneous bid-ask

spread are generally consistent with our prediction that a larger bid-ask spread is

associated with shorter price durations and higher price volatility within the price

duration. However, some securities do not possess this characteristic at all and

they are simply dropped from the LL-ACD(1,1)-K model. For example, for most

of the LL-ACD(1,1)-K model estimates of AA, BAC, INTC, MSFT and SPY, the

parameter γBAS,0 is excluded. For γOI,0 and γVOL,0, both the sign and the significance

of the parameters vary considerably across stocks and time. This is probably also the

reason why these two parameters are the least important among all contemporaneous

parameters. Since the correlation between the two variables and price durations are

highly negative, it is likely that the information in the contemporaneous volume

and order imbalance is influenced by the more important variables, such as the

contemporaneous number of trades and the order flow.

To validate our empirical findings above, we perform a battery of robustness checks

and present the results in Appendix B.4. Our findings generally suggest that the

use of an ARMA-type structure to a very large extent captures the autoregressive

structure in the residuals of the OLS model. The inclusion of the MMS covariates

in the LL-ACD(1,1) model greatly improves the goodness-of-fit of the Gaussian

distribution, and contributes significantly to the log-likelihood and R2 of the LL-ACD

model. The performances of the -K and the -A model are very similar. This result

is consistent across different sizes of estimation windows. The performance of the
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LL-ACD generally deteriorates as the size of the estimation window expands, but

the -K and -A models are more robust to changes in the estimation window.

We conclude our discussion on the performance of the LL-ACD models with a

pseudo10 out-of-sample test for the LL-ACD models. For a given size of the esti-

mation window (monthly, quarterly, half-yearly or yearly), we use the estimated

parameters from the previous estimation window to construct error terms and log-

likelihoods using data of the current estimation window. For example, for quarterly

estimated data, we simply plug in parameter estimates of the LL-ACD(1,1)-P, -K and

-A models estimated on data from the first quarter into the corresponding LL-ACD

models constructed using data from the second quarter. Note that for the -K model,

the optimally selected MMS covariates are also based on the data from the first

quarter. We then roll this process over to the next quarter till the end of the sample.

We evaluate the out-of-sample performance of the models by comparing the mean

squares of the residuals (MSR) and the log-likelihoods with the MSR and log-

likelihoods obtained from in-sample estimation. For each size of the estimation

window, we compute the pooled MSR and log-likelihood per price duration for the

three specifications of the LL-ACD(1,1) model. We also compute the difference

between the in-sample and out-of-sample MSRs and log-likelihoods for each model.

Intuitively this difference measures the sensitivity of the model to intertemporal

changes in the data generating process (DGP) parameters. The results are presented

in Table 2.6.

Table 2.6 shows that the LL-ACD(1,1)-K and LL-ACD(1,1)-A models outperform

the LL-ACD(1,1)-P model in both the in-sample and out-of-sample settings for all

sizes of estimation windows. The in-sample performance of the MSR and LL/obs.

are superior to the out-of-sample results for all models and estimation windows as

expected. The in-sample results generally suggest that the -A model has the best fit

as it uses all of the MMS covariates. Nevertheless, the out-of-sample performance

of the LL-ACD(1,1)-K model is significantly better than the LL-ACD(1,1)-A model

based on monthly estimation windows. Also, the in-minus-out results suggest that

the -P model is least sensitive to changes in the DGP parameters, as a result of its

most parsimonious specification. The -K model performs better than the -A model,

especially for the monthly results, as it uses only half of the MMS covariates. The

results between the -K and -A models are closer as the size of the estimation window

10We would like to note that this is not a genuine out-of-sample study because the contemporaneous
information is not available in an out-of-sample study. We also cannot determine the threshold
value δ in an out-of-sample setting.
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Table 2.6 Out-of-sample performance of the LL-ACD(1,1) models

Out-of-sample In-sample In minus out

LL-ACD(1,1) -P -K -A -P -K -A -P -K -A

Panel 1: Monthly Estimation

MSR 1.1048 0.5301*** 0.5315ooo 1.0799 0.4938*** 0.4897*** -0.0249 -0.0363 -0.0419
LL/obs. -1.4649 -1.1018 -1.1035 -1.4508 -1.0639 -1.0597 0.0141 0.0379 0.0438

Panel 2: Quarterly Estimation

MSR 1.0991 0.5265*** 0.5259*** 1.0867 0.5018*** 0.5006*** -0.0124 -0.0246 -0.0253
LL/obs. -1.4637 -1.0972 -1.0967 -1.4558 -1.0726 -1.0714 0.0079 0.0246 0.0254

Panel 3: Half-Yearly Estimation

MSR 1.0994 0.5287*** 0.5283*** 1.0888 0.5059*** 0.5053*** -0.0106 -0.0228 -0.0230
LL/obs. -1.4652 -1.0990 -1.0986 -1.4575 -1.0770 -1.0764 0.0077 0.0220 0.0222

Panel 4: Yearly Estimation

MSR 1.1125 0.5339*** 0.5340ooo 1.1034 0.5094*** 0.5091*** -0.0091 -0.0245 -0.0250
LL/obs. -1.4720 -1.1040 -1.1041 -1.4645 -1.0807 -1.0804 0.0074 0.0232 0.0236

Note: Out-of-sample (in-sample) results refer to the residuals and log-likelihoods of the LL-ACD models constructed
using parameter estimates from the previous (current) estimation window. Within each panel and for each model
specification, MSR is the pooled mean squares of the residuals obtained from all 30 securities. LL/obs is the log-
likelihood per price duration computed for the whole dataset. The three columns under the ‘In minus out’ header
report the difference between the in-sample and out-of-sample MSR and LL/obs. The best performing model in
terms of out-of-sample, in-sample and in minus out MSR and LL/obs. is highlighted in bold. For each panel, we
perform modified Diebold-Mariano tests to test whether MSRs differ significantly between models. The asterisks
(circles) superscripts on the MSRs indicate significantly smaller (larger) MSRs compared against the MSRs to the left.
One to three symbols correspond to significance at 10%, 5% and 1%, respectively.

widens, since the optimal number of covariates in the -K model increases with the

size of the estimation window.

2.6.3 Intraday Volatility Estimation with the LL-ACDModel

Tse and Yang (2012) show that ICV estimates obtained from ACD models can lead

to precise intraday volatility estimates from their simulation and empirical findings.

Recently, Li, Nolte, and Nolte (2018a) provide theoretical support to Tse and Yang’s

(2012) findings, and prove that in a continuous martingale setting, the ICV estimator

in (2.21) is a very good proxy of the integrated variance of the underlying price process

over the price duration. In this section, we aim to show that the ICV estimator can

indeed estimate intraday volatility, and the inclusion of MMS covariates can improve

the quality of the intraday ICV volatility estimates. We also provide insights into

modelling ultra high-frequency local volatility processes when the RV-type estimators

cannot be reliably constructed due to a lack of data.

The ICV volatility estimates are constructed based on the residuals of the LL-

ACD(1,1) models estimated from the previous section. We introduce some notation

to describe the ICV estimates obtained from different models on each trading day. Let

the subscript d denote the day index, which ranges from 1 to 1006 in our sample. Let
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{t(δ )i,d } denote the arrivals of price events at day d, and let Id denote the set of indices

of the price events within day d. To construct an ICV estimates for a price duration

on day d, we estimate the LL-ACD(1,1)-P, LL-ACD(1,1)-K and LL-ACD(1,1)-A

models monthly, quarterly, half-yearly and yearly. For each stock, the above estima-

tion frequencies correspond to 48, 12, 8 and 4 model estimations respectively. We

use the superscript M ∈ {P,K,A} to denote LL-ACD(1,1)-P, LL-ACD(1,1)-K and

LL-ACD(1,1)-A models correspondingly. The superscript m ∈ {1,3,6,12} represents

the size of the estimation window in months.

Let ε̂
M,m
i,d denote the i-th estimated residual at day d from model M with an es-

timation window of m months. For example, ε̂
P,4
i,d is the i-th estimated residual at

day d from the plain LL-ACD(1,1) model estimated with a four-month estimation

window. We use the notation θ̂ M,m(d) to denote the parameter estimates from model

M with estimation window size m at day d, which is identical for d within the same

estimation window. ICV estimates for the i-th price duration at day d from model

M with an estimation window of m months is defined as:

ICV M,m
i,d ≡− ln

(
1−Φ(ε̂M,m

i,d /σ̂
M,m
ε (d))

)(
δ

P(t(δ )i−1,d)

)2
. (2.21)

To assess the quality of the intraday ICV volatility estimates, we need to construct

a valid benchmark intraday volatility estimator. In theory, the ICV estimator can

provide integrated variance estimates for every price duration, which in our setting is

roughly once every 5 minutes. However, we are unable to evaluate the performance of

the ICV estimators at such a high frequency because the construction of a benchmark

intraday RV-type estimator becomes very problematic due to a lack of data. To

circumvent this problem, we split a trading day into 6 equally spaced intervals of

3900 seconds, and construct an intraday RK estimator11 based on the transactions

within each interval. We only consider the security SPY because it is the most liquid

security in our dataset. Each hourly window on average has 1500 transactions, which

is sufficient to construct an RK measure. We denote this intraday RK estimator using

RK j,d , in which j = 1 : 6 refers to each 3900-second interval of the trading day. Thus

RK j,d is an estimator of the integrated variance of the interval (3900( j−1),3900 j]
for which we measure calendar time in seconds.

We then compare the performance of the ICV estimates with the intraday RK

measures by constructing the ICV measures for each j. Denote I j,d the set of

11Following Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), we use a non flat-top Parzen
kernel with optimal bandwidth selection and tick-by-tick sampling for each hourly interval. The
RK estimates are computed using Kevin Sheppard’s MFE toolbox.
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price event index such that t(δ )i ∈ (3900( j− 1),3900 j], ∀i ∈ I j,d. We construct the

corresponding ICV M,m
j,d estimator for M ∈ {P,K,A} and m ∈ {1,3,6,12}:

ICV M,m
j,d ≡ ∑

i∈I j,d

ICV M,m
i,d +Q j,d, (2.22)

where Q j,d is a boundary correction term which ensures that ICV M,m
j,d is an estimate

of the integrated variance over the interval (3900( j − 1),3900 j]. We present the

construction of Q j,d in Appendix B.6. Note that the following analyses are based on

the annualized version of intraday volatility estimates computed by the square root

of a given intraday volatility measure multiplied by 252.

We plot some examples of the intraday volatility estimates from RK j,d and ICV M,m
j,d

considered here using monthly estimations in Figure 2.8. The upper panel shows the

average intraday volatility estimates averaged for each hourly interval. It is obvious

that the average intraday volatility estimates reveal a U-shaped diurnal pattern. In

the middle and lower panels, we select two representative days with relatively higher

and lower daily volatility estimates. The middle panel is of particular interest, as we

identify a sudden volatility increase in interval 5, which corresponds to the time period

13:50-14:55. We present a plot of the tick-by-tick price change for SPY on 09-Aug-

2011 in Figure 2.9 to illustrate this abrupt change in volatility in the afternoon period.

Figure 2.8 Example of intraday volatility estimates based on ICV and RK for SPY
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Intraday volatility estimates for SPY on 12-Sep-2013

Note: The x-axis denotes the index of the intraday intervals j. In the first panel, we average the volatility estimates
for each j and each model.
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Figure 2.9 Tick-by-tick price change for SPY on 09-Aug-2011
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Note: The x-axis denotes the calendar time in hours.

Figure 2.8 has some important implications. Firstly, from the upper panel it is

clear that the ICV estimators are capable of providing accurate intraday volatility

estimates, even without the inclusion of MMS covariates. This corroborates the

findings in Tse and Yang (2012) and provides empirical evidence to support the

theoretical considerations in Li, Nolte, and Nolte (2018a). Secondly, From the middle

panel, we see that the RK measure reflects the sudden volatility burst as observed in

Figure 2.9. Volatility estimates from ICV K,1
j,d and ICV A,1

j,d follow this sudden increase

in RK accurately, while the ICV P,1
j,d estimates fail to capture this sudden change in

intraday volatility. This is strong supporting evidence that the inclusion of MMS

covariates indeed improves the intraday volatility estimates from the ICV estimators.

This result, however, is not surprising because the plain ICV estimator does not use

any contemporaneous information, so the abrupt price change is unpredictable from

the past data. Finally, in the lower panel, all three ICV estimators closely follow the

path of RK, but the ICV estimators with the MMS covariates seem to have a higher

correlation with the RK estimates. To summarize the co-movements between the four

intraday estimators, we present a correlation table for the four estimators in Table

2.7, which confirms that all three ICV estimators have very high correlations with

RK and the ICV estimators with the inclusion of MMS covariates perform better

than the plain version.

To formally assess the performance of the ICV estimators, we compute the mean

squared errors (MSEs) of the ICV estimators with respect to the RK for each interval
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Table 2.7 Averaged correlation table of RK and monthly estimated intraday ICV
volatility estimates for SPY

RKd ICV P,1
j,d ICV K,1

j,d ICV A,1
j,d

RK j,d 1.0000

ICV P,1
j,d 0.9415 1.0000

ICV K,1
j,d 0.9753 0.9702 1.0000

ICV A,1
j,d 0.9767 0.9693 0.9985 1.0000

Note: for SPY, we compute the correlation matrix of the matrix {RK j,d , ICV P,1
j,d , ICV K,1

j,d , ICV A,1
j,d } j=1:6,d=1:1006.

Table 2.8 Comparison of MSEs of intraday ICV volatility estimates

j = MSEP,1
j MSEK,1

j MSEA,1
j MSEP,3

j MSEK,3
j MSEA,3

j MSEP,6
j MSEK,6

j MSEA,6
j MSEP,12

j MSEK,12
j MSEA,12

j

1 7.075 6.127∗∗ 5.986 6.800 5.995∗∗ 5.880 6.717 5.728∗∗ 5.739oo 6.639 5.854∗ 5.846
2 3.886 2.448∗∗∗ 2.371∗ 3.889 2.422∗∗∗ 2.387 3.916 2.405∗∗∗ 2.403 3.875 2.480∗∗∗ 2.477
3 3.879 2.230∗∗∗ 2.115∗ 3.992 2.151∗∗∗ 2.041∗ 4.070 2.045∗∗∗ 2.042 4.149 2.090∗∗∗ 2.091
4 3.434 2.309∗∗∗ 2.248 3.462 2.298∗∗∗ 2.171∗∗∗ 3.586 2.165∗∗∗ 2.159∗∗ 3.649 2.222∗∗∗ 2.220
5 8.439 2.877∗∗∗ 2.794∗∗ 8.600 3.073∗∗∗ 2.965∗∗ 9.070 2.971∗∗∗ 2.967 9.503 3.194∗∗ 3.194
6 5.936 3.022∗∗∗ 2.952∗∗ 6.157 3.089∗∗∗ 3.047 6.265 3.223∗∗∗ 3.217∗∗∗ 6.833 3.361∗∗∗ 3.353∗∗∗

Overall 5.441 3.169∗∗∗ 3.078∗∗ 5.483 3.171∗∗∗ 3.082∗∗∗ 5.604 3.089∗∗∗ 3.088 5.775 3.200∗∗∗ 3.197

Note: The MSEs are multiplied by 105. For each j, we compute MSEM,m for each M ∈ {P,K,A} and m ∈ {1,3,6,12}
according to (2.23). For each m, we perform modified Diebold-Mariano tests to test whether MSEP,m

j = MSEK,m
j and

MSEK,m
j = MSEA,m

j . The asterisks (circles) superscripts on the MSEs indicate significantly smaller (larger) MSEs

compared against the MSE to the left. One to three symbols correspond to significance at 10%, 5% and 1%,
respectively.
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using:

MSEM,m
j =

1
1006

1006

∑
d=1

(ICV M,m
j,d −RK j,d)

2. (2.23)

We present MSEM,m for all j, M and m in Table 2.8, and test whether for each m and

j, MSEP,m
j = MSEK,m

j and MSEK,m
j = MSEA,m

j , with the modified Diebold-Mariano

test (Diebold and Mariano, 1995; Harvey, Leybourne, and Newbold, 1997). The

table provides interesting insights into the impact of MMS covariates on the intraday

ICV estimates. Firstly we see that for interval 5, MSEP,m
5 is considerably larger than

MSEK,m
5 and MSEA,m

5 due to the effect of afternoon volatility spikes as described in

Figures 2.8 and 2.9. This clearly indicates that the inclusion of contemporaneous

MMS covariates reflects the contemporaneous signal of intraday volatility shifts,

which greatly improves the performance of intraday ICV volatility estimates.

Interestingly, MSEK,m
j and MSEA,m

j also seem to possess some diurnal patterns,

as MSEK,m
1 and MSEA,m

1 are generally larger than those MSEs for other intervals. We

suspect that this is due to possible intraday structural breaks in the MMS parameters.

As pointed out by Li, Nolte, and Nolte (2018c), price durations can have intraday

regime-switching relationships with MMS covariates. These relationships can behave

very differently at the start of the trading day and switch to another regime for

the rest of the trading day. Therefore it is possible that our specification of the

MMS parameters is prone to intraday parameter instability for the observations

within interval 1, resulting in less precise volatility estimates for the period 9:30-10:35.

The ICV estimates are reasonably stable across different m, and overall, intraday

volatility estimates from LL-ACD(1,1)-K and -A models are generally very similar

and both outperform those from the plain LL-ACD(1,1) model. Also it is clear

that the intraday ICV estimates from the -K and -A models are more robust to

changes in the estimation window by comparing the MSEs across different estima-

tion window sizes. This is a reflection of the robustness check results in Appendix B.4.

We would like to stress that the liquidity of the securities limits the use of RV-type

nonparametric volatility estimators due to a lack of data, while the ICV estimators

can always be constructed as long as we can obtain a time series of price durations

and the associated MMS covariates. To illustrate this point, we construct 15-minute

intraday volatility estimates for all stocks, models and sizes of estimation windows.

We plot an example of the 15-minute volatility estimates in Figure 2.10.

From Figure 2.10, we see that the RK estimates diverge from the ICV estimates and

appear more noisy for AA, but are much closer to the ICV estimates for SPY. This
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Figure 2.10 15-minute volatility estimates for AA and SPY on 29-Mar-2013
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Panel 2: SPY
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Note: For each panel, in the upper two plots, the x-axis denotes each j representing 26 fifteen-minute interval used
to construct the volatility measures. In the third plot, the interval ( j−1, j] refers to the j-th 15-minute interval.
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is related to the number of transactions used to obtain the RK estimates, shown in

the middle figure within each panel. For AA, the majority of RK estimates use less

than 50 observations, thus are much less precise than those for SPY. For the ICV

estimates, we assert that their precisions depend on the number of price durations

within the estimation window and the goodness-of-fit of the ACD model rather

than the number of observations within each 15-minute window. Thus, even with a

monthly estimation window, we can obtain more precise intraday volatility estimates

compared to the RV-type estimators as more data is involved in the estimation of

local volatility for each interval.

As the true volatility process is not observable, we cannot prove that the ICV

estimates are more precise than the RK at a very high frequency, apart from the

theoretical evidence in Li, Nolte, and Nolte (2018a). However, since RK can be

regarded as a good proxy of volatility when the number of observations used is large,

we would expect that: (1) The co-movement between RK and ICV estimates increases

as the number of observations used to construct RK increases. (2) The inclusion

of MMS covariates improves the co-movement between RK and ICV estimates only

when RK is precise. (3) In addition to the optimally selected MMS covariates, adding

all MMS covariates does not have a big impact on the co-movement between RK

and ICV estimates. To conserve space, we defer this analysis to Appendix B.1. Our

fix-effect regression results are highly consistent with the above arguments, which

provide indirect evidence supporting our claim that the ICV estimates are more

precise than RK when the number of observations is small, and that the inclusion of

MMS covariates indeed improves the precision of intraday volatility estimates.

As a summary to this section, we list three key implications of our results. Firstly,

contemporaneous information in the MMS covariates reflects sudden shocks to the

price volatility, which can significantly improve intraday ICV estimates. This is

driven by improvements in the in-sample goodness-of-fit of the LL-ACD model, and

also leads to more accurate daily volatility estimates.12 Secondly, with the inclusion

of MMS covariates, the LL-ACD models are more robust to changes in the estimation

window, thus one can potentially use a larger estimation window to obtain more

precise volatility estimates. Finally, the ICV estimators can be constructed even when

the RK estimator cannot be constructed reliably, which provides intraday volatility

estimates at a much higher resolution.

12Detailed analysis on a daily level can be found in Appendix B.5.
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2.7 Concluding Remarks

This chapter examines the intraday dynamics of a local volatility measure and its

interactions with a universe of MMS covariates, including both contemporaneous and

lagged version of trading volume, trading activity, bid-ask spread, total quote depths,

quote difference, order imbalance and order flow. We adopt the LL-ACD model

of Allen, Chan, McAleer, and Peiris (2008), which is a parametric model that can

provide high-frequency volatility estimation with the inclusion of MMS covariates,

and also enjoys the QML property.

We use TAQ data for thirty securities from 2011 to 2014. By applying the best

subset regression, we find that in descending order, contemporaneous versions of

number of trades, order flow, total quote depths, quote difference, bid-ask spread,

order imbalance and volume are the first 7 most important variables for volatility

estimation over all securities. The one duration-lagged variables are in general less

important than their contemporaneous counterparts, but the rankings vary across

securities. Our best subset regression approach also selects the most important MMS

covariates that should be used for volatility estimation.

The estimation of the LL-ACD models shows that the model successfully captures

the intraday pattern of the price durations. Most of the signs of the estimates of

contemporaneous MMS variables are consistent with theoretical predictions and

highly significant. We find that the inclusion of optimally selected MMS covariates

significantly improves both the in-sample and out-of-sample fit of the LL-ACD model,

while including all MMS covariates does not further improve the in-sample fit of the

LL-ACD model substantially. Also, models with the inclusion of MMS covariates are

more robust to a larger estimation window.

We proceed to show that the inclusion of MMS covariates improves the precision of

intraday volatility estimates by benchmarking on a realized kernel estimator. We find

that the information in the contemporaneous MMS covariates can correctly reflect

sudden changes in the intraday volatility process, leading to more precise intraday

volatility estimates. We also provide evidence supporting the argument that the ICV

estimators are reliable even when the RK estimator cannot be constructed due to a

lack of data. In general we find that RK estimates are close to ICV estimates when-

ever RK is precise. The inclusion of optimally chosen MMS covariates significantly

improve the co-movement between RK and ICV estimates, while including all MMS

covariates does not further improve the results.
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The key message from our study is that the ICV volatility estimator is superior to

the RV-type estimator in estimating intraday volatility, especially when the number

of transactions to construct a realized measure is scarce. The parametric structure

of the ICV estimator allows us to overcome the limitation of intraday data by using

data beyond the volatility estimation window. Moreover, it allows us to incorporate

contemporaneous observation information in the MMS covariates to provide more

accurate intraday volatility estimates. To sum up, the ICV volatility estimator

based on the ACD model coupled with MMS covariates is an important approach to

intraday volatility modelling that should not be overlooked.





Chapter 3

High-Frequency Volatility

Modelling: A Markov-Switching

Autoregressive Conditional

Intensity Model

3.1 Introduction

Since the seminal work of Engle and Russell (1998), a growing amount of the literature

has emerged on parametric modelling of intraday financial data. An important strand

of the literature concentrates on the parametric modelling of intraday price volatil-

ity. Contrary to the Realized Volatility (RV)-type estimators (Andersen, Bollerslev,

Diebold, and Labys, 2001) which are non-parametric by design, Engle and Russell’s

(1998) parametric approach relies on construction of volatility estimators based on

the conditional intensity process of the absolute price change point process (Gerhard

and Hautsch, 2002). This type of volatility estimator has been shown to perform at

least as good as RV-type estimators both theoretically and empirically (Nolte, Taylor,

and Zhao, 2018; Tse and Yang, 2012). More importantly, the parametric design

allows for the inclusion of other market microstructure covariates in the estimation

of intraday volatility. This feature enables researchers to analyse the interaction

between volatility and other aspects of the market on an intraday level without

compromising the quality of volatility estimation, as existing models are either not

capable of incorporating other variables (e.g. RV framework), or are considered

inappropriate for intraday volatility estimation (e.g. intraday GARCH framework).

The models used for the intensity-based volatility estimation, namely variants of

the Autoregressive Conditional Duration (ACD) model by Engle and Russell (1998)



92 | High-Frequency Volatility Modelling: A Markov-Switching Autoregressive
Conditional Intensity Model

and the Autoregressive Conditional Intensity (ACI) model by Russell (1999), are

constructed by specifying an autoregressive structure to the duration or the intensity

process. These specifications successfully capture the high persistence and over-

dispersion feature of empirical price durations, and can be extended to accommodate

long memory and asymmetric features, similar to the extensions of GARCH models

(see Hautsch (2012) for a comprehensive summary of the extensions of the ACD

and ACI models). However, the existing extensions of ACD and ACI models do not

provide a satisfactory solution to incorporate a Markov-Switching structure.1

In this chapter, we develop the Markov-Switching Autoregressive Conditional Inten-

sity (MS-ACI) model. A well-known problem in the estimation of a Markov-switching

GARCH-type model is that the observed likelihood becomes dependent on the full

path of the latent states. This renders standard maximum likelihood estimation of

MS-GARCH model intractable and existing solutions either rely on a simplification

of the structure (MS-ARCH by Cai (1994) and Hamilton and Susmel (1994)), a

collapsing approximation of the variance equation (Dueker, 1997; Gray, 1996; Haas,

Mittnik, and Paolella, 2004; Klaassen, 2002), or Bayesian estimation (Bauwens,

Dufays, and Rombouts, 2014; Bauwens, Preminger, and Rombouts, 2010; Billio,

Casarin, and Osuntuyi, 2014). By applying the Stochastic Approximation Expec-

tation Maximization (SAEM) algorithm (Celeux and Diebolt, 1992), we show that

our model can be reliably estimated within a frequentist’s approach without any

structural simplification. The algorithm allows us to overcome the path-dependency

problem and obtain maximum likelihood estimates of the model.

We apply the MS-ACI model to examine the volume-volatility relationship on a high-

frequency level. This is motivated by a large body of market microstructure literature

that suggests a regime-switching feature in the observed transaction process. Both

asymmetric information trading model (Copeland and Galai, 1983; Easley, Kiefer,

O’Hara, and Paperman, 1996) and strategic trading model (Admati and Pfleiderer,

1988; Kyle, 1985) assume that there are two types of market participants: the in-

formed traders who only trade when they possess advantageous information, and the

uninformed traders who trade for liquidity or other reasons. The trading volume is

frequently used as a proxy of the unobservable information flow in both empirical

and theoretical investigations (e.g. Copeland (1976), Epps and Epps (1976),Tay,

1To the best of our knowledge, the MS-ACD model was proposed by Hujer, Vuletic, and Kokot
(2002) and the MS-ACI model has not yet been documented. However, Hujer, Vuletic, and Kokot’s
(2002) method relies on a simplification of the model using Gray’s (1996) approximation, which has
a serious drawback of analytical intractability, and the quality of this approximation has not yet
been verified.
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Ting, Tse, and Warachka (2009), Easley, López de Prado, and O’Hara (2012)). From

the information market setting, volume submitted by the informed traders will have

a much larger impact on price volatility than those from uninformed traders. The

decomposition of trading volume based on its interaction with volatility has been

documented by Bessembinder and Seguin (1993), Andersen (1996), Aragó and Nieto

(2005) and Hussain (2011). Nevertheless, empirical findings in these studies are

limited by their GARCH framework.

In our empirical analysis we apply the MS-ACI model on the price duration data

computed from the Trade and Quote (TAQ) data of ten frequently traded securities

(including a market index ETF, SPY) for the year 2016, timestamped at miliseconds.

We identify two distinct regimes in the high-frequency relationship between price

duration and the associated trading volume: a dominant regime spreading evenly

across the trading day, and a minor regime with an L- or U-shaped diurnal pattern

that resembles the well-documented pattern of price volatility (Andersen and Boller-

slev, 1997b). We establish the connection between volume-volatility relationship and

correlation between volume and price durations, and show that the minor regime

corresponds to price durations with high information content. Interestingly, the

regime-switching behaviour is not observable on the SPY data, suggesting that our

findings are related to firm-specific news arrivals. Our post estimation diagnostics

demonstrate that the two regimes are identified with very high confidence, and

the Markov switching structure greatly improves the goodness-of-fit of the model

compared to a single regime setup.

The main contributions of this chapter are three-folded: firstly we develop the

MS-ACI model, which allows the detection of structural breaks on an intraday level

with the inclusion of other covariates. The stationarity and moment conditions

for the ACI and MS-ACI model are updated in this chapter, which augments the

stationarity condition given in Hautsch (2012). Secondly, we are among the first

to implement the SAEM algorithm to the Markov-switching autoregressive models.

We provide simulation evidence on the reliability of this algorithm, and examine

some theoretical properties of the MS-ACI model through the significance of the

regimes. Thirdly, our application to high-frequency price duration data provides new

insights in the volume-volatility relationship and the information arrival theory in

a high-frequency context. We provide a more intuitive method to disentangle the

heterogeneous information content in trading volume, as well as a measure of the

probability of information shocks to the market, and of the volatility response to the

information shocks.
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The rest of this chapter is structured as follows: Section 3.2 introduces some basic

point process theories and the original ACI model. In Section 3.3, the specification

and estimation technique of the MS-ACI model are discussed. Simulation evidence

is provided in Section 3.4, with the empirical application following in Section 3.5.

Section 3.6 concludes.

3.2 Conditional Intensity Modelling

3.2.1 Basic Point Process Theory

This section briefly summarizes fundamental point process theory following the

discussion in Hautsch (2012). For an in-depth textbook treatment we refer to Karr

(1991) among others.

Let t denote the physical time and let the sequence {ti}i=1:T denote the arrival

time of the i-th event, subject to 0 < ti < ti+1,∀i.2 For a sample size T , the complete

observed sequence of the point process can be denoted as {ti}T
i=1. We only consider a

univariate point process for the conciseness of notation.

A point process {ti}T
i=1 can be characterized by three different processes. The first

one is the counting process, denoted as N(t) := ∑i≥1 1l {ti≤t} for the right-continuous

version and N̆(t) := ∑i≥1 1l {ti<t} for the left-continuous one. Thus, these two functions

are step functions, and jump upward at (or after) the occurrence of event at time ti.
The second process is the duration process defined as xi = ti− ti−1 for i > 1 and x1 = t1.
The backward recurrence time is therefore defined as the function x(t) = t − tN̆(t),

which is the time elapsed since the last event. Let Ft denote the information set

available till time t, which is also known as the filtration of the point process. The

Ft-conditional intensity representation of a point process is given by:

Definition 3.1. (Hautsch 2012:pp71) Let N(t) be a simple point process on [0,∞)

that is adapted to some history Ft and assume that λ (t;Ft) is a positive-valued

process with sample paths that are left-continuous and have right-hand limits. Then

the process

λ (t;Ft)≈ λ (t+,Ft) = lim
∆↓0

1
∆

E[N(t +∆)−N(t)|Ft ], λ (t+)> 0,∀t, (3.1)

2We assume that events do not occur simultaneously throughout this chapter, and this type of
point process is referred to as simple point process.
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with λ (t+,Ft) := lim∆↓0 λ (t +∆,Ft), is called the Ft-conditional intensity process of

the counting process N(t).

The Ft-conditional intensity process is of particular importance because it is closely

related to the likelihood function of a point process. Another important feature of

the conditional intensity process is that, it is directly connected to martingale-based

point process theory. This is due to the fact that any Ft-adapted simple point

process as described above is a Ft-submartingale3, and according to the Doob-Meyer

decomposition, the following equation holds:

N(t) = M(t)+Λ(t), (3.2)

in which M(t) is a zero mean Ft-martingale, and Λ(t) is a unique Ft-predictable

cumulative process called the compensator of the semimartingale. This compensator

is the integrated conditional intensity defined as:

Λ(t) =
∫ t

0
λ (s;Fs)ds. (3.3)

More importantly, according to the Random Time Change theorem (RTCT hereafter,

see e.g. Bowsher (2007)), the time-changed compensator process {Λ(ti)}i=1:T is a

unit rate independent Poisson process. Let us define the inter-event compensator as

Λ(s, t) =
∫ t

s λ (u;Fu)du, then this transformed process {Λ(ti−1, ti)} is the duration of

a unit rate independent Poisson process and it follows that:

Λ(ti−1, ti)∼ i.i.d.Exp(1). (3.4)

This property serves as a crucial tool in constructing intensity-based models, and is

used in generating residuals and diagnostic tests for point processes.

The log-likelihood function of a point process based solely on the conditional intensity

process derived by Karr (1991) is given by:

ln L (θ ;Y) =
T

∑
i=1

[
−Λ(ti−1, ti)+ ln λ (ti|Fti)

]
. (3.5)

Here Y = {ti}i=1:T and θ is the general parameter vector for some parametrized

conditional intensity process. The log-likelihood function has a very intuitive in-

terpretation. Heuristically, it is the log of the probability of no events occurring

3A Ft-submartingale is defined as an Ft-adapted process N(t) with E[N(t)]< ∞ satisfying the
condition E[N(t)|Fs]≥ N(s) almost surely. When the inequality is replaced by equality, N(t) is said
to be a Ft -martingale.
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between time ti−1 and ti given by exp[−Λ(ti−1, ti)] multiplied by the probability of

events occurring at exactly ti given by λ (ti|Fti).

3.2.2 The Original ACI Model

In the original paper, Russell (1999) documents a bivariate ACI model with no sea-

sonality adjustment to the raw data. In this section, we describe the main ingredients

of the original ACI model in a univariate framework as in Bauwens and Hautsch

(2006).

The ACI model is a fully parametric model, which specifies the conditional intensity

in a multiplicative form as follows:

λ (t|Ft) = Φ(t)λ0(t). (3.6)

The Φ(t) is an autoregressive component that could include time-varying covariates,

and λ0(t) is the baseline intensity function4. To ensure the non-negativity of the

conditional intensity, Φ(t) is usually parametrized as the exponential form of an

ARMA-type structure, as an example:

Φ(t) = eΦ̃N̆(t)+1+η ′Z(t)
, (3.7)

Φ̃i =
q

∑
j=1

α jε̃i− j +
p

∑
k=1

βkΦ̃i−k, (3.8)

in which Z(t) is a matrix of covariates (can include both time-varying and time-

invariant covariates) and η is the corresponding parameter vector. Φ̃i is a zero mean

ARMA-type process, and the weak stationarity condition for Φ̃i is that all the roots

of the polynomial β (z) = 1−∑
q
k=1 βkzk lie outside the unit circle. The innovation

terms, ε̃i, can be defined as:

ε̃i =−γ − lnεi =−γ − lnΛ(ti−1, ti) =−γ − ln
∫ ti

ti−1

λ (u|Fu)du, (3.9)

in which γ is the Euler-Mascheroni constant. According to (3.4), since Λ(ti−1, ti)
is i.i.d. exponential if the ACI model is correctly specified, the logarithm of an

exponential variable follows an extreme value type-I distribution with mean γ hence

4Additional components can be included multiplicatively to capture other effects of interest on
the conditional intensity, e.g. a seasonality component which is a deterministic function of calendar
time, a daily effect which only changes interdaily, etc. To discuss the fundamental structure of the
ACI model, we ignore these functional components for the moment.
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ε̃i is a zero mean martingale5.

The baseline intensity component λ0(t) can be specified in various ways. Because a

closed form solution of the integrated conditional intensity and thus the error term

is more computationally convenient, the following specifications are popular: (1)

the exponential baseline λ0(t) = ew, (2) the Weibull baseline λ0(t) = aewax(t)a−1, (3)

the Burr-type baseline λ0(t) = eκ ax(t)a−1

e−wa+x(t)a . The model can be easily estimated by

maximum likelihood with the log-likelihood function given in (3.5).

3.2.3 Stationarity of the ACI Model

The stationarity concept discussed in this chapter refers to weak (covariance) station-

arity unless stated otherwise. Previous studies focus on discussing the stationarity

of the Φ̃i component (see Russell (1999), Hautsch (2012) for instance), and the

stationarity condition of Φ̃i is considered as a sufficient stationarity condition for the

ACI model. We show that with the error term specified as in (3.9), the stationarity

of Φ̃i is actually necessary instead of sufficient for the conditional intensity process

λ (ti|Fti) or the duration process xi to be stationary. To illustrate this, consider an

ACI(0,1) model with Φ̃i = 0.5ε̃i−1 and an exponential baseline function λ0(t) = ew.

