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Key Points: 4 

• The Late Eocene-Early Miocene unconformity of the NW Indian plate Intraplate 
basins is unrelated to Himalayan-induced compression or flexure. 

• The unconformities of the NW Indian plate Intraplate basins and the Himalayan 
peripheral foreland basin are approximately coeval. 

• A common mechanism is proposed for the foreland and intraplate basin 
unconformities related to mantle circulation. 
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Abstract 6 

A well-developed Late Eocene to Miocene unconformity, termed the Base Miocene 7 

Unconformity (BMU), is found throughout the intraplate basins of north-western India, and has 8 

previously been ascribed to Himalayan tectonics. This hypothesis is investigated by first 9 

describing the nature and age of the BMU in the northwest Indian intraplate basins, and then 10 

reconstructing the location of the BMU relative to the Himalayan deformation front at the time it 11 

formed. We suggest that formation of the BMU in western India cannot be related to Himalayan 12 

tectonic processes associated with plate loading and flexure unless the Indian plate had an 13 

elastic thickness of >125 km, which is highly unlikely. Furthermore, the resumption of deposition 14 

post-unconformity rules out inversion due to compression associated with India-Asia 15 

convergence as a cause, as these compressive forces are still present. We note the coeval 16 

nature of the unconformity in the NW Indian plate intraplate basins and the Himalayan 17 

peripheral foreland basin.  If the unconformities of the Himalayan peripheral foreland basin and 18 

the NW Indian intraplate basins formed by a common process, uplift due to circulation in the 19 

mantle is the only possible regional-scale mechanism. Such circulation could be the result of the 20 

intrinsically time-dependent high-Rayleigh number convection in the mantle, which has resulted 21 

in well-documented unconformities elsewhere, or be the result of subducting slab break-off 22 

beneath the Himalaya. 23 

 24 

1. Introduction 25 

The far field effects of continental collisions extend beyond the immediate realm of the orogen 26 

they create [Cunningham, 2005; Otto, 1997; Replumaz and Tapponnier, 2003]. At least two 27 

processes may cause regional stress changes associated with such collisions, that are 28 

expressed as folds, faulting and regional unconformities. Firstly, compressional stresses are 29 
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laterally propagated for long distances into the foreland, for example as is documented in the 30 

western interior of the US and the Alpine orogen [e.g. Dezes et al., 2004; Dickinson and Snyder, 31 

1978].  Secondly, flexure of the previously-subducting plate occurs in the foreland due to 32 

loading by the mountain range and the under-thrusting slab [e.g DeCelles et al., 1998; Lyon-33 

Caen and Molnar, 1985]. To interpret the forces driving the creation of geological structures in 34 

the foreland of mountain ranges therefore requires distinguishing between flexural and far-field 35 

compressive effects, as well as separating these from deformation relating to sub-plate 36 

processes such as mantle convection and slab break-off.  37 

 38 

In the case of the India-Asia collision, the Indian plate is under ~N-S compressive stress due to 39 

the forces arising from the central Indian Ocean mid-ocean ridge and the Tibetan Plateau 40 

[Coblentz et al., 1995; Copley et al., 2010]. The resulting deformation has been documented in 41 

a number of places, and takes the form of kilometre-scale reactivations of pre-existing faults 42 

[e.g. Copley et al., 2014; Müller et al., 2015], thrust-faulting earthquakes [e.g. Craig et al., 2011], 43 

and folding and reverse faulting in the central Indian Ocean [e.g. Krishna et al., 2009]. Flexure 44 

of the Indian plate has resulted in the development of the Himalayan foreland basin ahead of 45 

the southward migrating Himalayan thrust front, with a peripheral forebulge probably present to 46 

the south of this [Bilham et al., 2003]. Migration of the forebulge either away from, or towards, 47 

the mountain range due to redistribution of the load, and the motion of the Indian plate (relative 48 

to the Himalayan range-front) through this region, are commonly proposed as the cause of the 49 

widespread ~Late Eocene to Early Miocene unconformity recorded throughout the peripheral 50 

foreland basin rocks now incorporated into the Sub-Himalayan thrust belt [Bera et al., 2010; 51 

DeCelles et al., 1998; DeCelles et al., 2004; Irfan et al., 2005; Najman and Garzanti, 2000; 52 

Najman et al., 2005]. By contrast, Clift and VanLaningham [2010]  suggest that redistribution of 53 

the load due to climatically-induced increased erosion of the orogen resulted in flexural 54 

unloading, unflexing of the Indian plate and consequential basin uplift and formation of the late 55 
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Eocene to early Miocene foreland basin unconformity.  Mantle dynamics, including the break-off 56 

of subducting slabs, and the presence of hot thermal anomalies due to mantle upwelling, are 57 

additional suggested causes [e.g. Husson et al., 2014; Maheo et al., 2002].  58 

 59 

The Barmer Basin is an inverted failed rift basin of Paleogene age [Naidu et al., 2017], with its 60 

northern end situated ~800 km south of the Himalayan front and 400 km east of the Kirthar 61 

Mountains of central Pakistan (see Figures 1 and 2). Compton [2009], Dolson et al. [2015] and 62 

Bladon et al. [2015a] suggested that India-Asia collisional tectonics resulted in post-rift 63 

compressional features in the basin, including uplift of cross-rift basement ridges, inversion of 64 

the northern part of the basin (which has removed >1 km of sediment), and the major Late 65 

Eocene to Lower Miocene unconformity, termed the Base Miocene Unconformity (BMU). 66 

Compton [2009] correlated the BMU into the Jaisalmer / Middle Indus Basin, considered to be a 67 