Clearly Φ̃i is both strictly and weakly stationary because it is an i.i.d. zero mean

martingale with finite second moment, therefore λ (ti|Fti) is strictly stationary. We

can write Φ̃i = −0.5γ − lnε0.5
i−1, in which εi−1 = Λ(ti−2, ti−1) ∼ Exp(1) according to

the RTCT, and λ (ti|Fti) = eε̃i−1+w = e−γ+w

ε0.5
i−1

. The second unconditional moment of

λ (ti|Fti) is thus given by:

E[λ (ti|Fti)
2] = E

[
e2(−γ+w)

(ε0.5
i−1)

2

]
= e2(−γ+w)E[ε−1

i−1]. (3.10)

The expectation can be evaluated analytically as:

E[ε−1
i−1] =

∫
∞

0
x−1e−xdx = Γ(0) = ∞, (3.11)

in which Γ(t) =
∫

∞

0 xt−1e−xdx is the Gamma function. Thus, λ (ti|Fti) does not have

a finite second moment and is not weakly stationary. The duration process, however,

5Alternative specifications are also possible, for example ε̃i = 1− lnΛ(ti−1, ti). However, taking
the log of the integrated intensity stabilizes the model in situations in which there are potential
underflow or overflow risks. Moreover, it is easier to derive theoretical properties for the log
integrated intensity residuals, as will be shown later.
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is stationary in this case. This is because:∫ ti

ti−1

λ (ti|Fti) = ε
−0.5
i−1 e−γ+wxi = εi ∼ i.i.d.Exp(1), (3.12)

which is due to the RTCT. Therefore, it is easy to show that:

E[x2
i ] = e−2(−γ+w)E[εi−1]E[ε2

i ] = e−2(−γ+w), (3.13)

which proves that xi is weakly stationary. If we instead let Φ̃i =−0.5ε̃i−1, then the

weak stationarity for duration and intensity process is reversed. This example has two

main implications: (1) a weakly stationary intensity process does not imply a weakly

stationary duration process, and vice versa; (2) extra constraints on the ARMA

parameters are needed for both the duration and intensity processes to be stationary

in addition to the stationarity condition for Φ̃i, thus the covariance stationarity

condition serves only as a necessary but not sufficient condition for the ACI model.

Concluding from the above example, we present the following stationarity condition

for both the intensity and duration process from the ACI model with an exponential

baseline:

Proposition 3.1. For an ACI(p,q) model defined as in (3.7), (3.8), (3.9), and

λ0(t) = ew, the necessary and sufficient conditions for the weak stationarity of the

conditional intensity and duration process are:

1. All roots of the polynomial β (z) lie outside the unit circle, where β (z) is

the polynomial in the lag operator form of Φ̃i: β (L)Φ̃i = α(L)ε̃i−1, in which

β (L) = 1−∑
p
i=1 βiLi and α(L) = ∑

q
j=1 α jL j.

2. If condition 1 holds, then Φ̃i can be rewritten as an MA(∞) representation

Φ̃i =ψ(L)ε̃i−1, in which ψ(L)= α(L)
β (L) . Let {ψ j} j=1,...,∞ denote the j-th coefficient

for the polynomial ψ(L), then the following condition is required: |ψ j|< 0.5,∀ j.

Proof. See Appendix C.1.

Intuitively, condition 1 can be viewed as the stationarity condition for the ARMA

component and condition 2 is the moment condition since power transformed unit

exponential variables do not necessary have finite second moments. For ACI models

with a general baseline of the form λ0(t) = ewg(x(t)), a closed form anti-derivative

G(x)=
∫

g(x)dx with a well-defined inverse G−1, the conditional intensity and duration
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processes can be written respectively as:

λ (ti|Fti) =Cg(xi)
∞

∏
j=1

ε
−ψ j
i− j , (3.14)

xi = G−1
(

Cεi

∞

∏
j=1

ε
ψ j
i− j

)
. (3.15)

Substituting (3.15) into (3.14) yields:

λ (ti|Fti) =Cg

(
G−1

(
Cεi

∞

∏
j=1

ε
ψ j
i− j

)) ∞

∏
j=1

ε
−ψ j
i− j . (3.16)

Thus in this general baseline case, non-constant baseline parameters can be involved

in the moment condition which varies for different baselines and may not have an

explicit solution. However, as long as the baseline function only involves power

transformation of the duration (e.g. a Weibull baseline), analytical solutions of

condition 2 can be derived for that particular specification of the ACI model.

3.3 Markov-Switching ACI Model

We propose the Markov-Switching ACI (MS-ACI) model as the counterpart of a

Markov Switching GARCH and Markov Switching ACD models in an ACI framework.

The specification, estimation and model diagnostics will be introduced in this section.

3.3.1 Specification of the MS-ACI Model

Let S= {si}i=1:T ,si ∈ M = {1 : M} denote a sequence of M different discrete latent

states attached to each duration process xi of the univariate simple point process

{ti}i=1:T . These states are assumed to follow a first order ergodic Markov chain

with the transition probability P(si = m|si−1 = l) = πlm for l,m ∈ M and an invariant

probability measure πi. The MS(M)-ACI(p,q) is therefore specified as:

λ (t;Ft) = Φ(t)λ0(t), (3.17)

Φ(t) = eΦ̃N̆(t)+1(sN̆(t)+1)+η(sN̆(t)+1)Z(t), (3.18)

Φ̃i(si) =
q

∑
j=1

α j(si)ε̃i− j(si− j)+
p

∑
k=1

βk(si)Φ̃i−k(si−k), (3.19)

ε̃i(si) =−γ − ln
∫ ti

ti−1

λ (u;Fu)du =−γ − Φ̃i(si)
∫ ti

ti−1

lnλ0(u)du, (3.20)

P(si = m|si−1 = l) = πlm, l,m ∈ M = {1 : M}, (3.21)
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in which γ is the Euler-Mascheroni constant, Z(t) is a matrix of some possible

covariates, and η(sN̆(t)+1) is the corresponding regime-specific coefficient vector. The

component η(sN̆(t)+1)Z(t) enables state-specific relationships between the covariates

and the intensity process. The regime-specific baseline function can be specified as

an exponential baseline function:

λ0(t) = ew(sN̆(t)+1), (3.22)

or as a Weibull baseline function:

λ0(t) = a(sN̆(t)+1)e
w(sN̆(t)+1)a(sN̆(t)+1)x(t)a(sN̆(t)+1)−1

, (3.23)

in which N̆(t)+1 for ti−1 < t ≤ ti refers to the event counter i. We will denote all the

dynamic and baseline parameters with the parameter vector θ and the transition

parameters of the Markov chain with the (M×M) matrix Π. We restrict ourselves to

these two types of baselines because these two types of baselines are in the exponential

family, and the convergence of the Stochastic Approximation EM algorithm has been

established by Delyon, Lavielle, and Moulines (1999) and Allassonnière, Kuhn, and

Trouvé (2010) under this condition.

3.3.2 Stationarity Condition of the MS-ACI Model

Similar to a plain ACI model, weak stationarity of a MS-ACI model requires both the

stationarity of the MS-ARMA component and a moment condition for the conditional

intensity and duration. Francq and Zaköıan (2001) and Stelzer (2009) provide the

strict and weak stationarity conditions for Φ̃i. For conciseness we do not present

this condition, and refer the reader to Theorem 2.1 in Stelzer (2009) for a rigorous

definition and proof of this stationarity condition. For the moment condition, consider

a MS(M)-ACI(p,q) model with an exponential baseline function, λ (ti|Fti) = ew(si)+Φ̃i .

We write Φ̃i in state space form zi = Θizi−1 +η i with:

zi =



Φ̃i

Φ̃i−1
...

Φ̃i−p+1

ε̃i

ε̃i−1
...

ε̃i−q+1


(p+q)×1

, η i =



0
0
...

0
ε̃i

0
...

0


(p+q)×1

, (3.24)



3.3 Markov-Switching ACI Model | 101

and

Θi =



β1(si) · · · βp(si) α1(si) · · · αq(si)

0

Ip−1

· · ·

0
...

0
0

0
...

0
0

· · ·
. . .

· · ·
· · ·

0
...

0
0

0
...

0

· · ·
. . .

· · ·

0
...

0

Iq−1

0
...

0


(p+q)×(p+q)

, (3.25)

in which Ik is the k× k identity matrix. Assume the stationarity condition of Φ̃i is

satisfied, then from Bougerol and Picard (1992), the unique stationary solution of zi

is:

zi = η i +
∞

∑
j=1

ΘiΘi−1 · · ·Θi− j+1η i− j. (3.26)

Consider only the first element of the vector zi, it is again a product of an infinite

number of power transformed i.i.d.-unit exponential variables. Let ψ̃i, j be the

(p+ 1)-th element on the first row of the matrix ΘiΘi−1 · · ·Θi− j+1, then we have

Φ̃i = ∑
∞
j=1 ψ̃i, jε̃i− j. Thus, conditioning on a particular realization of states {si}i=1:T ,

it is required that |ϕ̃i, j|< 0.5,∀i, j to guarantee the existence of the second moment

for both the conditional intensity and duration processes. To derive the unconditional

moment condition, one needs to integrate out all possible paths of the hidden states,

which is analytically intractable. This is known as the path dependency problem, as

will be introduced in detail in the next section. The stationarity condition for other

baselines of the plain ACI model can be applied directly to the Markov switching

case, thus we will not elaborate on this.

3.3.3 Model Estimation

Similar to the plain ACI model, one relies on a maximum likelihood estimator (MLE)

to estimate the parameter vector θ and the state probabilities Π. A straightforward

implementation of MLE calculates the argument that maximizes the observed log-

likelihood of the data which is the marginal log-likelihood of the observed data

Y:
lnL (θ ,Π;Y) = ln∑

S
L (θ ,Π;Y,S). (3.27)

(3.27) is empirically very difficult to maximize for two reasons: (1) the log of the sums

of functional forms of the likelihood function is difficult to maximize by standard
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gradient/score methods; (2) the dimensionality of S may be so large that we have

to sum over the entire state space which may be infeasible. We hence apply the

Stochastic Approximation Expectation-Maximization (SAEM) algorithm developed

by Celeux and Diebolt (1992) and further analysed by Kuhn and Lavielle (2004) to

overcome the two difficulties in maximizing (3.27).

Expectation Maximization Algorithm and its Stochastic Extensions

The SAEM algorithm is a stochastic approximation version of the Expectation

Maximization (EM) algorithm originally documented by Dempster, Laird, and Rubin

(1977). The EM algorithm is extremely useful in the presence of missing data or latent

variable models, in which the direct maximization of the observed likelihood function

is usually very difficult. To formally introduce the EM algorithm, let f (Z) = f (X,Y)

be the density of the complete data with Y being the observable and X the discrete

unobservable data (which is the usual situation in which the EM algorithm is applied)

characterized by the true parameter vector θ̃ (θ̃ will be used henceforward to denote

some parameter vector θ for the true data generating process). One wishes to

estimate θ̃ by the MLE θ̂MLE that maximizes the observed (marginal) log-likelihood

function:

θ̂MLE = argmax
θ

lnL (θ ;Y) = ln∑
X

L (θ ;Y,X). (3.28)

Instead of maximizing this usually infeasible observed log-likelihood, the EM algo-

rithm calculates an estimation of θ by maximizing the expectation of the observed

likelihood with respect to X given a previous estimate of the parameter vector.

Formally, the EM algorithm consists of two steps:

Expectation step (E-step): At the n-th iteration, calculate the expectation of

the log-likelihood with respect to the conditional distribution of X given Y and a

current parameter estimate θ (n):

Q(θ |θ (n)) = E
X|Y,θ (n)

[
lnL (θ ;Y,X)

]
. (3.29)

Maximization step (M-step): Maximize Q(θ |θ (n)) w.r.t θ to obtain a new es-

timate of the parameter vector θ (n+1). Repeat the algorithm until Q(θ (n∗)|θ (n∗−1))−
Q(θ (n∗−1)|θ (n∗−2)) < ε for some small ε and some n∗, and the resulting parameter

estimate is θ̂EM = θ (n∗).

By transferring the objective function from the log of a sum (3.28) to the sum

of logs (3.29), the maximization problem is significantly simplified. Moreover, the



3.3 Markov-Switching ACI Model | 103

EM algorithm has an appealing likelihood-ascent property such that for each iteration,

lnL (θ (i);Y)≥ lnL (θ (i−1);Y), so that the marginal likelihood is non-decreasing and

the sequence {θ
(i)
i=1,2,···} converges to θ̃ under some regularity conditions (Boyles,

1983; Wu, 1983).

The EM algorithm has been applied in various situations, including estimating

finite mixture of distribution and hidden Markov models. However, it is not directly

applicable to the MS-ACI model, because the expectation step becomes intractable

due to the path dependency problem. The path dependency problem is created by the

autoregressive structure of the model. Specifically, when estimating autoregressive

models via maximum likelihood, the joint likelihood function is often replaced by

the conditional likelihood function and it is calculated recursively for the complete

dataset from observation 1 to T . In the MS-ACI model ((3.19) and (3.20)), since

the autoregressive component Φ̃ and the error term ε̃ are functions of si, and Φ̃i

is a function of Φ̃i−k for k = 1 : i− 1, both Φ̃ and ε̃ are effectively a function of

the complete history of the states, which then enter into the conditional likelihood

function for observation i. Therefore, when taking the expectation with respect to

the conditional distribution of states S, for M different regimes and a sample size T ,

the possible paths of states grow exponentially (T M), which renders the calculation

of the E-step intractable.

To evaluate the E-step when no analytical expression of the expectation is available,

several algorithms have been proposed, including the Monte Carlo EM (MCEM) (Wei

and Tanner, 1990), the stochastic EM (SEM) (Celeux, Chauveau, and Diebolt, 1996;

Celeux and Diebold, 1985; Diebolt and Ip, 1996) and the SAEM (Celeux and Diebolt,

1992). All these algorithms involve drawing random samples from the posterior

distribution of the missing data given the observable data and parameters, hence they

are stochastic extensions to the EM algorithm. The MCEM solves the intractable

E-step by replacing the E-step with a Monte Carlo approximation of the expectation:

Simulation step (S-step): At the n-th iteration, draw Mn realizations of the

unobserved data {X(mn,n)}mn=1:Mn from its conditional density p(X|Y,θ (n)) .

Integration Step (I-Step) Construct Q(θ |θ (n)) as the Monte Carlo integration

given by:

Q(θ |θ (n)) =
1

Mn

Mn

∑
mn=1

[
lnL (θ ;Y,X(mn,n))

]
. (3.30)

Maximization Step (M-step): Maximize the Q(θ |θ (n)) w.r.t. θ to obtain

θ (n+1). Repeat until convergence.
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As Mn → ∞, the MCEM algorithm converges to the EM algorithm, therefore the

MCEM inherits most of the appealing features of the original EM algorithm. Al-

though this algorithm provides an elegant solution to the intractable E-step problem,

there are several issues that render this algorithm unattractive. Firstly, the con-

vergence of this algorithm requires Mn to be increased steadily with n, whereas the
optimal method to choose Mn based on n is still an open question. Secondly, the

MCEM algorithm is computationally intensive in terms of the amount of simulation

of the missing data needed. For example, Jank (2005) reports that the total amount

of simulated vectors can easily reach 1 million for a complete run of the MCEM

algorithm.

Alternatively, the SEM algorithm attempts to ‘fill in’ the missing data by a single

draw from the posterior density of the missing data. It can be viewed as a special

case of the MCEM algorithm by setting Mn = 1 for all n in the S-step, so the I-step

becomes a very poor approximation of the E-step of the original EM algorithm.

Different from the MCEM algorithm, the SEM algorithm does not directly yield a

point estimate. Instead, the sequence {θ (n)}n=1,2,··· is a time-homogeneous Markov

chain. Diebolt and Ip (1996) and Nielsen (2000) show that, if the chain is ergodic,

then {θ (n)}n=1,2,··· converges in distribution to a normally distributed random variable

centred at θ̃ as n → ∞ which can therefore be used to generate a point estimate by

averaging over the converged Markov chain. This algorithm is applicable wherever

the MCEM is, and it is generally less computationally intensive since it requires less

simulations per iteration and the maximisation problem is much simpler. However, as

discussed in Celeux, Chauveau, and Diebolt (1996), the SEM algorithm is vulnerable

to small sample size, which gives rise to the SAEM algorithm.

The SAEM algorithm replaces the Monte Carlo integration in the MCEM by a

stochastic approximation scheme inspired by the stochastic approximation method

introduced by Robbins and Monro (1951).

Simulation step (S-step): At the n-th iteration, draw Mn realizations of the

unobserved data {X(mn,n)}mn=1:Mn from its conditional density p(X|Y,θ (n)) .

Stochastic Approximation: Construct Qn(θ |θ (n)) as the stochastic approxima-

tion given by:

Qn(θ |θ (n)) = (1− γn)Qn−1(θ |θ (n−1))+
γn

Mn

Mn

∑
mn=1

[
lnL (θ ;Y,X(mn,n))

]
, (3.31)
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with {γn} being a sequence of positive real numbers (usually referred to as the

step size) that decrease gradually to zero, satisfying the following property: γ0 = 1,

∑
∞
n=1 γn = ∞ and ∑

∞
n=1 γ2

n < ∞.

Maximization Step (M-step): Maximize the Qn(θ |θ (n)) w.r.t. θ to obtain

θ (n+1). Repeat until convergence.

Clearly when γn = Mn = 1,∀n, the SAEM algorithm reduces to the SEM algorithm.

The sequence {θ (n)} converges almost surely to a local maximum of the observed

likelihood, which has been proven by Delyon, Lavielle, and Moulines (1999) and

Allassonnière, Kuhn, and Trouvé (2010) under very general conditions. In addition

to the relatively stronger convergence comparing with the convergence in distribution

as in the SEM case, it has a significant advantage over the MCEM algorithm in the

efficiency of exploiting the simulated missing data due to the fact that, as opposed

to the MCEM case, the SAEM algorithm converges with a fixed Mn. Moreover, the

recursive structure of Qn(θ |θ (n)) suggests that all previously drawn states contribute

to this quantity Qn(θ |θ (n)), with the earlier sample discounted more towards zero by

the step size γn. This greatly improves the efficiency of using sampled missing values,

as in the MCEM algorithm, all missing data drawn at the (n−1)-th iteration will be

dropped and re-sampled at the n-th iteration. Finally, it is straightforward to obtain

an estimate of the variance-covariance matrix with the SAEM algorithm, as will be

demonstrated later in this section.

Estimating the MS-ACI Model with the SAEM Algorithm

Details on the implementation of the SAEM algorithm for the estimation of the

MS-ACI model are provided in this section. Before introducing the algorithm, all

the relevant log-likelihood functions will be listed for demonstration purposes. The

conditional log-likelihood of Y given the state vector S:

lnL (θ ;Y|S) =
T

∑
i=1

[
−Λ(ti−1, ti)+ lnλ (ti|Fti)

]
=

T

∑
i=1

[
− εi(si)+ Φ̃i(si)+ lnλ0(xi)

]
.

(3.32)

This log-likelihood can be easily maximized since it is in a log-linear form. The

complete data log-likelihood for the joint density of {Y,S} can be factorized as:

lnL (θ ,Π;Y,S) = lnL (θ ;Y|S)+ lnL (Π;S), (3.33)
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in which lnL (Π;S) is the marginal log-likelihood for the Markov chain, given by:

lnL (Π;S) = lnπs1 +
T

∑
i=2

lnπsi−1,si. (3.34)

Note that since Π is independent of L (θ ;Y|S), the complete likelihood can be maxi-

mized by separately maximising L (θ ;Y|S) and L (Π;S).6 The marginal likelihood

of Y, which cannot be directly maximized as discussed in the previous section, can

be expressed as:

lnL (θ ;Y) = ln∑
S

L (θ ;Y|S)L (Π;S). (3.35)

To apply the SAEM algorithm, we first show that we can obtain a random sample

from the conditional density of the state given the current parameter estimate θ (n) and

the data Y. Since the multivariate density p(S|θ (n),Y) is not a standard distribution,

p(S|θ (i),Y) ∝ f (Y|S,θ (n))p(S), (3.36)

it is inconvenient to draw a random sample of S as a vector from this density.

Bauwens, Preminger, and Rombouts (2010) develop a single move Gibbs sampling

scheme to draw a random sample of the states by a state-by-state approach for the

MS-GARCH model, which can also be implemented in our case. The single move

sampler is formulated as follows:

p(si|s(n+1)
1:i−1 ,s

(n)
i+1:T ,θ

(n),Y) ∝ p(si|s(n+1)
i−1 ,s(n)i+1,Π

(n)) f (yi:T |si,s
(n+1)
1:i−1 ,s

(n)
i+1:T ,θ

(n)). (3.37)

Note that s(n+1)
1:i−1 have been drawn in previous iterations. A change of si leads to

different updates of Φ̃i(si) and εi(si) assuming unequal state parameters, and the

impact of this change will also affect their future values due to the autoregressive

structure of the model. Hence we must include information in yi:T , which in turn

describes the path dependency problem. Moreover, we need to condition on s(n+1)
1:i−1

and s(n)i+1:T to construct the likelihood for every i = 2 : T . From (3.37), we can obtain

a random si by calculating (3.37) for every si ∈ M , normalizing it and drawing a

random si as drawing from a multinomial density. We can thus obtain one draw

of the vector S(n+1) by drawing each s(n+1)
i for i from 1 to T conditioning on s(n+1)

1:i−1 ,

s(n)i−1,T , Y and θ (n), which corresponds to a Gibbs sampling scheme for the states that

iteratively draws one state at a time.

The single move approach has been criticized by Bauwens, Dufays, and Rombouts

6We maximize L (θ ;Y|S) using standard gradient-based algorithms such as Newton-Raphson,
and the MLE of L (Π;S) is available in closed form.
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(2014) and Billio, Casarin, and Osuntuyi (2014) for being computationally intensive

because for each si, one has to compute the conditional likelihood of yi:T , which

mounts to T − i+ 1 number of calculations of the conditional density for one ob-

servation. For a sample size of T , we need to perform (M − 1)T (T+1)
2 number of

calculations for a single draw of S, which grows quadratically with T . We propose a

single move sampling scheme that approximates (3.37) by calculating the conditional

likelihood of yi:i+∆ for some ∆ instead of T when T is large, which in return reduces

the number of calculations to be (M−1)(T ∆+ ∆−∆2

2 ) that only grows linearly with

T . Details of this sampler are presented in Appendix C.2.

Concluding from above, we are able to obtain a random draw from the distri-

bution p(S|θ (n),Y), and therefore we explain the implementation of SAEM algorithm

to estimate the MS-ACI model.

Simulation Step (S-step): At the n-th iteration, given current parameter

estimate θ (n), Π(n) and current draw of state S(n), draw S(n+1) from the following

density for i = 1 : T :

p(si = l|s(n)−i ,θ
(n),Y)≈

p(si = l|s(n+1)
i−1 ,s(n)i+1,Π

(n)) f (yi:i+∆|si = l,s(n)−i ,θ
(i))

∑
M
m p(si = m|s(n+1)

i−1 ,s(n)i+1,Π
(n)) f (yi:i+∆|si = m,s(n)−i ,θ

(i))
,

(3.38)

in which s(n)−i = {s(n+1)
1:i−1 }∪{s(n)i+1:T}.

Stochastic Approximation: Let ϑ (n) denote the vector that combines θ (n) and

M2 −M free probability parameters in Π(n), update the quantity:

Qn(ϑ |ϑ (n)) = (1− γn)Qn−1(ϑ |ϑ (n−1))+ γn lnL (ϑ ;Y,S(n+1)), (3.39)

in which γn is a positive step size that gradually decreases to zero as n → ∞.

Maximization Step (M-step): maximize Qn(ϑ |ϑ (n)) w.r.t. ϑ to obtain ϑ (n+1).7

Repeat until the stopping rule is satisfied:

max

(
|ϑ (n+1)−ϑ (n)|
|ϑ (n)+δ2|

)
< δ1, (3.40)

in which δ1 and δ2 are predetermined small values. To avoid a premature termination

from an unlucky Monte Carlo draw, the algorithm is stopped when the stopping rule

7This maximization is similar to the maximization of the complete log-likelihood since it is
a weighted sum of complete log-likelihoods. Therefore it can be factorized into a weighted sum
of conditional log-likelihoods of the data given the state vector which will be maximized using
gradient-based algorithms, and a weighted sum of log-likelihoods of simulated Markov chains of
which the closed form MLE is available.
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is satisfied three successive times, as suggested by Booth and Hobert (1999). We

choose δ1 = 0.001 and δ2 = 0 in the estimation of our models.

Note that our SAEM scheme implicitly chooses Mn = 1 for all iterations due to

the usually large sample size of time series data. One of the appeals of the SAEM

algorithm is that it only needs to determine the step size γn. The general guideline

to choose this step size is that, as explained by Jank (2006), small (large) step sizes

reduce (inflate) the Monte Carlo error and yield slower (faster) convergence. We use

the SEM algorithm as a burn-in step for our SAEM algorithm, because the SEM

algorithm can achieve a fast convergence in distribution to a local maxima close to

the initial value. The step size γn is of the following form:

γn =

1, n ≤ n0,

1
(n−n0)0.9 , n > n0.

(3.41)

Thus the initial n0 step is effectively SEM iterations, which will produce a sequence

of parameter estimates {ϑ (i)}i=1:n0 that will converge fast but have large Monte

Carlo error. The initial values of the parameter estimates for the SAEM algorithm

is therefore given by the last parameter estimates of the SEM iterations. We use

a small SAEM step size to refine this initial estimates when the initial parameter

estimates of the SEM iterations reach convergence. As a result, n0 should be chosen to

be large enough so that less SAEM iterations are needed for the algorithm to converge.

The initial values of the SEM steps, ϑ (0) and S(0), are important factors in the

estimation procedure. We found that the estimation scheme is robust to choices

of S(0), Π(0) and all ARMA parameters, but depends crucially on the baseline pa-

rameters. This is due to the fact that the regime identification is to a large extent

determined by the baseline parameters. Guidances on choices of the initial values

are provided in Section 1.7.

The SAEM algorithm only provides a point estimate for the parameter vector.

As suggested by Delyon, Lavielle, and Moulines (1999) and Kuhn and Lavielle (2004),

we can also obtain variance-covariance matrix estimates for the parameter estimates.

From the posterior probability of the states conditioning on the parameter estimates,

we are able to provide an estimate of the most probable state vector. The detailed

estimation procedures for the variance-covariance matrix and the most probable state

vector are presented in Appendix C.3.
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3.3.4 Post-Estimation Diagnostics

The residual series {ε̂i}i=1:T is often used to perform diagnostic tests for the original

ACI model. The main property exploited here is that according to the RTCT,

{ε̂i}i=1:T follows an i.i.d. unit exponential process if the model specification is correct.

As a result, diagnostic tests of the original ACI model usually involve testing the unit

exponentiality of {ε̂i}i=1:T and the presence of autocorrelation in the series {ε̂i}i=1:T .

Since the RTCT applies to the general intensity process of point processes, this

applies to the MS-ACI model as well and similar tests can be constructed for our

MS-ACI model accordingly. These tests, however, are not directly applicable to the

MS-ACI model with only parameter estimates ϑ̂ from the SAEM algorithm. This is

because a state vector S is required for the residual series to be calculated, which

implies that without conditioning on a particular realization of the state vector, the

diagnostic tests cannot be performed due the inability to obtain {ε̂i}i=1:T . Thanks

to the estimation of the most probable state sequence, we are able to obtain the

conditional residual series {ε̂i|Ŝ}i=1:T by plugging in the estimated (most probable)

state sequence Ŝ in the calculation of the residual series. Similar tests such as the

Ljung-Box test for autocorrelation or some empirical density function tests for unit

exponentiality can be performed on {ε̂i|Ŝ}i=1:T , which renders model diagnostics

and comparison possible for our MS-ACI model. Certainly, one can perform the

diagnostic tests on some residual series conditioning on any arbitrary S, but the

estimated state vector Ŝ ensures that the corresponding conditional residual series

{ε̂i|Ŝ}i=1:T has the largest complete likelihood in the state vectors drawn for its

estimation. Thus, the test performances for the residual series conditional on the es-

timated state vector are likely to be better compared to conditioning on an arbitrary S.

For the original ACI model, the maximized log-likelihood also provides important

insights in model comparisons and can be used to construct a likelihood ratio test for

nested models. In the MS-ACI case, however, the maximized observed log-likelihood

is not available because the SAEM algorithm does not evaluate it directly, and the

integral over all realizations of S is intractable due to the dimensionality of S. The
conditional log-likelihood of the MS-ACI model lnL (ϑ̂ ;Y|Ŝ) does provide some

information on the goodness-of-fit of the model, but is not decisive due to the lack of

theoretical foundations to construct a likelihood-based test.

The residual tests described above assess the appropriateness of applying the ACI

framework. To be specific, the autocorrelation tests examine whether the autore-

gressive structure Φ̃i is correctly specified, and the empirical density tests assess the

goodness-of-fit of the baseline specification. These tests, however, do not provide a
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method to evaluate the validity of the regime-switching structure. Methods to assess

the contribution of an extra regime to the model estimation is important because

the inclusion of another regime can lead to over-parametrization which reduces the

efficiency of parameter estimation when the data generating process (DGP) does

not possess the regime-switching property assumed by the model. In a Bayesian

framework, this can be performed by computing the Bayes factor from the marginal

likelihood (Bauwens, Dufays, and Rombouts (2014) develop the algorithm for the MS-

GARCH model, which can be applied to our case if a Bayesian approach is pursued).

In the frequentist’s approach, this is usually accomplished by the likelihood ratio test

for the nested models, which is not available due to the intractable observed likelihood.

To provide a descriptive statistic that reflects the validity of the existence of M
regimes, we focus on the T ×M posterior probability matrix P∆ conditioning on the

estimated parameters ϑ̂ and the estimated state vector Ŝ. The element at the inter-

section of row i and column m in P∆, denoted by P∆
i,m = p∆(si =m|ŝ1:i−1, ŝi+1:T ,Y, ϑ̂),

is the posterior probability of the i-th state being classified as state m conditioning

on ŝ1:i−1, ŝi+1:T , Y and ϑ̂ calculated similarly as in (C.7) with the truncation lag

∆ being the last adapted ∆ in the estimation. Based on this matrix, we construct

a statistic named the ‘Significance of Regimes’ (SoR hereafter) which serves as an

indicator of the overall significance of the regime-switching structure. It is calculated

as follows:

SoR = T−1
T

∑
i=1

max
m∈M

P∆
i,m. (3.42)

Intuitively, SoR is the average of the largest probability in every row of P∆. It

measures the average (conditional) probability of each state being classified in the

most probable states. The rationale behind this statistic is that, assuming the DGP

consists of M distinct regimes with densities far apart from each other (which is often

assumed in the MS-GARCH literature), the probability of any observation being

classified into its corresponding true state will be close to one. On the contrary, when

all M densities are identical, all the elements in the matrix P∆ reduce to M−1. This

gives the range of SoR, and measures the significance of the existing regimes, with 1

being very significant for all the regimes and M−1 being not significant at all. The

SoR allows easy comparisons across models with different number of regimes and

baseline specifications. Moreover, we can calculate SoR for each regime to compare

their relative significance. The SoR for the l-th regime is defined as:

SoR(l) = T−1
T

∑
i=1

max
m∈M

P∆
i,m1l {maxarg

m∈M
(P∆

i,m)=l}, (3.43)
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which basically calculates the average of the largest element in every row of P∆ if the

largest element belongs to the l-th state. We will elaborate on this in the simulation

section.

3.4 Monte Carlo Simulation Study

In this section, we conduct a Monte Carlo simulation study to highlight the estimation

performance of our SAEM algorithm under various parameter specifications. We start

with MS(2)-ACI(1,1) models without covariates, and mainly focus on the impact of

different baseline parameters and transition parameters. The reason to ignore a more

complicated ARMA-type structure is because the ARMA-type structure is designed

to be of zero mean. It will therefore have a very limited effect on the likelihood of the

model given stationarity and identical baselines. We will consequently show that the

quality of the parameter estimates of our model is dominated by the differences in

the baseline parameters. Moreover, since the inclusion of other covariates serves as a

regime-specific stochastic baseline function for each regime, our simulation evidence

on the baseline function also reveals the importance of including covariates on the

quality of the parameter estimates.

The selection of parameter constellations is designed to examine the aforemen-

tioned relationship between specifications and quality of estimates. The size of the

Monte Carlo study for each specification is 100. For each specification, we choose

T = 1000, n0 = 60 and update ∆ every 50 iterations in the estimation process of every

Monte Carlo draw of the latent state vector S and observable data vector Y. We keep

the initial values of the ARMA parameters to be zero and the initial Markov chain

π
(0)
lm = 0.5,∀l,m and S(0) to be a random draw of T repeated independent fair coin

tosses. The initial values of the scale parameter w(si)
(0) for each regime should be set

carefully to allow for the convergence of the model. Specifically, in the two-regime

case, assume the true scale parameters w̃(1) > w̃(2), for w(1) to converge to w̃(1)
(instead of w̃(2), or to avoid being eliminated by the algorithm), we recommend

setting w(0)(1)> w̃(1)> w̃(2)> w(0)(2) or w̃(1)> w(0)(1)≫ w(0)(2)> w̃(2). In this

case, the initial values for each baseline are closer to their own true values and will

converge to the corresponding maxima. Consequently, the label-switching problem is

also alleviated.

The quality of the parameter estimates is assessed through the bias and the root mean

squared error (RMSE) of the Monte Carlo parameter estimates. In detail, for each

parameter specification, we benchmark the bias and the RMSE of the Monte Carlo
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parameter estimates against the bias and the RMSE from a Monte Carlo simulation

of the same model given the latent state vector (referred to as the complete model

hereafter, and the incomplete model refers to the model with a latent state vector).

The rationale of this comparison is that, given the state vector, the MS-ACI model

reduces to a mixture of simple ACI models and the parameter estimates are the

corresponding MLEs, which are consistent when the density of the data is correctly

specified.8 This intuitively serves as an upper bound for the quality of the parameter

estimates of the incomplete model. Thus, by comparing the quality of parameter

estimates of the incomplete model to its corresponding complete version, we are able

to depict the loss of accuracy associated with both parameter specifications and the

observability of the Markov chain.

The main result for the case M = 2 is presented in Table 3.1. In Table 3.1, we

base our simulation on six different specifications, with spec. 1-5 using exponential

baselines and spec. 6 using a Weibull baseline. The first part of the table shows the

bias and RMSE of the Monte Carlo parameter estimates of the incomplete model,

with the bias and RMSE of the complete counterparts included in the second part

of the table. The RMSE ratio calculated by dividing the RMSE of each parame-

ter estimate of the incomplete model by that of the complete model allows easy

comparison. Generally, the bias and RMSE of the incomplete model tend to fluctu-

ate across specifications, while those for the complete model are much more consistent.

The immediate observation from the upper part of the table is that, by comparing

spec. 1, 2 and 4, the closer the gap between the two regime-specific densities implied

by the scale parameters w̃(1) and w̃(2), the smaller the mean SoR, which is as ex-

pected. According to the RMSE ratios, it is evident that the quality of the parameter

estimates deteriorates with the mean SoR implied by the increasingly narrowing gap

between the DGP scale parameters. The existence of a more persistent latent Markov

chain can improve the mean SoR and the estimation performance by comparing the

RMSE ratios of spec. 2 and 3. However, a persistent latent Markov chain alone

cannot guarantee reliable parameter estimates, as is shown in spec. 5. It is worth

mentioning that in spec. 5, the regime-specific scale parameters are identical, and

the only information on the latent state vector implied by the observable data is the

differences in the ARMA parameters, which does not generate enough discrepancy in

the density for the latent Markov chain to be well identified. This is explained by

the large downward biases in the transitional parameters in spec. 5. Moreover, the

8In fact, since the exponential baseline belongs to the linear-exponential family, the estimator is
also the Quasi-MLE, which is robust to misspecification in the baseline function. For a detailed
discussion on the consistency of this estimator, please refer to Hautsch (2012).
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Table 3.1 Monte Carlo Simulation Results of Parameter Estimates of MS(2)-ACI(1,1)
Models and the Corresponding Complete Models for 100 Random Draws of Data

α̃1(1) α̃1(2) β̃1(1) β̃1(2) w̃(1) w̃(2) ã(1) ã(2) π̃11 π̃22 ∆

Spec. Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias SoR
RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE σ(SoR)

Results for Incomplete Models

1 0.05 0.1 0.8 0.95 0 -5 1 1 0.5 0.5 34.80
-0.0046 -0.0010 -0.0429 -0.0368 0.0127 0.0154 . . 0.0001 0.0038 0.9803
0.0355 0.0332 0.1654 0.2248 0.0584 0.0620 . . 0.0242 0.0213 0.0017

2 0.05 0.1 0.8 0.95 0 -3 1 1 0.5 0.5 38.44
-0.0116 0.0005 -0.0844 -0.0676 -0.0077 0.0082 . . -0.0008 -0.0002 0.9086
0.0542 0.0465 0.3712 0.3573 0.0820 0.0668 . . 0.0342 0.0357 0.0082

3 0.05 0.1 0.8 0.95 0 -3 1 1 0.9 0.9 31.14
-0.0019 -0.0011 -0.0877 -0.0245 0.0110 0.0091 . . -0.0039 -0.0012 0.9761
0.0313 0.0391 0.3330 0.1103 0.0646 0.0908 . . 0.0136 0.0166 0.0039

4 0.05 0.1 0.8 0.95 0 -1 1 1 0.5 0.5 38.06
-0.0112 0.0034 -0.0079 0.0263 -0.1490 -0.0583 . . 0.0870 -0.1578 0.7427
0.0556 0.0706 0.3404 0.4455 0.2122 0.1351 . . 0.1430 0.2217 0.0464

5 0.05 0.1 0.8 0.95 0 0 1 1 0.9 0.9 34.53
0.0183 -0.0230 0.1325 -0.0118 0.0355 -0.0351 . . -0.4107 -0.5080 0.6682
0.0456 0.0515 0.2962 0.3296 0.1121 0.1311 . . 0.4359 0.5331 0.0592

6 0.05 0.1 0.8 0.95 0 -1 1 2 0.5 0.5 42.51
-0.0193 -0.0061 -0.0759 0.0213 0.0611 0.0047 0.0119 0.0590 -0.0208 -0.0028 0.7941
0.0879 0.0564 0.4527 0.4211 0.2460 0.0606 0.0555 0.2300 0.1063 0.1242 0.0351

Results for Complete Models

1 0.05 0.1 0.8 0.95 0 -5 1 1 0.5 0.5
-0.0009 -0.0039 -0.0322 -0.0008 0.0021 0.0101 . . -0.0040 -0.0071
0.0240 0.0243 0.1385 0.1268 0.0518 0.0651 . . 0.0225 0.0239

2 0.05 0.1 0.8 0.95 0 -3 1 1 0.5 0.5
-0.0020 -0.0030 -0.0080 0.0006 0.0048 0.0059 . . 0.0001 -0.0020
0.0219 0.0280 0.1316 0.1167 0.0572 0.0618 . . 0.0228 0.0233

3 0.05 0.1 0.8 0.95 0 -3 1 1 0.9 0.9
-0.0010 -0.0001 -0.0464 -0.0209 -0.0061 -0.0039 . . -0.0014 0.0015
0.0245 0.0233 0.2217 0.0600 0.0675 0.0785 . . 0.0136 0.0119

4 0.05 0.1 0.8 0.95 0 -1 1 1 0.5 0.5
0.0012 0.0005 -0.0312 -0.0007 -0.0067 -0.0002 . . 0.0007 -0.0021
0.0242 0.0267 0.1409 0.1109 0.0561 0.0674 . . 0.0185 0.0215

5 0.05 0.1 0.8 0.95 0 0 1 1 0.9 0.9
-0.0045 -0.0032 -0.0762 -0.0036 0.0014 -0.0016 . . -0.0028 0.0001
0.0251 0.0270 0.2291 0.0465 0.0538 0.0794 . . 0.0147 0.0159

6 0.05 0.1 0.8 0.95 0 -1 1 2 0.5 0.5
-0.0049 0.0009 -0.0157 -0.0237 0.0002 -0.0043 0.0006 0.0205 0.0011 -0.0001
0.0247 0.0295 0.1276 0.1255 0.0568 0.0370 0.0346 0.0711 0.0212 0.0204

RMSE Ratios

1 1.4817 1.3645 1.1944 1.7724 1.1274 0.9526 . . 1.0749 0.8908
2 2.4817 1.6570 2.8210 3.0619 1.4343 1.0806 . . 1.5012 1.5296
3 1.2793 1.6789 1.5019 1.8394 0.9570 1.1562 . . 1.0043 1.3881
4 2.2982 2.6423 2.4167 4.0177 3.7799 2.0051 . . 7.7378 10.3085
5 1.8177 1.9104 1.2929 7.0868 2.0814 1.6511 . . 29.6159 33.4576
6 3.5616 1.9104 3.5486 3.3566 4.3310 1.6392 1.6029 3.2333 5.0072 6.0982

Note: SoR and σ(SoR) are the mean and standard deviation of the significance of regime defined in equation (3.42).
RMSE is the root mean square error of the Monte Carlo parameter estimates. ∆ is the mean of the adapted ∆ in
each simulation. The RMSE ratio section is the RMSE of the corresponding parameter of the incomplete model
over the RMSE of its complete counterpart.



114 | High-Frequency Volatility Modelling: A Markov-Switching Autoregressive
Conditional Intensity Model

mean parameter estimates for the ARMA parameters of the incomplete model are

very close to each other, suggesting a label-switching problem caused by a common

baseline. Finally, comparing spec. 4 and 6, we observe that a more complex baseline

function can improve the mean SoR by allowing more flexible discrepancies of the

regime-specific densities, which can potentially reinforce the estimation performance.

In our example, by changing the Weibull parameter, the Markov chain parameters

are estimated with much better accuracy (smaller bias and RMSE ratio).

An important message from Table 3.1 is that, since the latent Markov chain will

inevitably result in a loss of information in the estimation process, the quality of the

parameter estimates depends crucially on how much information can be extracted

from the observed data itself, or how close the sampled state vector is to the true

latent vector. Complexity of baselines and the persistence of the latent Markov chain

will influence the amount of information available in the observed data, and will

have a significant effect on the quality of the parameter estimates. However, the

predominant factors are the DGP scale parameters of the baseline functions, which

generally control the location of the distribution and the ability of our sampler to

correctly classify the states. This rationalizes the use of the SoR as an indicator

of the quality of the parameter estimates, as it is a measure of how confident our

sampler is in classifying the observations. This also suggests that, the MS-ACI model

is by construction inconsistent because of the missing state vector, and to ensure the

performance of the MS-ACI model, we recommend a SoR of at least 90% so that the

hidden Markov chain is on average properly identified (as can be observed from the

RMSE ratios for the last three specifications). Also note that for all the specifications,

the average adapted ∆ is less than 50. This suggests that under these specifications,

instead of taking all the observations into the sampler, less than 50 observations

satisfy our tolerance of approximation error, which leads to a vast improvement in

the computational efficiency of the single move sampler.

To assess the stability of our estimation scheme, we plot the convergence diagram

for spec. 1 as an example in Figure 3.1. From the figure, the transition from SEM

to SAEM can be clearly observed at n0 = 60. Before n0 = 60, the SEM algorithm

provides trial parameter estimates with large Monte Carlo errors that are close to

the maxima, and the SAEM algorithm drives the trial values to its convergence.

The diagram shows that the majority of the parameter trajectories lie symmetrically

around the DGP value. There are some erratic outliers in the ARMA parameters

possibly due to the small sample size of the data. The convergence diagram provides

evidence in favour of the stability and reliability of our SEM-SAEM estimation scheme.
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Figure 3.1 Convergence Diagram for Spec. 1 in Table 3.1
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Note: Each grey dashed line represents a trajectory of parameter estimates of the SEM-SAEM algorithm. DGP
value is indicated by the horizontal black line. A sample trajectory is highlighted in each graph by a black solid line.

To analyse the effect of an extra regime, similar Monte Carlo simulation results

for a MS(3)-ACI(1,1) model are presented in Table 3.2. The specification of the

Table 3.2 Monte Carlo Simulation Results of Parameter Estimates of a
MS(3)-ACI(1,1) Model and its Complete Version for 100 Random Draws of Data

ϑ DGP Bias RMSE Bias RMSE RMSE
Values Incomplete Complete Ratio

α1(1) 0.25 0.0024 0.0610 -0.0008 0.0423 1.4415
α1(2) 0.15 0.0075 0.0578 -0.0019 0.0361 1.5982
α1(3) 0.05 0.0053 0.0640 0.0031 0.0323 1.9781
β1(1) 0.9 -0.0320 0.1645 -0.0004 0.0928 1.7727
α1(2) 0.8 -0.0616 0.2074 0.0006 0.1188 1.7460
α1(3) 0.6 -0.0131 0.2267 -0.0257 0.1298 1.7464
w(1) -5 0.0059 0.0936 0.0116 0.0907 1.0321
w(2) -1 -0.0050 0.0600 0.0053 0.0501 1.1973
w(3) 0 0.0011 0.0420 0.0043 0.0355 1.1828
a(1) 1 0.0194 0.0545 0.0047 0.0445 1.2246
a(2) 1.5 0.0286 0.1014 -0.0065 0.0607 1.6700
a(3) 2 0.0234 0.1119 0.0023 0.0805 1.3903
π11 0.5 -0.0037 0.0310 0.0002 0.0285 1.0876
π12 0.25 0.0033 0.0340 -0.0007 0.0221 1.5339
π21 0.25 0.0023 0.0348 0.0016 0.0251 1.3834
π22 0.5 -0.0107 0.0434 -0.0064 0.0298 1.4587
π31 0.25 -0.0009 0.0310 0.0021 0.0241 1.2878
π32 0.25 0.0009 0.0385 0.0021 0.0261 1.4735

SoR 0.8610 σ(SoR) 0.0122 ∆ 30.84

SoR(1) 0.9916 σ(SoR(1)) 0.0032

SoR(2) 0.8298 σ(SoR(2)) 0.0172

SoR(3) 0.7760 σ(SoR(3)) 0.0252

Note: SoR and σ(SoR) are the mean and standard deviation of the significance of regime defined in equation (3.42).
The statistics for SoR(l) are the significance of regime for the individual regime l defined in equation (3.43). RMSE
is the root mean square error of the Monte Carlo parameter estimates. ∆ is the mean of the adapted ∆ in each
simulation.
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MS(3)-ACI(1,1)-Weibull model in Table 3.2 consists of two Weibull regimes (regime 2

and 3) with densities that are close to each other and one exponential regime further

apart from the two other regimes. The transitional parameters suggest that the

probability of staying in the same regime is 0.5. The most interesting observation

is for the individual mean SoRs. Since the first regime distinguishes itself from the

other two, mean SoR(1) is larger than mean SoR(2) and mean SoR(3), approaching
the theoretical maximum 1. The lower mean SoR(2) and mean SoR(3) are in turn

explained by their closeness in distance. The smaller mean SoR(3) suggests that

there are possibly more overlaps between regime 3 and regime 1, rendering it the

least significant regime of the three. This shows that the inclusion of a regime that

is similar to one of the existing regimes reduces the overall SoR and introduces noise

to the model. The RMSE ratios also indicate that parameter estimates for the first

regime perform slightly better than the other two. To sum up from Table 3.2, in

the case M = 3, our SAEM algorithm provides reliable parameter estimates when

at least one of the regimes is outstanding. The SoR for the single regime is able to

capture the relative significance of each regime in comparison with the other two,

which will provide inference for the selection of M.

On the choice of M in the estimation stage of our MS-ACI model, we recommend to

start with small M and compare its performance to models with a larger M. Due to

the fact that there will be more overlaps between multiple densities, models with

larger M may be inferior to those with a smaller M in terms of SoR. For example, if

a MS(2)-ACI(1,1) model were implemented to the data generated by the model in

Table 3.2, the model would identify two distinct regimes with a mean SoR of over

97%. This is because the distance between densities of regime 2 and 3 are much closer

in comparison to their distance to regime 1, and the two-state model combines regime

2 and 3 into a single regime. This suggests that SoR should not be the sole criteria

for model selection. In this case, the overall goodness-of-fit of the baseline function

of a three-regime model will outperform that of a two-regime model, and residual

diagnostics should also be taken into account in the model selection procedure.

3.5 Application to High-Frequency Stock Price

Duration Data

In the previous section we were able to evaluate the quality of the parameter

estimates from the SEM-SAEM estimation scheme of our MS-ACI model with various

specifications for M ≤ 3. This section introduces the dataset for the application of

our MS-ACI model, and analyses the empirical results in detail.
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3.5.1 Data

We choose 9 highly liquid stocks and a stock index ETF in our empirical analysis to

demonstrate our findings, namely AIG, CVX, GM, INTC, JPM, PFE, T, VZ, WMT

and SPY. The data is obtained from the Trade and Quote (TAQ) dataset.9 The

sample period ranges from 1 Jan 2016 to 31 Dec 2016. The trade dataset consists of

prices and trading volumes, timestampped to milliseconds. To support the argument

of regime shifts in intraday volatility, we apply our MS-ACI model to the point

process of absolute price change events. The point process is constructed as follows:

We start with an observed transaction price series P(t∗j,d), in which t∗j refers to the

arrival time of the j-th transaction in day d, the subscript j = 1 : Jd is the transaction

counter for day d with a total of Jd transactions at day d, and d = 1 : D is the index

for trading days for a total of D trading days. An arbitrary price change threshold

δ (typically in multiples of ticks) is chosen in order to construct the ‘price event’,

where the cumulative price change from the previous event is equal or larger than

δ . Specifically, the event time ti,d for event i on day d is obtained by the following

algorithm:

1. From j = 1 for every d, set t0,d = t∗1,d. Set the value of δ .

2. Let ti,d = inf
t∗j,d>ti−1,d

{|P(t∗j,d)−P(ti−1,d)| ≥ δ}.

3. Stop if tId ,d ≤ t∗Jd ,d
and tId+1,d > t∗Jd ,d

.

The process {tδ
i,d}i=1:Id ,d=1:D records the arrival times of each price event, and is

known as the δ -related absolute price change process, in which Id is the number

of price events in day d. An instantaneous volatility measure can be constructed

based on the conditional intensity representation of this point process, as proposed

by Engle and Russell (1998) and Gerhard and Hautsch (2002):

σ
2
δ
(ti,d) = λ

δ (ti,d|Fti,d)
[

δ

P(ti,d)

]2
, (3.44)

in which λ δ (ti,d|Fti,d) is the conditional intensity of {tδ
i,d} as defined in (3.1). Notice

that the volatility process is proportional to the conditional intensity process.

The choice of δ is crucial in constructing this volatility estimator, because it de-

termines the (random) sampling frequency of the raw dataset. Generally, a small

δ samples the raw dataset more frequently, which provides more precise volatility

9The dataset is cleaned according to Holden and Jacobsen (2014) and Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2009). The stocks are chosen for illustrative purpose. We have generated
results for up to 30 highly liquid stocks, and they are available upon request.
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estimates, but can lead to a very noisy price event process due to market microstruc-

ture noise. On the contrary, a large δ samples the raw dataset more sparsely, and

the resulting price event process is less affected by market microstructure noise,

at the expense of the precision of the volatility estimates. We construct the point

process monthly and choose δ to be the minimum multiples of $0.005 that on average

samples the raw data every 5 minutes.10 Tse and Yang (2012) show that under this

sampling frequency, intensity-based volatility estimates performs very well against

the RV estimates. Moreover, this choice of δ results in similar sample sizes across

different securities, enabling an easier cross-sectional comparison. Other choices of δ

are available. For example, Nolte, Taylor, and Zhao (2018) suggests to set δ to be

three times the average bid-ask spread of the previous sampling period. However, this

requires information on the intraday quoted prices, and the cross-sectional sample

size will differ significantly. We present the δ used for all 120 stock-month datasets

in Figure C.3 in Appendix C.7.

For demonstration purposes it is more convenient to analyse the statistical prop-

erties of the duration representation of the absolute price change process defined

as xδ
i,d = tδ

i,d − tδ
i−1,d, which will be referred to as price durations. To investigate the

regime-switching volatility-volume relationship based on the price duration data, we

compute a volume measure by the log cumulative trading volume within each price

duration, denoted by lnVolδ
i,d. It is well documented that empirical price durations

and the price duration based covariates exhibit diurnal patterns (Andersen and

Bollerslev, 1997b; Engle and Russell, 1998). To ensure that our results are not driven

by these time deterministic effects, we filter out the seasonality pattern from the raw

price durations and duration based volume measure, and obtain their deseasonalized

versions ln ẋδ
i,d and ˙lnVolδ

i,d . The detailed deseasonalization procedure is presented in

Appendix C.4. Yearly descriptive statistics for the deseasonalized price durations

and volume are presented in Table 3.3 below. Table 3.3 shows that, firstly, the

mean duration is roughly 300 seconds which corresponds to our choice of δ . The

distribution of duration is skewed to the right and has over-dispersion, as the mean

is much larger than the median, and the standard deviation is larger than the mean

for almost every stock. The minimum duration is not exactly zero but smaller than

0.01. The minimum volume, however, can be zero because it is in log. The log

volume distribution is very symmetric. For comparison we also present the yearly

descriptive statistics for raw price durations and volumes in Table C.1 in Appendix

C.7. Comparing Tables 3.3 and C.1, it is clear that the mean duration and volume

10The length of the sample window is chosen to contain sufficient data and trading days to allow
for a reliable seasonality estimate, but not to an excessive extent so that the estimation time of the
model is manageable and potential intertemporal parameter instability can be avoided.
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do not change too much. The main differences are changes in the maxima and that

the deseasonalized variables have less standard deviation, which is expected as the

intraday variations have been removed from the variables.

Table 3.3 Yearly Descriptive Statistics for ẋδ
i,d and ˙lnVolδ

i,d

ẋδ
i,d

˙lnVolδ

i,d
Ticker Obs. Mean σ Min Median Max Mean σ Min Median Max
AIG 17925 321.11 346.17 0.00 212.80 5383.79 10.52 1.21 0.00 10.56 17.87
CVX 18014 316.99 334.58 0.00 211.34 3692.72 10.77 1.20 0.00 10.81 18.64
GM 17240 327.96 375.66 0.00 203.13 5801.45 11.24 1.12 0.00 11.27 16.80
INTC 16541 339.97 384.96 0.00 214.40 6015.84 11.79 1.24 2.30 11.83 19.52
JPM 17270 331.75 367.36 0.00 212.47 6267.21 11.61 1.09 0.00 11.64 17.47
PFE 17416 340.70 455.78 0.00 203.95 12422.01 12.03 1.28 1.33 12.07 19.10
SPY 18530 313.15 397.74 0.00 185.29 9944.04 13.52 1.01 3.89 13.56 17.17
T 17008 335.65 386.79 0.00 211.85 6575.75 11.83 1.18 0.00 11.86 18.40
VZ 16853 336.58 365.23 0.00 217.63 4564.45 11.27 1.21 0.00 11.30 18.54

WMT 17082 336.05 380.97 0.00 209.53 4774.98 10.83 1.19 0.00 10.87 18.43

Note: The table presents the descriptive statistics for the deseasonalized price durations ẋδ
i,d and the deasonalized

volume ˙lnVolδ

i,d from 30 securities for the year 2016. Obs. denotes the total number of observations. σ is the standard
deviation.

To briefly describe the intraday volume-volatility relationship, we regress ˙lnVolδ

i,d on

ln ẋδ
i,d using a linear regression model:

˙lnVolδ

i,d = b0 +b1 ln ẋδ
i,d + εi,d (3.45)

Intuitively, the regression describes the elasticity between duration and volume, as b1

is the percentage increase in volume per 1 percent increase in price duration. If there

is a regime-switching relationship between volume and volatility, we should be able to

observe different estimates of the parameters and of the R2 for different subsamples

of the dataset. As a preliminary descriptive analysis, we split the data into two

subsamples based on calendar time: the first subsample includes all price durations

within the first hour of a trading day (ti,d ≤ 3600s), and the second subsample consists

of the rest of the observations. We present three examples in Figure 3.2.

From Figure 3.2, it is evident that for individual stocks, the volume-duration rela-

tionship for observations during the first hour of the trading day is very different

from those from the rest of the day. For observations in the first hour, the estimated

R2 is much smaller. We can see from the right panel of the graph that for the rest of

the day, ˙lnVolδ

i,d and ln ẋδ
i,d are highly linearly dependent and cluster symmetrically

along the regression line. During the first hour, the regression line deviates from the

cluster, which is driven by observations that have disproportionally large volume in

short price durations. However, we cannot observe this effect for the SPY, as from
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Figure 3.2 Scatter plots with regression line for AIG 2016-03, INTC 2016-08, SPY
2016-05

Panel 1: AIG 2016-03

The first hour of the trading day

log price duration

lo
g
 v

o
lu

m
e

-5 -2.5 0 2.5 5 7.5 10
0

2.5

5

7.5

10

12.5

15

17.5

Rest of the trading day

log price duration

lo
g
 v

o
lu

m
e

-5 -2.5 0 2.5 5 7.5 10
0

2.5

5

7.5

10

12.5

15

17.5

Panel 2: INTC 2016-08
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Panel 3: SPY 2016-05
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Note: Three 1-by-2 graphs from top to bottom: AIG 2016-03, INTC 2016-08, SPY 2016-05. X-axis: ln ẋδ
i,d . Y-axis:

˙lnVolδ

i,d . The regression line is obtained by (3.45).
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the figure, the regression outputs are very close for the two subsamples.

To give a complete picture of our dataset, we denote R2
1, the R2 from the regression on

the first hour subsample, and R2
2, the R2 from the other subsample. We plot R̂2

2 − R̂2
1

for all 10×12 stock-month datasets in Figure 3.3. From Figure 3.3, it is evident that

the average R2 difference is between 0.2 to 0.4 for all individual securities except

SPY, whose average R2 difference is much closer to zero.

Figure 3.3 R2 Difference for the volume-duration regressions in the first hour of the
day and the rest of the day

Note: The figure plots R̂2
2− R̂2

1 obtained from regression (3.45) for 10×12 stock-month datasets, with R̂2
1 the estimated

R2 from the observations in the first hour of the trading day and R̂2
2 from the rest of the observations. Each black

dot represents the R2 difference for one stock-month dataset. The vertical black dashed lines split observations from
each stock, and between two vertical red lines, the R2 differences are ordered chronologically. The horizontal red
dots represents the yearly average R2 difference for each stock.

Concluding our data section, we have found a regime-switching volume-volatility

relationship for all the individual stocks considered in our analysis by a simple static

OLS regression. However, the simple OLS regression has two major drawbacks: (1) it

does not consider the dynamics of the intraday volatility and (2) dividing the data at

the first hour is somewhat arbitrary in the sense that there can be informed traders

trading at other times during the day, and uninformed traders can also trade within

the first hour. This motivates our MS-ACI model as it is tailored for capturing the

dynamics of intraday volatility through a fully parametrized specification. Moreover,

the regime identification is based solely on the correlation between volume and

volatility, without any arbitrarily chosen threshold.
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3.5.2 Main Empirical Results

This section discusses our main empirical findings. From our previous results in the

data section, we use a two-state MS-ACI model with the inclusion of the trading

volume to detect a regime-switching volume-volatility relationships in the data. The

full model specification is summarized as follows:

λ (t;Ft) = Φ(t)λ0(t),

Φ(t) = eΦ̃N̆(t)+1(sN̆(t)+1)+ηvol(sN̆(t)+1) ln ˙Volδ

N̆(t)+1,d ,

Φ̃i(si) =
2

∑
j=1

α j(si)ε̃i− j(si− j)+β (si)Φ̃i−1(si−1),

λ0(t) = a(sN̆(t)+1)e
w(sN̆(t)+1)a(sN̆(t)+1)x(t)a(sN̆(t)+1)−1

,

ε̃i(si) =−γ − Φ̃i(si)−a(si)w(si)−a(si) ln ẋδ
i,d,

P(si = m|si−1 = l) = πlm, l,m ∈ M = {1,2}.

(3.46)

The parameters α1(si), α2(si) and β (si) capture the state-specific ARMA(2,1)-type

structure between durations. As in the simulation section, we specify a regime-

switching Weibull baseline for the model with location parameters w(si) and shape

parameters a(si). The parameter ηvol(si) accounts for the state specific volume-

volatility relationship of interest. Note that for the duration t ∈ (tδ
i−1, t

δ
i ], we have

tδ

N̆(t)+1
= tδ

i , therefore the model captures the contemporaneous volume-volatility

relationship for state si as desired. The parameters πlm are the transition probabilities

between state l and m. Estimation of π11 and π22 suffices, as the other two parameters

are implicitly estimated.

We refer to the above model as the MS(2)-ACI(2,1)-V model, with the V rep-

resenting the inclusion of the volume covariate. We estimate the above model using

the deseasonalized dataset (ẋδ
i,d, ln ˙Volδ

i,d) to obtain estimates of the parameters, the

variance-covariance matrix of the estimated parameters and the most probable state

sequence. Multiple starting values are used in the estimation to guarantee a stable

convergence of the algorithm.

We present three examples of parameter estimates for the stock-months AIG 2016-03,

INTC 2016-08 and SPY 2016-05 in Table 3.4. The estimated β̂ (m) suggests that

the empirical intensity process is highly persistent, which is consistent with the

literature. The baseline parameters from the two regimes differ considerably, which

partly determines the identification of the regimes. There is a considerable difference

between η̂vol(1) and η̂vol(2) for AIG and INTC, but this difference is not visible in
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the SPY. In general, for the individual stocks we observe two distinct regimes: a

dominant regime (regime 2) with more than 80% observations and a large |η̂vol(2)|,
and a minor regime (regime 1) with |η̂vol(1)| much closer to zero. For the SPY, the

difference between |η̂vol(1)| and |η̂vol(2)| is not as clear, so we will use regime 1 to

denote the regime with smaller number of observations.

From the diagnostic statistics panel, we see that both the Cramér-von-Mises test and

the Anderson-Darling test cannot reject the unit exponentiality hypothesis of the

residual ε̂i. More importantly, ŜoR(m) and ŜoR suggest that for the individual stocks,

the regimes are classified with high confidence, while for the SPY, the classification

of regimes is much weaker. To conserve space, we leave extensive robustness checks

on the justification of our model selection strategy to Appendix C.5, and only present

key implications of our findings in the main text.

Table 3.4 Parameter Estimates of MS(2)-ACI(2,1)-V Model for AIG 2016-03, INTC
2016-08 and SPY 2016-05

AIG 2016-03 INTC 2016-08 SPY 2016-05
m = 1 2 1 2 1 2

Dynamic Parameters
α1(m) 0.0223 0.2310*** 0.3258*** 0.2192*** 0.4526*** 0.1942***

(0.0278) (0.0201) (0.0385) (0.0206) (0.0240) (0.0199)
α2(m) 0.0514* -0.0988*** 0.1747*** -0.0807*** -0.1742*** -0.2371***

(0.0277) (0.0206) (0.0580) (0.0222) (0.0229) (0.0214)
β (m) 1.0572*** 0.9388*** 0.4121*** 0.9241*** 1.1183*** 0.8992***

(0.0128) (0.0104) (0.1294) (0.0185) (0.0193) (0.0132)
Baseline Parameters

w(m) 1.2721** 3.0143*** -0.6130 4.1465*** 6.1217*** 8.3208***
(0.5477) (0.1181) (0.5590) (0.1482) (0.1868) (0.1897)

a(m) 1.0137*** 2.6856*** 0.6473*** 2.2720*** 3.1820*** 2.6130***
(0.0460) (0.0512) (0.0297) (0.0477) (0.0783) (0.0560)

Other Parameters
ηvol(m) -0.5982*** -2.1542*** -0.2173*** -1.9628*** -2.7864*** -2.6960***

(0.0580) (0.0487) (0.0349) (0.0486) (0.0836) (0.0647)
πmm 0.8364*** 0.9720*** 0.8338*** 0.9635*** 0.2646*** 0.5347***

(0.0233) (0.0044) (0.0215) (0.0052) (0.0184) (0.0166)
Diagnostic Statistics

Obs. in ŝi = m 236 1432 273 1397 540 935
E[ε̂i] 1.0011 0.9982 0.9658
σ [ε̂i] 1.0004 1.0706 0.9508
CvM 0.0968 0.1971 0.1529
AD 0.5669 1.2970 1.2566

LB(50) 44.55 79.82*** 53.17*

ŜoR(m) 0.9508 0.9798 0.9582 0.9814 0.6581 0.7598

ŜoR 0.9759 0.9776 0.7298

Note: Standard errors are in parentheses. ***, ** and * represent significance at 1%, 5% and 10% respectively.
Observation counts and residual statistics are based on the estimated most probable state sequence. The CvM and
AD are Cramér-von-Mises and Andersen-Darling statistics (Stephens, 2013) for unit exponential distribution, with
the critical values bootstrapped from 100000 simulated unit exponential vectors. LB(50) is the Ljung-Box (Ljung

and Box, 1978) test statistics at lag 50. Definitions of ŜoR and ŜoR(m) can be found in (3.42) and (3.43).

To show that the two regimes estimated by the MS(2)-ACI(2,1)-V model indeed
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Figure 3.4 Distribution of estimated regimes over time for AIG 2016-03, INTC
2016-08 and SPY 2016-05
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Note: The x-axis represents fraction of trading hours with. The y-axis is the percentage of data in each regime.
Regime 1 and 2 correspond to the most probable state vector estimated in Table 3.4. Each bar counts the percentage
of data falling into a roughly 20-minute bin.

correspond to the regime-switching behaviour captured by the OLS regression in

the data section, we firstly plot the distribution of regimes against calendar time in

Figure 3.4. In the figure it is clear that for individual stocks, most of the observations

in regime 1 concentrate during the first 20 minutes of a trading day, and have almost

no occurrences in the middle of the trading hours. Observations in regime 2 are more

evenly spread throughout the day. Moreover, we could not detect such a pattern

for SPY, since the two regimes have similar distributions throughout the trading

hours. Figure 3.4 shows that the Markov chain assumption for the state vector of

the individual stocks are invalid due to the diurnal pattern, and the model can be

potentially improved by modelling the diurnal pattern of the transitional probabilities

explicitly.

More interestingly, the above results provide strong evidence for firm-specific informa-

tion content being captured by regime 1 for the individual stocks, as the distribution

of regime 1 across time resembles the well-documented diurnal pattern of price volatil-

ity (see, e.g. Andersen and Bollerslev (1997b)). This is also in line with Chordia,

Roll, and Subrahmanyam (2005) who find that new information is usually updated

to the price process within 30 minutes. To show that our findings are consistent

on all the stock-months considered, for each security we aggregate the observations

classified as regime 1 and 2 for the year 2016, and plot a yearly version of Figure 3.4

for each security in Figure C.4 in Appendix C.7.

We then produce scatter plots (Figure 3.5) and R2 difference plots (Figure 3.6)
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Figure 3.5 Scatter plots with regression line for AIG 2016-03, INTC 2016-08, SPY
2016-05 based on estimated regimes

Panel 1: AIG 2016-03

Regime 1

log price duration

lo
g
 v

o
lu

m
e

-5 -2.5 0 2.5 5 7.5 10
0

2.5

5

7.5

10

12.5

15

17.5

Regime 2

log price duration
lo

g
 v

o
lu

m
e

-5 -2.5 0 2.5 5 7.5 10
0

2.5

5

7.5

10

12.5

15

17.5

Panel 2: INTC 2016-08
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Panel 3: SPY 2016-05
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Note: Three 1-by-2 graphs from top to bottom: AIG 2016-03, INTC 2016-08, SPY 2016-05. X-axis: ln ẋδ
i,d . Y-axis:

˙lnVolδ

i,d . The regression line is obtained by (3.45), with regime 1 and 2 corresponding to the estimated regimes in
Table 3.4.
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similar to Figures 3.2 and 3.3 using the estimated states. Comparing Figure 3.5

with Figure 3.2, we can clearly observe the effect of the state classification of the

MS-ACI model. For AIG and INTC, the estimated b̂1 and R2 for regime 1 are smaller

compared to regime 2.11 This is also reflected in Figure 3.6 as the R2 differences

between regime 1 and 2 enlarge for all individual securities considered, compared

to those in Figure 3.3. For the SPY, we do not see any significance difference for

the scatter plots in Figures 3.2 and 3.5. The average R2 difference even decreases

to nearly zero in Figure 3.6, indicating that the MS-ACI model does not detect a

regime-switching behaviour in the volume-volatility relationship of the SPY.

Figure 3.6 R2 difference for the volume-duration regressions between observations in
regime 1 and 2 using the estimated state vector

Note: The figure plots R̂2
2 − R̂2

1 obtained from regression (3.45) for 10× 12 stock-month datasets, with R̂2
1 and R̂2

2
being the estimated R2 from the observations classified as regime 1 and 2 respectively. The estimated state vector
is obtained by the MS(2)-ACI(2,1)-V model. Each black dot represents the R2 difference for one stock-month
dataset. The vertical black dashed lines split observations from each stock, and between two vertical red lines, the
R2 differences are ordered chronologically. The horizontal red dots represents the yearly average R2 difference for
each stock. Figure 3.3 is also plotted as green dots for comparison.

Concluding our empirical analysis, our MS-ACI model detects two distinct regimes

in the high-frequency volume-volatility relationship of 9 individual securities. Ob-

servations from regime 1 cluster at the start and the end of a trading day, which

matches the typical diurnal pattern of information arrivals. Observations from regime

2 distributes evenly across the trading hours, and price durations and volume within

this regime has a much stronger correlation compared to the other regime. This

regime-switching behaviour cannot be found on the stock index ETF, SPY. We

claim that regime 1 is related to arrivals of firm-specific information into the market

11The findings on the differences between b̂1 for regime 1 and 2 are also consistent across all
stock-months, as is shown in Figure C.5 in Appendix C.7.
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based on the findings above. We propose a simple market microstructure-based

model that explains the lower β̂1 and R2 from the regime 1 as a result of informed

trading. The detailed model is presented in Appendix C.6. To summarize the

model briefly, the presence of informed trading can be viewed as an omitted explana-

tory variable in the residual that is negatively correlated with price duration, thus

resulting in lower β̂1 and R2 in the volume-duration regression for the informed regime.

Based on the above arguments, our model has several important implications. Firstly,

our model brings new insight to the information arrival theory on a high-frequency

level. With the estimates of most probable states, we can measure the speed of

overnight news updates and the informed volume impact of volatility directly in

a fully parametric framework. Secondly, the most probable state vector and the

posterior probabilities of the state vector can serve as a high-frequency measure of

the most probable state of the market (with or without information content) and

the probability of the state. Lastly, the difference |η̂vol(1)− η̂vol(2)| can be used to

assess the average impact of information flow on the volatility process.

3.6 Concluding Remarks

This chapter develops the Markov-Switching ACI (MS-ACI) model by extending

the Markov-switching structure to the original ACI model (Russell, 1999). The

stationarity and moment conditions for both the original ACI model and the MS-ACI

model under the exponential baseline are derived, which augments the stationarity

condition provided by Hautsch (2012). To overcome the path dependency problem

in the estimation of Markov-switching autoregressive models, we propose to estimate

the model via the SAEM algorithm combined with an approximated version of

Bauwens, Preminger, and Rombouts’s (2010) single move sampler. By introducing

the concept of Significance of Regimes (SoR), we demonstrate in our simulation that

our SAEM estimation scheme is capable of providing reliable parameter estimates for

the MS-ACI model in both the two- and three-regime case when there are significant

structural breaks in the data generating process. The quality of parameter estimates

of the MS-ACI model depends crucially on the magnitude of the discrepancy between

the regime-switching baselines of the intensity, which is summarized by our SoR
statistic. Our simulation analysis subsequently shows that the SoR statistic can serve

as an indicator of the relative quality of parameter estimates of the MS-ACI model

in comparison with the complete model assuming the latent vector is given, which

provides a diagnostic tool in the empirical application. The simulation also presents

the reliability of our estimation scheme and the improvement in efficiency of our
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approximated single step sampler.

The existing literature suggests that only the informed part, or the unanticipated

part of the trading volume should have an impact on price volatility (Admati and

Pfleiderer, 1988; Andersen, 1996; Aragó and Nieto, 2005; Bessembinder and Seguin,

1993; Clark, 1973; Copeland and Galai, 1983; Copeland, 1976; Easley, Kiefer, O’Hara,

and Paperman, 1996; Epps and Epps, 1976; Hussain, 2011; Kyle, 1985). We propose

a novel approach to split high-frequency transaction data based on the correlation

between trading volume and price duration, and relate this correlation to the in-

formation content of the price duration through a simple market microstructure

model. Based on our MS-ACI model, we detect two distinct regimes for all 9 stocks,

namely, a dominant regime with low information content and a minor regime with

high information content. The absence of this regime-switching behaviour in the

SPY data supports that this effect is mainly due to firm-specific news arrivals. As a

result, our model provides measures of information content for each price duration

as well as the impact of informed trading volume on price volatility.

The regimes we detect only exploit correlations between trading volume and price

duration, and the conclusions on information content of regimes are based on cer-

tain market microstructure models, such as Glosten and Milgrom (1985) or Easley,

Kiefer, O’Hara, and Paperman (1996). Therefore, our results are rather indirect,

which is somewhat similar to the PIN-type measures initially proposed by Easley,

Kiefer, O’Hara, and Paperman (1996). It would be helpful to address this issue by

including some physical news data to further test the regime classifications. This,

however, is beyond the scope of this chapter. In all, the validity of the information

content argument is irrelevant to the econometric properties of the model itself, as we

demonstrate that our model is fully capable of modelling regime-switching behaviour

in point processes.



Chapter 4

Conclusion

4.1 Summary of Main Findings

This thesis expands existing literature on point process based volatility estimator by

developing the following aspects of the estimator: (1) the asymptotic property of the

estimator; (2) the roles and relative importances of MMS covariates in high-frequency

volatility estimation with the estimator; (3) using the estimator as a platform to

model intraday regime-switching volume-volatility relationships.

In the first chapter, we propose the RBV class of estimators by generalizing the

original duration-based volatility estimator (Engle and Russell, 1998; Nolte, Taylor,

and Zhao, 2018; Tse and Yang, 2012). We prove its asymptotic properties and show

that the NPD estimator (Nolte, Taylor, and Zhao, 2018) can be regarded as both an

RV estimator and a RBV estimator that is more efficient than RV estimators under

calendar time or tick time sampling. We also introduce the NPR estimator which is

in theory twice as efficient as the NPD estimator. More importantly, we demonstrate

that imposing a parametric structure on the RBV model can potentially further

improve its efficiency in volatility estimation. These results establish theoretical

foundation for the simulation and empirical results in Engle and Russell (1998), Tse

and Yang (2012), and Nolte, Taylor, and Zhao (2018).

We examine the properties of the NPD estimator in detail, and analyse its bias

in the presence of MMS noise, jumps, time discretization and price discretization. We

show that the theoretical superior efficiency of the NPD estimator over calendar time

RV can only be achieved when we sample sparsely enough, as the NPD estimator is

more sensitive to MMS noise than calendar time RV. To resolve this problem, we

propose the NPDz estimator which smooth the observed price exponentially, and

we show that by choosing the smoothing parameter optimally, the NPDz estimator
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outperforms common calendar time noise-robust RV estimators such as RK and

pre-averaged RV when the sampling frequency is moderate to small.