Retreating Foreland Basin by DeCelles [2012]. The BMU is also traceable through a number of 68 

other basins distal to the Himalaya, including the Cambay, Kutch, Bombay and Indus basins, up 69 

to 1400 kms south of the Himalayan front, with decreasing intensity southwards (Figures 1 and 70 

2). We term these basins the NW Indian intraplate basins. The purpose of this paper is to 71 

describe the nature and extent of the BMU in the NW Indian intraplate basins distal to the 72 

Himalaya, and to consider mechanisms for its formation in view of the previously proposed 73 

Himalayan influence. The description focusses on that part of the unconformity preserved in the 74 

Barmer Basin, Rajasthan, as a type example of the unconformity in the NW Indian intraplate 75 

basins, from where we interpret a wealth of sub-surface data made available by Cairn India.  76 

 77 

 78 

2.  Geological background; The NW Indian intraplate basins.  79 

The BMU is documented and regionally mapped in the Barmer, Cambay, Kutch, [Chowdhary, 80 

1975; Chowdhary and Singh, 1978; Kundal et al., 2005] and Bombay (Mumbai) basins [Basu et 81 
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al., 1982; Mehrotra et al., 2010; M Mohan, 1995; Wandrey, 2004] as an erosional event of 82 

generally decreasing erosional depth southwards (Figure 1, panels 5-7). In subsurface datasets 83 

it is recognised as a regional seismically correlatable reflection event (Figure 3).  An equivalent 84 

unconformity is recognised in the onshore Jaisalmer Basin (Figure 1, panel 4); [Quadri and 85 

Shuaib, 1986; Wandrey et al., 2004]. The offshore Indus Basin (Figure 2) also records Early 86 

Miocene erosional events [Carmichael et al., 2009; Clift et al., 2001; Quadri and Shuaib, 1986]. 87 

 88 

There are other less pronounced unconformities throughout the Paleogene and Miocene 89 

successions in the NW Indian intraplate basins [e.g. Chowdhary, 2004; Mehrotra et al., 2010]. 90 

To the north, many of these are progressively eroded out by the BMU and merge onto the BMU 91 

surface, the erosional depth of which increases northwards. In the Sanchor and Cambay basins, 92 

the BMU erodes out progressively less of the Eocene and Oligocene successions until in 93 

depocentres of the southern Cambay Basin and the Bombay Offshore Basin almost complete 94 

Oligocene and Eocene successions are present (see Figure 1).   95 

 96 

Local tectonics give rise to considerable variation in the architecture of the unconformities. For 97 

example, in the Cambay Basin the extent and intensity of these unconformities varies across 98 

rotated fault blocks in the basement. These are long-lived, fault bounded basement highs which 99 

in some cases include tilted Mesozoic sedimentary rocks [Chowdhary and Singh, 1978; 100 

Mathuria et al., 2011; R Mohan et al., 2008; Sahoo and Choudhuri, 2011] onto which the oldest 101 

Miocene sediments on-lap [Dolson et al., 2015; Kaila et al., 1990; Mathuria et al., 2011; Valdiya, 102 

1976]. Similarly, in the Bombay Offshore Basin, the depth of erosion is greatest across the 103 

larger fault blocks, such as the Bombay High [Bhandari and Jain, 1984; Wandrey, 2004]. Some 104 

structures in which the BMU is pronounced are associated with recent block uplift and inversion 105 

[Huggett et al., 2015; Pangtey, 1996; Sanyal et al., 2012] complicating the interpretation of 106 

erosional history. However, in general (Figure 1), the Jagadia Formation is regionally present 107 
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across >600 km as the basal (oldest) continental Miocene sequence above the BMU in the 108 

Cambay and Barmer basins [Dolson et al., 2015; Kundal et al., 2005; Naidu et al., 2017]. 109 

 110 

 111 

3. The Barmer Basin, Rajasthan; the BMU in a NW Indian Intraplate Basin.  112 

In order to document the BMU in detail, in a region distal to the Himalayan front, the Barmer 113 

Basin has been studied because of its excellent seismic and exploration well coverage available 114 

from Cairn India. Seismic data covers almost 85% of the Barmer Basin, and more than 300 115 

exploration wells have been drilled in the basin. Approximately 3000 line-km of vibroseis 2D 116 

seismic were acquired by Cairn India between 1995 and 2000, whilst several generations of 3D 117 

seismic data were joined into a mega-merged volume in 2013 and together cover ~6,200 km2 of 118 

the basin, providing excellent seismic coverage for regional mapping.  119 

 120 

The BMU and its enclosing stratigraphy are not cored anywhere in the Barmer Basin. However, 121 

in the >300 wells drilled in the basin cuttings samples were taken every 2 m and their lithology 122 

described, whilst a comprehensive suite of wireline logs was run in each well that included 123 

gamma-ray (GR), neutron-density, resistivity and sonic logs. These data in 38 key reference 124 

wells, along with biostratigraphic, apatite fission track and vitrinite reflectance data, form the 125 

basis of the descriptions provided below. 126 

 127 

 128 

3.1 Basin Setting 129 

The Barmer Basin, and its extension as the Sanchor sub-basin to the south (Figures 2 and 3), is 130 

a Cenozoic failed continental rift. The basin is the linear northward extension of the Cambay 131 

Basin within the West Indian Rift System, which extends for another 800 km southwards into the 132 
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Mumbai/Bombay Offshore Basin [Biswas, 1987; Calvès et al., 2011; Wandrey et al., 2004]. The 133 

Barmer Basin is separated from the Cambay Basin to the south by the SW-NE aligned Deodar 134 

Ridge / Mehsana High which are fault-bounded basement horsts of the Proterozoic Delhi Fold 135 