In the second chapter, we include MMS covariates in the LL-ACD model, and

show that the inclusion leads to more precise volatility estimates. Specifically, we

include both contemporaneous and one duration lagged versions of trading volume,

bid-ask spread, order flow, order imbalance, number of trades, quote depth and quote

difference measures in the LL-ACD model, and use a BSR approach to rank and select

the optimal number of variables based on their contribution to the goodness-of-fit

of the model. Our findings suggest that the contemporaneous number of trades

and order flow are the two variables that are considered most important in intra-

day volatility modelling, and that contemporaneous variables are generally more

important than the one duration lagged ones. The rankings of the variables do vary

considerably cross-sectionally, but are fairly stable in different periods. Moreover, we

find that including the optimally selected MMS covariates can significantly improve

the goodness-of-fit of the LL-ACD model in both in-sample and out-of-sample set-

tings, while including all MMS covariates lead to a deterioration in the out-of-sample

performance of the model. This result validates the reliability of the variable selection

from the BSR method.

Using trade and quote data from 29 highly liquid stocks and 1 market index ETF, we

construct daily and intraday volatility estimates from the plain LL-ACD model (-P

model), the LL-ACD model with optimally chosen MMS covariates (-K model) and

the LL-ACD model with all MMS covariates (-A model). Using daily and intraday

Realized Kernels as a benchmark, our results suggest that volatility estimates from

the -K model always significantly outperform those from the -P model by having

a smaller distance from the benchmark, whereas the performance of the -A model

does not differ significantly from the -K model. More importantly, we show that the

LL-ACD-K model can deliver accurate volatility estimate even when the Realized

Kernel cannot be reliably constructed due to a lack of data.

In Chapter 3, we develop the MS-ACI model and updates the stationarity con-

dition for the ACI and the MS-ACI model. We propose to use the SAEM algorithm

to estimate our model, and discuss details of the implementation of the algorithm

and evaluation of the goodness-of-fit of the model. Specifically, we introduce the SoR
measure and argue that it can be used to assess the necessity of a regime switching

structure in the model. Our simulation results show that the MS-ACI model can be

reliably estimated by the SAEM algorithm, and that the MS-ACI model performs
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best when the underlying regime-specific densities are distinct from each other.

We apply the MS-ACI model to the trade and quote data of 9 highly liquid stocks

and a stock index ETF to examine whether there exist intraday regime-switching

volume-volatility relationships in the data. Our empirical findings suggest that there

exist two distinct regimes for the stocks, but not for the stock index. One regime

concentrates at the beginning and end of a trading day, which we believe is associated

with a higher information content. Another regime spreads evenly through out

trading days, and can be interpreted as a regime with low information content. Our

MS-ACI model provides new insights into intraday dynamics of volatility and trading

process, and measures of the informativeness of the market can be constructed based

on the posterior probability of regime classification.

4.2 Implications

This thesis has several important implications for both academic researchers and

practitioners. Firstly, results in Chapter 1 indicate that the renewal sampling scheme

is a superior sampling scheme than other conventional sampling schemes for RV, such

as calendar time or tick time. The main advantage of the renewal sampling scheme

is that one uses the price path to construct the renewal sampling scheme, which

effectively uses all the observations without any discards. Chapter 1 also explains

the reason why the PD estimator in Tse and Yang (2012) outperforms the RV-type

estimators, as the parametric structure improves the precision of volatility estimates

for each price duration.

Chapter 2 highlights that information in the MMS variables are indeed highly

relevant to high-frequency volatility estimation. As the MMS variables are almost

always discarded in the RV approach, it further illustrates the importance of a

parametric structure, which enables the use of a richer information set to pin down

the intraday volatility process. Concluding from above, we highly advocate the use

of the parametric point process based approach over the RV approach, as the point

process based approach is less dependent on the availability of intraday data, thus

can be applied to a wider set of assets.

Finally, Chapter 3 presents some interesting possibilities on the application of the

point process based volatility estimator to MMS research. Although volatility is a

crucial input in MMS models, its latent nature presents a big challenge for researchers

to include it in a high-frequency MMS model. The parametric point process based
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approach enables researchers to analyse relationship between MMS covariates and a

valid volatility estimator, which renders the empirical applications of MMS theories

more convincing.

4.3 Limitations and Future Researches

As with all studies, this thesis has various limitations which provide grounds for

future research.

One of the limitations that applies to all three chapters is a good rule to select

the truncation threshold δ for the duration-based volatility estimator. In Chapter

1, we conclude that δ should be large enough so that the MMS noise effect can be

ignored, similar to the RV-type measures. Therefore, in Chapter 2 and 3 we apply

a similar criterion as in the RV literature and choose a δ such that the sampling

frequency corresponds to once every five minutes. However, the performance of this

choice is not assessed empirically in this thesis. This choice has two more drawbacks

that requires further clarification: (1) By choosing δ depending on the average length

of price durations, the chosen δ is itself an endogenous random variable that depends

on volatility of the same period, and the effect of a random δ on the RBV and PRBV
estimators is yet to be verified. (2) This choice of δ does not consider the size of the

MMS noise in general. From Chapter 1, it may be possible to choose δ based on the

autocorrelation of the returns, but this is also subject to future research.

In Chapter 1, we do not provide the asymptotic properties when the intensity

function of the PRBV estimator needs to be estimated by a parametric model instead

of assuming to be known. This result is actually derived theoretically and will be

covered by the following paper which focuses on the PRBV estimator. Due to length

constraints, it is not included in the paper. Chapter 1 also leaves some interesting

questions that calls for future research. Firstly, the properties of the range duration

based volatility estimators are to be verified. Secondly, the existence of a simple

method to correct for the MMS and time discretization bias for the NPD estimator is

still unclear. Finally, the use of exponentially smoothing the observed price process

to mitigate MMS noise can be verified in detail.

Chapter 2 also leaves some open questions to be addressed. Firstly, we need to extend

the theoretical framework in Chapter 1 to account for the explanatory variables

in the ACD model. This is because the volatility estimates are derived by condi-

tioning on a richer information set, and the renewal property of the point process
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in business time may not hold in this situation. Also, it would be interesting to

include other sources of information in the model, such as public news data and

high-frequency option data, and assess whether they provide extra information to

model high-frequency volatility in addition to the MMS variables used in this chapter.

In Chapter 3, a potential limitation of the empirical findings is that the link from

the regime classifications to the information content of the regimes requires further

verification, due to the latent nature of information arrivals into the market. One

could further augment the model by using physical news arrival data to examine the

validity of this link.

4.4 Final Remarks

To sum up, this thesis presents important developments to the literature of point

process based volatility estimators both in theory and applications. The findings

show that the point process based estimator uses data more efficiently than the

widely-applied RV approach, and has the advantage to use information other than

the price process in volatility modelling and estimation. This thesis establishes the

theoretical foundation of the point process based volatility estimator and advocates

the use of point process based approach in future volatility modelling and MMS

research.
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Easley, D., M. M. López de Prado, and M. O’Hara (2012): “Flow Toxicity
and Liquidity in a High Frequency World,”Review of Financial Studies, 25, 1457–
1493.

Easley, D., and M. O’Hara (1992): “Time and the Process of Security Price
Adjustment,”The Journal of Finance, 47(2), 577–605.

Engle, R. F. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates
of the Variance of United Kingdom Inflation,” Econometrica, 50, 987–1007.

Engle, R. F., and J. R. Russell (1998): “Autoregressive Conditional Duration: A
New Model for Irregularly Spaced Transaction Data,”Econometrica, 66, 1127–1162.

Epps, T. W., and L. M. Epps (1976): “The Stochastic Dependence of Security Price
Changes and Transaction Volumes: Implication For The Mixture-of-Distributions
Hypothesis,” Econometrica, 44, 305–321.

Feller, W. (1941): “On the Integral Equation of Renewal Theory,” Annals of
Mathematical Statistics, 12, 243–267.

Foucault, T. (1999): “Order flow composition and trading costs in a dynamic limit
order market,” Journal of Financial Markets, 2(2), 99–134.
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Appendix A

Appendix to Chapter 1

A.1 The Time Changed Compounded Poisson Pro-

cess

Following Oomen (2006), the price process {P(t)}t>0 is specified as:

P(t) =
N(t)

∑
i=1

ri, ri ∼ i.i.d.N (0,σ2), (A.1)

where N(t) is a inhomogeneous Poisson process with time-varying intensity function

λ (t|Ft) = E[N(t)]. The integrated variance of this process is defined by:

IV (0, t) = σ
2
∫ t

0
λ (s|Fs)ds. (A.2)

It then follows directly from Theorem 1.7 that the time changed counting process

Ñ(τ(t)) = N(t) where τ(t) = IV (0, t) follows a homogeneous Poisson process with

constant intensity σ−2. Since ri is i.i.d., P̃(τ(t)) = P(t) is by definition a Lèvy

process.

A.2 Proof to Theorem 1.5

We start by listing some important facts about the renewal process X̃(τ(t)) and the

inter-epoch durations D̃i in business time. Firstly, from Assumption 1.1, we have

limt→∞ τ(t) → ∞, so the two limiting conditions t → ∞ and τ(t) → ∞ can be used

interchangeably. Next, from Theorem 1.1 we have:

lim
t→∞

X̃(τ(t))
τ(t)

a.s.→ 1
µ

(A.3)
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Since 0 < µ < ∞, by applying Theorem 2.2 in Gut (2012) we see that:

lim
µ→0

X̃ (1)(t ′)µ
τ(T )

=
X̃ (µ)(τ(T ))µ

τ(T )
a.s.→ 1, (A.4)

Now from Theorem 2.3 in Gut (2012) we have:

lim
t→∞

∑
X̃(τ(t))
i=1 (D̃i −µ)

σ
√

X̃(τ(t))
d→ N (0,1) (A.5)

Applying (A.4) and substituting X(t) = X̃(τ(t)) and RBV (0, t) = X̃(τ(t))µ into the

above equation yield the desired result.

A.3 Asymptotic Properties of the RBV Estimator

under Infill Asymptotics

The reason why the sprawl asymptotics is preferred in the renewal literature is that

usually we assume the data generating parameters µ and σ2 to be fixed, and we

estimate these parameters by an infinitely long sample. In our case, we can actually

change µ arbitrarily by altering the stopping criteria S (ti). In this section we use the

superscript (µ) to distinguish between the renewal sampling schemes with different µ .

We consider the asymptotic properties of the RBV estimator defined in Defini-

tion 1.5 under a fixed sampling period (0,T ). We assume that the price process

follows the assumptions in Assumption 1.1. The quantity of interest is therefore

IV (0,T ) = τ(T ) =
∫ T

0 σ2
P(s)ds, which is a random variable. The durations in business

time {D̃(µ)
i }i=1:X(T ), are still i.i.d., so the point process X̃ (µ)(τ(t)) is still a renewal

process. We can think of the quantity X̃ (µ)(τ(T )) as the counts of renewal epochs

when the renewal process is stopped randomly at time τ(T ).

To derive the counterpart result of Theorem 1.5 under infill asymptotics, we re-

quire the following additional assumptions on P(t) and X (µ)(t):

Assumption A.1. For a fixed time period (0,T ):

1. (Divergence of the sampling frequency) We assume that limµ→0 X (µ)(T )→ ∞.

2. (Convergence of the age density) We assume that limµ→0
µn+1

(n+1)µ → 0 for all

n = 1,2, . . ., where µn is the n-th moment of D̃(µ)
i .



A.3 Asymptotic Properties of the RBV Estimator under Infill Asymptotics | 149

Assumption A.1.1 ensures that by sampling with an infinitesimally small µ in

business time, the renewal sampling frequency goes to infinity. This implies that the

price process in business time must contain either a Brownian motion component or

an infinitely active jump component, or both. A direct consequence of Assumption

A.1.2 is that:

lim
µ→0

X̃ (µ)(τ(T ))

∑
i=1

D(µ)
i

a.s.→ τ(T ). (A.6)

This is due to the fact that the age process defined in Definition 1.2 converges

uniformly to a point mass at zero as µ approaches zero, so the arrival time of the

last epoch τ(tX(T )) converges almost surely to a random variable τ(T ). Another

implication of Assumption A.1 is that:

lim
µ→0

X̃ (µ)(τ(T ))µ a.s.→ τ(T ). (A.7)

To prove this result, note that for any µ, we can standardize the renewal process

X̃ (µ)(τ(T )) by scaling the time by a factor of 1/µ . The resulting process is a renewal

process with unit mean duration and all other moments proportional to the original

process, which we denote by X̃ (1)(t ′) where t ′ = τ(T )/µ. Note that limµ→0 t ′ → ∞,

and from the Elementary Renewal Theorem in Theorem 1.1, we have:

lim
t ′→∞

X̃ (1)(t ′)
t ′

a.s.→ 1, (A.8)

Revert the scaling, we see that:

lim
µ→0

X̃ (1)(t ′)µ
τ(T )

=
X̃ (µ)(τ(T ))µ

τ(T )
a.s.→ 1 (A.9)

The asymptotic result of the RBV estimator in the infill asymptotics case is derived

by a direct application of Corollary 6.4 in Häusler and Luschgy (2015). Since µ can

be chosen arbitrarily, we choose µ(n) = n−1 with n = 1,2, . . ., so that µ(n)→ 0 is

equivalent to n → ∞. We then construct the following random variable:

Zni =
D(µ(n))

i −µ(n)
µ(n)−0.5σ(n)

. (A.10)

Note that Zni is a square integrable martingale difference array w.r.t. its natural fil-

tration Fnk, and E[Z2
ni|Fn,i−1] = µ(n). Additional technical assumptions are required

for Corollary 6.4 in Häusler and Luschgy (2015) to hold:

Assumption A.2. Technical assumptions for the stable convergence of the RBV
estimator:
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1. (Finiteness) X (µ(n))(τ(T )) is a finite stopping time w.r.t. Fnk for every n ∈ N.

2. (Measurability) τ(T ) is a measurable random variable in G = σ(
⋃

n∈NGn∞)

where Gn∞ = σ(
⋃

∞
k=0 Gnk) and Gnk =

⋂
m>n Fmk.

3. (Conditional Lindeberg’s condition):

lim
n→∞

X̃ (µ(n))(τ(T ))

∑
i=1

E[Z2
ni1l {|Zni≥ε}|Fn,i−1]

p→ 0 (A.11)

for every ε > 0.

We can derive from E[Z2
ni|Fn,i−1] = µ(n) and (A.7) that:

lim
n→∞

X̃ (µ(n))(τ(T ))

∑
i=1

E[Z2
ni|Fn,i−1]

p→ τ(T ), (A.12)

Therefore we can apply Corollary 6.4 in Häusler and Luschgy (2015) to Zni, which

yields:

lim
n→∞

X̃ (µ(n))(τ(T ))

∑
i=1

Zni
s.t.→
√

τ(T )N (0,1), (A.13)

where s.t. refers to stable convergence in law. (A.13) leads to the following asymptotic

distribution of RBV :

lim
µ→0

RBV (0,T )− IV (0,T )√
IV (0,T )µ−1σ2

d→ N (0,1), (A.14)

Thus, similar asymptotic results to Theorem 1.5 also holds under the setting of infill

asymptotics, in the expense of additional assumptions in Assumptions 4 and 5.

A.3.1 Relationship to the RV Estimator

The infill asymptotics results for the RBV estimator can be linked naturally to the RV

estimator, as we can interpret the renewal sampling scheme as a stochastic sampling

scheme for the RV estimator. We start with the assumption that P(t) is a continuous

local martingale to which Theorem 1.4 can be applied. For a given µ , let us denote

the renewal sampling scheme as X (µ)(t), the sampling times as {t(µ)i }i=1,2,··· and the

inter-event return as r(µ)i = P(t(µ)i )−P(t(µ)i−1). We define the renewal RV and the RBV
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estimator as

RV (µ)(0,T ) =
X (µ)(T )

∑
i=1

(r(µ)i )2,

RBV (µ)(0,T ) = X (µ)(T )µ.

(A.15)

From the theory of quadratic variation and (A.14) we know that both estimators are

consistent, and converge to IV (0,T ). Specially, for the RV (µ) estimator, due to the i.i.d-

ness of the inter-event arrival time in business time denoted by D̃(µ)
i = τ(t(µ)i )−τ(t(µ)i−1),

r(µ)i is also i.i.d. From the martingale property of the Wiener process we have:

E[r(µ)] = 0,E[(r(µ)i )2|D̃i] = D̃i,E[(r
(µ)
i )2] = µ. (A.16)

This suggests that a natural and consistent estimator of µ is just the sample moment

of the squared return, µ̂ = 1
X (µ)(T ) ∑

X (µ)(T )
i=1 (r(µ)i )2. Obviously, by using µ̂ instead of

µ , the RBV (µ) estimator coincides with the RV (µ) estimator. The cost of using µ̂ in

the RBV (µ) estimator is then a larger asymptotic variance. Using Corollary 3.11 in

(Fukasawa, 2010b) and Assumption A.1, we see that as µ → 0:

V[RV (µ)(0,T )]→ 2
3

X (µ)(T )

∑
i=1

(r(µ)i )4. (A.17)

When the unconditional kurtosis κ(µ) of r(µ)i exists, the above asymptotic variance

converges to 2
3X (µ)(T )κ(µ)µ2, which is due to the i.i.d.-ness of r(µ)i .

The asymptotic variance 2
3X (µ)(T )κ(µ)µ2 has some very interesting implications.

Firstly, if κ = 3 and r(µ)i is normally distributed, we have:

V[RV (µ)](0,T )→ 2IV (0,T )2/X (µ)(T ),

which is identical to the asymptotic variance of the RV estimator sampled in business

time (e.g. Hansen and Lunde (2006), Oomen (2006)). The business time RV can

indeed be considered as a RBV estimator with a constant duration in business time.

Moreover, if we can sample r(µ)i by setting κ(µ) = 1, then the asymptotic variance

of the RV (µ) estimator can be minimized, and is equal to 2IV (0,T )2/3X (µ)(T ). This
implies that the optimal renewal RV estimator must have r(µ)i following a two-

point distribution. We show in Section 1.5 that, the non-parametric duration-based

volatility estimator in Nolte, Taylor, and Zhao (2018) is both a RBV -class estimator

and an optimal renewal RV estimator.
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A.3.2 End-of-Sample Bias

In practice, we do not have data of infinite length, and the sample has to stop

somewhere. Therefore, there will be a small End-of-Sample (EoS) bias for the

renewal process when the last renewal epoch is before the end of the sample. The

correction of this bias can be obtained from the second order asymptotic expansion

of the renewal function as in Proposition 1.1. Let T and τ(T ) denote the endpoint

of the sampling interval in calendar and business time respectively, the EoS bias

correction is:

EoS = τ(T )−E[X̃ (µ)(τ(T ))]µ = 0.5µ − σ2

2µ
. (A.18)

Therefore the bias correction is smaller than 0.5µ , and can even be negative when

σ2 > µ2. In theory one should always add this bias correction to the RBV and PRBV
estimator. Nevertheless, in the infill asymptotics case, when σ2

µ
→ 0 as µ → 0, we

have EoS → 0.

A.4 Proof of Corollary 1.3

To prove the corollary, we use the Doob-Meyer decomposition of a point process. In

detail, any Ft-adapted point process X(t) is a submartingale, and for a submartingale,

the following decomposition is unique:

X(t) = Λ(t)+M(t), (A.19)

where Λ(t) is a Ft-predictable increasing process called the compensator of X(t), and
M(t) is a Ft martingale. The compensator process and the intensity process is linked

via the following relationship:

Λ(t) =
∫ t

0
λ (t|Ft)dt (A.20)

Therefore, to prove the corollary, we firstly show that under business time, Λ̃(τ(t)) =
Λ(t) is the compensator of the process X̃(τ(t)). Note that under business time, we

have the following decomposition for X̃(τ(t)):

X̃(τ(t)) = Λ̆(τ(t))+ M̆(τ(t)), (A.21)

in which Λ̆(τ(t)) is the compensator of X̃(τ(t)) and M̆(τ(t)) is a martingale in business

time. Moreover, if we change X(t) from calendar time to business time, we have that:

X̃(τ(t)) = Λ̃(τ(t))+ M̃(τ(t)). (A.22)
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Importantly, M̃(τ(t)) is also a martingale due to the fact that the time change preserves

the martingale property according to the optional stopping theorem. Then from the

uniqueness of the Doob-Meyer decomposition we see that for all t, M̃(τ(t)) = M̆(τ(t))
and therefore Λ̆(τ(t)) = Λ̃(τ(t)).

By the definition of conditional intensity we see that:

Λ̃(τ(t)) =
∫

τ(t)

τ(0)
λ̃ (τ(s)|Fs)dτ(s) =

∫ t

0
λ (s|Fs)ds,= Λ(t) (A.23)

and it is therefore clear that λ̃ (τ(t)|Ft) is the conditional intensity process of X̃(τ(t)).
Now, since the above equation holds for an arbitrary t, it must also hold that:

λ̃ (τ(t)|Ft)dτ(t) = λ (t|Fs)dt. (A.24)

Substituting dτ(t) = σ2
p(t)dt into the above equation yields the desired result.

A.5 Proof of Corollary 1.1

To prove the first part of the corollary, we only need to show that Ri is a monotonically

increasing function of D̃i in the sense that for any D̃i > D̃ j, Ri > R j.

From the proof of Proposition 1.3, we can write Ri in terms of λ̃ (τ(t)|Ft):

Ri = µ

∫ ti−1+Di

ti−1

λ (s|Fs)ds = µ

∫
τ(ti−1)+D̃i

τ(ti−1)
λ̃ (τ(s)|Fs)dτ(s). (A.25)

Note that by the definition of conditional intensity and due to that the process X̃(τ(t))
is renewal, we have λ̃ (τ(ti)+ s|Fti) = hD̃(s), where hD̃(s) is the hazard function of

the renewal process X̃(τ(t)) defined by:

hD̃(s) =−d ln(1−FD̃(s))
ds

, (A.26)

in which FD̃(s) is the CDF of D̃i. The cumulative hazard function HD̃(x) is defined
as:

HD̃(s) =
∫ s

0
hD̃(u)du =−ln(1−FD̃(s)). (A.27)
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The equivalence between hD̃(s) and λ̃ (τ(ti)+s|Fti) suggests the following relationship

which holds true for all t:∫
τ(ti−1+t)

τ(ti−1)
λ̃ (τ(s)|Fs)dτ(s) =

∫ ti−1+t

ti−1

λ (s|Fs)ds =− ln(1−FD̃(τ(ti−1 + t)− τ(ti−1)).

(A.28)

Taking t = Di and substitute into the equation above:

Ri =−µ ln(1−FD̃(D̃i)). (A.29)

Note that the term − ln(1−FD̃(D̃i)) in the above equation is the exponential inverse

probability integral transform of D̃i which follows an i.i.d. unit exponential distribu-

tion. This is consistent with the result that Ri is i.i.d. exponential. More importantly,

− ln(1−FD̃(D̃i)) is a monotonically increasing function of D̃i, which completes the

proof of the first part.

To prove the second part of the corollary, we note that when D̃i is i.i.d. expo-

nential with mean µ and variance µ2, λ̃ (τ(t)|Ft) = µ−1. Apply Proposition 1.3 and

observe that σ2
p(t) = µλ (t|Ft) = g(t|Ft) as desired.

A.6 Simulation of ρ (δ ) and ρ (r) for the PD and PR

estimators

To simulate ρ(δ ) and ρ(r), we firstly simulate a standard Wiener process. Let

∆Wi ∼ N (0,∆), and the (discrete) Wiener process is simulated as:

Wj =
∞

∑
k=1

∆Wk. (A.30)

In the simulation we set ∆= 10−5. The stopping times {D̃(δ )
i }i=1:N and {D̃(r)

i }i = 1 : N
are then constructed by setting δ = r = 1 based on this Wiener process as follows:

D̃(δ )
i =

1
∆

inf
j>i−1

{Wj : |Wj −Wi−1| ≥ 1},

D̃(r)
i =

1
∆

inf
j>i−1

{Wj : sup
i−1<s< j

(Ws)− inf
i−1<s< j

(Ws)≥ 1}.
(A.31)

We choose N = 1000000. Note that there will be a small truncation bias due to the

discreteness of the simulated Wiener process. This will cause the simulated D̃(δ )
i and

D̃(r)
i to be biased upward slightly, and the bias vanishes as ∆ ↓ 0. This will not have
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a significant impact as long as ∆ is relatively small compared to δ or r. Based on the

simulated D̃(δ )
i and D̃(r)

i , we can construct R(δ )
i and R(r)

i as:

R(·)
i =−E[D̃(·)] ln(1− F̂D̃(·)(D̃

(·)
i )), (A.32)

in which F̂D̃(·)(x) is the empirical CDF of D̃(·). We do not use the theoretical CDF

because it is not available in closed form. The correlation ρ(·) is then computed

based on {D̃(·)}i=1:N and {R(·)
i }i=1:N . We plot the simulated moments for {D̃(·)}i=1:N

and {R(·)
i }i=1:N and the simulated ρ(·) in Table A.1. V[D̃(·)

i −R(·)
i ] of an arbitrary δ

Table A.1 Simulated moments for D̃(·) and R(·)
i and the simulated ρ(·)

E[D̃(δ )] V[D̃(δ )] E[R(δ )
i ] V[R(δ )

i ] ρ(δ ) V[D̃(δ )
i −R(δ )

i ]

Simulated 1.0033 0.6707 1.0000 0.9999 0.9998 0.0330
Theoretical 1 0.6667 1 1 - 0.0340

E[D̃(r)] V[D̃(r)] E[R(r)
i ] V[R(r)

i ] ρ(r) V[D̃(r)
i −R(r)

i ]

Simulated 0.5036 0.0844 0.5000 0.2500 0.9915 0.0463
Theoretical 0.5 0.0833 0.5 0.25 - 0.0471

Note: δ = r = 1. N = 1000000. Theoretical values of the simulated moments can be found in (1.26) and (1.30).

Note that for theoretical moments of V[D̃(·)
i −R(·)

i ] we plug in the simulated ρ(·) in the relationship: V[D̃(·)
i ]+V[R(·)

i ]−

2ρ(·)
√

V[D̃(·)
i ]V[R(·)

i ].

or r can be easily obtained by scaling the corresponding variables.

A.7 An Approximated Time Discretization Bias

Throughout this section we assume r j = r∗j , that is, the MMS noise is absent in the

price process. We start by decomposing r(δ )i as:

r(δ )i =

j(δ )i−1+M(δ )
i

∑
j= j(δ )i−1

r j, (A.33)

where j(δ )i is the observation index of t(δ )i , and M(δ )
i is the number of observations in

the i-th price duration (excluding the starting point). We see that since we assume

r j to be strongly mixing and strictly stationary with finite moments, from the central

limit theorem (e.g. Peligrad (1986), Billingsley (2009)) it holds that:

lim
N→∞

N

∑
n=1

r j ∼ N (0,NV [r j]), (A.34)
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where V [r j] = E[d̃ j] is the unconditional variance of the tick return. Now consider Ni

being a sufficiently large random variable, so that ∑
Ni
n=1 r j is approximately mixture

normal. The absolute price change point process truncates this random variable

∑
Ni
n=1 r j whenever |∑Ni

n=1 r j| ≥ δ , and the distribution of r(δ )i becomes very complicated.

To provide an approximated result, we treat the sequence r j as i.i.d. normal variates

with variance V[r j]. Let Si = ∑
Ni
j=1 r j denote the partial sum of the returns till step

Ni, the process Si is then a Gaussian random walk. For a truncation threshold δ , we

use the joint distribution {N(δ )
i ,S

N(δ )
i
} to approximate {M(δ )

i ,r(δ )i }. The asymptotic

expansion of E[S2
N(δ )

i

] as δ → ∞ is given in Lotov (1996):

E[S2
N(δ )

i
] = δ

2 +2δ

√
V[r j]K +V[r j]K

2 +
1
4
+o(1), (A.35)

where K ≈ 0.58258087 is defined through: K = 1√
2π

limn→∞[2
√

n−∑
n
m=1 m−1]. From

Wald’s identity we also have that: E[S2
N(δ )

i

] = V[r j]E[N
(δ )
i ].

In this Gaussian random walk setting, S
N(δ )

i
can be interpreted as the return for

the i-th price duration. As a result, the expected T D bias is just: T D(δ )(0, t) =

∑
X(t)
i=1 S2

N(δ )
i

−X(t)δ 2. Apply Wald’s identity once again, we have E[T D(δ )(0, t)] →

E[X(t)](E[S2
N(δ )

i

]− δ 2) in the limit. Also, E[X(t)] in the limit converges to IV (0,t)
E[S2

N(δ )
i

]

which is from the property of renewal processes. The approximated T̃ D bias is

therefore:

lim
δ→∞

T̃ D
(δ )

(0, t)→ IV (0, t)
E[S2

N(δ )
i

]
E[S2

N(δ )
i

−δ
2]

= IV (0, t)(1− 1
1+O(δ−1)

)

(A.36)

which converges to zero as δ → ∞ with a rate of δ−1.

A.8 Determinants of the Bias of the NPD Model

We provide a simple example to illustrate the bias of the NPD estimator as a function

of δ via simulation. Based on (1.43), we assume that the arrival of τ(t j) in business

time follows a homogeneous Gamma process with intensity measure v(x) = γ

xeλx . The

inter-observation durations in business time are then i.i.d. Gamma distributed:
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d̃ j ∼ Γ(γ,λ ). Let z∗j denote an i.i.d. standard normal variable, we have:

r∗j = z∗j
√

d̃ j ∼ N (0, d̃ j). (A.37)

so the tick return is unconditionally mixture normal. This simple structure allows

for a leptokurtic distribution of r∗j with the following sample moments: V[r∗j ] = γλ ,

K[r∗j ] = 3+ 3
γ
. For the noise term Vj, we assume that it follows an AR(1) process:

Vj = ρVj−1 + v j, v j ∼ N
(

0,
σ2

v
1−ρ2

)
. (A.38)

To ensure that Vj complies with Assumption 1.2, we further require that |ρ| < 1
and v j ⊥⊥ r∗j . The unconditional variance Vj is therefore σ2

v for any ρ ∈ (−1,1). The
tick return r j is therefore conditionally normally distributed with an ARMA-type

autoregressive structure. We will refer to this model as the Gamma subordinated

transaction (GST) model. Some moment conditions for r j are summarized in Ap-

pendix A.9.

To illustrate the asymptotic properties of the NPD estimator in this setting, we

construct the X (δ )(t) process for various parameter settings and a range of δ based

on the simulated Pi. We then compare the simulated µ(δ ) with δ 2, which describes

the bias of the NPD estimator. To show this difference graphically, we plot the

volatility signature plot (Andersen, Bollerslev, Diebold, and Labys, 2000) of the NPD
estimator for a theoretical interval using the asymptotic property of X (δ )(t). The

volatility signature plot is constructed by plotting E[NPD(0, t)] = IV (0,t)
µ(δ ) against δ

for some finite IV (0, t), and comparing it to the true integrated variance. The mean

duration in business time can be simulated by collecting the number of transactions

M(δ )
i required to trigger the i-th price duration, and the mean duration µ(δ ) can be

obtained as:

µ(δ ) =
γλ

N

k

∑
i=1

M(δ )
i , (A.39)

in which k is the size of the simulation. Alternatively, it can be simulated by the

renewal RV estimator (with a larger simulation error) as:

µ(δ ) =
1
N

k

∑
i=1

(r(δ )i )2. (A.40)

For each δ , we choose k = 100000. All the parameters of the GST model are set for

illustrative purposes only.
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The first case we examine is the case where Vi = 0 and V [r∗j ] = 1. We set the

kurtosis K[r∗j ] to be 20, 10, 4 and 3 to examine the effect of an excess kurtosis on the

NPD estimator.1 The volatility signature plots of the NPD estimator under these

parameter settings are presented in Figure A.1. In the simulation we set IV (0, t) = 1
with δ ranging from 0.1 to 10 with a step size of 0.1. From Figure A.1 we see that,

as discussed in the previous section, the NPD estimator is downwardly biased in

the absence of MMS noise due to Bias(δ )T D, which is a function of V [r∗j ] and kurtosis.

Generally, holding the variance constant, r∗j with heavier tails will have a larger

truncation bias on average, as is shown in Figure A.1. It is also clear that the bias

decays slowly as δ increases, which corroborates our result in A.7.

Figure A.1 Simulated volatility signature plot for the NPD estimator on the GST
model with no MMS noise

0 2 4 6 8 10
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Note: We simulate µ(δ ) based on (A.39) for δ ∈ [0.1,10] with a step size of 0.1. For each δ , the volatility signature

curve is computed by IV (0, t) δ 2

µ(δ ) where IV (0, t) = 1. Each circle represents a volatility estimate from the NPD
estimator computed at the value of δ .

In the next case, we examine the effect of various sizes of i.i.d. MMS noise by

choosing ρ = 0 with σ2
v ∈ {0,0.5,1,2}. We will use the same parameter settings from

the previous case with K[r∗j ] = 4 for illustration, as the effect of kurtosis is similar for

both cases. The volatility signature plots are presented in Figure A.2. The figure

corroborates our previous discussion on the truncation bias and the MMS noise

bias. From the graph, we see that when the size of the noise is small (σ2
v ≤ 0.5),

the MMS noise bias is smaller than the truncation bias and the volatility signature

curve converges from below. When the size of the MMS bias is large enough to

1For the first three cases, the corresponding parameter values for (γ , λ ) are ( 3
47 ,

47
3 ), ( 3

17 ,
17
3 ) and

(3, 1
3 ) respectively. When K[r∗j ] = 3, d̃ j = 1 for all j so that r∗j is i.i.d. normal.
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compensate for the truncation bias, the volatility signature curve has a hump shape

and converges from above. This result is consistent with Figures 2, and 3 in Nolte,

Taylor, and Zhao (2018), which document a similar curve with a different setting.

Also, in the case where the MMS bias is large enough, we see that the volatility

signature curve intersects the true IV (0, t) at some finite δ so the NPD estimator is

unbiased. Unfortunately, we are unable to derive an analytical form for this particular

NPD estimator as we cannot estimate the amount of Bias(δ )T D.

Figure A.2 Simulated volatility signature plot for the NPD estimator on the GST
model with i.i.d. MMS noise

Note: We simulate µ(δ ) based on (A.39) for δ ∈ [0.1,10] with a step size of 0.1. For each δ , the volatility signature

curve is computed by IV (0, t) δ 2

µ(δ ) where IV (0, t) = 1. The GST model parameters are γ = 3 and λ = 1/3 for all four

cases. Each circle represents a volatility estimate from the NPD estimator computed at the value of δ .

Figure A.3 shows the case with AR(1) MMS noise. In the simulation we use

the settings from the previous case with σ2
v = 0.5 and ρ ∈ {−0.9,−0.5,0,0.5,0.9}, so

that the unconditional variance of the noise remains unchanged. The figure shows

that, negative autocorrelation inflates Bias(δ )MMS when δ is small, and affects the shape

of the volatility signature plot. We can clearly see a hump-shaped volatility signature

curve for ρ =−0.9. The effect of negatively correlation decays as δ increases, and the

volatility signature curves converge to the i.i.d. noise case. The impact of positively

correlated noise is more persistent and has less of an impact on the NPD estimator.

However, in the positively correlated noise case the volatility signature curve deviates

from the i.i.d. case as ρ increases.

We also include price discretization in the example. As discussed in Section 1.6.5, we

assume that r j is discrete with the support {· · · ,−2ε,−ε,0,ε,2ε, · · ·}. We construct



160 | Appendix to Chapter 1

Figure A.3 Simulated volatility signature plot for the NPD estimator on the GST
model with AR(1) MMS noise

Note: We simulate µ(δ ) based on (A.39) for δ ∈ [0.1,10] with a step size of 0.1. For each δ , the volatility signature

curve is computed by IV (0, t) δ 2

µ(δ ) where IV (0, t) = 1. The GST model parameters are γ = 3, λ = 1/3 and σ2
v = 0.5 for

all five cases. Each circle represents a volatility estimate from the NPD estimator computed at the value of δ .

the same volatility signature plots for ε ∈ [0,0.1,0.5,1], and construct the discrete

log-price process hε(Pj), where hε(x) = εnint( x
ε
) and nint(x) is the nearest integer

function. A slight complication arises in this situation. As the NPD estimator always

samples in tick time, all the zero entries in r j are completely disregarded. We choose

the parameter settings for Pj from the previous AR(1) noise case with ρ = −0.5
and examine the effect of different levels of ε on the NPD estimator. The volatility

signature plots in this case are presented in Figure A.4.

Figure A.4 reveals some very interesting features of the NPD estimator under price

discretization. Comparing the case with ε = 0 and ε = 0.1, we see that the bias

increases slightly as a result of the price discretization. When ε = 0.5 or 1, the volatil-
ity signature curves have a zigzag pattern. As discussed in Section 1.6.5, this is due

to the invariant sampling scheme for δ ∈ ((n−1)ε,nε], so that µ(δ ) is also constant

within the range. As a result, the NPD volatility estimates for δ ∈ (n−1)ε,nε] will

become a quadratic function of δ peaking at every nε . By sampling at nε , we obtain

the volatility signature curve that has the least truncation bias, and this bias can be

artificially increased by letting δ ↓ (n−1)ε without changing the properties of the

sampling scheme. Therefore, if the magnitude of the MMS noise is large enough,

one may be able to obtain solutions of δ ∗ for multiple n, represented by the multiple

intersections between the volatility signature curves and the true IV for ε ≥ 0.5.



A.8 Determinants of the Bias of the NPD Model | 161

Figure A.4 Simulated volatility signature plot for the NPD estimator on the GST
model with AR(1) MMS noise and price discretization

Note: We simulate µ(δ ) based on (A.39) for δ ∈ [0.1,10] with a step size of 0.1. For each δ , the volatility signature

curve is computed by IV (0, t) δ 2

µ(δ ) where IV (0, t) = 1. The GST model parameters are γ = 3, λ = 1/3, ρ = −0.5 and

σ2
v = 0.5 for all five cases. Each circle represents a volatility estimate from the NPD estimator computed at the value

of δ .