Belt [Bhandari and Chowdhary, 1975; Kaila et al., 1990]. The Barmer Basin is separated from 136 

the Jaisalmer Basin to the north by the Devikot High [Siddiquie, 1963], a long-lived, basement 137 

structure with a thin Mesozoic sequence preserved across the top of the high. Gravity modelling 138 

indicates a depth to the Moho of 25-40 km across the Barmer Basin, consistent with regional 139 

studies of the crustal thickness of the Indian plate [Kaila et al., 1990; Singh et al., 2015].   140 

 141 

3.2 Cenozoic Basin Stratigraphy 142 

The Barmer Basin preserves a thick Neoproterozoic to Miocene stratigraphy overlain by 143 

Quaternary deposits [Dhir and Singhvi, 2012]. The full stratigraphy of the basin is detailed in 144 

Compton [2009], Bladon et al. [2015b] and Dolson et al. [2015] and summarised below to 145 

provide context for the Cenozoic sediments and their relationships to the BMU.  146 

 147 

At least 6 km of Jurassic to Recent deposits overly the Neoproterozoic basement [Sharma, 148 

2007]. Mesozoic successions within the basin which precede the Cenozoic rifting comprise 149 

fluvial Lower Jurassic Lathi Formation and fluvio-lacustrine Lower Cretaceous Ghaggar-Hakra 150 

Formations. Palaeocene-Early Eocene syn-rift deposits within the Barmer Basin are dominated 151 

by fluvial, alluvial fan, lacustrine and lake-delta facies of the Jogmaya Mandir, Fatehgarh, 152 

Barmer Hill, Dharvi Dungar and Thumbli Formations. These rocks are overlain by the Middle to 153 

Late Eocene post-rift continental facies of the Akli and Nagarka Formations, the latter recording 154 

the infilling of the rift basin topography. 155 

 156 

Oligocene strata are absent in the Barmer Basin and the BMU erodes into the underlying 157 

Eocene rocks across much of the basin, although the intensity of erosion decreases 158 
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southwards. Above the BMU, Miocene to Recent deposits of the Jagardia and Uttarlai 159 

Formations comprise continental alluvial deposits. Recent alluvium and stabilized aeolian dunes 160 

complete the basin fill.  161 

 162 

3.3. The BMU in the Barmer Basin 163 

3.3.1 Recognition and mapping of the BMU in the subsurface 164 

In the seismic reflection data, the BMU within the Barmer Basin is imaged as a regional ~Middle 165 

Eocene to Early Miocene erosion surface. Due to erosion following regional southward tilting 166 

across a major structural hinge line that is one of the prominent Aravalli-trending basement 167 

ridges, the BMU is only preserved south of the Kaameshwari and Saraswati fields (Figure 4); 168 

the BMU deepens southwards, from only 600-700m beneath the subsurface in the Raageshwari 169 

Field to 1200m subsurface in the Guda area. The unconformity surface has been folded and cut 170 

by later fault reactivations around the basin (Figure 5). Within the central and southern regions 171 

of the Barmer Basin and southwards into the adjoining Sanchor sub-basin the BMU is identified 172 

using two- and three-dimensional seismic datasets supplemented by wireline well logs, cuttings 173 

and log correlations (Figure 6). Vertical seismic resolution is ~20 m within the Eocene-Miocene 174 

sequences. 175 

 176 

In the northern part of the Barmer Basin, the younger regional uplift has resulted in erosion of 177 

progressively older stratigraphic units including the BMU (Figure 4). Consequently, the pre-178 

erosion extent of the BMU across the northern part of the Barmer Basin remains speculative. 179 

However, projection of the uniform dip of the unconformity surface (~2°) northwards indicates a 180 

missing section of ≈ 1km above the northern outcrops. This is consistent with apatite fission 181 

track data which indicate that ~ 1 km of uplift and erosion have taken place in the northern part 182 

of the basin [Dolson et al., 2015]. In comparison, the southern Barmer Basin underwent much 183 

less post-Oligocene erosion (typically <200 m) and preserves up to 250m of Nagarka Formation 184 
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sediments, although individual fold structures (such as in the Guda Field area) indicate as much 185 

as ~300 m of inversion where the Nagarka Formation has been completely removed.  186 

 187 

The BMU is represented in the seismic reflection data by a clear, bright, regionally correlatable 188 

reflector and evidence of scouring and channelling into the underlying sediments is seen on 189 

seismic sections (Figure 5). The lacustrine facies that make up the Eocene sequence below the 190 

BMU are recognized from the regionally extensive lignitic, sand-poor intervals separated by 191 

thick lacustrine shales [Dolson et al., 2015].  192 

 193 

Above the BMU, the continental facies of the Jagadia Formation is typically ~250 m in thickness 194 

[Dolson et al., 2015]. The base of the Jagardia Formation is marked by a sudden influx of 195 

predominantly fine grained, carbonaceous sandstones and the formation is characterised by an 196 

upward increase in shale as depicted in the gamma-ray logs (Figure 6).  197 

 198 

Wireline logs in representative wells (Figure 6) reveal the lithological contrast at the BMU. In the 199 

sonic log in particular, a distinct change to higher acoustic velocities is observed beneath the 200 

unconformity, since these sediments are typically more compacted and/or cemented compared 201 

to those above. 202 

 203 

3.3.2 Dating the BMU 204 

Whilst the majority of the Nagarka Formation, beneath the BMU, comprises lacustrine 205 

sediments, a brief but distinct shallow marine incursion deposited thin calcareous shales which 206 

provide good biostratigraphic control.  Bower et al. [2004] (Supplementary Information 1) 207 

document  the occurrence of D. Barbadiensis and Cribrocentrum reticulatum, indicating that the 208 

Nagarka Formation is aged between the base of calcareous nannofossil zone NP17 and top 209 

NP19/20 [Agnini et al., 2014; Wade et al., 2011]. The presence of Helicosphaera lophota, less 210 
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commonly used as a range fossil, would restrict the upper age limit to NP18. Thus the Nagarka 211 

Formation ranges between ~40-35 Ma in age, i.e. Mid to Late Eocene. This is consistent with 212 

published work depicting a Bartonian-Priabonian [Naidu et al., 2017] or Priabonian [Compton, 213 

2009; Dolson et al., 2015] age for this formation. 214 

 215 

Above the unconformity in the Barmer Basin, the biofacies of the Jagardia Formation comprise 216 

an impoverished assemblage consisting of non-age diagnostic, long-ranging pollen species 217 

[Supplementary Information 1; Bower et al., 2004]. However, in the Cambay Basin, where the 218 

Jagadia Formation is defined, the age of the Jagadia Formation is constrained by its locally 219 

conformable lower contact with the well-dated marine part of the Kand Formation, established to 220 

be of Lower-Mid Miocene (Burdigalian) age [Chowdhary, 2004]. The Jagadia Formation is thus 221 

considered to range from Middle to Upper Miocene in the Cambay Basin and the base of this 222 

formation is seismically correlated from the Cambay Basin through to the Barmer Basin (Figure 223 

3).  224 

 225 

Dolson et al. [2015] used vitrinite reflectance (VR) and apatite fission track analysis (AFTA) data 226 

to constrain the timing of erosion in the basin, which led to the formation of the BMU. Naidu et 227 

al. [2017] used the VR data of Dolson et al. [2015] to model exhumation as occurring from Late 228 

Oligocene through Pliocene with the most pronounced exhumation occurring between 26 Ma 229 

and 11 Ma, whilst noting that precise dating was difficult to define.  230 

 231 

4. Causal mechanism for the base Miocene NW Indian plate intraplate basin 232 

unconformities 233 

4.1. BMU development in the NW Indian intraplate basins associated with Himalayan 234 

tectonics? 235 

 236 
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Some previous research considered the formation of the BMU as related to Himalayan 237 

tectonics. Compton [2009] noted the similarity in age of the BMU in the Barmer Basin with an 238 

equivalent unconformity in the Jaisalmer Basin and related it to tectonics associated with the 239 

India-Asia collision (Fig. 3 in Compton [2009]). Dolson et al. [2015] also considered the Barmer 240 

Basin BMU to be the result of inversion related to the India-Asia collision. We consider this 241 

potential relationship further, below. 242 

 243 

Rift basin inversion is common in orogenic forelands due to the compressive stress field [e.g. 244 

Hansen and Nielsen, 2003]. In general, basin inversion begins when the neighbouring orogenic 245 

zone has reached a sufficient elevation to impose significant forces on the foreland, and lasts 246 

until the end of mountain building. However, the return to deposition above the BMU in the NW 247 

Indian intraplate basins (Figure 1), in rocks that continue to be affected by the stress-field 248 

relating to the India-Asia collision, strongly suggests that this inversion is not responsible for the 249 

creation of the BMU in the NW Indian intraplate basins. 250 

 251 

Regarding the possibility of formation of the BMU related to plate loading and flexure associated 252 

with he Himalayan orogeny, uplift in a flexural forebulge is also a frequently proposed 253 

mechanism to explain the occurrence of the Oligocene unconformity in the Himalayan 254 

peripheral foreland basin (e.g. DeCelles et al., 1998, DeCelles et al., 2004, Najman and 255 

Garzanti, 2000, Najman et al., 2005, Irfan et al., 2005, Bera et al., 2010). In the Himalayan 256 

peripheral foreland basin, a Late Eocene to Early Miocene unconformity has been consistently 257 

recorded along strike-length of the basin, from Pakistan, through India, to Nepal (Figure 1, 258 

panels 1-3). If passage through a flexural forebulge were the cause of all the unconformities in 259 

the northern Indian basins, the age of these unconformities would be expected to decrease 260 

away from the mountain range, as the more distal basins would have entered the forebulge 261 

region at a later time. The broadly synchronous age of the unconformities in the NW Indian 262 
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Intraplate basins, and those exposed in the uplifted peripheral foreland basin in the Himalaya, 263 

therefore implies that the basins do not share a common flexural origin. However, if the elastic 264 

thickness is large enough, flexural forebulges can be hundreds of kilometres wide (e.g. ~600 km 265 

for an elastic thickness of 75 km, see calculations below). It would therefore be possible to 266 

create a synchronous unconformity over a large area as a result of, for example, base-level fall 267 

superimposed on a wide flexural forebulge. Therefore, in order to test whether flexure could 268 

have played a role in the formation of the BMU in the NW Indian plate intraplate basins, 269 

including the Barmer Basin, we have undertaken plate reconstructions, flexural modelling, and a 270 

comparison with estimates of the elastic thickness in the region. 271 

 272 

All flexural effects relating to mass changes in the proto-Himalaya (such as due to thickening or 273 

erosion) have a horizontal length-scale of effect that depends upon the elastic thickness of the 274 

Indian lithosphere. This length-scale arises because the elastic thickness of the lithosphere 275 

determines the distance between the orogenic load and the forebulge that flanks the foreland 276 

basin. Any cause of the unconformity related to flexural loading or unloading in the Himalaya 277 

and Tibetan Plateau therefore only operates over this length-scale. Here we test whether 278 

proposed causes of the unconformity relating to Himalayan tectonics, as outlined in the 279 

Introduction, are compatible with the location of the BMU in the NW Indian intraplate basins. 280 