In the last case, we examine the effect of jumps and price discretization on the

NPD estimator and assume that Vi = 0 for simplicity. The discrete price process with

jumps is specified as follows:

P̃j = hε(P∗
j )+L ·L j · J j

L j ∼ i.i.d.Bernoulli(p),J j ∼ i.i.d.Rademacher
(A.41)

In this simple setting, L is the size of each jump which is assumed to be a constant,

L j is a Bernoulli draw on each arrival of transaction representing the arrivals of

jumps, and J j determines the direction of the jump. We plot the simulated volatility

signature plot in this case in Figure A.5. From the figure, we see that both L and p
influences the bias of the NPD estimator. We see that when δ is very small, the four

curves coincide, which proves our previous theoretical result on the jump effect. As

the jump size and jump intensity increase, the NPD estimator absorbs more jump

variation and are also affected. In the extreme case with L = 10, we see that the

NPD estimator diverges from the true IV . However, the jump intensity used here

(one per 100 transaction) is highly unlikely in reality (as opposed to less than one

per week as documented in Andersen, Bollerslev, and Dobrev (2007) and Lee and

Hannig (2010)).
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Figure A.5 Simulated volatility signature plot for the NPD estimator on the GST
model with price discretization and jumps

Note: We simulate µ(δ ) based on (A.39) for δ ∈ [0.1,10] with a step size of 0.1. For each δ , the volatility signature

curve is computed by IV (0, t) δ 2

µ(δ ) where IV (0, t) = 1. The GST model parameters are γ = 3, λ = 1/3 and Vj = 0 for

all four cases. Jumps are specified as (A.41). Each circle represents a volatility estimate from the NPD estimator
computed at the value of δ .

A.9 Moment conditions for r j of the GST model

E[r j] = 0, (A.42)

V[r j] = γλ +
2σ2

v
1+ρ

, (A.43)

E[r jr j−k] =
ρ −1
ρ +1

ρ
k−1

σ
2
v , (A.44)

E[r4
j ] = 3γλ

2(1+ γ)+
12γλσ2

v
1+ρ

+
12σ4

v
(1+ρ)2 . (A.45)

A.10 Implementation details for RK, NPDz, PRV

and PBip estimators

For the RK estimator, we use a Tukey-Hannings2 kernel, with the optimal bandwidth

H = 5.74ξ N0.5, in which ξ =
σ2

v√∫ 1
0 σ4

p(s)ds
and N is the sampling frequency, as given

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a). In the simulation, we

use the true value of σ2
v and

∫ 1
0 σ4

p(s) for each random draw of the 1FSV model to

construct the RK estimator. The RK estimator is then constructed based on the

calendar time sampled returns with the sampling frequency given by the average
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sampling frequency of the NPDz estimator (or the NPDz
J estimator in the presence of

jump) for each δ = xδ0. An example of the sampling frequencies for the moderate

level of noise case is shown in Figure 1.9.

For the NPDz estimator, we choose the optimal smoothing parameter by computing

the MSE of the NPDz estimator based on 10000 random draws of the 1FSV and

1FSVJ models for a grid of δ = xδ0, and choose the γ that minimizes the MSE of the

NPDz estimator for some δ . The resulting optimized γ∗s for the 1FSV model with

high, moderate and low levels of noise are 0.1, 0.30 and 0.92 respectively. For the

1FSVJ model, the corresponding γ∗s are: 0.1, 0.31 and 0.99. The γ∗s for the 1FSV

model are very close to those of the 1FSVJ model with the same noise level. We also

see that the smoothing parameter is reversely related to the size of noise as expected.

The NPDz estimator is then constructed on a grid of δ = xδ0 on the smoothed price

process Z j.

For the PRV and PBip estimators, we need to determine the tuning parameter

θ that controls for the window width of pre-averaging (see e.g. Jacod, Li, Mykland,

Podolskij, and Vetter (2009) or Hautsch and Podolskij (2013)), and σ2
v to correct

for the pre-averaged MMS bias. As the optimal value of θ varies with the sampling

frequency according to Hautsch and Podolskij (2013), we optimize θ for each sam-

pling frequency used in order to obtain optimized performance for the PRV and

PBip estimators at each sampling frequency. In detail we use a grid of θ ∈ [0,2] to
construct both estimators and to choose an optimal θ ∗ that minimizes the MSE of

the estimator at each sampling frequency. Note that when θ ∗ = 0, we use RV and

RBip instead. We plot the optimal θ ∗s of PRV and PBip for both the 1FSV and

1FSVJ models under three different levels of noise in Figure A.6:

Figure A.6 shows that the optimal θs indeed vary with the sampling frequency.

Generally, a much larger θ is required for the highest sampling frequency, and for the

sampling frequency within exp(4) to exp(7), θ is very stable. When the sampling

frequency decreases further, θ quickly drop to zero, as the simple RV and RBip

estimators have better efficiency when the impact of MMS noise is small. The

presence of jump seems to decrease the optimal θ ∗ slightly, but the optimal θ ∗s have

a similar pattern with or without jumps.
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Figure A.6 Optimal θs of PRV and PBip estimators

Note: The results are based on 10000 replications of the 1FSV and 1FSVJ models. For each black dot, the x-axis
shows the log sampling frequency used to construct PRV and PBip estimators and the y-axis represents the optimized
value for θ . For each sampling frequency, θ ∗ is computed by a grid search method for θ ∈ [0,2] that minimizes the
simulation MSE.
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A.11 Additional Tables and Figures

Table A.2 Comparison of the optimal QLIKEs for all volatility estimators in Table
1.1 for the 1FSV and 1FSVJ models with low, moderate and high levels of noise

Estimator NPD RV (δ ) RV RBip NPDz RK PRV PBip

1FSV model with low level of noise

Optimal log QLIKE -5.3841 -3.1229 -4.1165 -4.3328 -5.4041 -5.1137 -4.8457 -5.5014
δ/δ0 24 61 21 21 25 9 11 8

Sampling Freq. 189 26 189 189 189 2160 524 2160

1FSV model with moderate level of noise

Optimal log QLIKE -2.7444 -2.1163 -3.3983 -3.4633 -5.3551 -4.6682 -4.8649 -4.9156
δ/δ0 91 131 51 51 27 9 6 6

Sampling Freq. 19 8 84 84 594 2955 2955 2955

1FSV model with high level of noise

Optimal log QLIKE -1.4389 -0.5337 -2.4789 -2.5070 -5.1677 -3.5907 -4.4197 -4.3951
δ/δ0 5 191 141 141 30 14 6 6

Sampling Freq. 3529 9 27 27 1845 2618 3529 3529

1FSVJ model with low level of noise

Optimal log QLIKE -5.4757 -0.1705 -0.2015 -2.8499 -5.4833 -0.2122 -0.3157 -4.0977
δ/δ0 24 111 51 11 24 14 17 1

Sampling Freq. 187 9 38 517 187 517 517 2142

1FSVJ model with moderate level of noise

Optimal log QLIKE -2.3990 -0.0655 -0.2012 -2.0102 -4.6502 -0.1925 -0.3497 -3.4153
δ/δ0 81 141 81 51 18 18 15 7

Sampling Freq. 26 8 26 83 1322 1322 1322 2929

1FSVJ model with high level of noise

Optimal log QLIKE -1.3215 0.4063 -0.0663 -1.1812 -4.0293 -0.0827 -0.1327 -2.7092
δ/δ0 4 191 161 131 20 19 7 7

Sampling Freq. 3491 9 16 33 2524 2524 3491 3491

Note: Optimal log QLIKE for an estimator is the smallest log QLIKE among all the sampling frequencies considered. The smallest
value is highlighted in bold. The entries for the rows δ = xδ0 represents the value of the threshold as multiples of δ0 = 0.1ε, with

ε = ln(20.01)− ln(20). The sampling frequency is the average sampling frequency at the optimal δs for NPD, RV (δ ) and NPDz, and is the
calendar time sampling frequency for RV, RBip, RK, PRV and PBip.
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Figure A.7 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPD, RV (δ ), RV and RBip for 1FSV model with high level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for NPD and RV (δ ), or the log sampling frequency of the equidistant
intraday return per day for RV and RBip. The truncation threshold δ ranges from 200δ0 to δ0 with a step size of
δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an estimator constructed on the 1FSV model with
jumps. The noise-to-signal ratio is set to be ω = 0.005.
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Figure A.8 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPD, RV (δ ), RV and RBip for 1FSV model with low level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for NPD and RV (δ ), or the log sampling frequency of the equidistant
intraday return per day for RV and RBip. The truncation threshold δ ranges from δ120 to δ0 with a step size of
δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an estimator constructed on the 1FSV model with
jumps. The noise-to-signal ratio is set to be ω = 0.0002.
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Figure A.9 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPDz, RK, PRV and PBip for 1FSV model with high level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for the NPDz model, or the log sampling frequency of the equidistant
intraday return per day for RK, PRV and PBip. The truncation threshold δ ranges from δ150 to δ0 with a step size
of δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an estimator constructed on the 1FSV model with
jumps. The noise-to-signal ratio is set to be ω = 0.005.
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Figure A.10 Simulated Bias, MSE and QLIKE for daily volatility estimates obtained
from NPDz, RK, PRV and PBip for 1FSV model with low level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes
the average log sampling frequency for a given δ for the NPDz model, or the log sampling frequency of the equidistant
intraday return per day for RK, PRV and PBip. The truncation threshold δ ranges from δ150 to δ0 with a step size
of δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an estimator constructed on the 1FSV model with
jumps. The noise-to-signal ratio is set to be ω = 0.0002.





Appendix B

Appendix for Chapter 2

B.1 Analysis of Co-movements Between RK and

ICV Estimates

In this section we provide empirical evidence for the following arguments in Section

2.6.3: (1) The co-movement between RK and ICV estimates increases as the number

of observation used to construct RK increases. (2) The inclusion of MMS covariates

improves the co-movement between RK and ICV estimates only when RK is precise.

(3) In addition to the optimally selected MMS covariates, adding all MMS covariates

does not have a big impact on the co-movement between RK and ICV estimates.

We define a measure of co-movements between RK and ICV estimates as follows. Let

j = 1 : 26 denote the index of 26 fifteen-minute intraday intervals, RKk, j,d denote the

realized kernel measure of the j-th interval at day d for stock k = 1 : 30, and ICV M,m
k, j,d

the ICV estimates of the j-th interval for stock k based on model M with a size of

estimation window m. For each d and stock k, we compute the co-movement measure

between RK and ICV estimates as:

CMM,m
k,d =

1
2

ln
(1+ρ

M,m
k,d

1−ρ
M,m
k,d

)
, (B.1)

where ρ
M,m
k,d is the sample correlation between RKk, j,d and ICV M,m

k, j,d for j = 1 : 26.

The measure CMM,m
k,d is in essence the Fisher transformation of the daily correlation

between the 15-minute RK and a 15-minute ICV estimate. Intuitively, the larger

CMM,m
k,d , the higher the co-movements between RKk, j,d and ICV M,m

k, j,d for stock k on day

d. A zero CMM,m
k,d represents no correlation between RKk, j,d and ICV M,m

k, j,d on the day d.
Also, denote NoTk,d = 1

26 ∑
26
j=1 NoTk, j,d where NoTk, j,d is the number of transactions
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in the j-th interval on day d for stock k, so NoTk,d measures the average number of

observations available for the RK estimator on day d.

To test the three aforementioned arguments, we propose the following set of fixed-

effect regressions for each m:

CMP,m
k,d = ak + τd + cP,m +bP,m lnNoTk,d + εk,d (B.2)

CMK,m
k,d = ak + τd + cK,m +bK,m lnNoTk,d + εk,d (B.3)

CMA,m
k,d = ak + τd + cA,m +bA,m lnNoTk,d + εk,d (B.4)

CMK,m
k,d −CMP,m

k,d = ak + τd + cKP,m +bKP,m lnNoTk,d + εk,d (B.5)

CMA,m
k,d −CMK,m

k,d = ak + τd + cAK,m +bAK,m lnNoTk,d + εk,d, (B.6)

in which ak and τd are firm-specific fixed effect and time fixed effect for each day. In

the first three equations, the parameter cM,m can be interpreted as the baseline level

of comovement between RK and ICV estimates, and bM,m represents the improvement

of comovements per 1% increase of NoTk,d. If argument (1) holds true, we expect

ĉM,m and b̂M,m to be positive and highly significant for all M and m. In (B.5), cKP,m

represents the baseline difference between the comovement measures of ICV estimates

from the -K model and the -P model to RK, and bKP,m is the effect of the number of

transactions on the difference of the comovement measures. If argument (2) holds

true, we would expect ĉKP,m to be insignificant, but b̂KP,m to be positive and significant.

Similarly, if argument (3) holds true, we would expect both ĉAK,m and b̂AK,m to be

insignificant.

We present the fixed-effect regression results in Table B.1. Our findings strongly

support our previous prediction that for Equations (B.2) to (B.4), both ĉM,m and b̂M,m

are positive and significant for all m. This suggests that the comovements between RK

and ICV estimates are indeed higher when the RK is more precise. It is worth noting

that ĉP,m and b̂P,m are smaller than ĉK,m, ĉA,m and b̂K,m, b̂A,m. This suggests that the

inclusion of MMS covariates increases both the baseline comovement and the effect of

the precision of RK. Regression outputs for (B.5) and (B.6) corroborate arguments

(2) and (3) with insignificant ĉKP,m, ĉAK,m and b̂AK,m, and a significantly positive ĉKP,m.

These results show that when the RK measure is precise, the comovement between

RK and ICV estimates is strengthened by the inclusion of optimally selected MMS

covariates, and including all MMS covariates does not further improve the results.
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Table B.1 Fixed-effect regressions for the comovement analysis between RK and ICV
estimates

Equation (B.2) (B.3) (B.4) (B.5) (B.6)

Panel 1: Monthly Estimation Window, m = 1

ĉM,m/ĉKP,m/ĉAK,m 0.7502*** 0.7561*** 0.7700*** 0.0059 0.0139
Std. Err. (4.81) (4.15) (4.18) (0.10) (1.89)

b̂M,m/b̂KP,m/b̂AK,m 0.1336*** 0.2010*** 0.2004*** 0.0675*** -0.0006
Std. Err. (3.81) (5.41) (5.37) (5.81) (-0.55)

Panel 2: Quarterly Estimation Window, m = 3

ĉM,m/ĉKP,m/ĉAK,m 0.7274*** 0.7603*** 0.7618*** 0.0328 0.0015
Std. Err. (4.62) (4.20) (4.21) (0.55) (0.39)

b̂M,m/b̂KP,m/b̂AK,m 0.1318*** 0.2000*** 0.2002*** 0.0682*** 0.0003
Std. Err. (3.74) (5.34) (5.37) (5.46) (0.34)

Panel 3: Half-Yearly Estimation Window, m = 6

ĉM,m/ĉKP,m/ĉAK,m 0.7205*** 0.7821*** 0.7778*** 0.0617 -0.0043
Std. Err. (4.59) (4.26) (4.25) (0.94) (-1.39)

b̂M,m/b̂KP,m/b̂AK,m 0.1306*** 0.1967*** 0.1976*** 0.0662*** 0.0009
Std. Err. (3.70) (5.20) (5.26) (4.84) (1.41)

Panel 4: Yearly Estimation Window, m = 12

ĉM,m/ĉKP,m/ĉAK,m 0.7112*** 0.7745*** 0.7715*** 0.0633 -0.0030
Std. Err. (4.47) (4.29) (4.27) (0.99) (-1.19)

b̂M,m/b̂KP,m/b̂AK,m 0.1301** 0.1973*** 0.1981*** 0.0672*** 0.0008
Std. Err. (3.65) (5.39) (5.42) (5.06) (1.53)

Note: Firm and time fixed effects are omitted from the output. The standard errors are robust to firm-specific
clustering effect and heteroscedasticity. **: significant at 1% significance level. ***: significant at 0.1% significance
level. Number of observations used in each regression is 30180.
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B.2 Additional Tables and Figures

Table B.2 Daily descriptive statistics of the transaction data

Ticker NT/day VOL/day DVOL/day BAS/day Amihud RK/day

AA 1674.588 2.697 3.198 0.011 4.574 0.260
AIG 2658.873 1.584 6.124 0.014 2.959 0.267
AXP 2586.435 0.974 5.911 0.018 1.443 0.184
BA 2260.438 0.708 6.300 0.029 1.411 0.182
BAC 2591.780 14.939 17.166 0.011 0.872 0.278
C 4322.931 8.306 18.117 0.012 0.671 0.265

CAT 3104.053 1.026 9.689 0.027 0.984 0.212
CVX 3687.456 1.228 13.415 0.025 0.536 0.167
DD 2459.300 0.945 5.046 0.015 1.609 0.178
DIS 3174.753 1.818 9.671 0.014 0.844 0.171
GE 2516.661 5.802 12.360 0.011 0.615 0.179
GM 2940.327 2.513 7.725 0.012 1.953 0.265
HD 2873.177 1.427 7.752 0.015 1.000 0.170
IBM 2456.244 0.721 13.175 0.055 0.514 0.143
INTC 1692.897 4.219 10.527 0.011 0.968 0.195
JNJ 3364.024 1.721 12.948 0.014 0.399 0.124
JPM 4352.591 3.882 16.843 0.012 0.569 0.220
KO 2939.903 2.260 11.247 0.012 0.526 0.133
MCD 2879.529 1.058 9.590 0.017 0.579 0.124
MMM 2404.032 0.666 6.762 0.026 0.977 0.146
MRK 2810.784 2.008 8.757 0.012 0.796 0.154
MSFT 1985.356 4.664 15.236 0.011 0.641 0.182
PFE 2654.956 4.848 12.053 0.011 0.590 0.169
PG 2995.692 1.523 10.837 0.014 0.504 0.124
SPY 9141.895 30.491 441.940 0.012 0.011 0.114
T 2687.274 3.507 11.560 0.011 0.521 0.141

UTX 2243.252 0.651 5.814 0.026 1.321 0.163
VZ 2755.626 2.053 8.870 0.012 0.781 0.147

WMT 2958.746 1.537 9.906 0.014 0.603 0.131
XOM 4791.709 2.793 23.870 0.015 0.283 0.157

Note: NT/day: number of transactions per day. VOL/day: Total trading volume per day ×10−6. DVOL/day:
total dollar volume per day ×10−7. BAS/trade: average bid-ask spread for every transaction within the trading
day. Amihud: Amihud’s (2002) illiquidity measure ×1010. RK/day: realized kernel estimates of daily annualized
volatility per day.
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Table B.3 Descriptive statistics of the dataset

Variables Ticker AA AIG AXP BA BAC C CAT CVX DD DIS GE GM HD IBM INTC

Mean 4.909 4.951 4.983 4.942 4.933 4.882 4.986 5.020 4.995 4.983 4.965 4.880 4.982 4.982 4.943
Std. Dev. 1.485 1.342 1.334 1.355 1.393 1.423 1.296 1.293 1.317 1.352 1.384 1.417 1.324 1.329 1.400

lnx(δ )i Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 5.056 5.063 5.112 5.056 5.024 4.997 5.075 5.142 5.112 5.124 5.088 5.004 5.100 5.100 5.075
Max 9.354 9.097 8.874 9.109 9.640 9.886 8.922 8.821 9.173 8.789 9.195 9.374 9.140 8.815 9.332

Mean 4.751 4.091 3.623 3.360 6.557 5.375 3.760 3.933 3.579 4.330 5.575 4.718 4.022 3.387 5.053
Std. Dev. 1.227 1.076 1.011 1.047 1.150 1.145 0.935 0.921 1.020 0.864 1.064 1.058 0.998 1.054 1.149

VOLi Min -1.641 -1.887 -3.664 -4.883 -1.423 -2.028 -2.741 -2.526 -3.006 -1.946 -2.639 -1.792 -1.386 -3.450 -5.194
Median 4.718 3.999 3.560 3.261 6.541 5.249 3.684 3.846 3.512 4.230 5.484 4.633 3.941 3.298 5.021
Max 11.832 11.614 9.872 9.856 12.822 14.217 10.671 11.264 10.477 11.305 13.218 10.969 10.567 9.915 17.431

Mean 0.700 0.523 0.447 0.466 0.615 0.476 0.400 0.393 0.438 0.528 0.582 0.489 0.438 0.454 0.449
Std. Dev. 0.616 0.501 0.427 0.468 0.508 0.496 0.431 0.414 0.443 0.467 0.512 0.466 0.416 0.470 0.422

QDi Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.535 0.387 0.331 0.336 0.496 0.331 0.274 0.281 0.316 0.411 0.451 0.361 0.329 0.318 0.336
Max 6.557 6.337 5.445 6.297 6.033 5.915 6.188 6.585 5.640 5.872 6.240 5.504 5.534 8.700 7.597

Mean 0.011 0.018 0.024 0.043 0.011 0.013 0.036 0.033 0.020 0.017 0.011 0.014 0.019 0.076 0.011
Std. Dev. 0.002 0.012 0.021 0.041 0.001 0.005 0.026 0.027 0.016 0.017 0.002 0.007 0.014 0.059 0.005

BASi Min 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
Median 0.010 0.013 0.017 0.029 0.011 0.012 0.028 0.026 0.014 0.013 0.011 0.012 0.014 0.060 0.010
Max 0.100 0.230 1.190 2.370 0.075 0.205 0.540 0.660 0.310 2.000 0.140 0.180 0.380 4.350 0.180

Mean 0.930 0.646 0.600 0.628 0.968 0.611 0.547 0.520 0.602 0.629 0.891 0.702 0.625 0.628 0.809
Std. Dev. 0.751 0.544 0.503 0.512 0.781 0.555 0.480 0.461 0.511 0.537 0.722 0.584 0.536 0.511 0.652

OIi Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.693 0.511 0.470 0.511 0.765 0.463 0.405 0.405 0.470 0.486 0.693 0.560 0.478 0.511 0.693
Max 6.277 5.273 5.460 3.584 6.118 6.795 4.317 3.892 4.263 4.443 5.468 4.890 4.564 4.190 5.075

Mean 2.820 1.469 1.383 1.568 2.689 1.385 1.222 1.101 1.407 1.340 2.213 1.590 1.352 1.482 2.412
Std. Dev. 3.192 2.031 1.908 2.024 3.437 2.076 1.747 1.608 1.950 1.920 2.935 2.218 1.918 1.954 3.038

OFi Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 1.299 0.740 0.693 0.808 1.129 0.661 0.637 0.592 0.691 0.686 0.978 0.769 0.688 0.771 1.040
Max 13.443 12.480 11.452 10.762 15.337 15.084 11.365 11.957 11.755 13.793 13.389 12.502 11.613 11.195 17.431

Mean -2.464 -1.981 -2.075 -2.201 -2.030 -1.458 -1.881 -1.720 -2.136 -1.815 -2.026 -1.828 -1.911 -2.138 -2.353
Std. Dev. 0.929 0.702 0.691 0.721 0.832 0.701 0.642 0.609 0.711 0.615 0.794 0.746 0.661 0.722 0.877

NTi Min -6.312 -5.523 -5.371 -5.765 -6.028 -7.431 -5.182 -4.543 -7.555 -7.186 -5.525 -4.844 -4.668 -5.493 -8.084
Median -2.485 -2.015 -2.113 -2.253 -2.042 -1.433 -1.904 -1.751 -2.171 -1.861 -2.068 -1.866 -1.957 -2.191 -2.415
Max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 7.245 5.233 4.500 4.049 9.432 7.042 4.422 4.521 4.595 5.493 8.084 6.108 5.122 3.906 7.569
Std. Dev. 1.031 1.018 0.975 0.938 0.889 1.775 0.805 0.796 0.961 0.892 0.863 0.843 1.025 0.937 0.964

T Qi Min 2.066 1.109 0.446 -0.344 3.240 0.667 0.904 0.755 -2.257 -1.888 3.219 1.238 1.291 0.081 -1.687
Median 7.145 5.185 4.472 3.968 9.353 6.623 4.351 4.444 4.573 5.417 8.013 6.072 5.011 3.820 7.510
Max 12.962 12.868 10.670 10.574 14.744 16.072 10.795 11.411 11.310 11.760 13.075 10.956 12.207 10.522 13.907

Obs./Day 69.804 77.298 77.297 77.827 73.753 75.233 77.459 77.426 77.167 76.733 74.507 77.455 77.063 77.655 75.477

For the definition of the variables, see Table 2.1.
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Table B.4 Descriptive statistics of the dataset

Variables Ticker JNJ JPM KO MCD MMM MRK MSFT PFE PG SPY T UTX VZ WMT XOM

Mean 4.928 4.947 4.896 4.929 4.988 4.930 4.904 4.956 4.923 5.143 4.879 4.966 4.889 4.914 5.051
Std. Dev. 1.416 1.347 1.440 1.392 1.330 1.416 1.436 1.417 1.410 1.135 1.451 1.348 1.431 1.411 1.263

lnx(δ )i Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 5.081 5.063 5.056 5.069 5.106 5.088 5.050 5.106 5.075 5.220 5.017 5.088 5.030 5.050 5.165
Max 9.283 9.338 9.047 9.291 8.876 9.086 9.409 8.880 9.354 8.878 9.339 9.062 8.982 9.240 9.037

Mean 4.300 5.079 4.623 3.813 3.291 4.457 5.088 5.380 4.182 7.258 5.118 3.247 4.507 4.159 4.676
Std. Dev. 0.980 0.992 0.978 0.990 0.959 0.942 1.110 0.982 0.980 0.934 0.966 1.022 1.029 1.015 0.978

VOLi Min -3.192 -2.001 -1.526 -3.434 -4.159 -2.401 -5.318 -0.182 -3.434 -3.002 -1.402 -3.932 -1.179 -1.516 0.134
Median 4.178 5.012 4.514 3.704 3.209 4.351 5.031 5.289 4.058 7.235 5.010 3.158 4.386 4.058 4.602
Max 11.764 11.524 13.123 10.204 10.865 11.781 15.828 12.438 11.948 13.663 11.733 10.478 10.750 10.723 11.110

Mean 0.457 0.416 0.542 0.432 0.403 0.527 0.417 0.633 0.505 0.288 0.608 0.416 0.557 0.477 0.498
Std. Dev. 0.442 0.416 0.509 0.430 0.413 0.489 0.400 0.539 0.501 0.248 0.520 0.438 0.491 0.449 0.487

QDi Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.339 0.302 0.405 0.315 0.288 0.400 0.310 0.495 0.372 0.226 0.476 0.295 0.429 0.360 0.355
Max 6.525 5.028 6.232 5.486 6.927 6.948 5.438 6.122 6.976 3.620 6.085 5.884 6.562 6.102 6.582

Mean 0.018 0.014 0.014 0.023 0.038 0.015 0.011 0.012 0.018 0.012 0.012 0.040 0.014 0.018 0.019
Std. Dev. 0.015 0.007 0.011 0.020 0.037 0.010 0.005 0.006 0.015 0.002 0.004 0.039 0.009 0.013 0.014

BASi Min 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
Median 0.013 0.012 0.012 0.017 0.026 0.012 0.011 0.011 0.013 0.012 0.011 0.028 0.012 0.013 0.015
Max 0.480 1.000 0.500 0.450 1.150 0.350 0.487 0.800 0.295 0.200 0.192 4.000 0.225 0.370 0.360

Mean 0.637 0.601 0.735 0.607 0.583 0.743 0.764 0.928 0.651 0.390 0.868 0.622 0.746 0.659 0.522
Std. Dev. 0.552 0.532 0.620 0.511 0.486 0.623 0.629 0.748 0.549 0.385 0.704 0.506 0.620 0.554 0.471

OIi Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.488 0.452 0.582 0.470 0.460 0.588 0.610 0.731 0.511 0.276 0.693 0.511 0.588 0.511 0.395
Max 4.454 4.644 5.247 4.267 4.094 5.077 4.615 6.107 4.812 3.555 5.247 3.332 5.568 4.290 3.989

Mean 1.350 1.169 1.636 1.382 1.397 1.602 2.123 2.135 1.448 0.741 1.985 1.516 1.660 1.449 1.031
Std. Dev. 1.952 1.802 2.307 1.934 1.877 2.230 2.800 2.850 2.017 1.281 2.680 1.986 2.290 2.022 1.515

OFi Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.667 0.593 0.753 0.691 0.703 0.760 0.945 0.934 0.726 0.436 0.885 0.760 0.784 0.717 0.597
Max 12.457 12.205 13.777 11.338 11.013 13.390 15.486 13.273 13.334 13.695 12.935 11.069 13.210 12.882 12.188

Mean -1.723 -1.458 -1.848 -1.922 -2.169 -1.893 -2.164 -1.970 -1.834 -0.787 -1.903 -2.234 -1.889 -1.856 -1.451
Std. Dev. 0.660 0.634 0.733 0.669 0.696 0.700 0.863 0.785 0.667 0.499 0.757 0.725 0.728 0.686 0.587

NTi Min -5.383 -4.091 -4.610 -5.004 -5.541 -7.699 -8.026 -5.432 -5.485 -7.251 -6.701 -6.930 -4.732 -4.500 -3.899
Median -1.768 -1.472 -1.880 -1.976 -2.219 -1.943 -2.241 -2.019 -1.889 -0.733 -1.954 -2.276 -1.937 -1.910 -1.466
Max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 5.430 6.460 6.117 4.694 3.936 5.935 7.492 7.574 5.236 8.891 7.064 3.971 6.048 5.311 5.546
Std. Dev. 0.953 0.840 0.989 0.867 0.846 0.955 0.934 0.925 0.922 0.576 0.898 0.918 0.950 0.961 0.902

T Qi Min 0.734 2.163 1.888 1.050 0.046 0.274 -2.728 2.996 1.518 0.237 2.139 -1.632 1.661 1.537 2.154
Median 5.333 6.430 6.060 4.605 3.871 5.871 7.438 7.526 5.123 8.893 7.011 3.900 5.991 5.218 5.447
Max 12.048 11.448 12.866 10.401 11.533 12.651 12.603 12.992 12.379 11.754 11.866 10.734 12.514 11.625 12.446

Obs./Day 76.492 77.099 76.828 77.359 77.475 76.642 76.346 74.268 77.083 77.555 76.207 77.599 76.651 76.826 77.405

For the definition of the variables, see Table 2.1.
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Table B.5 Average of quarterly rankings of relative importance of MMS covariates

Ticker γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q1 K∗

AA 9.81 10.13 4.31 12.06 13.31 13.63 8.00 5.13 2.19 2.25 5.19 6.50 5.75 6.75 10.25
AIG 4.13 10.88 10.56 5.00 13.44 13.56 11.25 2.69 3.75 4.56 3.13 6.75 8.25 7.06 8.75
AXP 6.50 10.44 10.38 5.94 13.44 13.56 10.50 2.38 3.81 4.13 3.06 6.56 8.13 6.19 9.63
BA 8.06 10.63 11.00 7.94 13.38 13.63 10.69 2.50 2.75 6.56 3.13 6.00 5.06 3.69 8.81
BAC 8.50 10.38 2.31 12.00 14.00 12.69 8.00 6.25 2.38 2.38 5.75 8.19 5.50 6.69 9.44
C 8.06 9.56 8.88 9.56 13.63 13.19 9.69 4.56 3.75 2.38 2.31 6.31 7.56 5.56 10.81

CAT 3.50 10.88 10.63 6.88 13.81 13.19 11.06 2.63 3.50 7.38 2.44 5.31 8.00 5.81 9.00
CVX 3.31 10.63 10.88 8.19 13.81 13.19 10.75 2.63 4.06 5.81 2.44 5.88 7.44 6.00 9.13
DD 4.56 11.00 10.13 6.38 13.56 13.44 11.13 2.81 4.88 3.13 3.13 5.25 8.38 7.25 9.63
DIS 5.19 10.75 10.81 5.69 13.38 13.63 11.06 3.19 3.81 2.56 3.25 6.38 8.25 7.00 9.75
GE 9.50 10.50 5.00 11.56 13.75 13.19 9.75 2.88 1.94 2.19 4.38 6.63 7.06 6.50 9.63
GM 5.06 10.31 10.06 7.31 13.31 13.69 11.13 2.50 3.13 2.31 3.50 6.75 8.88 7.00 9.81
HD 4.44 10.81 11.13 4.63 13.56 13.44 10.69 4.13 3.25 4.94 2.31 5.88 8.56 7.25 10.00
IBM 7.50 10.44 11.56 8.75 13.69 13.31 10.44 2.44 2.31 5.44 4.25 6.88 4.06 3.81 8.56
INTC 5.69 10.69 4.00 11.94 13.06 13.94 9.81 2.81 2.63 3.00 5.38 7.44 7.94 6.69 8.75
JNJ 6.06 10.56 10.94 6.06 13.38 13.63 10.69 2.38 4.25 2.75 3.06 6.13 7.88 7.25 10.38
JPM 6.94 10.13 9.06 8.94 13.69 13.31 10.69 2.63 3.69 2.19 3.00 5.94 8.38 6.38 9.94
KO 7.56 9.50 10.75 8.94 13.44 13.56 10.31 2.56 4.25 2.25 2.56 5.25 7.69 6.38 10.31
MCD 3.19 11.06 10.50 4.63 13.44 13.56 11.31 3.13 4.25 5.56 2.50 6.56 7.75 7.50 8.94
MMM 6.25 10.63 10.69 7.81 13.38 13.63 10.81 3.00 3.00 4.94 3.69 6.81 5.44 4.94 8.44
MRK 7.13 9.81 10.50 8.75 13.44 13.50 10.19 2.69 3.38 2.25 3.13 6.13 7.44 6.69 9.69
MSFT 3.94 10.81 5.50 11.50 13.13 13.88 10.31 2.31 2.69 2.38 5.25 7.94 8.06 7.25 8.25
PFE 9.56 9.88 7.50 11.81 13.69 13.13 10.31 3.00 2.06 1.63 3.69 6.06 6.56 6.06 9.88
PG 4.63 10.50 10.94 5.88 13.31 13.69 11.13 2.19 3.88 3.75 2.81 6.44 8.38 7.50 9.38
SPY 12.81 9.69 2.25 13.31 11.69 11.06 6.94 6.00 2.25 3.25 3.31 6.81 9.56 5.94 9.50
T 10.50 9.56 6.63 11.44 13.56 13.00 10.38 2.25 3.06 2.25 3.25 6.00 6.69 6.44 10.63

UTX 8.69 10.56 10.81 7.75 13.19 13.81 10.19 2.13 2.50 4.06 4.06 6.13 5.94 5.19 8.88
VZ 7.31 10.31 9.44 9.56 13.50 13.50 10.63 2.25 2.56 2.31 3.25 6.81 7.38 6.13 10.06

WMT 4.63 10.69 10.88 5.56 13.44 13.56 11.13 2.75 4.25 3.44 3.06 6.25 8.25 7.13 9.69
XOM 5.75 10.06 9.94 9.81 13.44 13.50 10.94 2.25 4.13 4.88 1.44 5.31 7.25 6.25 10.38

Average 6.63 10.39 8.93 8.52 13.43 13.39 10.33 3.03 3.28 3.56 3.39 6.38 7.38 6.34 9.54

Note: For each security, we report the averaged number of inclusions in the quarterly K-optimal models for every
MMS covariate. K∗ is the average number of MMS covariates in the yearly K∗-optimal model, averaged over 4 years.
Covariates that receive top five average inclusions are highlighted in bold.
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Table B.6 Average of half-yearly rankings of relative importance of MMS covariates

Ticker γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q1 K∗

AA 8.75 10.25 4.00 12.00 13.38 13.63 6.75 5.63 2.13 2.25 5.75 6.75 6.00 7.75 11.00
AIG 3.88 11.13 10.13 4.50 13.38 13.63 11.38 2.75 3.38 4.25 3.63 7.50 8.25 7.25 10.13
AXP 5.88 10.38 10.50 7.00 13.38 13.63 10.50 1.88 4.25 3.00 2.88 6.25 8.38 7.13 11.50
BA 8.50 10.63 10.75 8.13 13.38 13.63 10.63 1.75 2.50 5.63 3.13 6.38 6.13 3.88 10.25
BAC 8.13 10.75 2.50 12.00 14.00 12.88 7.25 6.50 2.00 2.38 6.38 8.13 5.38 6.63 10.63
C 6.25 9.13 9.50 9.88 13.38 13.25 9.88 3.75 4.25 2.13 1.25 7.13 8.75 6.38 11.38

CAT 4.75 10.88 10.63 6.38 13.75 13.25 10.88 3.00 2.88 7.50 1.88 5.88 8.00 5.38 11.25
CVX 3.13 10.75 10.75 7.00 13.75 13.25 10.75 1.88 4.75 5.88 2.00 6.25 8.13 6.63 10.88
DD 4.63 11.00 10.25 7.25 13.63 13.38 11.00 2.38 5.00 2.50 2.75 5.63 8.38 7.25 10.75
DIS 5.25 10.75 9.88 4.88 13.50 13.50 11.25 2.63 4.50 2.88 3.00 7.00 8.38 7.63 10.63
GE 9.00 10.75 6.38 11.75 14.00 12.88 9.38 2.63 2.00 1.75 4.25 7.13 6.75 6.25 10.75
GM 4.25 10.50 10.25 8.00 13.38 13.63 11.38 2.50 3.38 1.63 3.75 6.63 8.63 7.13 11.00
HD 4.50 10.88 11.25 4.25 13.50 13.50 10.75 3.88 3.63 4.50 2.38 6.25 8.13 7.63 11.25
IBM 7.88 10.13 11.75 7.88 13.88 13.13 10.50 2.13 2.00 6.25 4.25 7.00 4.50 3.75 9.75
INTC 5.38 10.75 4.13 11.50 13.00 14.00 10.50 2.00 2.50 2.25 5.88 8.00 8.13 7.00 9.75
JNJ 4.88 10.00 11.63 5.88 13.50 13.50 10.63 2.63 4.75 2.13 2.88 7.00 8.13 7.50 10.50
JPM 7.13 10.13 9.75 8.75 13.50 13.50 10.63 2.50 4.00 2.25 1.88 6.25 8.13 6.63 11.13
KO 6.63 9.63 10.75 9.75 13.38 13.63 9.63 2.13 4.00 1.63 3.25 5.75 7.63 7.25 11.13
MCD 3.50 11.00 10.50 5.63 13.38 13.63 11.25 2.13 4.13 6.13 3.00 6.63 7.38 6.75 10.63
MMM 5.75 10.75 11.00 8.25 13.13 13.88 10.75 2.25 3.25 4.88 3.25 6.63 6.00 5.25 10.13
MRK 5.50 10.13 10.63 8.63 13.25 13.75 10.50 2.25 3.75 2.25 3.25 6.13 7.75 7.25 11.38
MSFT 3.13 10.75 5.13 11.63 13.00 14.00 10.25 2.25 3.00 2.38 5.50 8.13 8.38 7.50 9.13
PFE 9.50 10.00 7.75 12.00 13.63 13.25 10.00 2.63 1.75 1.75 3.88 5.75 7.00 6.00 11.00
PG 4.75 10.38 11.38 5.25 13.38 13.63 11.13 1.75 5.00 3.25 2.50 6.63 8.25 7.75 10.13
SPY 12.25 9.88 4.13 13.38 11.75 11.25 6.50 5.25 2.00 2.75 2.00 7.75 9.88 6.25 11.13
T 9.88 9.63 7.50 11.13 13.63 13.25 10.38 2.25 3.38 1.25 3.38 6.25 6.88 6.25 11.75

UTX 8.25 10.63 10.63 7.50 13.25 13.75 10.63 2.13 2.75 3.50 3.88 6.25 6.38 5.38 10.88
VZ 6.50 10.13 9.88 9.38 13.50 13.50 10.63 1.75 2.38 2.50 3.75 6.75 7.75 6.50 10.25

WMT 4.13 10.50 11.13 6.00 13.38 13.63 11.25 2.25 4.50 3.00 3.38 5.88 8.63 7.38 11.13
XOM 5.25 10.25 9.38 9.75 13.25 13.50 11.13 2.25 4.00 4.63 1.00 5.75 8.00 6.88 11.38

Average 6.24 10.41 9.13 8.51 13.40 13.43 10.27 2.72 3.39 3.30 3.33 6.65 7.60 6.60 10.75

Note: For each security, we report the averaged number of inclusions in the half-yearly K-optimal models for every
MMS covariate. K∗ is the average number of MMS covariates in the half-yearly K∗-optimal model, averaged over 4
years. Covariates that receive top five average inclusions are highlighted in bold.