 281 

4.1.1. Plate reconstructions 282 

We have used plate reconstructions to determine the distance between the NW Indian intraplate 283 

basins and the migrating Himalayan-Tibet deformation front during the Cenozoic. This is 284 

achieved by using the India-Somalia-NW Africa-North America-Eurasia plate circuit to calculate 285 

the distance between the Barmer Basin and stable Eurasia (based upon oceanic magnetic 286 

anomalies), and geological estimates of shortening in the India-Asia collision zone to infer the 287 

distance between stable Eurasia and the proto-Himalayan deformation front. We have 288 
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calculated the maximum (i.e. southern Cambay Basin) and minimum (i.e. northern Barmer 289 

Basin) distances between the migrating deformation front and the BMU in the NW Indian 290 

intraplate basins. To calculate the location of the basins relative to stable Eurasia, we use the 291 

GPLATES software package  [http://www.gplates.org Boyden et al., 2011]. The reconstructions 292 

presented here use the India-Asia rotation poles of Molnar and Stock [2009] and  Copley et al. 293 

[2010]. We infer the location of the proto-Himalayan deformation front relative to stable Eurasia 294 

using the estimate of 900 km of shortening within Asia since the India-Asia collision from Van 295 

Hinsbergen et al. [2011] and Huang et al. [2015]. As this value is difficult to determine, error 296 

bars of +/- 50% are used on this estimate. We assume that this shortening occurred at a steady 297 

rate since the collision, which we have taken to occur at the maximum and minimum generally 298 

accepted collision date values of ~60 Ma to by 50 Ma [DeCelles et al., 2014; Hu et al., 2015; 299 

Najman et al., 2010; Wang et al., 2011; Wu et al., 2014]. By assuming that the shortening rate in 300 

Asia has been constant through time, we are likely to under-estimate the distance between the 301 

deformation front and the BMU in the NW Indian Intraplate basins, if the shortening rate actually 302 

decreased through time in tandem with the overall convergence rate (e.g. Molnar and Stock 303 

[2009]). By using a range of rotation poles, collision ages, and amounts of post-collision 304 

shortening within Asia, our models encompass a range of possible sizes of ‘greater India’. Our 305 

estimated variation through time of the distance between the BMU in the NW Indian intraplate 306 

basins and the deformation front is shown in Figure 7a. The calculated polygons include the 307 

range of distances produced by varying the parameters described above. 308 

 309 

4.1.2. Flexural models 310 

The Late Oligocene, ~ 26 Ma, is the time suggested by AFTA and VR data for the formation of 311 

the BMU in the Barmer Basin (see section 3.3.2).  At this time, the northern Barmer and 312 

southern Cambay basins were located between ~1200 and ~2000 km from the palaeo-313 

deformation front (Figure 7a). The range in this estimate represents the most extreme values 314 
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calculated by varying the point of interest (i.e. northern Barmer or southern Cambay), the 315 

collision age, the rotation poles used, and the amount of post-collision shortening in Asia. 316 

 317 

To test whether flexural effects could result in the formation of the BMU at the distances from 318 

the deformation front we have determined, a model is used for the flexure of an elastic plate 319 

overlying an inviscid half-space (see Turcotte and Schubert [2002] for a derivation of the 320 

relevant equations).  We use a model for the loading of the lateral end of a plate by a vertical 321 

line load, and assume that there are no along-strike variations in the plate or load, so the model 322 

can be constructed along a 2-D plane perpendicular to the load (also known as a ‘broken plate’ 323 

model, and used as standard in this type of tectonic setting; Turcotte and Schubert [2002]). In 324 

this study we are concerned with the lateral position of the flexural forebulge, and not the 325 

amplitude, so the magnitude of the load plays no role in the analysis, as it has no effect on the 326 

length-scale of the deformation. The distance between the point of loading and the flexural 327 

forebulge, where surface uplift occurs, is shown in Figure 7b. Greater elastic thicknesses result 328 

in flexure over a longer wavelength and the formation of a forebulge at greater distances from 329 

the deformation front. Our calculations show that an elastic thickness of >110 km is required to 330 

form the BMU in the northern Barmer Basin by uplift of a flexural forebulge at ~26 Ma. An elastic 331 

thickness of >190 km is required for this effect to extend to the southern Cambay Basin. 332 

 333 

Because of the uncertainties involved in using AFTA and VR data to estimate the date of 334 

erosion to form the BMU [Naidu et al., 2017], we also perform calculations using the range of 335 

possible ages for the formation of the BMU based upon the palaeontological age constraints 336 

(see section 3.3.2). Using the youngest possible age for the erosion to form the BMU of 11 Ma 337 

(youngest possible age of the Kand Formation), the equivalent elastic thickness estimates are 338 

70 km and 125 km. Using the oldest possible age of the Nagarka Formation (40 Ma), the 339 

estimates are 160 km and 325 km. Comparison of these values to estimates of the elastic 340 
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thickness of the Indian plate allows us to establish whether a flexural mechanism for the 341 

formation of the BMU is plausible, as detailed below. 342 

 343 

Numerous attempts have been made to constrain the elastic thickness of the Indian plate using 344 

the variation in gravity anomalies, or foreland basin depth, along profiles through the northern 345 

Indian subcontinent [e.g. Bilham et al., 2003; Karner and Watts, 1983; Lyon‐Caen and Molnar, 346 

1985; Maggi et al., 2000; McKenzie and Fairhead, 1997; Watts and Burov, 2003]. These studies 347 

obtained estimates of the elastic thickness ranging from <40 km to >100 km, with a poorly-348 

constrained upper bound. Jackson et al. [2008] demonstrated that the choice of the location 349 

where the flexed plate is broken (i.e. the lateral end of the plate in the models, beneath the load, 350 

where a vertical load and bending moment are applied) has a strong control on the resulting 351 

estimate of the elastic thickness, for any method involving fitting gravity anomalies or basin 352 

geometries along profiles. In India, the location of the plate break is not known from 353 

observations, and if this parameter is not fixed in the inversions then a wide range of elastic 354 

thicknesses of greater then ~30 km can fit the data in northern India equally well. Furthermore, 355 