B.2 Additional Tables and Figures | 179

Table B.7 Average of yearly rankings of relative importance of MMS covariates

Ticker γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q1 K∗

AA 9.00 10.50 3.75 12.00 13.50 13.50 6.50 5.50 2.00 1.75 6.00 7.25 6.50 7.25 11.50
AIG 3.00 11.00 10.25 4.25 13.50 13.50 11.50 2.75 4.00 4.50 3.50 7.50 8.50 7.25 11.50
AXP 6.50 10.75 9.75 6.25 13.50 13.50 10.75 1.75 4.25 3.75 2.75 6.50 8.00 7.00 12.25
BA 8.25 10.50 10.50 8.00 13.25 13.75 10.75 1.50 2.50 5.00 3.75 6.50 6.25 4.50 11.25
BAC 9.00 11.00 2.00 12.00 14.00 12.75 7.00 6.75 1.75 2.25 6.25 7.75 5.50 7.00 11.50
C 7.50 9.25 9.25 9.25 13.75 13.25 10.00 4.50 3.75 1.50 1.75 6.75 8.00 6.50 12.25

CAT 4.50 11.00 10.50 6.00 13.75 13.25 11.00 3.00 3.50 7.50 1.50 5.75 8.00 5.75 12.25
CVX 2.50 10.75 10.75 7.75 14.00 13.00 10.75 1.50 4.75 5.75 2.50 6.00 8.00 7.00 11.25
DD 5.50 11.00 10.50 6.75 13.50 13.50 11.25 2.00 4.75 2.50 2.00 5.75 8.50 7.50 12.00
DIS 5.00 11.00 9.50 4.50 13.50 13.50 11.00 2.25 5.00 2.00 3.00 7.50 9.00 8.25 11.75
GE 9.00 11.00 7.25 12.00 14.00 13.00 9.00 2.75 2.00 1.50 3.75 7.00 6.75 6.00 11.50
GM 4.25 10.75 10.75 7.00 13.25 13.75 11.25 2.25 3.50 1.50 4.50 6.75 8.75 6.75 11.50
HD 4.25 11.00 11.25 3.25 13.25 13.75 10.75 3.75 4.25 4.25 2.25 6.75 8.50 7.75 11.75
IBM 8.25 10.25 11.75 7.50 14.00 13.00 10.50 2.00 1.50 6.50 4.50 6.75 4.75 3.75 11.00
INTC 4.25 10.75 5.25 12.00 13.00 14.00 9.50 2.00 2.75 1.75 6.25 8.25 7.75 7.50 10.00
JNJ 5.50 9.75 11.75 5.00 13.50 13.50 10.50 1.50 5.50 2.00 2.75 7.00 8.75 8.00 12.00
JPM 7.00 10.00 9.50 8.50 13.75 13.25 10.50 2.50 4.00 1.50 2.25 6.75 9.00 6.25 11.25
KO 6.75 9.50 11.00 10.25 13.50 13.50 9.50 1.75 4.50 1.75 2.50 5.50 7.75 7.25 12.00
MCD 2.50 11.25 10.00 5.25 13.25 13.75 11.00 1.25 4.50 5.00 2.75 7.50 8.75 8.25 11.75
MMM 6.50 11.00 10.75 8.25 13.25 13.75 11.00 2.00 3.50 4.00 3.25 7.25 5.50 5.00 11.75
MRK 6.25 10.00 10.50 8.25 13.50 13.50 10.25 2.00 4.50 2.25 2.75 6.00 8.00 7.25 11.50
MSFT 2.25 10.75 5.50 12.00 13.00 14.00 10.00 2.75 2.75 2.00 5.50 7.75 8.50 8.00 9.50
PFE 9.50 10.00 6.25 12.00 13.75 13.25 10.25 3.25 2.00 1.75 4.00 6.00 6.75 6.25 11.75
PG 5.00 10.25 11.75 5.00 13.50 13.50 11.00 1.50 5.00 3.25 2.25 6.50 8.50 8.00 11.25
SPY 12.25 9.50 4.00 13.50 12.00 11.50 5.75 6.00 1.75 2.50 2.25 7.50 10.25 6.25 11.50
T 10.00 9.75 6.75 11.75 13.50 13.25 10.50 2.00 3.50 1.25 3.25 5.75 7.00 6.75 12.75

UTX 8.50 10.75 10.50 7.25 13.25 13.75 10.75 2.00 2.75 3.75 3.50 6.50 6.25 5.50 12.25
VZ 6.75 10.25 10.50 9.25 13.50 13.50 10.50 2.00 2.50 1.75 3.75 6.50 7.50 6.75 11.25

WMT 3.50 10.75 11.25 5.50 13.50 13.50 11.00 2.25 5.50 2.50 3.75 6.00 8.25 7.75 12.00
XOM 5.75 10.50 8.75 9.75 13.75 13.25 11.25 1.50 4.25 4.50 1.75 5.50 7.50 7.00 11.75

Average 6.29 10.48 9.06 8.33 13.48 13.39 10.18 2.62 3.56 3.06 3.35 6.69 7.70 6.80 11.58

Note: For each security, we report the averaged number of inclusions in the yearly K-optimal models for every MMS
covariate. K∗ is the average number of MMS covariates in the yearly K∗-optimal model, averaged over 4 years.
Covariates that receive top five average inclusions are highlighted in bold.
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Table B.8 Average MMS parameter estimates for the LL-ACD(1,1)-K model

Ticker γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q1

AA 0.066 -0.126 -0.009 0.555 -0.781 -1.063 0.188 0.034 0.000 0.000 0.030 -0.023 0.017 -0.052
AIG -0.003 -0.184 -0.162 0.024 -0.441 -0.977 0.418 0.000 0.001 0.003 0.000 -0.008 0.027 -0.021
AXP 0.055 -0.179 -0.199 0.001 -0.426 -0.970 0.399 0.000 0.005 0.005 0.004 -0.007 0.039 -0.029
BA 0.082 -0.207 -0.212 0.086 -0.489 -1.057 0.450 -0.004 0.001 0.018 0.000 -0.008 0.014 -0.006
BAC -0.102 -0.140 0.000 0.441 -0.749 -0.877 0.261 0.032 0.000 0.000 0.022 -0.035 0.004 -0.039
C -0.041 -0.151 -0.103 -0.070 -0.367 -0.944 0.335 0.018 0.013 0.001 0.005 -0.021 0.059 -0.031

CAT 0.017 -0.209 -0.223 -0.050 -0.358 -0.954 0.458 0.002 0.002 0.032 0.000 -0.002 0.029 -0.007
CVX -0.036 -0.220 -0.248 -0.103 -0.322 -0.884 0.476 0.009 0.005 0.016 -0.002 -0.006 0.025 -0.022
DD 0.027 -0.188 -0.167 -0.001 -0.426 -0.957 0.418 -0.001 0.003 0.005 -0.001 -0.003 0.035 -0.022
DIS -0.071 -0.168 -0.172 -0.053 -0.379 -0.825 0.355 0.002 0.004 0.014 0.006 -0.018 0.036 -0.026
GE -0.228 -0.142 -0.033 0.302 -0.640 -0.865 0.349 0.002 0.000 0.002 0.007 -0.011 0.012 -0.009
GM -0.062 -0.149 -0.108 0.073 -0.499 -1.056 0.398 -0.003 0.004 0.001 0.008 -0.017 0.065 -0.037
HD -0.035 -0.173 -0.181 -0.032 -0.394 -0.928 0.407 -0.001 0.003 0.020 0.000 -0.006 0.046 -0.025
IBM 0.055 -0.224 -0.256 0.099 -0.494 -1.024 0.491 0.000 0.000 0.016 0.000 -0.006 0.004 0.000
INTC 0.000 -0.125 -0.007 0.251 -0.626 -1.073 0.252 -0.002 0.000 0.003 0.007 -0.017 0.025 -0.010
JNJ -0.103 -0.178 -0.176 -0.017 -0.418 -0.955 0.480 -0.003 0.006 0.005 0.002 -0.013 0.045 -0.035
JPM -0.151 -0.145 -0.114 -0.114 -0.331 -0.854 0.381 0.007 0.007 0.011 0.000 -0.013 0.054 -0.019
KO -0.130 -0.157 -0.149 0.095 -0.501 -0.928 0.407 -0.002 0.004 0.002 0.005 -0.013 0.038 -0.026
MCD -0.006 -0.199 -0.193 -0.001 -0.433 -0.987 0.454 0.000 0.000 0.020 -0.001 -0.010 0.017 -0.012
MMM 0.063 -0.215 -0.203 0.015 -0.439 -1.035 0.466 -0.004 0.001 0.016 0.000 -0.009 0.015 -0.007
MRK -0.117 -0.160 -0.142 0.093 -0.491 -0.918 0.415 -0.005 0.002 0.004 0.003 -0.013 0.047 -0.034
MSFT 0.002 -0.133 -0.018 0.202 -0.606 -1.104 0.268 0.000 0.000 0.001 0.008 -0.023 0.049 -0.021
PFE -0.260 -0.159 -0.077 0.298 -0.616 -0.874 0.440 0.000 0.000 0.003 0.005 -0.011 0.034 -0.020
PG -0.059 -0.193 -0.184 -0.003 -0.439 -0.965 0.467 -0.004 0.002 0.006 0.000 -0.009 0.029 -0.027
SPY -0.384 -0.108 -0.009 -0.299 -0.153 -0.642 0.236 0.018 0.000 -0.001 -0.003 -0.010 0.150 -0.015
T -0.271 -0.158 -0.061 0.231 -0.589 -0.890 0.457 0.000 0.004 0.001 0.007 -0.017 0.046 -0.040

UTX 0.102 -0.210 -0.185 0.091 -0.496 -1.055 0.456 0.002 0.000 0.005 0.002 -0.006 0.011 -0.009
VZ -0.136 -0.155 -0.134 0.123 -0.522 -0.941 0.402 0.001 0.000 0.002 0.003 -0.020 0.043 -0.022

WMT -0.073 -0.173 -0.177 0.016 -0.446 -0.947 0.425 -0.004 0.004 0.010 0.002 -0.008 0.052 -0.030
XOM -0.102 -0.195 -0.192 -0.156 -0.282 -0.830 0.488 -0.003 0.009 0.019 -0.002 -0.007 0.060 -0.041

Overall -0.063 -0.171 -0.136 0.070 -0.472 -0.946 0.396 0.003 0.003 0.008 0.004 -0.012 0.038 -0.023

Note: The table presents average estimates of MMS parameter estimates for each stock. For each stock, we estimate
the LL-ACD(1,1)-K model on a monthly basis to obtain 48 parameter estimates per each MMS variable, and report
the average of the 48 parameter estimates per MMS variable per stock.
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Table B.9 Average MMS parameter estimates for the LL-ACD(1,1)-A model

Ticker γVOL,0 γQD,0 γBAS,0 γOI,0 γOF,0 γNT,0 γT Q0 γVOL,1 γQD,1 γBAS,1 γOI,1 γOF,1 γNT,1 γT Q1

AA 0.051 -0.131 -0.017 0.552 -0.776 -1.089 0.236 0.056 0.015 0.013 0.049 -0.043 0.029 -0.092
AIG -0.017 -0.188 -0.169 0.014 -0.433 -0.977 0.437 -0.001 0.013 0.026 0.018 -0.028 0.050 -0.053
AXP 0.046 -0.182 -0.203 -0.002 -0.424 -0.969 0.410 0.014 0.020 0.029 0.024 -0.042 0.065 -0.070
BA 0.113 -0.208 -0.216 0.094 -0.499 -1.075 0.445 0.001 0.012 0.042 0.018 -0.033 0.027 -0.036
BAC -0.116 -0.143 -0.006 0.439 -0.745 -0.898 0.300 0.050 0.011 0.007 0.047 -0.054 0.004 -0.080
C -0.079 -0.161 -0.112 -0.074 -0.358 -0.935 0.368 0.038 0.039 0.026 0.011 -0.037 0.070 -0.074

CAT 0.020 -0.210 -0.231 -0.058 -0.353 -0.959 0.465 0.025 0.011 0.054 0.011 -0.024 0.041 -0.044
CVX -0.060 -0.225 -0.257 -0.106 -0.316 -0.876 0.497 0.007 0.020 0.040 0.008 -0.023 0.048 -0.055
DD 0.020 -0.190 -0.172 0.000 -0.426 -0.958 0.432 0.016 0.021 0.029 0.017 -0.026 0.054 -0.068
DIS -0.103 -0.172 -0.177 -0.060 -0.372 -0.816 0.379 0.017 0.017 0.032 0.022 -0.043 0.046 -0.053
GE -0.228 -0.143 -0.049 0.302 -0.639 -0.873 0.367 0.001 0.014 0.020 0.028 -0.034 0.036 -0.051
GM -0.123 -0.157 -0.123 0.065 -0.488 -1.039 0.437 0.007 0.016 0.026 0.029 -0.041 0.080 -0.064
HD -0.053 -0.177 -0.190 -0.038 -0.388 -0.929 0.429 0.027 0.019 0.042 0.018 -0.035 0.062 -0.073
IBM 0.081 -0.224 -0.261 0.101 -0.499 -1.037 0.489 0.000 0.008 0.045 0.022 -0.038 0.016 -0.030
INTC -0.014 -0.127 -0.020 0.250 -0.624 -1.085 0.280 -0.004 0.012 0.015 0.028 -0.038 0.063 -0.046
JNJ -0.138 -0.181 -0.184 -0.028 -0.407 -0.944 0.509 0.017 0.023 0.025 0.022 -0.041 0.062 -0.083
JPM -0.187 -0.149 -0.130 -0.127 -0.317 -0.842 0.411 0.013 0.023 0.031 0.016 -0.034 0.068 -0.050
KO -0.160 -0.162 -0.163 0.094 -0.497 -0.919 0.434 0.007 0.021 0.035 0.027 -0.035 0.053 -0.059
MCD -0.035 -0.201 -0.206 -0.010 -0.423 -0.978 0.477 0.013 0.015 0.047 0.014 -0.033 0.035 -0.052
MMM 0.071 -0.216 -0.200 0.018 -0.442 -1.044 0.474 0.004 0.010 0.029 0.019 -0.035 0.032 -0.051
MRK -0.152 -0.168 -0.147 0.090 -0.485 -0.913 0.447 0.011 0.019 0.017 0.027 -0.039 0.061 -0.067
MSFT -0.010 -0.135 -0.032 0.201 -0.603 -1.113 0.291 -0.005 0.010 0.016 0.032 -0.048 0.085 -0.058
PFE -0.263 -0.163 -0.085 0.298 -0.615 -0.882 0.458 0.004 0.014 0.018 0.025 -0.032 0.049 -0.056
PG -0.095 -0.198 -0.199 -0.007 -0.431 -0.955 0.496 0.018 0.015 0.041 0.022 -0.039 0.038 -0.068
SPY -0.401 -0.113 -0.005 -0.300 -0.150 -0.682 0.286 0.062 0.008 0.002 0.005 -0.025 0.136 -0.041
T -0.276 -0.161 -0.086 0.229 -0.586 -0.892 0.474 0.017 0.026 0.020 0.033 -0.042 0.044 -0.069

UTX 0.121 -0.212 -0.189 0.094 -0.500 -1.076 0.465 0.008 0.009 0.029 0.025 -0.040 0.035 -0.050
VZ -0.172 -0.160 -0.148 0.123 -0.518 -0.931 0.428 0.010 0.008 0.028 0.030 -0.046 0.044 -0.039

WMT -0.105 -0.177 -0.181 0.015 -0.443 -0.941 0.450 0.014 0.019 0.028 0.025 -0.038 0.070 -0.071
XOM -0.141 -0.199 -0.210 -0.170 -0.267 -0.812 0.514 -0.005 0.023 0.052 0.008 -0.027 0.078 -0.061

Overall -0.080 -0.174 -0.146 0.067 -0.468 -0.948 0.419 0.015 0.016 0.029 0.023 -0.036 0.053 -0.059

Note: The table presents average estimates of MMS parameter estimates for each stock. For each stock, we estimate
the LL-ACD(1,1)-A model on a monthly basis to obtain 48 parameter estimates per each MMS variable, and report
the average of the 48 parameter estimates per MMS variable per stock.



182 | Appendix for Chapter 2

Figure B.1 Correlogram and histogram of log price durations for IBM, JPM and PFE

Panel 1: IBM

Panel 2: JPM

Panel 3: PFE

Note: The correlogram and histogram are constructed based on the log price duration of IBM, JPM and PFE for
the complete sampling period. In the histogram, the red solid line represents a fitted normal density.
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Figure B.2 Summary of estimated dynamic parameters of the LL-ACD(1,1)-K model
for all stock-months, part 1

Panel 1: Unconditional Mean, c
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Panel 2: Persistence Parameter, β1
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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Figure B.3 Summary of estimated dynamic parameters of the LL-ACD(1,1)-K model
for all stock-months, part 2

Panel 1: Moving Average Parameter, α1
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Panel 2: Unconditional Variance, σ2
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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Figure B.4 Summary of estimated one-duration lagged MMS parameters of the
LL-ACD(1,1)-K model for all stock-months, part 1

Panel 1: Lagged number of trades, γNT,1
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Panel 2: Lagged order flow, γOF,1
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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Figure B.5 Summary of estimated one-duration lagged MMS parameters of the
LL-ACD(1,1)-K model for all stock-months, part 2

Panel 1: Lagged total quote depth, γT Q,1
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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Figure B.6 Summary of estimated one-duration lagged MMS parameters of the
LL-ACD(1,1)-K model for all stock-months, part 3

Panel 1: Lagged order imbalance, γOI,1
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Panel 2: Lagged trading volume, γVOL,1
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Panel 3: Lagged quote difference, γQD,1
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Note: The parameter estimates are obtained from monthly estimation of the LL-ACD(1,1)-K model. For each stock,
parameter estimates are ordered chronologically with the x-axis representing the month index. Each circle denotes
the value of a parameter estimate, with solid black circles highlighting significance at 5%.
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B.3 Best Subset Selection Using Mixed Integer

Optimization

This section outlines the optimization procedure of the best subset selection regres-

sion using Mixed Integer Optimization (MIO) as proposed by Bertsimas, King, and

Mazumder (2016).

The best subset selection regression is the solution to the following nonconvex

problem:

min
c,γ

|| lnx(δ )i − c+ γ
′Zi||22 subject to ||γZ||0 ≤ K, (B.7)

where ||(·)||2 is the l2 norm and ||γZ||0 denotes the pseudo-norm of γZ that counts the

number of non-zero elements in γZ. Let the dimension of γZ be N-by-1, and denote

z = {z1, · · · ,zN} an N-by-1 binary vector where each element takes value 1 if the

corresponding element in γZ is non-zero, and zero otherwise. According to Bertsimas,

King, and Mazumder (2016), this can be rewritten as a MIO problem as follows:

min
c,γ,z

|| lnx(δ )i − c+ γ
′Zi||22

subject to −MU z ≤ γZ ≤ MU z

zi ∈ {0,1}
N

∑
i=1

zi ≤ K.

(B.8)

The constant MU should be taken to be a sufficiently large number (in magnitude

larger than the largest element in the optimized γZ) to ensure that the bounds on γZ

are valid. In our analysis we standardize all the MMS covariates and choose MU to

be 5. This problem can then be optimized easily via MIO optimizers with very high

efficiency, such as Gurobi, BARON, etc., even when the dimension of γZ is large.

B.4 Robustness Checks of the LL-ACD(1,1) Model

Estimation

In this section, we present in-sample and out-of-sample diagnostic tests for the

goodness-of-fit of LL-ACD(1,1)-P, LL-ACD(1,1)-K and LL-ACD(1,1)-A models. We

will mainly focus on monthly estimated models and discuss the implications of

expanding the estimation window.
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B.4.1 Gains in Information Criteria using BSR Selection

We firstly show that the MMS covariates selected by the K∗-optimal model also

give smaller BIC for LL-ACD(1,1)-K model. To verify this, we firstly compute the

difference in the BICs of OLS-A model and OLS-K model for each stock-month, and

compare it with the same difference obtained by comparing LL-ACD(1,1)-A with -K

model. Let us use the superscripts O and L to distinguish the BICs obtained from

OLSs model and LL-ACD(1,1) models, we compute the following quantities for each

stock month:

dO = BICO,A −BICO,K,

dL = BICL,A −BICL,K.
(B.9)

We do not consider BICO,P or BICL,P in this comparison because they are far worse

than the models with the inclusion of MMS covariates. The quantity dO will be

strictly non-negative for all stock-months, because the K∗-optimal models always

choose the model with the minimum BIC, and dO = 0 if and only if K∗ = 14, which
is unlikely from the results in Table 2.4. The quantity dL, however, can be negative

if the LL-ACD(1,1)-A model receives a smaller BIC, due to the interaction between

the MMS covariates and the dynamic structure of the LL-ACD model. We plot dO

and dL for each stock-month in Figure B.7.

Figure B.7 Comparison between dL and dO for all stock-months
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Note: See (B.9) for the definition of dO and dL. For each stock, dO and dL are computed monthly and ordered
chronologically with the x-axis representing the month index. Black dots indicate that dL < 0 for a particular month.
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Figure B.7 clearly shows that the dLs are in general very similar to the dOs and

are mostly above zero for each stock-month. This suggests that the favourable BIC

of the OLS-K model over the OLS-A model indeed carries over to the LL-ACD

models. We observe 5 cases out of 1440 where dL < 0 so that the LL-ACD(1,1)-A

model actually has the smallest BIC. Also, we do not guarantee that LL-ACD(1,1)-K

model possesses the smallest BIC over all combinations of MMS covariates for all

stock-months. However, from Figure B.7 it is clear that the selected MMS covariates

from BSR performs equally well in the LL-ACD(1,1)-K model compared with the

OLS regressions. Therefore, obtaining the overall optimal combination of MMS

covariates for the LL-ACD model is unlikely to have a significant improvement over

this result, but could impose unnecessary computational burden on model estimation.

B.4.2 Residual Diagnostics

We proceed to compare the performances with the OLS models and the LL-ACD

models. We examine whether the fitted residuals ε̂i (Ψ̂i in the OLS model) from each

model in Table 2.5 satisfies the i.i.d. normality assumption of the LL-ACD model.

We firstly present a graphical example of the goodness-of-fit of all models in Table

2.5 for 2011-01, SPY in Figure B.8.

Figure B.8 is consistent with the LB(20) and JB statistics in Table 2.5. From

the correlograms, all models successfully capture the diurnal pattern in the raw price

durations in Figure 2.3. For the OLS models, we see significant autocorrelation at

small lags and around 220 lags, while the autocorrelation pattern in the residuals of

the LL-ACD models are much less pronounced. From the Q-Q plots, it is evident

that the inclusion of MMS covariates improves the goodness-of-fit of both OLS and

LL-ACD models.

To give a comprehensive evaluation of the model specifications of all six models, we

summarize diagnostic test results for all stock-months. We also compare the test

results for the models estimated quarterly, half-yearly and yearly to analyse the

impact of a larger estimation window. We consider the Ljung-Box test at lag 20

as an indicator of the goodness-of-fit of the ARMA(1,1) structure of the residual,

and the Jacque-Bera test to test the normal assumption of the estimated residuals.

For each test, we present the average test statistics and percentage of the rejections

among all model estimates in Table B.10.1

1Total numbers of monthly, quarterly, half-yearly and yearly models for all securities estimations
are 1440, 480, 240 and 120 respectively.
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Figure B.8 Correlograms and quantile-quantile plots of the estimated residuals from
model estimations in Table 2.5

Panel 1: Correlogram
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Note: Title of each figure refers to the model where the residuals are estimated. For definition of the models, see
Section 2.6.2. In the correlograms, the two blue horizontal lines are 95% confidence bounds. In the quantile-quantile
(Q-Q) plot, we plot the standardized residuals (ε̂i/σ̂ε ) against the quantile of a standard normal distribution.
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Table B.10 Summary of diagnostic test results

Model OLS LL-ACD(1,1)

Specification -P -K -A -P -K -A

Panel 1: Monthly Estimation

Average LB(20) 217.91 135.50 124.13 18.88 20.70 20.72
% of Sig. at 10% 99.93% 99.10% 98.47% 8.33% 13.26% 12.71%
% of Sig. at 5% 99.93% 98.40% 97.85% 4.31% 7.92% 8.13%
% of Sig. at 1% 99.79% 97.01% 96.04% 1.11% 3.33% 2.99%

Average JB 122.18 8.86 8.81 95.15 7.82 7.85
% of Sig. at 10% 100.00% 40.69% 39.51% 99.79% 38.61% 38.13%
% of Sig. at 5% 100.00% 27.99% 27.92% 99.72% 26.04% 26.88%
% of Sig. at 1% 100.00% 10.35% 10.42% 99.65% 9.72% 9.58%

Panel 2: Quarterly Estimation

Average LB(20) 682.47 473.10 460.60 20.30 26.59 26.82
% of Sig. at 10% 100.00% 100.00% 100.00% 12.29% 36.67% 38.13%
% of Sig. at 5% 100.00% 100.00% 100.00% 7.08% 27.92% 28.75%
% of Sig. at 1% 100.00% 100.00% 100.00% 2.50% 11.88% 12.29%

Average JB 402.29 20.29 20.08 283.00 18.03 17.84
% of Sig. at 10% 100.00% 68.33% 68.33% 100.00% 70.83% 69.79%
% of Sig. at 5% 100.00% 60.00% 58.33% 99.79% 58.75% 58.96%
% of Sig. at 1% 100.00% 37.50% 35.63% 99.79% 38.75% 38.13%

Panel 3: Half-Yearly Estimation

Average LB(20) 1378.77 1039.36 1026.61 21.78 38.64 38.84
% of Sig. at 10% 100.00% 100.00% 100.00% 19.58% 74.58% 75.83%
% of Sig. at 5% 100.00% 100.00% 100.00% 11.25% 63.33% 65.42%
% of Sig. at 1% 100.00% 100.00% 100.00% 2.50% 42.50% 43.33%

Average JB 824.05 29.61 29.48 569.52 27.06 26.98
% of Sig. at 10% 100.00% 83.33% 83.33% 100.00% 86.67% 84.58%
% of Sig. at 5% 100.00% 78.75% 77.50% 100.00% 80.42% 77.50%
% of Sig. at 1% 100.00% 63.75% 63.75% 100.00% 64.17% 62.92%

Panel 4: Yearly Estimation

Average LB(20) 2893.67 2256.54 2243.83 25.31 66.07 66.15
% of Sig. at 10% 100.00% 100.00% 100.00% 34.17% 96.67% 96.67%
% of Sig. at 5% 100.00% 100.00% 100.00% 24.17% 94.17% 94.17%
% of Sig. at 1% 100.00% 100.00% 100.00% 9.17% 89.17% 89.17%

Average JB 1699.74 59.91 59.60 1148.67 60.24 59.56
% of Sig. at 10% 100.00% 89.17% 89.17% 100.00% 93.33% 93.33%
% of Sig. at 5% 100.00% 89.17% 88.33% 100.00% 92.50% 93.33%
% of Sig. at 1% 100.00% 85.83% 85.00% 100.00% 87.50% 86.67%

Note: LB(20) and JB stand for the Ljung-Box test statistic at lag 20 and the Jacque-Bera test statistic respectively.
In panel 1 to 4, we report the LB(20) and JB statistics averaged over 1440, 480, 240 and 120 model estimations with
monthly, quarterly, half-yearly and yearly estimation window respectively. For each test, % of Sig. at α% reports
the percentage of tests rejected at α% significance level.
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Firstly we compare the performance of all six models within each panel in Ta-

ble B.10. The LB(20) statistics show that for the same model specification, the

LL-ACD models always outperform the OLS models significantly, which is not sur-

prising. LB(20) for the -K and -A specifications are better than the -P specification

for the OLS models, but it is the opposite case for the LL-ACD model. This is

because the MMS covariates can to some extent explain the dependence structure

in the log price durations, but it is a very noisy measure. Once we control for the

ARMA effect in the residuals, the inclusion of MMS covariates only adds noise to the

dynamic structure, which results in larger LB(20) statistics. This effect is more pro-

nounced when the estimation window expands. As to the JB statistics, we can confirm

that the inclusion of the MMS covariates greatly improves the fit of the normal density.

Comparing across different panels in Table B.10, the goodness-of-fit of both the

OLS and LL-ACD models generally deteriorate as the estimation window expands.

However, we can see that the -K and -A models are more robust to changes in the size

of the estimation window. This is more obvious in terms of the Jacque-Bera statistics.

The average JB statistics increases from 95 to over 1000 for the LL-ACD(1,1)-P model,

while for the -K and -A models the increase is much less pronounced. The LB(20)

statistics from the LL-ACD(1,1)-P generally outperform the LL-ACD(1,1)-K and -A

model in both average test statistics and rejection rate, and all the LL-ACD models

significantly outperform their OLS counterparts in terms of the LB(20) statistics.

Our findings in Table B.10 clearly indicate that the LL-ACD(1,1) structure to

a large extent captures the dependence structure in the price durations. The inclu-

sion of the MMS covariates can greatly improve the fit of the normal density, but

will add noise to the dependence structure of the residuals. The overall performance

of the model specifications decreases as the estimation window widens, and monthly

estimated models have the best performance in terms of both average test statistics

and percentage of test rejections.

B.4.3 Goodness-of-Fit

We assess the overall goodness-of-fit of the models using the adjusted R2s of the log

price duration models. For each security, we present the average adjusted R2s for

each model with four different sizes of estimation windows in Table B.11. Table

B.11 corroborates our findings in Table B.10 that for a given size of estimation

window, all LL-ACD models outperform their OLS counterparts. The inclusion of

MMS covariates improves the adjusted R-squares by more than 30% in all cases.

All the adjusted R-squares decrease as the estimation window widens, except for
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the LL-ACD(1,1)-P models where the adjusted R-squares actually increase slightly.

However, the changes are all very small (typically less than 1%) and may not be

statistically significant.

Table B.11 Average adjusted R-squared for models with varying estimation windows

Model OLS LL-ACD(1,1)

Specification -P -K -A -P -K -A

m = 1 36.3456% 71.4521% 71.5967% 41.1081% 72.6787% 72.7905%
m = 3 36.0217% 70.9915% 71.0374% 41.2141% 72.6306% 72.6753%
m = 6 35.9057% 70.6796% 70.6988% 41.2376% 72.5579% 72.5807%

m = 12 35.7544% 70.4041% 70.4129% 41.2658% 72.4722% 72.4848%

Note: m denotes the size of the estimation window in months. For each model specification, we report the adjusted
R-squared averaged over 1440, 480, 240 and 120 model estimations with monthly, quarterly, half-yearly and yearly
estimation window respectively.

To formally assess whether the improvements of the ACD models over the OLS

models are significant, and whether the MMS covariates contribute significantly to

the likelihood of the model, we perform likelihood ratio tests for the OLS models

versus LL-ACD models with the same specification, the -P models versus -K models

and -K models versus -A models. For each estimation window, this mounts to seven

likelihood ratio tests. We present the results in Table B.12. Our findings suggest

that the autoregressive structure contributes significantly to the log-likelihood for

all model estimations as expected, the -K models significantly outperform the -P

models with a substantial average LR statistics and 100% rejection rate at 1%. The

-A models still seem to provide some improvements to the likelihood, but this effect

is much weaker.

To sum up, in this section we firstly demonstrate that the optimal MMS covariates

selection via the OLS models also improve BICs for the LL-ACD(1,1)-K models

over the -P models and the -A models. In-sample diagnostics and goodness-of-fit

tests suggest that the inclusion of MMS covariates can significantly improve the

performance of the models in terms of residual diagnostics and model likelihoods, and

the -K models perform very close to the -A models. Analysis based on the estimation

window shows that the goodness-of-fit of the LL-ACD models generally decreases as

the estimation window expands, but the -K and the -A models are more robust to

changes in the estimation window compared to the -P models.
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Table B.12 Summary of likelihood ratio test results

Unrestricted OLS-K OLS-A LL-ACD-K LL-ACD-A LL-ACD-P LL-ACD-K LL-ACD-A
Restricted OLS-P OLS-K LL-ACD-P LL-ACD-K OLS-P OLS-K OLS-A

Panel 1: Monthly Estimation

Average LR 1294.16 14.97 1240.77 13.44 127.44 74.05 72.52
% of Sig. at 10% 100.00% 68.40% 100.00% 54.72% 100.00% 99.72% 99.79%
% of Sig. at 5% 100.00% 53.19% 100.00% 41.53% 100.00% 99.65% 99.72%
% of Sig. at 1% 100.00% 27.71% 100.00% 20.69% 100.00% 99.03% 99.24%

Panel 2: Quarterly Estimation

Average LR 3813.76 12.07 3688.23 12.29 404.48 278.95 279.18
% of Sig. at 10% 100.00% 68.54% 100.00% 57.08% 100.00% 100.00% 100.00%
% of Sig. at 5% 100.00% 56.25% 100.00% 45.21% 100.00% 100.00% 100.00%
% of Sig. at 1% 100.00% 30.42% 100.00% 27.50% 100.00% 100.00% 100.00%

Panel 3: Half-Yearly Estimation

Average LR 7526.44 9.67 7335.12 11.31 823.31 632.00 633.63
% of Sig. at 10% 100.00% 68.75% 100.00% 60.83% 100.00% 100.00% 100.00%
% of Sig. at 5% 100.00% 51.67% 100.00% 52.08% 100.00% 100.00% 100.00%
% of Sig. at 1% 100.00% 31.67% 100.00% 32.08% 100.00% 100.00% 100.00%

Panel 4: Yearly Estimation

Average LR 14897.45 8.18 14586.07 11.27 1695.26 1383.88 1386.97
% of Sig. at 10% 100.00% 60.83% 100.00% 66.67% 100.00% 100.00% 100.00%
% of Sig. at 5% 100.00% 56.67% 100.00% 54.17% 100.00% 100.00% 100.00%
% of Sig. at 1% 100.00% 35.00% 100.00% 36.67% 100.00% 100.00% 100.00%

Note: LR stand for the likelihood ratio test statistics computed as two times the difference in the estimated log-
likelihoods from the unrestricted and the restricted models. In panel 1 to 4, we report LR statistics averaged
over 1440, 480, 240 and 120 model estimations with monthly, quarterly, half-yearly and yearly estimation window
respectively. For each test, % of Sig. at α% reports the percentage of tests rejected at α% significance level.
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B.5 Daily Volatility Estimation with the LL-ACD

Model

In this section, we construct daily volatility estimates from the LL-ACD models and

compare them against a RV-type benchmark. The purpose of this section is to show

that the ICV estimator estimates the same object as the RV-type estimator, and

the inclusion of MMS covariates improves the performance of the ICV estimator by

reducing the deviation from the benchmark. On a daily level, the RV-type estimators

can be constructed relatively precisely due to the large amount of daily transactions

(the least liquid stock AA in our sample on average has more than 1500 transactions

per day), which justifies our daily comparison between the ICV estimators.