Craig and Copley [2014] demonstrated that the combination of the permanent deformation of 356 

the flexing plate due to foreland faulting, the unknown yield stress of the lithosphere, and 357 

uncertainties regarding the total force transmitted through the lithosphere, prevents the elastic 358 

thickness from being accurately estimated from profiles through forelands and oceanic outer 359 

rises.  360 

 361 

An alternative approach to estimate the elastic thickness is to compare the topography and 362 

gravity anomalies in the frequency domain. The range of wavelengths over which these two 363 

quantities vary in tandem with each other is diagnostic of the elastic thickness of the region 364 

[McKenzie and Bowin, 1976; Watts, 2001]. Most frequency-domain estimates of elastic 365 

thicknesses have used the method of Forsyth [1985], which obtains the transfer function 366 
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between the topography and the Bouguer gravity anomaly. However, McKenzie [2003] argued 367 

that in regions where topography has been removed by erosion, this method gives only an 368 

upper bound on the elastic thickness. McKenzie et al. [2014]  proposed an alternative method, 369 

using recently collected satellite gravity data and the transfer function between the free-air 370 

gravity anomalies and the topography. They estimated that the elastic thickness in India is 25-371 

32 km. This value is consistent with the estimates constructed using profiles through gravity 372 

anomalies or foreland basin depth, as described above, in cases where the ‘plate break’ is not 373 

artificially fixed in the inversions (Jackson et al. [2008]). Models using elastic thickness 374 

estimates in this range are also able to reproduce the observed width of the foreland basin, 375 

which is equivalent to the width of the negative gravity anomaly (McKenzie and Fairhead, 1997). 376 

For an elastic thickness of 25-32 km, the wavelength of the flexure is too short to have resulted 377 

in the formation of the BMU of the NW Indian intraplate basins in a flexural forebulge (Figure 378 

7b). 379 

 380 

4.2 The BMU caused by mantle circulation? 381 

With the length-scale of flexural effects ruling out Himalayan tectonics as the cause of the BMU 382 

in the NW Indian Intraplate Basins, we must consider alternative mechanisms to explain the 383 

unconformity. We note the approximately coeval nature of the unconformity developed in the 384 

Himalayan peripheral foreland basin (Figure 1) and suggest that a single cause may explain 385 

both the BMU of the NW Indian Intraplate basins and the Oligocene unconformity in the 386 

Himalayan foreland basin, based on their temporal equivalence. We turn to potential causes 387 

that can explain unconformities over regional scales. We describe how sub-plate mantle 388 

circulation can produce the effects we observe. This circulation could be the result of slab-389 

breakoff beneath the proto-Himalaya, or the ongoing background convection of the mantle, 390 

decoupled from shallow tectonics. Presently-available information does not allow us to 391 
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distinguish between these potential causes, but either would represent the production of the 392 

BMU as a result of surface uplift due to mantle circulation. 393 

 394 

We first examine the background convection of the mantle, unrelated to shallow tectonics. 395 

Upwelling in the convecting mantle can result in surface uplift of up to ~2 kilometres, over 396 

length-scales of up to tens of thousands of kilometres, but has also been observed to have 397 

effects on length-scales <1000 km and amplitudes of less than 500 m [e.g. Hoggard et al., 398 

2016; Panasyuk and Hager, 2000; Winterbourne et al., 2014] For Rayleigh numbers (106-108; 399 

McKenzie et al. [1974]) that correspond to the Earth’s mantle, numerical and laboratory 400 

experiments [e.g. Larsen and Yuen, 1997; Schubert et al., 2001] suggest that transient 401 

temperature anomalies propagate through the convective system, and would be expected to 402 

produce transient vertical motions at the Earth’s surface. Such uplift can result in shallow 403 

sedimentary basins and continental margins switching from deposition to erosion, on timescales 404 

of hundreds of thousands to tens of millions of years [Burgess et al., 1997; Jones et al., 2012; 405 

Meyers et al., 1998; Rudge et al., 2008]. A well-documented example of mantle dynamics 406 

affecting regional uplift is identified within the North Atlantic, where hot and buoyant material is 407 

advected beneath the plates from the Icelandic plume, resulting in  a regional unconformity 408 

within the stratigraphic record of the Faeroe-Shetland and the Porcupine basins [e.g. N White 409 

and Lovell, 1997]. However, uplift and subsidence related to mantle circulation has been 410 

observed globally, not just near to large plumes [Hoggard et al., 2016]. 411 

 412 

Alternatively, slab break-off related processes have been proposed to explain the Oligocene 413 

unconformity within the Himalayan peripheral foreland basin [e.g. Husson et al., 2014; Najman 414 

et al., 2004]. There are two aspects of this process that may cause uplift: the change in stresses 415 

being transmitted through the lithosphere, and the flow in the surrounding mantle induced by the 416 

sinking of the slab (which would cause subsidence) and its replacement by hot asthenosphere 417 
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(which would lead to uplift). In the case of changing the stresses being transmitted through the 418 

lithosphere, the wavelength of deformation would be comparable to that relating to other forces 419 

affecting the flexure of the elastic Indian plate, and so incompatible with the results of this study. 420 

However, the large-scale mantle flow that can result from slab break-off can potentially affect 421 

much larger regions [e.g. Husson et al., 2014]. In this case, the timing of break-off can be used 422 

to assess the likelihood that this event led to the arrival of hot, less dense mantle material 423 

causing uplift and thus a regional northern Indian unconformity. A range of ages have been 424 

proposed for slab break-off events in the India-Asia collision zone [Webb et al., 2017], ranging 425 

from 45 Ma [Replumaz et al., 2014] to 25 Ma [Maheo et al., 2002], and as recent as 15 Ma 426 

[Husson et al., 2014]. This range of suggested ages for slab break-off events are therefore 427 

compatible with the formation of the Oligocene unconformity in the peripheral foreland basin and 428 

the BMU in the NW Indian Intraplate basins, but a direct causal link is difficult to establish.  429 

 430 

With the information we have available, it is therefore not possible to distinguish whether the 431 

BMU is directly related to slab break-off, or to the background high-Rayleigh-number convection 432 

in the mantle, but we conclude that sub-plate mantle circulation of some form is the likely cause. 433 

Husson et al. [2014] also suggested a role for mantle flow in the vertical motions of India and 434 

Tibet. Although there is little evidence for the kilometre-scale uplifts and depressions in the 435 

Indian plate suggested at the present day by their models, or the gravity anomalies that would 436 

be associated with such deflections, their work demonstrates the potential spatial extent and 437 

amplitude of vertical surface motions driven by convective circulation. 438 

Our results highlight that correctly understanding the cause of unconformity surfaces requires 439 

carefully mapping and correlating their full extent, and their potential continuations into adjacent 440 

basins. The question then becomes what controls the extent of such surfaces. The radically 441 

different expression of the BMU in terms of the time-interval of missing sediments in the various 442 
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NW Indian Intraplate Basins shows that the local depositional environment (e.g. basin depth, 443 

continental or marine sedimentation) can play an important role in controlling whether an 444 

unconformity is formed, as well as its extent and erosional intensity. This effect limits our ability 445 

to know whether the lessening of the BMU southwards corresponds to decreasing amounts of 446 

uplift, or to more pre-uplift accommodation space reducing the effects of the vertical motions. To 447 

resolve this question, palaeo-water-depth estimates are required. The combination of these 448 

effects means that in regions commonly thought to be dominated by the effects of local 449 

tectonics, the correct interpretation of unconformity surfaces requires regional-scale mapping of 450 

multiple basins, otherwise the potential over-printing effects of mantle circulation could be 451 

misinterpreted.  452 

 453 

5. Conclusions 454 

 The sedimentary successions of the NW Indian Plate Intraplate Basins are punctuated by a 455 

major Late Eocene-Early Miocene unconformity called the Base Miocene Unconformity (BMU).  456 

We show that the NW Indian intraplate Barmer Basin unconformity is unrelated to Himalayan 457 

tectonics. The resumption of deposition post-unconformity rules out inversion due to 458 

compression associated with India-Asia convergence as a cause, as these compressive forces 459 

are still present. The large distance between the NW Indian Plate Intraplate Basins and the 460 

Himalayan front excludes flexural effects. The coeval nature of the Himalayan peripheral 461 

foreland basin and NW Indian Plate Intraplate Basin unconformities may suggest a common 462 

cause. We propose that the unconformity within the Himalayan peripheral foreland basin and 463 

NW Indian Plate Intraplate Basins may be a result of mantle circulation, either due to subducting 464 

slab break-off or high-Rayleigh-number background convection. Our results suggest that such 465 

circulation can produce geological signatures even in regions where collisional tectonics may be 466 
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expected to dominate, and suggests that the interpretation of unconformities rests strongly on 467 

mapping out their full extent, and coeval structures in adjacent basins. 468 

 469 

 470 
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FIGURE CAPTIONS 485 

Figure 1. Stratigraphic summary columns of key reference sections of the Himalayan peripheral 486 

foreland basin (Panels 1-4) and NW Indian Plate Intraplate Basins (5-9) highlighting the 487 

presence of the ~late Oligocene to early Miocene (BMU) unconformity. Inset map shows the 488 

location of the stratigraphic panels. JM= Jogdia Mandir Formation, Dh=Dhandlawas Formation. 489 

H numbers refer to the regionally mapped erosional events in the Bombay Basin [Chowdhary, 490 

1975; Chowdhary and Singh, 1978; Kundal et al., 2005]. The NW Indian Plate Intraplate Basins 491 

(panels 1-4) are described and referenced extensively in the text. Considering the peripheral 492 

Himalayan foreland basin: furthest west, in the Kohat and Potwar Plateaus of Pakistan (panel 493 

1), Miocene continental facies of the Rawalpindi Group (Murree and overlying Kamlial 494 

Formations) unconformably overlie Eocene marine facies of various formation names. In the 495 

Kohat Plateau, the youngest marine facies are the Kohat Formation of Middle Eocene age, 496 

[Pivnik and Wells, 1996], and rocks of similar age are recorded to the east in the Potwar plateau 497 

[Shah, 2009]. The Murree Formation of the uppermost Rawalpindi Group is considered to be of 498 

Early Miocene age, based on mammal fossil evidence [Shah, 2009].  In the Potwar Plateau, the 499 

base of the Rawalpindi Group overlying the Eocene rocks is magnetostratigraphically dated at 500 

18 Ma [Johnson et al., 1985]. In northern India (panel 2), the top of the marine Subathu 501 

Formation is dated biostratigraphically as Lutetian [Batra, 1989; Mathur, 1978].The overlying 502 

continental red beds are called the Dagshai or Dharamsala Formation, depending on location. 503 