Daily ICV estimates can therefore be constructed based on ICV M,m
i,d as:

ICV M,m
d ≡ ∑

i∈Id

ICV M,m
i,d +

1
6

(
δ

P(t(δ )Id ,d
)

)2

. (B.10)

Note that the term 1
6

(
δ

P(t(δ )Id ,d
)

)2
is added to correct for the end-of-sample bias as

documented in Li, Nolte, and Nolte (2018a).

In order to evaluate the ICV volatility estimates, we compare our daily ICV estimates

to a benchmark RV-type volatility estimator: the realized kernel (RK) estimates2,

which is a widely applied estimator that is robust to MMS noise and capable of

incorporating all observations to compute volatility estimates (Barndorff-Nielsen,

Hansen, Lunde, and Shephard, 2008b). Following Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2009), we use a non flat-top Parzen kernel with optimal bandwidth

selection and tick-by-tick sampling. To give a graphical illustration of the RK and

ICV estimates, we plot examples of monthly ICV estimates and RK estimates from

SPY in Figure B.9.

In Figure B.9 we present a line plot for the whole sampling period in the up-

per panel and two zoomed-in plots for the two months 2011-01 and 2011-08, which

correspond to a calmer period and a more volatile period3. Our first observation is

that the four estimators provide very similar volatility estimates, as can be seen from

2As a convention, we compute all volatility measures as annualized square root of the variance
measures. Daily ICV and RK refer to their daily annualized volatility measures instead of the daily
variance measures whenever no confusion is caused.

3The high volatility estimates of August 2011 is believed to be a result from the European
sovereign debt crisis and the downgrade of U.S. credit rating.
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Figure B.9 Example of daily volatility estimates based on ICV and RK for SPY
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Daily volatility estimates for SPY, 2011-08

Note: The x-axis denotes the date on which the daily volatility estimates are computed. We report annualized
volatility measures instead of estimated variances. The middle and lower panels are zoomed-in versions of the upper
panel for 2011-01 and 2011-08.

the upper panel. In the zoomed-in plots, we see that the RK estimates are always

slightly above the ICV estimates. This is due to the truncation feature of the ICV

estimators that regards any price changes of larger than δ as δ . This truncation

provides robustness to jumps in the price process, but also introduces a truncation

bias that converges to zero as the sampling frequency decreases. From the zoomed-in

plots, it is evident that despite that the truncation threshold δ is shared among

all three ICV estimators, ICV K,1
d and ICV A,1

d seem to be less affected by the trun-

cation bias and are in closer proximity to the RKd estimates than the ICV P,1
d estimates.

To assess how close the four volatility estimates are related to each other, we

present the average correlation table between the four volatility estimators in Table

B.13, which shows clearly that the four estimators are indeed highly correlated and

ICV K,1
d and ICV A,1

d have higher correlation with RKd compared to ICV P,1
d . Also, ICV

estimates with the inclusion of MMS covariates are extremely highly correlated. This

can be a sign that ICV K,1
d has already incorporated most of the information through

the MMS covariates, and ICV A,1
d does not add much additional information to the

volatility estimates. Results from Figure B.9 and Table B.13 provide strong empirical

evidence supporting the findings in Li, Nolte, and Nolte (2018a) that ICV estimators

indeed estimate the same quantity as RV-type estimators.
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Table B.13 Averaged correlation table of RK and monthly estimated daily ICV
volatility estimates

RKd ICV P,1
d ICV K,1

d ICV A,1
d

RKd 1.0000

ICV P,1
d 0.9705 1.0000

ICV K,1
d 0.9721 0.9904 1.0000

ICV A,1
d 0.9723 0.9906 0.9997 1.0000

Note: for each security, we compute the correlation matrix of the matrix {RKd , ICV P,1
d , ICV K,1

d , ICV A,1
d }d=1:1006, and

average the correlation matrix over 30 securities.

We compute the mean squared error (MSE) for each ICV estimate with respect to

the RK measure, and test the difference using the modified Dieblod-Mariano test in

Table B.14.

In Table B.14, we clearly observe that MSEK,m outperforms MSEP,m for all securities

and m. This indicates that the inclusion of MMS covariates can significantly improve

the performance of the ICV P,m estimator. We also see that MSEK,m and MSEA,m are

close to each other both numerically and statistically, especially when m is large.

This result is partly driven by the fact that when m is large, the K∗-optimal models

tend to select more MMS covariates and the difference between LL-ACD(1,1)-K and

LL-ACD(1,1)-All is small. However, even with a small m, we can safely conclude

that including additional MMS covariates in excess of the covariates selected in the

LL-ACD(1,1)-K models do not have a substantial impact on the performance of the

ICV K,m estimator, as the majority of the test results are insignificant.

Table B.14 also shows some interesting pattern when we compare the MSEs across

different sizes of estimation windows. Comparing MSEP,1 with MSEMP,3, MSEP,6

and MSEP,12, we see that MSEP,m is increasing as the estimation window expands.

We therefore also compare the performance of the ICV estimators across estima-

tion windows by producing a re-arranged version of Table B.14 and test whether

MSEM,1 = MSEM,3, MSEM,3 = MSEM,6 and MSEM,6 = MSEM,12 for each M. We

present the results in Table B.15. From Table B.15 we can clearly observe that

MSEP,m indeed deteriorates significantly as the estimation window extends, whereas

results of MSEK,m and MSEA,m are much more robust to changes in the estimation

window. We only see a decline of the performance of ICV K,m and ICV A,m when we

use a one-year estimation window. In fact we even see some significant improvements

after expanding the estimation window.
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Table B.14 Comparison of MSEs of ICV volatility estimates within each estimation
window

Ticker MSEP,1 MSEK,1 MSEA,1 MSEP,3 MSEK,3 MSEA,3 MSEP,6 MSEK,6 MSEA,6 MSEP,12 MSEK,12 MSEA,12

AA 3.650 3.362∗∗∗ 3.360 3.661 3.377∗∗∗ 3.380 3.678 3.386∗∗∗ 3.389o 3.685 3.398∗∗∗ 3.401oo

AIG 1.589 1.356∗∗∗ 1.355 1.609 1.356∗∗∗ 1.361 1.616 1.367∗∗∗ 1.368 1.644 1.392∗∗∗ 1.392
AXP 0.782 0.613∗∗∗ 0.615 0.790 0.607∗∗∗ 0.607 0.791 0.612∗∗∗ 0.612 0.797 0.614∗∗∗ 0.614
BA 0.974 0.804∗∗∗ 0.801 0.987 0.804∗∗∗ 0.803 0.985 0.798∗∗∗ 0.800 0.990 0.803∗∗∗ 0.802
BAC 2.178 1.862∗∗∗ 1.862 2.212 1.841∗∗∗ 1.844 2.208 1.878∗∗∗ 1.878 2.215 1.910∗∗∗ 1.909
C 2.432 1.663∗∗∗ 1.666 2.467 1.667∗∗∗ 1.667 2.447 1.588∗∗∗ 1.590ooo 2.717 1.783∗∗∗ 1.787ooo

CAT 0.846 0.722∗∗∗ 0.713∗∗ 0.852 0.706∗∗∗ 0.705∗ 0.854 0.702∗∗∗ 0.702 0.856 0.692∗∗∗ 0.692
CVX 0.425 0.341∗∗∗ 0.340 0.430 0.343∗∗∗ 0.341∗∗ 0.429 0.337∗∗∗ 0.337 0.435 0.337∗∗∗ 0.337
DD 0.785 0.637∗∗∗ 0.635 0.794 0.655∗∗∗ 0.654 0.793 0.664∗∗∗ 0.664 0.798 0.671∗∗∗ 0.671
DIS 0.661 0.545∗∗∗ 0.544 0.673 0.557∗∗∗ 0.556 0.672 0.569∗∗∗ 0.569 0.677 0.575∗∗∗ 0.574
GE 1.023 0.880∗∗∗ 0.875∗ 1.032 0.877∗∗∗ 0.876 1.033 0.882∗∗∗ 0.882 1.041 0.888∗∗∗ 0.888
GM 1.686 1.346∗∗∗ 1.343 1.689 1.364∗∗∗ 1.359∗∗∗ 1.688 1.361∗∗∗ 1.360∗ 1.691 1.392∗∗∗ 1.392
HD 0.697 0.607∗∗∗ 0.602∗∗ 0.699 0.605∗∗∗ 0.605 0.703 0.609∗∗∗ 0.608 0.707 0.611∗∗∗ 0.611
IBM 0.476 0.412∗∗∗ 0.412 0.480 0.413∗∗∗ 0.412 0.482 0.421∗∗∗ 0.421 0.484 0.431∗∗ 0.431
INTC 1.607 1.391∗∗∗ 1.383∗∗ 1.617 1.398∗∗∗ 1.397 1.623 1.401∗∗∗ 1.400 1.630 1.417∗∗∗ 1.417
JNJ 0.327 0.257∗∗∗ 0.258 0.328 0.255∗∗∗ 0.255 0.331 0.251∗∗∗ 0.251oo 0.333 0.253∗∗∗ 0.253oo

JPM 0.729 0.573∗∗∗ 0.572 0.730 0.576∗∗∗ 0.577 0.729 0.572∗∗∗ 0.572 0.732 0.574∗∗∗ 0.574oo

KO 0.411 0.335∗∗∗ 0.333 0.415 0.335∗∗∗ 0.336 0.418 0.339∗∗∗ 0.340 0.420 0.336∗∗∗ 0.336
MCD 0.366 0.292∗∗∗ 0.291 0.367 0.288∗∗∗ 0.288 0.368 0.287∗∗∗ 0.287 0.370 0.285∗∗∗ 0.285
MMM 0.484 0.415∗∗∗ 0.415 0.485 0.414∗∗∗ 0.413 0.487 0.415∗∗∗ 0.415 0.493 0.409∗∗∗ 0.409
MRK 0.560 0.472∗∗∗ 0.468 0.563 0.479∗∗∗ 0.480 0.564 0.481∗∗∗ 0.481 0.568 0.484∗∗∗ 0.485oo

MSFT 1.037 0.945∗∗∗ 0.935∗∗∗ 1.041 0.946∗∗∗ 0.946 1.043 0.956∗∗∗ 0.955∗ 1.048 0.969∗∗∗ 0.966∗∗∗

PFE 1.002 0.855∗∗∗ 0.853 1.010 0.857∗∗∗ 0.857 1.019 0.864∗∗∗ 0.864 1.020 0.862∗∗∗ 0.862
PG 0.388 0.316∗∗∗ 0.313∗ 0.392 0.313∗∗∗ 0.313 0.395 0.315∗∗∗ 0.315 0.398 0.314∗∗∗ 0.314
SPY 0.140 0.081∗∗∗ 0.080 0.144 0.080∗∗∗ 0.078∗∗∗ 0.145 0.077∗∗∗ 0.077∗ 0.146 0.078∗∗∗ 0.078∗

T 0.525 0.436∗∗∗ 0.435 0.531 0.436∗∗∗ 0.435 0.537 0.434∗∗∗ 0.434 0.540 0.444∗∗∗ 0.444
UTX 0.769 0.654∗∗∗ 0.650∗ 0.778 0.650∗∗∗ 0.649 0.778 0.654∗∗∗ 0.654 0.781 0.647∗∗∗ 0.646∗∗

VZ 0.607 0.496∗∗∗ 0.494 0.612 0.503∗∗∗ 0.502 0.615 0.496∗∗∗ 0.496 0.617 0.506∗∗∗ 0.506
WMT 0.460 0.383∗∗∗ 0.383 0.465 0.386∗∗∗ 0.386 0.467 0.388∗∗∗ 0.389 0.467 0.389∗∗∗ 0.389
XOM 0.306 0.239∗∗∗ 0.237 0.307 0.236∗∗∗ 0.236 0.307 0.236∗∗∗ 0.236 0.310 0.244∗∗ 0.244∗∗

Overall 0.931 0.776∗∗∗ 0.774∗∗∗ 0.939 0.778∗∗∗ 0.777 0.940 0.778∗∗∗ 0.778 0.954 0.790∗∗∗ 0.790

Note: The MSEs are multiplied by 103. For each security, we compute MSEM,m for each M ∈{P,K,A} and m∈{1,3,6,12}
according to (2.23). For each m, we perform modified Diebold-Mariano tests to test whether MSEP,m = MSEK,m and
MSEK,m = MSEA,m. The asterisks (circles) superscripts on the MSEs indicate significantly smaller (larger) MSEs
compared against the MSE to the left. One to three symbols correspond to significance at 10%, 5% and 1%,
respectively.
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Table B.15 Comparison of MSEs of ICV volatility estimates across different
estimation windows

Ticker MSEP,1 MSEP,3 MSEP,6 MSEP,12 MSEK,1 MSEK,3 MSEK,6 MSEK,12 MSEA,1 MSEA,3 MSEA,6 MSEA,12

AA 3.650 3.661 3.678oo 3.685 3.362 3.377 3.386 3.398 3.360 3.380 3.389 3.401
AIG 1.589 1.609ooo 1.616o 1.644ooo 1.356 1.356 1.367 1.392oo 1.355 1.361 1.368 1.392oo

AXP 0.782 0.790oo 0.791 0.797o 0.613 0.607 0.612 0.614 0.615 0.607 0.612 0.614
BA 0.974 0.987o 0.985 0.990oo 0.804 0.804 0.798 0.803 0.801 0.803 0.800 0.802
BAC 2.178 2.212oo 2.208 2.215o 1.862 1.841 1.878o 1.910oo 1.862 1.844 1.878o 1.909oo

C 2.432 2.467 2.447 2.717ooo 1.663 1.667 1.588∗∗∗ 1.783ooo 1.666 1.667 1.590∗∗∗ 1.787ooo

CAT 0.846 0.852o 0.854 0.856 0.722 0.706 0.702 0.692∗∗∗ 0.713 0.705 0.702 0.692∗∗∗

CVX 0.425 0.430o 0.429 0.435o 0.341 0.343 0.337∗ 0.337 0.340 0.341 0.337 0.337
DD 0.785 0.794 0.793 0.798oo 0.637 0.655 0.664 0.671 0.635 0.654 0.664 0.671
DIS 0.661 0.673oo 0.672 0.677oo 0.545 0.557 0.569oo 0.575 0.544 0.556 0.569oo 0.574
GE 1.023 1.032oo 1.033 1.041ooo 0.880 0.877 0.882 0.888 0.875 0.876 0.882 0.888
GM 1.686 1.689 1.688 1.691o 1.346 1.364 1.361 1.392ooo 1.343 1.359 1.360 1.392ooo

HD 0.697 0.699 0.703o 0.707oo 0.607 0.605 0.609 0.611 0.602 0.605 0.608 0.611
IBM 0.476 0.480ooo 0.482 0.484 0.412 0.413 0.421o 0.431 0.412 0.412 0.421o 0.431
INTC 1.607 1.617o 1.623oo 1.630ooo 1.391 1.398 1.401 1.417oo 1.383 1.397o 1.400 1.417oo

JNJ 0.327 0.328 0.331ooo 0.333oo 0.257 0.255 0.251∗ 0.253 0.258 0.255 0.251 0.253
JPM 0.729 0.730 0.729 0.732 0.573 0.576 0.572 0.574 0.572 0.577 0.572 0.574
KO 0.411 0.415oo 0.418o 0.420ooo 0.335 0.335 0.339 0.336 0.333 0.336 0.340 0.336
MCD 0.366 0.367 0.368o 0.370o 0.292 0.288∗ 0.287 0.285 0.291 0.288 0.287 0.285
MMM 0.484 0.485 0.487 0.493ooo 0.415 0.414 0.415 0.409∗∗ 0.415 0.413 0.415 0.409∗∗

MRK 0.560 0.563 0.564 0.568ooo 0.472 0.479 0.481 0.484 0.468 0.480oo 0.481 0.485
MSFT 1.037 1.041 1.043 1.048ooo 0.945 0.946 0.956 0.969o 0.935 0.946 0.955 0.966o

PFE 1.002 1.010o 1.019oo 1.020 0.855 0.857 0.864o 0.862 0.853 0.857 0.864o 0.862
PG 0.388 0.392oo 0.395ooo 0.398oo 0.316 0.313 0.315 0.314 0.313 0.313 0.315 0.314
SPY 0.140 0.144ooo 0.145 0.146o 0.081 0.080 0.077 0.078o 0.080 0.078 0.077 0.078o

T 0.525 0.531o 0.537 0.540ooo 0.436 0.436 0.434 0.444ooo 0.435 0.435 0.434 0.444ooo

UTX 0.769 0.778ooo 0.778 0.781oo 0.654 0.650 0.654 0.647∗∗ 0.650 0.649 0.654 0.646∗∗

VZ 0.607 0.612oo 0.615oo 0.617 0.496 0.503 0.496∗ 0.506ooo 0.494 0.502o 0.496 0.506ooo

WMT 0.460 0.465 0.467oo 0.467 0.383 0.386 0.388 0.389 0.383 0.386 0.389 0.389
XOM 0.306 0.307 0.307 0.310 0.239 0.236 0.236 0.244ooo 0.237 0.236 0.236 0.244ooo

Overall 0.931 0.939ooo 0.940 0.954ooo 0.776 0.778 0.778 0.790ooo 0.774 0.777 0.778 0.790ooo

Note: The MSEs are multiplied by 103. For each security, we compute MSEM,m for each M ∈{P,K,A} and m∈{1,3,6,12}
according to (2.23). For each M, we perform modified Diebold-Mariano tests to test whether MSEM,1 = MSEM,3,
MSEM,3 = MSEM,6 and MSEM,6 = MSEM,12. The asterisks (circles) superscripts on the MSEs indicate significantly
smaller (larger) MSEs compared against the MSE to the left. One to three symbols correspond to significance at
10%, 5% and 1%, respectively.
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The performance of the ICV estimators summarized in Tables B.14 and B.15 is closely

linked to the goodness-of-fit of the corresponding LL-ACD(1,1) model specifications.

The superior performance of ICV K,m and ICV A,m over ICV P,m is not surprising because

the LL-ACD(1,1)-K and -A models have significantly better in-sample goodness-of-fit

in comparison with the -P models. This also explains the similar performance of

ICV K,m and ICV A,m and the robustness of these two estimators to changes in the

estimation window. As the -A models do not provide substantial improvement to the

goodness-of-fit compared to the -K model, we recommend to use the -K models to

construct daily volatility estimates to improve the efficiency of volatility estimates.

B.6 Construction of the Intraday ICV Estimator

We present the full specification of the ICV M,m
j,d estimator for the interval (3900( j−

1),3900 j] as in (2.22):

ICV M,m
j,d ≡ ∑

i∈I j,d

ICV M,m
i,d +Q j,d, (B.11)

Q j,d =−ICV M,m
N j−1+1,d

3900( j−1)− t(δ )N j−1,d

x(δ )N j−1+1,d︸ ︷︷ ︸
Left Correction

+ ICV M,m
N j+1,d

t(δ )N j
−3900 j

x(δ )N j+1,d︸ ︷︷ ︸
Right Correction

, (B.12)

in which N j = N(δ )(3900 j) is the number of price events at time 3900 j. Note that

the term ∑i∈I j,d
ICV M,m

i,d is an estimator of the integrated variance of the interval

(t(δ )N j−1,d
, t(δ )N j,d

]. However, in general t(δ )N j
≤ 3900 j since the last price event in the j-th

interval does not necessarily arrive at the boundary of the interval. Therefore, in

∑i∈I j,d
ICV M,m

i,d , we have included a volatility estimate of (t(δ )N j−1
,3900( j−1)] at the left

boundary which does not belong to (3900( j−1),3900 j], but failed to estimate the

integrated variance of the interval (t(δ )N j,d
,3900 j] of the right boundary. We provide

an illustration of this boundary problem in Figure B.10.

To resolve this boundary problem, we need to remove the volatility estimates of

(t(δ )N j−1,d
,3900( j−1)] at the left boundary and add the volatility estimate of (t(δ )N j

,3900 j]

at the right boundary to ∑i∈I j,d
ICV M,m

i,d . Taking the left boundary correction for exam-

ple. In Q j,d , we assign ICV M,m
N j−1+1,d to (t(δ )N j−1,d

,3900( j−1)] and (3900( j−1), t(δ )N j−1+1,d]

based on the proportion of the length of the two intervals to the price duration

x(δ )N j−1+1,d , and remove the corresponding proportion of the volatility estimates for the
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Figure B.10 Illustration of the boundary problem of the intraday ICV estimator

t(δ )N1 3900 t(δ )N1+1 t(δ )N2 7800 t(δ )N2+1

Left Correction Right Correction

∑i∈I j,d
ICV M,m

i,d

Note: The above graph presents the left and right boundary corrections for j = 2. Each red dot represents an arrival
of a price event. The black dots are boundaries of the 3900-second intervals.

interval (t(δ )N j−1,d
,3900( j−1)]. Similarly the second term in Q j,d corrects for the right

boundary. Also note that the set I j,d can be an empty set. In this case, the price

duration is a superset of a 3900-second interval, and the left and right corrections

can be computed similarly by removing the proportion of the volatility estimates

that does not lie in the 3900-second interval.
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Appendix for Chapter 3

C.1 Proof to Proposition 3.1

The necessity of condition 1 is obvious. The sufficiency of condition 1 is rejected by

the example in Section 2.3. To prove that condition 2 ensures the stationarity of

both duration and intensity processes, consider the following expansion:

Φ̃i =
∞

∑
j=1

ψ jε̃i− j =−γ

∞

∑
j=1

ψ j −
∞

∑
j=1

ψi lnεi− j. (C.1)

The absolute summability of ψ j is guaranteed by condition 1 so the constant

−γ ∑
∞
j=1 ψ j is bounded. The conditional intensity process can therefore be expressed

as:

λ (ti|Fti) =C
∞

∏
j=1

ε
−ψ j
i− j , (C.2)

in which C = w− γ ∑
∞
j=1 ψ j is a bounded constant. Similarly, the duration process

can be expressed as:

xi =Cεi

∞

∏
j=1

ε
ψ j
i− j. (C.3)

Note that both the intensity and duration processes are in the form of products of an

infinite number of power transformed i.i.d.-unit exponential random variables. The

second moment of λ (ti|Fti) and xi are, respectively:

E[λ (ti|Fti)
2] =C2

∞

∏
j=1

E[ε−2ψ j
i− j ], (C.4)

E[x2
i ] =C2

∞

∏
j=1

E[ε2ψ j
i− j ]. (C.5)
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Clearly, the second moment of λ (ti|Fti) and xi exist iff 0 < E[ε±2ψ j
i− j ]< ∞,∀ j. Because

εi− j ∼ i.i.d.Exp(1),∀i, j, the expectation can be expressed as:

E[ε±2ψ j
i− j ] =

∫
∞

0
x±2ψ je−xdx = Γ(±2ψ j +1). (C.6)

One property of real-valued Γ(x) is that it converges for all x ∈ R+, and diverges

otherwise. Thus 1± 2ψ j > 0 is required to guarantee the existence of the second

moment. This also suggests that if the second moment of both λ (ti|Fti) and xi exist,

we must have 1±2ψ j > 0. We therefore conclude that |ψ j|< 0.5,∀ j and condition 1

are the sufficient and necessary conditions for weakly stationarity of both conditional

intensity and duration processes, which completes the proof.

C.2 Approximated Single Move Sampler

Instead of using (3.37) that conditions on all the information up to time T , we
calculate the following quantity:

p(si = l|s(n)−i ,θ
(n),Y)≈

p(si = l|s(n+1)
i−1 ,s(n)i+1,Π

(n)) f (yi:i+∆|si = l,s(n)−i ,θ
(n))

∑
M
m p(si = m|s(n+1)

i−1 ,s(n)i+1,Π
(n)) f (yi:i+∆|si = m,s(n)−i ,θ

(n))
,

(C.7)

in which s(n)−i = {s(n+1)
1:i−1 }∪{s(n)i+1:T}. For every si ∈ M , the following relationship holds:

f (yi:T |si = l,s(n)−i ,θ
(n)) = f (yi:i+∆|si,s

(n)
−i ,θ

(n)) f (yi+∆+1:T |si,s
(n)
−i ,θ

(n)). (C.8)

To validate our approximation, we thus only need to show that ∃∆ and ∀l,m ∈ M :

f (yi+∆+1:T |si = l,s(n)−i ,θ
(n))≈ f (yi+∆+1:T |si = m,s(n)−i ,θ

(n)). (C.9)

This in fact holds for any sequence of si given the stationarity condition of the

MS-ACI model. A change in si only affects the conditional density of yi:T through

Φ̃i(si) and ε̃i(si), which can be interpreted as innovation impulses at ti and ti+1. Due

to the stationarity of the Markov chain and the Φ̃i component which is a zero mean

MS-ARMA structure, the innovation impulses will decay exponentially and Φ̃i+∆

will converge to its stationary distribution for ∆ → ∞. Thus by eliminating the term

(C.9) from the denominator and numerator of the standardized multinomial density

derived from (3.37), our approximate sampler can be derived. The empirical choice

of ∆ depends on the persistence of the MS-ACI model, and we select ∆ adaptively to

ensure a precise approximation and an improvement in computational efficiency.
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To choose ∆ adaptively, at the (n)-th iteration, we calculate the posterior prob-

abilities of si = l conditioning on ϑ (n), s(n)1:i−1 and s(n)i+1:T with ∆ = T for all i, and
compute the same quantity with ∆ = 1,2, · · · . We denote the T ×1 vector of probabil-

ities p(l)n formed from the conditional posterior probabilities of each state belonging

to state l with ∆ = n calculated from equation (C.7) (the condition is omitted for

conciseness), and the T ×M probability matrix Pn = {p(1)n, · · · , p(M)n}. Thus, PT

is the exact conditional density of S from the original single move sampler evalu-

ated without sampling, and the autoregressive structure of our model predicts that

limn→T Pn = PT . We therefore pick ∆ to be the value that satisfies the following

criteria:

∆ = argmin
n

[
max(|PT −Pn|)≤ δ3

]
, n = 1 : T. (C.10)

This ensures that the maximum distance between PT and P∆ is smaller or equal to

a predetermined small value δ 3, which guarantees the quality of our approximation.

It is obviously not efficient to evaluate ∆ for every iteration due to the evaluation

of PT , as there is a trade-off between accuracy and efficiency. In our analysis we

choose δ3 = 0.001 and update ∆ every 20 iterations.

C.3 Estimating the Variance-Covariance Matrix

of Estimated Parameters and the Most Prob-

able State Vector

As suggested by Delyon, Lavielle, and Moulines (1999) and Kuhn and Lavielle (2004),

the variance-covariance matrix for parameter estimates can be estimated directly from

the iterations of the SAEM algorithm. The inverse of the negative information matrix

for the incomplete log-likelihood is a natural estimator for the variance-covariance

matrix, which cannot be computed directly due to the difficulty in computing the

incomplete log-likelihood. Louis (1982) derives an important identity to resolve

this problem. Let I (ϑ ;Y) denote the observed information matrix, I (ϑ ;Y,S)
denote the complete information matrix, s(ϑ ;Y) denote the observed score vector

and s(ϑ ;Y,S) denote the complete score, then the following identity holds:

−I (ϑ ;Y) =− E
S|Y

[I (ϑ ;Y,S)|S]−Cov
S|Y

[s(ϑ ;Y,S)|S]. (C.11)

Using the Fisher identity:

s(ϑ ;Y) = E
S|Y

[s(ϑ ;Y,S)|S]. (C.12)



206 | Appendix for Chapter 3

We can use the following stochastic approximation scheme to obtain an estimate of

the observed information matrix:

Sn = (1− γn)Sn−1 + γns(ϑ (n+1);Y,S(n,K)), (C.13)

Dn = (1− γn)Dn−1 + γn(I (ϑ (n+1);Y,S(n,K))+ s(ϑ (n+1);Y,S(n,K))s(ϑ (n+1);Y,S(n,K))′),

(C.14)

Hn = Dn −SnS′n. (C.15)

Delyon, Lavielle, and Moulines (1999) show that −Hn converges to −I (ϑ ,Y) when
ϑ converges to the limiting value and the function lnL (ϑ ;Y) is smooth enough.

Thus the inverse of −Hn will be used as an estimate of the variance-covariance matrix

of ϑ .

As to the estimation of the most probable state vector, we rely on the posterior density

of S given the data and the estimated parameter vector ϑ̂ . Due to the dimensionality

of S, it is difficult to directly maximize the likelihood of S conditioning on ϑ̂ and Y,
and standard algorithms (e.g. Viterbi’s algorithm) for the Hidden Markov Model

are not applicable in this case because of the path dependency issue. Bauwens,

Preminger, and Rombouts (2010) use the smoothed posterior probabilities for each

state to obtain an estimate of this state sequence. This estimate, however, is not the

most possible state sequence in the sense that it does not account for the dependence

structure in the multivariate distribution of S. We hereby propose a direct Monte

Carlo search method to obtain Ŝ by exploiting the following relationship:

p(S|ϑ̂ ,Y) ∝ f (Y|S, ϑ̂)p(S) = f (Y,S|ϑ̂). (C.16)

Theoretically, one can use an arbitrary multivariate multinomial density g(S)1 that

corresponds to the dimension of the distribution of S to simulate a set of Ns trial

state sequences denoted as {S̃1, · · · , S̃Ns}, and a natural estimate is obtained by:

Ŝ= argmax
ns

f (S̃ns,Y|ϑ), ns = 1 : Ns. (C.17)

Intuitively, as Ns → ∞ and g(S̃)> 0 for all S̃, this algorithm will exploit all possible

realizations of S̃ and obtain the one that maximizes the joint likelihood. An obvious

problem is that this algorithm is extremely inefficient if g(S) is not chosen properly,

and a good kernel should account for the information in the observed data for the

trial S̃ to be simulated closely to where the likelihood is concentrated. Our solution

1A possible choice of g(S) can be, for example, a plain M-state Markov chain with the transition
parameters Π̂.
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is to continue performing the S-step Ns times after the convergence of the SAEM

algorithm with parameters fixed to the converged value ϑ̂ , so that g(S) in our case

becomes the single move sampler. The underlying reason is that the conditional

posterior probabilities used in the single move sampler include information of the

observed data, therefore is much more efficient than an uninformed sampler such

as a plain Markov chain. Other possible choices include the particle filter sampler

described in Bauwens, Dufays, and Rombouts (2014) and the Metropolis-Hastings

sampler in Billio, Casarin, and Osuntuyi (2014).

C.4 Deseasonalization of the Price Duration and

Volume

This section explains the deseasonalization procedure of the price duration data

{xi,d, lnVoli,d}. We apply a time-deterministic flexible Fourier regression as suggested

by Andersen and Bollerslev (1997b), and filter out the diurnal pattern before model

estimation.2 Taking the duration series as an example, we firstly demean the raw

price duration series on a daily basis:

x̃δ
i,d =

xδ
i,d

xδ
d

, (C.18)

in which xδ
d is the daily average of the raw price durations. Then we estimate the

following regression on the de-meaned duration series with OLS:

x̃δ
i,d = c+

P

∑
p=1

cp(t
δ

i,d)
p +

Q

∑
q=1

cc,q cos(2qπtδ

i,d)+ cs,q sin(2qπtδ

i,d)+ui,d, (C.19)

in which tδ

i,d ∈ (0,1] is the fraction of the time elapse of event tδ
i,d from the beginning

of a trading day, and ui,d is assumed to be a Gaussian zero mean error term. In the

above regression, c is the constant term, cp captures the time-deterministic mean

duration with a polynomial of degree P, and cs,q and cc,q account for the curvature

of this seasonality pattern in addition to the polynomial shape, with the maximum

polynomial degree of this flexible Fourier form given by Q. We choose P and Q
by running this regression with P ranging from 0 to 3 and Q ranging from 0 to 5,
and pick the P and Q with the smallest Bayesian Information Criteria. The fitted

2The ACI model is capable of estimating the seasonality with the intensity jointly by adding a
multiplicative seasonality component. However, this will greatly increase the number of parameters
to be estimated for the MS-ACI model, which is undesirable. We therefore pre-filter the diurnal
pattern before estimating the model, which is a common approach in the ACD literature.
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value of this regression, ˆ̃xδ
i,d is therefore the estimated seasonality component. The

deseasonalized duration, ẋδ
i,d, is computed by:

ẋδ
i,d =

xδ
i,d

ˆ̃xδ
i,d

. (C.20)

Note that the seasonality filter only controls for deterministic time effects, and the

resulting deseasonalized price duration is not de-meaned. In the ACD literature it

is common to obtain a deseasonalized price duration with unit mean, but clearly

in our case E[ẋδ
i,d] does not have a mean of one, simply because ˆ̃xδ

i,d is estimated on

a de-meaned series and is of unit mean. This guarantees that the seasonality we

capture is not affected by the daily mean shifts. Moreover, the daily means of the

raw price durations are included in the deseasonalized price duration. It is because

changes in the daily mean can also contain important information on the regime shifts.

We compute the deseasonalized price duration ẋδ
i,d and the deseasonalized log volume

˙lnVolδ

i,d with the procedure above. To provide a graphical illustration of the deseason-

alization process, we present some examples of the raw data and the corresponding

deseasonalized data in Figure C.1 on the next page. From Figure C.1, we can clearly

see the decomposition of the raw series into the unit mean seasonality component

and the deseasonalized series. We find a reverse U-shape diurnal pattern for the

price duration generally, which is consistent with the literature. We also discover

a distinct pattern for the volume within each price duration. The trading volume

starts very low at the beginning of the day which probably results from the small

price duration at the start of the trading day. Interestingly volume usually peaks

at the end of the trading day when the duration is also small. The diurnal pattern

for the stock market index SPY is generally less prominent compared to individual

stocks.

To show that our flexible Fourier regression successfully captures the diurnal pattern

in the raw series, we present the Lomb-Scargle (Lomb, 1976; Scargle, 1982) peri-

odogram for the raw and deseasonalized series in Figure C.2, which is a standard

diagnostic tool for periodic pattern detection in irregularly sampled data. In Figure

C.2, it is clear that for the raw series for all securities, the power spectral peaks at

frequencies that are multiples of approximately 0.43×10−4, which corresponds to

the reciprocal of the total number of seconds in a trading day, 1
23400 . These spikes

correspond to a daily recurring pattern and its harmonics, which is a strong evidence

for the diurnal pattern of the raw series. After the deseasonalization, all the spikes

at multiples of 0.43×10−4 are removed from the raw series, which suggests that our
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Figure C.1 Examples of Deseasonalization: Raw and Deseasonalized Price Duration
and Volume from AIG 2016-03, INTC 2016-08, SPY 2016-05

Panel 1: AIG

Panel 2: INTC

Panel 3: SPY

Note: Three 2-by-3 graphs from top to bottom: AIG 2016-03, INTC 2016-08, SPY 2016-05.the x-axis is the observa-
tion index, the y-axis is the value of the series. xδ

i,d and lnVolδ
i,d denote the raw price duration and raw log cumulative

trading volume within the corresponding duration. ˆ̄xδ
i,d and ˆ̄lnVolδ

i,d are the fitted value from the flexible Fourier

regression in (C.19) computed from the corresponding raw series. Finally, ẋδ
i,d and ˙lnVolδ

i,d are the deseasonalized

version of the two series calculated by (C.20).
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Figure C.2 Lomb-Scargle Periodogram for Raw and Deseasonalized Price Durations,
Volume and Bid-Ask Spread Covariates for AIG 2016-03, INTC 2016-08, and SPY

2016-05

Panel 1: AIG
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Panel 2: INTC
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Panel 3: SPY
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Note: Three 2-by-1 graphs from top to bottom: AIG 2016-03, INTC 2016-08, SPY 2016-05. x-axis is the frequency
of the data considered and y-axis is the estimated power spectral density corresponding to the frequency. A daily
frequency is equivalent to 1

23400 ≈ 0.46×10−4 in the x-axis. The dashed line represents the periodogram for the raw
series and the solid line is its deseasonalized version.
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deseasonalization regression successfully captures the diurnal pattern in the raw series.

Moreover, the spectral density spikes at other frequencies remain in the periodogram.

To sum up, our deseasonalization procedure successfully captures and removes only

the diurnal patterns from both the raw price durations and volumes. The quality of

this deseasonalization is corroborated by the Lomb-Scargle periodogram.

C.5 Robustness Checks of the MS(2)-ACI(2,1)-V

Model

In this section, we justify our choice of the MS(2)-ACI(2,1)-V model. In detail, we

compare the performance of our model to the original ACI(2,1) model, the ACI(2,1)-V

model, and the MS(2)-ACI(2,1) model. We present comprehensive estimation outputs

for all 4 models considered above for the three example stock-months: AIG 2016-03,

INTC 2016-08 and SPY 2016-05. The results can be found in Tables C.2, C.3 and

C.4 in Appendix C.7.

From Tables C.2, C.3 and C.4, it is evident that the estimated persistence pa-

rameters β (m), the baseline parameters w(m) and the volume parameters ηvol(m) of

the one-regime model are weighted averages of the corresponding parameters across

two regimes from the two-regime model, as expected. As discussed in Section 1.7,

the validity of the Markov-switching structure depends crucially on the discrepancy

between the regime-specific location parameters of the baseline function. Therefore,

the differences in the estimated ŵ(m) and η̂vol(m) between regimes are the first indi-

cators of the performance of the regime-switching structure. The general observation

for the three example stock-months and our entire dataset is that, the difference

between ŵ(m)s are very small for the MS(2)-ACI(2,1) model. By adding the volume

covariate to the two- and three-regime models, the difference in the estimated ŵ(m)

widen significantly for the individual stocks, and there also exists a large discrepancy

in the estimated η̂vol(m) for those stocks. For the SPY, however, the difference in

the estimated η̂vol(m) is much less pronounced.