Best dated is the Dharamsala Formation, which magnetostratigraphic analysis constrains to 504 

date from 20 Ma, with the lowest 250 m being undatable by magnetostratigraphy due to lack of 505 

continuity of the section [N M White et al., 2002]. Maximum depositional ages provided by Ar-Ar 506 

dates of detrital white mica support the magnetostratigraphic dating, with modal mica ages at 507 

the base of the measured section of 22-24 Ma. Micas dated in samples from the thin unit below 508 

the magnetostratigraphic section yield similar Ar-Ar ages. The age of the Dagshai Formation 509 

has only been constrained using detrital minerals to provide a maximum depositional age, with 510 
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an age of <31 Ma suggested for the base of the section by zircon fission track analysis [Najman 511 

et al., 2004] and <25 Ma and <22 Ma from detrital mica Ar-Ar ages from samples within the unit 512 

[Najman et al., 1997]. In Nepal (panel 3), the upper part of the marine Bhainskati Formation 513 

underlying the unconformity is considered to be of Middle to Late Eocene age in Central Nepal 514 

[Sakai, 1989], whilst Late Paleocene to Early Eocene fossils are reported in West Nepal [Fuchs 515 

and Frank, 1970]. Above the unconformity, the base of the red beds of the Dumre Formation are 516 

dated at 20 Ma by magnetostratigraphy [Ojha et al., 2008], consistent with the maximum age of 517 

the formation dated at <19 Ma from detrital Ar-Ar dating of white micas [DeCelles et al., 2001]. 518 

 519 

 520 

Figure 2. Outline sketch map of the main sedimentary basins of northwest India and southern-521 

central Pakistan. White areas denote where basement is either at or very close to surface. 522 

Thrust lines in the Sulaiman and Kirthar fold belts are indicative.  523 

 524 

Figure 3. North-South oriented seismic section showing correlation of the BMU through the 525 

Barmer, Sanchor and Cambay Basins. Colour bar on top right of figure indicates seismic 526 

amplitudes from low (blue) to high (yellow). The BMU reflector is highlighted in yellow. Inset 527 

shows location of seismic line in the Barmer Basin, which can be located in Figure 2. Red 528 

overlay indicates the interpreted presence of basement as penetrated in the Deodar-1 well in 529 

the Patan Basin in the northern part of the Cambay Basin. 530 

 531 

Figure 4. (A) Map of the base Miocene unconformity (BMU) surface coloured for true vertical 532 

depth (TVD) in metres as determined from seismic and well data sets. (B) Map of the 533 

extensional fault network in the Barmer Basin displayed on the pre-rift (base Cretaceous) 534 

unconformity horizon. The grey shaded areas represent the hade of the faults, showing the 535 

horizontal displacement between footwall and hanging wall. The location and extent of the BMU 536 



Confidential manuscript submitted to Tectonics 

 

surface is shown by the bold solid line, which is equivalent to the region shown in (A). Straight 537 

black lines show the extent of the merged 3D seismic grid and selected regional 2D lines. (C) 538 

Locations of wells referred to in the text displayed on the same fault map as in (B). 539 

 540 

Figure 5. High-resolution grey-scale dip seismic lines through representative W-E cross-541 

sections of the BMU showing surface features. Location of the seismic lines are shown in right 542 

hand insets and in Figure 4. Abbreviated horizons TDD = Top Dharvi Dungar; IDD = Intra-543 

Dharvi Dungar; TBH = Top Barmer Hill. (A) The BMU is present as a bright, gently undulose 544 

reflector across the Barmer Basin, highlighted in green, locally cut by reactivated faults that 545 

extend from deeper in the section. The base of the BMU is clearly erosional and an alluvial 546 

wedge progrades across the normal fault in the centre of the section. Truncation of older 547 

sediments under the BMU is clearly visible. Wells with GR profile shown tied to the BMU 548 

surface. (B) Example of the BMU surface cut by post-BMU fault activity within the central 549 

Barmer Basin. Note the strong truncation surfaces beneath the BMU. Left without interpretation, 550 

right with picked horizons. 551 

 552 

 553 

Figure 6. Summary wireline and lithogical logs of the Nagarka and Jagadia formations, allowing 554 

identification of the BMU in representative wells along a north-south transect across the 555 

southern Barmer Basin. Note the presence of ~10 m thick, stacked, sharp-based sandstones in 556 

the Jagadia Formation and an overall sonic ‘slowness’ of this formation. By contrast, the 557 

Nagarka Formation is dominated by coals and coaly shales with only thin sandstones and 558 

siltstones being developed. GR is the gamma ray log measured in API units from 0 clean 559 

sandstone to 150 units radioactive shale. Sonic log shows the interval transit time (Δt) of the 560 

rocks, the inverse of velocity, measured in microseconds per foot. The higher sonic velocities 561 
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reflect greater burial and compaction of the sediments beneath the BMU. Wells located on Fig 562 

4. Numbers give depth in metres. 563 

 564 

Figure 7: (a) The distance between the north Barmer (pale grey) and south Cambay (dark grey) 565 

basins and the migrating Himalayan deformation front. Shaded polygons define the range of 566 

possible distances, calculated by varying the age of collision, the amount of post-collision 567 

shortening within Asia, and the rotation poles used. (b) The pale grey polygon shows the 568 

distance between a load and the near and far margins of the associated flexural forebulge, as a 569 

function of the elastic thickness of the flexing plate. Horizontal shaded regions show the 570 

possible distances between the Himalayan front and the N Barmer and S Cambay basins at 26 571 

Ma (when the BMU is likely to have formed), taken from the calculations shown in (a). The 572 

horizontal dashed lines show the smallest possible distances, at the youngest possible age of 573 

the unconformity (11 Ma). 574 

 575 
 SUPPLEMENTARY INFORMATION 576 
 577 
Supplementary Information 1: biostratigraphic data used to data the BMU [Bower et al., 2004] 578 
  579 
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