The validity of the regime-switching structure is better summarized in the ŜoR
statistics, as discussed in Section 3.3.4. In Tables C.2, C.3 and C.4, we can clearly see

that when volume is not included, ŜoR is around 70% for the example stock-months.

The inclusion of the volume covariate greatly improves the ŜoR for AIG and INTC

to more than 95%, but the ŜoR for the SPY is still around 70%. From Figure C.6, it

is evident that almost all ŜoR estimated from the MS(2)-ACI(2,1)-V model for the 9

stocks are over 95%, which shows that the MS(2)-ACI(2,1)-V model classifies the
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regimes with a very high confidence. The ŜoRs for the MS(2)-ACI(2,1) model are

considerably lower, and rarely exceeds 90%. For the SPY, we see that the ŜoRs are
significantly smaller than the other stocks, which corroborates our findings in Section

3.5.2 that the regime classification is much weaker for the stock index ETF.

The discussion above provides strong evidence supporting our key findings in Chapter

3, as there indeed exists regime-switching behaviour in the intraday volume-duration

relationship that can be identified with strong confidence. However, the substantial

ŜoR of the MS(2)-ACI(2,1) model also requires investigation, as it appears that we

may be able to detect the regime-switching behaviour in the volatility process itself

without the inclusion of the volume covariate. To address this concern, we plot the

yearly distribution of estimated regimes for the MS(2)-ACI(2,1) model in Figure C.7.

Comparing Figures C.4 and C.7, we clearly see that we can only observe the diurnal

pattern of the informed regime (regime 1) when the volume covariate is included, as

in Figure C.4. In the absence of the volume covariate, the captured two regimes have

similar distributions across the trading hours. This clearly indicates that the regimes

detected by the MS(2)-ACI(2,1) model is very different from the MS(2)-ACI(2,1)-V

model. A possible explanation to this is that the one-regime model with a Weibull

baseline cannot fully capture the empirical density of the durations, and the two

regimes identified in the MS(2)-ACI(2,1) model simply attempt to fit the empirical

data with a mixture of two Weibull distributions.

We proceed to show that the two-regime models are superior to the one-regime

counterparts as they provide a much more flexible baseline and autoregressive struc-

ture for the conditional intensity. To examine the goodness-of-fit of the models,

we examine the distributional assumption and the degree of autocorrelation in the

residuals ε̂i. Examples in Tables C.2 and C.3 show that residuals from the ACI(2,1)

exhibit over-dispersion, i.e. σ(ε̂i)> 1. This results in high Cramér-von-Mises and

Andersen-Darling statistics that reject the null hypothesis of unit exponentiality

of the residuals. Consequently, the Weibull baseline fails to correctly capture the

distribution of empirical price durations. This problem is exacerbated when the

volume is added to the ACI(2,1) model, with residuals deviating further from the

unit exponential distribution. The volume covariate also introduces noise to the

autoregressive structure of the ACI(2,1) model, leading to a larger Ljung-Box test

statistics. By introducing another regime, we observe significant improvements in all

statistics considered.

To illustrate the properties of the residuals from each model in Tables C.2, C.3
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and C.4, we present Quantile-Quantile plots and correlograms for the residuals in

Figures C.8 and C.9. Figure C.8 shows that the Weibull baseline cannot capture

the tail behaviour of the empirical distribution of the price durations, and an ad-

ditional regime can to a large extent mitigate this issue. In Figure C.9, we clearly

see that the inclusion of volume introduces noise to the autocorrelation structure

of the residuals in the one-regime model, potentially due to the diurnal pattern of

the regime-switching volume-duration relationship. This structure can be captured

by the MS(2)-ACI(2,1)-V model, resulting in the less significant autocorrelation

structure in the residuals of the two-regime model.

In order to show that the two-regime models are superior to the one-regime models

in terms of goodness-of-fit for all the stock-months considered, we present a summary

of Cramér-von-Mises, Andersen-Darling and Ljung-Box tests results for all stock-

months in Table C.5. From the table it is evident that both the MS(2)-ACI(2,1)

and MS(2)-ACI(2,1)-V model outperform their one-regime counterparts in all the

cases considered. The inclusion of volume covariate in both the one- and two-regime

models leads to a deterioration of the goodness-of-fit of the model. However, almost

all CvM and AD tests are strongly significant for the ACI(2,1)-V model, while the

MS(2)-ACI(2,1)-V has much fewer strong significant results.

We examine the log-likelihoods from the four models as an overall measure of the

goodness-of-fit of the models. As discussed in Section 3.3.4, the observed likelihood

for the MS-ACI models are not available, and we can only rely on the conditional

likelihoods L (ϑ̂ ;Y|Ŝ). These likelihoods cannot be used to construct a likelihood

ratio test, but can still be informative on the relative improvements from a restricted

model to a more flexible one. We construct Bayesian Information Criterion (BIC)

based on the usual likelihood L (ϑ̂ ;Y) for the one-regime models and the conditional

likelihood L (ϑ̂ ;Y|Ŝ) for the two-regime models, and present the ranking of each

model for each stock-month in Figure C.10. The figure shows that the BIC suggests

that the MS(2)-ACI(2,1)-V model outperforms the other three models for all 120

stock-months with the smallest BIC. Interestingly, we find that the ACI(2,1)-V model

frequently outperforms the MS(2)-ACI(2,1) model. This is due to the fact that the

contribution of another regime is offset by the penalty on the number of parameters.

However, we see that both a regime-switching structure and the volume covariate

are needed to achieve a better BIC.

Finally, we briefly discuss the effect of more than two regimes. We present ex-

amples of estimation outputs of MS(3)-ACI(2,1)-V model in Table C.6 to compare
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against the performance of a MS(2)-ACI(2,1)-V model. In Table C.6, we see that

the diagnostic statistics for residuals and likelihoods, such as BIC, CvM, AD and

LB(50) actually suggest that the MS(3)-ACI(2,1)-V model performs slightly better

than the MS(2)-ACI(2,1)-V model. This is not surprising as the three-regime model

provides an even more flexible structure, and there are still room for improvements

for the MS(2)-ACI(2,1)-V model.

The more important concern is the interpretation of the regimes captured by the

three-regime model. From the magnitude of η̂vol(m) of AIG and INTC, we can

conclude that in addition to the high information regime (regime 3 for AIG and 1 for

INTC) and a low information regime (regime 2 for AIG and INTC), there is also an

intermediate regime. We compare the classification of regimes for the two-regime

and three-regime model, and present the results in Table C.7. In the table, we see

that for AIG, the majority of observations in regime 2 for the two-regime model

remain in regime 2, and the high-information regime is split into regime 1 and 3 in

the three-regime case. This is the opposite case for INTC, with the high-information

regime remaining relatively stable and the low-information regime being separated.

Finally for the SPY, there seems to be less association between the regime clas-

sifications of the two- and three-regime models. This transition in classifications

from the two-regime model to the three-regime model can also be observed from

the distribution of regimes in Figure C.11. It is clear that for AIG, regime 2 of

the three-regime model correspond to the low-information regime of the two-regime

model, while regimes 2 and 3 add up to the low-information regime for INTC.

As the information content can change smoothly during the trading day, addi-

tional regimes in the model attempt to fit the data by classifying the durations

that are less likely to be in either a high information content or a low information

content regime into an intermediate regime. However, the higher the number of

regimes, the more overlapped the regime-specific densities are, and the less accurate

the regime classification is. As can be seen from the ŜoR of the MS(3)-ACI(2,1)-V

model, there is a considerable decrease in the confidence of regime classification due

to the additional regime. Therefore, for the purpose of regime classification, it is not

optimal to include another regime onto the MS(2)-ACI(2,1)-V model.

To conclude our robustness check section, we demonstrate that the MS(2)-ACI(2,1)-V

model is able to classify durations into two distinct regimes with very high confi-

dence, and the volume covariate plays an indispensable role in the significance of

regime classification. The regime-switching model shows a clear advantage over the
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one-regime ACI model in terms of residual diagnostics, with the MS(2)-ACI(2,1)-V

model having the lowest BIC for all stock-month combinations. We further show

that it is possible to enhance the performance of the MS(2)-ACI(2,1)-V model by

introducing another regime, but the confidence of regime classification can be greatly

hampered by the additional regime.

C.6 AMarket Microstructure Model for Informed

Trading and the Volume-Volatility Relation-

ship

We start by establishing the link between price durations and the intraday local

volatility process. From (3.44), it is clear that the conditional intensity process is

proportional to the instantaneous volatility process. Let us consider the average

conditional intensity for the duration (ti−1, ti] denoted by λ̄ δ
i . From the Random

Time Change Theorem we have:

Λ
δ
i ≡

∫ ti

ti−1

λ̄
δ
i dt = λ̄

δ
i xδ

i ∼ i.i.d.Exp(1) (C.21)

Consequently:

E[ln λ̄
δ
i ]+E[lnxδ

i ] =−γ, (C.22)

where γ is the Euler-Mascheroni constant. This simple relationship suggests that,

the longer the expected duration, the smaller the expected average intensity within

each duration. This expectation is also valid if one conditions on Fti−1 . Also, it is

clear that:

Cov(ln λ̄
δ
i , lnxδ

i ) =
π2

12
−

V[ln λ̄ δ
i ]+V[lnxδ

i ]

2
. (C.23)

Since empirically the R.H.S is almost always negative due to the large variance of log

price duration (in our setting, V [lnxδ
i ] is around 3), the log price duration and log

average spot volatility are also negatively correlated. Note that the above relationship

holds for any stationary process with finite moments, and deseasonalization does not

affect the relationship above.

We proceed by imposing some assumptions about the market, which is commonly

used in the existing literature (e.g. Copeland and Galai (1983), Easley, Kiefer,

O’Hara, and Paperman (1996), Glosten and Milgrom (1985) and Kyle (1985)).
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Assumption C.1 (Assumptions of the market). We impose the following assump-

tions on the market:

1. News arrivals are strongly exogenous.

2. There exist two type of participants in the market: informed traders and

uninformed traders.

3. Informed traders only trade when they possess private information about the

fundamental value of the asset not incorporated in the price process.

4. Uninformed traders trade for liquidity and speculative purposes. They cannot

predict price movements and do not alter the fundamental value of the asset.

It is understood that the uninformed traders include the market makers. The

liquidity supply and demand are related to the uncertainty in the market, such that

when the market maker is unsure of the information content, the bid-ask spread

will inflate, discouraging uninformed traders to participate. Thus, only informed

traders who can bear the extra transaction costs are willing to trade. It is a stylized

fact that the bid-ask spread and price volatility spike at the beginning of a trading

day due to overnight information aggregation. Therefore trading activities of the

liquidity traders will also be affected negatively by the uncertainty in the market as

the transaction cost increases.

Supported by our empirical investigation of the data and the notion of Market

Microstructure Invariants by Kyle and Obizhaeva (2012), we assume that when

the informed trader is absent, the deseasonalized log price duration ln ẋδ
i and the

deseasonalized log cumulative volume over the same price duration ln ˙Volδ

i follows a

log-linear relationship:

ln ˙Volδ

i = b0 +b1 ln ẋδ
i + εi, (C.24)

in which b0 is an intercept term accounting for the minimum volume requirements of

an order, b1 > 0 represents a constant arrival rate of volume, and εi is an i.i.d. zero

mean innovation term with finite variance.

The above relationship suggests that, adjusted for seasonality effect, we would

expect the volume of the uninformed traders to accumulate when the price duration

increases. Since the price duration is negatively correlated with the average spot

volatility, this actually suggests a negative correlation between accumulated volume

within a duration and the average spot volatility within the duration. This is also

consistent with the parameter estimates of η̂vol(2) for the uninformed regime. In this

relationship, the price duration is only interpreted as time for the uninformed trading
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volume to accumulate. This is because from Assumption 1(d), uninformed traders

do not change the fundamental value of the asset, and their volume accumulation is

only relevant to the average spot volatility up to a seasonality effect in the absence

of informed traders.

To include the impact of private information, we assume that the total volume

can be decomposed as follows:

ln ˙Volδ

i = b0 +b1 ln ẋδ
i + lnZi + εi. (C.25)

In which lnZi is the proportion of volume submitted by the informed traders in the

i-th price duration. We impose the restriction lnZi ≥ 0, so that informed traders

cannot remove volume from the total volume. For simplicity, we assume that Zi also

follows a power law:

lnZi = si(µ + c1 ln λ̄
δ
i +ui), (C.26)

in which si = 1 if the informed traders participate in the market within the price

duration i, and si = 0 otherwise. The parameter µ > 0 serves as the minimum amount

traded by the informed traders, c1 is the interaction between the log informed volume

and the log average intensity (volatility), and ui is a zero mean weak white noise

process subject to ui ≥ µ + c1 ln λ̄ δ
i for all i. Literature on both the volume-volatility

relationship (e.g. Bessembinder and Seguin (1993), Aragó and Nieto (2005), Hussain

(2011), etc.) and the relevant market microstructure models (e.g. Glosten and

Milgrom (1985), Easley, Kiefer, O’Hara, and Paperman (1996)) predict that c1 > 0,
such that the higher average volatility is associated with more volume submitted by

informed traders. We can then expand the expression of the total volume as:

ln ˙Volδ

i = (b0 + siµ + sic1 E[ln λ̄
δ
i ])+b1 ln ẋδ

i + sic1(ln λ̄
δ
i −E[ln λ̄

δ
i ])+ siui + εi (C.27)

When si = 0, the above equation reduces to (C.24), and one can consistently estimate

b0 and b1 via a simple OLS regression. In the si = 1 case, OLS estimates of b1 will

be biased due to the omitted variable lnZi. We can derive the expected value of the

OLS estimates b̂0 and b̂1 conditioning on si = 1:

E[b̂0|si = 1] = b0 +E[lnZi|si = 1] = b0 +µ + c1 E[ln λ̄
δ
i |si = 1],

E[b̂1|si = 1] = b1 +
c1 Cov(ln λ̄ δ

i , ln ẋδ
i |si = 1)

V[lnxδ
i |si = 1]

.
(C.28)

We clearly see that b̂0 is biased upwards and b̂1 is biased downwards due to the

omitted variable lnZi which is negatively correlated with ln ẋδ
i . The bias for both
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parameters is directly influenced by the parameter c1. Clearly, the larger c1, the

more biased the OLS estimates of b0 and b1. Thus, larger impact of informal trading

volume on price volatility drives the total volume away from the log-linear relationship

in (C.24). The additional residual term ui in the regression will also reduce the R2 of

the regression when si = 1. To infer si from ln ˙Volδ

i and ln ẋδ
i , one can rely on deter-

ministic pattern of si as attempted in the data section. A better solution is to design

a regime-switching model that captures the difference in the estimated b̂0 and b̂1

conditioning on si, which in essence is the identification strategy of our MS-ACI model.

To sum up, the simple model above establishes the relationship between price

duration and the associated trading volume, and links it to the information content

of the price duration. Results in Figures 3.5, 3.6 and C.5 correctly predict the

theoretical differences in the estimated b0, b1 and R2 between the states of high and

low information content. This justifies our interpretation of regime classifications

based on levels of information content.
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C.7 Tables and Figures

Table C.1 Yearly Descriptive Statistics for xδ
i,d and lnVolδ

i,d

xδ
i,d lnVolδ

i,d
Ticker Obs. Mean σ Min Median Max Mean σ Min Median Max
AIG 17925 323.72 487.98 0.00 159.31 10299.68 10.52 1.48 0.00 10.67 14.86
CVX 18014 321.32 466.08 0.00 165.18 9471.82 10.77 1.36 0.00 10.89 14.71
GM 17240 331.83 597.59 0.00 127.35 11761.73 11.24 1.41 0.00 11.39 15.43
INTC 16541 349.34 571.09 0.00 149.33 9459.21 11.79 1.47 2.30 11.94 16.57
JPM 17270 332.57 552.04 0.00 142.91 10860.28 11.61 1.28 0.00 11.72 15.56
PFE 17416 334.16 542.23 0.00 154.52 11331.14 12.03 1.51 1.10 12.21 16.42
SPY 18530 314.17 460.01 0.00 165.88 10658.61 13.52 1.04 3.66 13.56 17.09
T 17008 340.42 559.00 0.00 146.19 10465.31 11.83 1.45 0.00 12.01 15.56
VZ 16853 342.79 563.45 0.00 145.60 10812.89 11.27 1.51 0.00 11.47 15.30

WMT 17082 338.55 570.51 0.00 140.41 10508.58 10.83 1.49 0.00 11.01 15.10

Note: The table presents the descriptive statistics for the raw price durations xδ
i,d and the raw volume lnVolδ

i,d from
10 securities for the year 2016. Obs. denotes the total number of observations. σ is the standard deviation.
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Table C.2 Comprehensive estimation outputs for AIG 2016-03

Model ACI(2,1) ACI(2,1)-V MS(2)-ACI(2,1) MS(2)-ACI(2,1)-V
m = 1 1 1 2 1 2

Dynamic Parameters
α1(m) 0.0741*** 0.0473 0.2766*** 0.0109 0.0223 0.2310***

(0.0235) (0.0432) (0.0197) (0.0128) (0.0278) (0.0201)
α2(m) -0.0065 -0.0152 -0.0095 -0.0994*** 0.0514* -0.0988***

(0.0223) (0.0449) (0.0149) (0.0141) (0.0277) (0.0206)
β (m) 0.9731*** 0.9917*** 1.2146*** 0.7831*** 1.0572*** 0.9388***

(0.0066) (0.0074) (0.0226) (0.0174) (0.0128) (0.0104)
Baseline Parameters

w(m) -5.7144*** 1.9300*** -5.3204*** -5.9165*** 1.2721** 3.0143***
(0.0837) (0.2817) (0.0329) (0.0357) (0.5477) (0.1181)

a(m) 1.1940*** 1.7586*** 1.6332*** 1.2510*** 1.0137*** 2.6856***
(0.0248) (0.0513) (0.0422) (0.0276) (0.0460) (0.0512)

Other Parameters
ηvol(m) -1.2268*** -0.5982*** -2.1542***

(0.0518) (0.0580) (0.0487)
π1m 0.3090*** 0.8364***

(0.0180) (0.0233)
π2m 0.5410*** 0.9720***

(0.0157) (0.0044)
Diagnostic Statistics

Obs. In ŝi = m 1668 1668 665 1003 236 1432
E[ε̂i] 0.9966 1.0179 0.969 1.0011
σ [ε̂i] 1.0473 1.2407 0.9433 1.0004

lnL (ϑ̂ ;Y|Ŝ) -11046.42 -10379.48 -10768.4 -9895.10

lnL (ϑ̂ ;Y, Ŝ) -11855.5 -10159.1
BIC 13.2674 12.4721 12.9651 11.9269
CvM 0.4213* 2.0902*** 0.2113 0.0968
AD 3.4050** 12.1077*** 1.8107 0.5669

LB(50) 51.9571 132.8224*** 51.8145 44.5522

ŜoR 0.7394 0.9759

ŜoR(m) 0.6806 0.7766 0.9508 0.9798

Note: Standard errors are in parentheses. ***, ** and * represent significance at 1%, 5% and 10% respectively.
Observation counts and residual statistics are based on the estimated most probable state sequence. BIC is computed
as BIC = T−1(k lnT − 2lnL (ϑ̂ ;Y|Ŝ)) where T is the number of observations. The CvM and AD are Cramér-von-
Mises and Andersen-Darling statistics (Stephens, 2013) for unit exponential distribution, with the critical values
bootstrapped from 100000 simulated unit exponential vectors. LB(50) is the Ljung-Box (Ljung and Box, 1978) test

statistics at lag 50. Definitions of ŜoR and ŜoR(m) can be found in (3.42) and (3.43).
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Table C.3 Comprehensive estimation outputs for INTC 2016-08

Model ACI(2,1) ACI(2,1)-V MS(2)-ACI(2,1) MS(2)-ACI(2,1)-V
m = 1 1 1 2 1 2

Dynamic Parameters
α1(m) 0.1670*** 0.1998*** 0.3603*** -0.0014 0.3258*** 0.2192***

(0.0299) (0.0259) (0.0246) (0.0198) (0.0385) (0.0206)
α2(m) 0.0308 0.0484 -0.0911*** -0.0807*** 0.1747*** -0.0807***

(0.0474) (0.0457) (0.0257) (0.0173) (0.0580) (0.0222)
β (m) 0.4335*** 0.3484** 1.3869*** 0.6826*** 0.4121*** 0.9241***

(0.1669) (0.1693) (0.0252) (0.0161) (0.1294) (0.0185)
Baseline Parameters

w(m) -5.7263*** 2.1623*** -5.3420*** -5.9541*** -0.6130 4.1465***
(0.0419) (0.3580) (0.0429) (0.0317) (0.5590) (0.1482)

a(m) 0.8836*** 1.1993*** 1.1188*** 1.0893*** 0.6473*** 2.2720***
(0.0207) (0.0358) (0.0306) (0.0235) (0.0297) (0.0477)

Other Parameters
ηvol(m) -0.8249*** -0.2173*** -1.9628***

(0.0470) (0.0349) (0.0486)
π1m 0.2817*** 0.8338***

(0.0186) (0.0215)
π2m 0.6110*** 0.9635****

(0.0148) (0.0052)
Diagnostic Statistics

Obs. In ŝi = m 552 1118 273 1397
E[ε̂i] 1.0003 1.0002 0.9832 0.9982
σ [ε̂i] 1.1334 1.2273 0.9334 1.0706

lnL (ϑ̂ ;Y|Ŝ) -11316.0 -10824.4 -10876.4 -10048.9

lnL (ϑ̂ ;Y, Ŝ) -11923.7 -10352.3
BIC 13.5743 12.9900 13.0790 12.0968
CvM 0.4592* 3.7252*** 0.1389 0.1971
AD 3.2887** 23.7503*** 1.4335 1.297

LB(50) 110.2901*** 159.6120*** 52.2646 79.8233***

ŜoR 0.7421 0.9776

ŜoR(m) 0.6739 0.7654 0.9582 0.9814

Note: Standard errors are in parentheses. ***, ** and * represent significance at 1%, 5% and 10% respectively.
Observation counts and residual statistics are based on the estimated most probable state sequence. BIC is computed
as BIC = T−1(k lnT − 2lnL (ϑ̂ ;Y|Ŝ)) where T is the number of observations. The CvM and AD are Cramér-von-
Mises and Andersen-Darling statistics (Stephens, 2013) for unit exponential distribution, with the critical values
bootstrapped from 100000 simulated unit exponential vectors. LB(50) is the Ljung-Box (Ljung and Box, 1978) test

statistics at lag 50. Definitions of ŜoR and ŜoR(m) can be found in (3.42) and (3.43).
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Table C.4 Comprehensive estimation outputs for SPY 2016-05

Model ACI(2,1) ACI(2,1)-V MS(2)-ACI(2,1) MS(2)-ACI(2,1)-V
m = 1 1 1 2 1 2

Dynamic Parameters
α1(m) 0.0520* 0.2912*** -0.0430 0.0995*** 0.4526*** 0.1942***

(0.0286) (0.0265) (0.0301) (0.0294) (0.0240) (0.0199)
α2(m) 0.0330 -0.1784*** 0.0317 0.0055 -0.1742*** -0.2371***

(0.0291) (0.0250) (0.0284) (0.0323) (0.0229) (0.0214)
β (m) 0.9909*** 0.9784*** 0.9029*** 1.0604*** 1.1183*** 0.8992***

(0.0044) (0.0069) (0.0150) (0.0114) (0.0193) (0.0132)
Baseline Parameters

w(m) -5.5242*** 7.2711*** -5.3643*** -6.0901*** 6.1217*** 8.3208***
(0.2158) (0.2439) (0.0660) (0.0790) (0.1868) (0.1897)

a(m) 1.1561*** 2.4276*** 1.3925*** 1.2394*** 3.1820*** 2.6130***
(0.0229) (0.0535) (0.0357) (0.0289) (0.0783) (0.0560)

Other Parameters
ηvol(m) -2.3027*** -2.7864*** -2.6960***

(0.0644) (0.0836) (0.0647)
π1m 0.4611*** 0.2646***

(0.0190) (0.0184)
π2m 0.5277*** 0.5347***

(0.0178) (0.0166)
Diagnostic Statistics

Obs. In ŝi = m 673 802 540 935
E[ε̂i] 0.9953 0.9906 1.0040 0.9658
σ [ε̂i] 1.1048 1.0784 1.0090 0.9508

lnL (ϑ̂ ;Y|Ŝ) -9779.12 -8715.73 -9555.70 -8481.35

lnL (ϑ̂ ;Y, Ŝ) -10571.1 -9414.42
BIC 13.2846 11.8476 13.0162 11.5694
CvM 0.5043** 0.3700* 0.0716 0.1529
AD 3.7033** 2.3386* 0.8978 1.2566

LB(50) 41.1280 33.6644 40.1028 53.1705*

ŜoR 0.6892 0.7298

ŜoR(m) 0.6493 0.7355 0.6581 0.7598

Note: Standard errors are in parentheses. ***, ** and * represent significance at 1%, 5% and 10% respectively.
Observation counts and residual statistics are based on the estimated most probable state sequence. BIC is computed
as BIC = T−1(k lnT − 2lnL (ϑ̂ ;Y|Ŝ)) where T is the number of observations. The CvM and AD are Cramér-von-
Mises and Andersen-Darling statistics (Stephens, 2013) for unit exponential distribution, with the critical values
bootstrapped from 100000 simulated unit exponential vectors. LB(50) is the Ljung-Box (Ljung and Box, 1978) test

statistics at lag 50. Definitions of ŜoR and ŜoR(m) can be found in (3.42) and (3.43).
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Table C.5 Summary of Cramér-von-Mises, Andersen-Darling and Ljung-Box test
results

Cramér-von-Mises Test
Stocks ACI(2,1) ACI(2,1)-V MS(2)-ACI(2,1) MS(2)-ACI(2,1)-V

α% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
AIG 4 8 10 12 12 12 0 0 1 1 5 7
CVX 7 10 10 12 12 12 0 1 2 2 4 5
GM 6 10 12 12 12 12 0 1 3 0 0 2
INTC 2 7 10 12 12 12 0 1 2 1 7 8
JPM 6 8 10 12 12 12 0 1 1 1 4 8
PFE 4 6 8 12 12 12 1 2 3 3 3 5
SPY 4 10 11 4 6 8 0 2 3 2 4 4
T 4 8 9 12 12 12 0 1 2 3 6 7
VZ 7 10 11 12 12 12 0 0 0 4 8 9

WMT 0 6 9 12 12 12 0 1 3 2 5 6
Average 4.4 8.3 10 11.2 11.4 11.6 0.1 1 2 1.9 4.6 6.1

Andersen-Darling Test
Stocks ACI(2,1) ACI(2,1)-V MS(2)-ACI(2,1) MS(2)-ACI(2,1)-V

α% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
AIG 8 10 12 12 12 12 0 4 5 1 6 7
CVX 9 10 11 12 12 12 1 5 6 2 4 5
GM 9 12 12 12 12 12 0 2 5 0 0 3
INTC 3 10 10 12 12 12 1 3 5 0 6 8
JPM 8 11 12 12 12 12 0 3 5 3 4 7
PFE 6 8 11 12 12 12 1 3 3 3 3 6
SPY 8 11 11 4 7 9 0 2 3 2 4 4
T 7 10 10 12 12 12 0 2 2 2 6 7
VZ 8 12 12 12 12 12 0 1 3 5 9 9

WMT 6 10 10 12 12 12 0 2 4 2 6 6
Average 7.2 10.4 11.1 11.2 11.5 11.7 0.3 2.7 4.1 2 4.8 6.2

Ljung-Box Test at Lag 50
Stocks ACI(2,1) ACI(2,1)-V MS(2)-ACI(2,1) MS(2)-ACI(2,1)-V

α% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
AIG 8 10 10 4 4 4 1 2 3 2 4 6
CVX 6 8 9 9 9 9 0 1 2 4 9 9
GM 7 9 9 8 10 10 0 2 3 6 6 7
INTC 10 12 12 11 12 12 0 2 2 3 8 8
JPM 7 7 7 6 6 6 2 3 3 5 7 10
PFE 8 10 10 8 8 9 0 1 3 1 2 4
SPY 4 5 6 6 8 9 1 3 5 3 4 5
T 6 7 8 7 7 7 0 1 1 1 4 4
VZ 8 8 9 5 5 6 1 3 3 4 7 7

WMT 8 9 9 7 7 7 2 3 3 2 5 8
Average 7.2 8.5 8.9 7.1 7.6 7.9 0.7 2.1 2.8 3.1 5.6 6.8

Note: α% is the significance level of the test. Each number at α% for each stock represents the number of times the
test is significant at α% in the year 2016.
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Table C.6 Estimation Outputs of MS(3)-ACI(2,1)-V model for AIG 2016-03, INTC
2016-8 and SPY 2016-05

AIG 2016-03 INTC 2016-08 SPY 2016-05
m = 1 2 3 1 2 3 1 2 3

Dynamic Parameters
α1(m) 0.6637*** 0.1625*** -0.1066*** 0.4245*** 0.2665*** 0.1623*** 0.2655*** 0.4978*** -0.0315

(0.0527) (0.0210) (0.0381) (0.0491) (0.0253) (0.0247) (0.0236) (0.0217) (0.0485)
α2(m) -0.2271*** -0.0377* -0.1012*** 0.3540*** 0.0726** -0.1398*** -0.2030*** -0.1995*** -0.2091***

(0.0402) (0.0222) (0.0386) (0.0526) (0.0343) (0.0256) (0.0243) (0.0188) (0.0245)
β (m) 1.1296*** 0.9486*** 0.5922*** 0.1456 0.4494*** 1.0010*** 0.8464*** 1.1216*** 0.9656***

(0.0304) (0.0081) (0.0574) (0.1182) (0.1001) (0.0090) (0.0095) (0.0143) (0.0126)
Baseline Parameters

w(m) 2.7364*** 3.0557*** -0.4410 -1.4031** 6.8810*** 2.4194*** 10.0468*** 7.5401*** 5.2086***
(0.3082) (0.1138) (0.5721) (0.6173) (0.1708) (0.1915) (0.3057) (0.1396) (0.1170)

a(m) 1.8675*** 2.9142*** 0.9089*** 0.5591*** 2.7982*** 2.1172*** 2.4884*** 3.6700*** 4.4428***
(0.0768) (0.0588) (0.0478) (0.0290) (0.0803) (0.0573) (0.1614) (0.2991) (0.4239)

Other Parameters
ηvol (m) -1.3669*** -2.3522*** -0.3934*** -0.1110*** -3.0383*** -1.5153*** -2.8758*** -3.5892*** -3.6269***

(0.0778) (0.0555) (0.0546) (0.0301) (0.0976) (0.0553) (0.1592) (0.3022) (0.3338)
π1m 0.4951*** 0.0102*** 0.4840*** 0.8093*** 0.0366*** 0.0149*** 0.5695*** 0.3804*** 0.2236***

(0.0366) (0.0028) (0.0388) (0.0285) (0.0072) (0.0043) (0.0201) (0.0222) (0.0206)
π2m 0.2886*** 0.9463*** 0.0982*** 0.0032 0.8764*** 0.1096*** 0.3744*** 0.4300*** 0.0875***

(0.0339) (0.0063) (0.0237) (0.0035) (0.0130) (0.0118) (0.0197) (0.0230) (0.0140)
Diagnostic Statistics

Obs. in ŝi = m 212 1300 156 180 676 814 648 472 355
E[ε̂i ] 0.9829 1.0063 0.9843
σ [ε̂i ] 1.0381 1.0056 0.9536

lnL (ϑ̂ ;Y|Ŝ) -9788.59 -9858.42 -8269.41

lnL (ϑ̂ ;Y, Ŝ) -10436.3 -10512.9 -9527.54
BIC 11.8437 11.9131 11.3315
CvM 0.2586 0.1349 0.0292
AD 1.6334 0.7422 0.2689

LB(50) 44.1905 59.9984*** 48.1202*

ŜoR 0.924 0.9339 0.7501

ŜoR(m) 0.7621 0.9645 0.8011 0.975 0.9122 0.9439 0.7405 0.6793 0.8479

Note: Standard errors are in parentheses. ***, ** and * represent significance at 1%, 5% and 10% respectively.
Observation counts and residual statistics are based on the estimated most probable state sequence. BIC is computed
as BIC = T−1(k lnT − 2lnL (ϑ̂ ;Y|Ŝ)) where T is the number of observations. The CvM and AD are Cramér-von-
Mises and Andersen-Darling statistics (Stephens, 2013) for unit exponential distribution, with the critical values
bootstrapped from 100000 simulated unit exponential vectors. LB(50) is the Ljung-Box (Ljung and Box, 1978) test

statistics at lag 50. Definitions of ŜoR and ŜoR(m) can be found in (3.42) and (3.43).

Table C.7 Comparison of regime classification of the MS(2)-ACI(2,1)-V and the
MS(3)-ACI(2,1)-V model for AIG 2016-03, INTC 2016-08 and SPY 2016-05

MS(2)-ACI(2,1)-V model
AIG 2016-03 INTC 2016-08 SPY 2016-05

m = 1 2 Sum 1 2 Sum 1 2 Sum
MS(3)- 1 91 121 212 166 14 180 187 461 648
ACI(2,1) 2 51 1249 1300 38 638 676 211 261 472
-V model 3 94 62 156 69 745 814 142 213 355

Sum 236 1432 1668 273 1397 1670 540 935 1475

Note: This table presents the classification of observations under the estimated most probable state vector of the
MS(2)-ACI(2,1)-V and the MS(3)-ACI(2,1)-V model for AIG 2016-03, INTC 2016-08 and SPY 2016-05. E.g. the
first entry, 91, represents the number of observations classified as regime 1 in MS(2)-ACI(2,1)-V and stayed in regime
1 in the MS(3)-ACI(2,1)-V model.
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Figure C.3 Monthly choices of δ for 10-by-12 stock-month datasets
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Note: the x-axis denotes the months and the y-axis gives the value of δ .

Figure C.4 Yearly distribution of estimated regimes over time for all stock-months
for the MS(2)-ACI(2,1)-V model

Note: The x-axis represents fraction of trading hours. The y-axis is the percentage of data in each regime. Regime
1 and 2 correspond to the most probable state vector estimated by the MS(2)-ACI(2,1)-V model. Each bar counts
the percentage of data falling into a roughly 20-minute bin.
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Figure C.5 Difference in the estimated b̂1s from the volume-duration regressions
between observations in regime 1 and 2 using the estimated state vector

Note: The figure plots b̂1(2)− R̂1(1) obtained from regression (3.45) for 10× 12 stock-month datasets, with b̂1(m)
being the estimated b̂1 from the observations classified as regime m. The estimated state vector is obtained by the
MS(2)-ACI(2,1)-V model. Each black dot represents the b̂1 difference for one stock-month dataset. The vertical
black dashed lines split observations from each stock, and between two vertical red lines, the b̂1 differences are
ordered chronologically.

Figure C.6 Estimated SoR for MS(2)-ACI(2,1) and MS(2)-ACI(2,1)-V models
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Note: The x-axis denotes the months from which the ŜoR is estimated. The definition of ŜoR can be found in (3.42).
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Figure C.7 Yearly distribution of estimated regimes over time for all stock-months
for the MS(2)-ACI(2,1) model

Note: The x-axis represents fraction of trading hours. The y-axis is the percentage of data in each regime. Regime
1 and 2 correspond to the most probable state vector estimated by the MS(2)-ACI(2,1) model. Each bar counts the
percentage of data falling into a roughly 20-minute bin.
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Figure C.8 Quantile-Quantile Plots of the residuals obtained from ACI(2,1),
ACI(2,1)-V, MS(2)-ACI(2,1) and MS(2)-ACI(2,1)-V models for AIG 2016-03, INTC

2016-08 and SPY 2016-05

Panel 1: AIG 2016-03

Panel 2: INTC 2016-08

Panel 3: SPY 2016-05

Note: The blue dashed lines represents the line Y = X . The residuals are obtained from estimation outputs in Tables
C.2 to C.4.
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Figure C.9 Correlograms of the residuals obtained from ACI(2,1), ACI(2,1)-V,
MS(2)-ACI(2,1) and MS(2)-ACI(2,1)-V models for AIG 2016-03, INTC 2016-08 and

SPY 2016-05
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Tables C.2 to C.4.
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Figure C.10 Bayesian Information Criterion of ACI(2,1), ACI(2,1)-V,
MS(2)-ACI(2,1) and MS(2)-ACI(2,1)-V models for all stock-months
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Note: BIC is computed as BIC = T−1(k lnT −2lnL ). For ACI(2,1) and ACI(2,1)-V, the maximized log-likelihood is
used. For MS(2)-ACI(2,1) and MS(2)-ACI(2,1)-V, the conditional likelihood L (ϑ̂ ;Y|Ŝ) is used.

Figure C.11 Distribution of estimated regimes over time from the MS(3)-ACI(2,1)-V
model for AIG 2016-03, INTC 2016-08 and SPY 2016-05
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Regime 1, 2 and 3 correspond to the most probable state vector estimated in Table C.6. Each bar counts the
percentage of data falling into a roughly 20-minute bin.
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