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Highlights1

• Given the average cell-cycle time, the minimum invasion speed is obtained when the cell-2

cycle time is Dirac-delta distributed;3

• We find the range of variability for the speed of mathematical models of cell migration4

which adopt realistic hypoexponential cell-cycle time distributions;5

• The maximum speed adopting hypoexponential distributions is obtained by using an ex-6

ponentially distributed cell-cycle time;7

• We find an analytical expression for the invasion speed of general Eralng cell-cycle time8

distribu- tions.9
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Abstract18

Cell proliferation is typically incorporated into stochastic mathematical models of cell19

migration by assuming that cell divisions occur after an exponentially distributed waiting20

time. Experimental observations, however, show that this assumption is often far from the real21

cell cycle time distribution (CCTD). Recent studies have suggested an alternative approach22

to modelling cell proliferation based on a multi-stage representation of the CCTD.23

In this paper we investigate the connection between the CCTD and the speed of the24

collective invasion. We first state a result for a general CCTD, which allows the computation25

of the invasion speed using the Laplace transform of the CCTD. We use this to deduce the26

range of speeds for the general case. We then focus on the more realistic case of multi-stage27

models, using both a stochastic agent-based model and a set of reaction-diffusion equations for28

∗Corresponding author: e.gavagnin@bath.ac.uk
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the cells’ average density. By studying the corresponding travelling wave solutions, we obtain29

an analytical expression for the speed of invasion for a general N -stage model with identical30

transition rates, in which case the resulting cell cycle times are Erlang distributed. We show31

that, for a general N -stage model, the Erlang distribution and the exponential distribution32

lead to the minimum and maximum invasion speed, respectively. This result allows us to33

determine the range of possible invasion speeds in terms of the average proliferation time for34

any multi-stage model.35

Keywords: Cell migration, multi-stage model, cell cycle time distribution, invasion speed,36

agent-based model, travelling wave.37

1 Introduction38

Cellular invasion is a process of fundamental importance in numerous morphogenetic and patho-39

logical mechanisms. Important examples of processes in which cell migration plays a crucial role40

include embryonic development [Gilbert, 2003, Keller, 2005], wound healing [Maini et al., 2004,41

Deng et al., 2006] and tumour invasion [Hanahan and Weinberg, 2000].42

Understanding how the properties of the individual cells contribute to the formation and43

the propagation of the invasion wave is of fundamental importance. In fact, this can reveal the44

micro-scale mechanisms that are responsible for a given phenomenological aspect, and hence45

suggest effective therapeutic approaches to inhibit, or enhance, cell migration by interrupting46

the cell cycle [Sadeghi et al., 1998, Gray-Schopfer et al., 2007, Haass and Gabrielli, 2017].47

Despite the large variety of actions and interactions which cells can undergo, there are at48

least two aspects of cells’ behaviour which are essential in order for the invasion to take place.49

These are cell motility and cell proliferation [Simpson et al., 2007, Mort et al., 2016]. If one50

of these two aspects does not occur properly, the impact on the collective invasion is typically51

evident and it can affect the success of the colonisation. For example, Mort et al. [2016] show52
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using joint experimental and a modelling approach that the failure of colonisation of the mouse53

embryo by melanoblasts in Kit mutants is probably driven by reduced proliferation.54

Extensive research has focused on the effect that cell motility and proliferation behaviours55

have on the speed of the invasion, c. The common approach makes use of simple mathematical56

models which typically take the form of a stochastic agent-based model (ABM) [Anderson and57

Chaplain, 1998, Deutsch and Dormann, 2007] or a deterministic partial differential equation58

(PDE) [Murray, 2007, Wise et al., 2008]. By computing the invasion speed of the model, either59

analytically or numerically, it is possible to link the parameters which modulate the movement60

and proliferation with the speed of invasion.61

Many studies have investigated this link in more general contexts, beginning with the seminal62

work of Fisher [1937] and Kolmogorov A. [1991], and more recently more complex models of63

populations with multiple types or stages [Elliott and Cornell, 2012, Neubert and Caswell, 2000].64

From these studies, it is well known that, when agents’ motility is modelled as diffusion with65

diffusion coefficient D and proliferation occurs at rates λ, the invasion speed is proportional to66

the square root of the product of the rates, i.e. c ∝
√
Dλ [Fisher, 1937].67

It is important to notice the that majority of the literature on the speed of invasion of trav-68

elling waves is based on the assumption that proliferation events occur as independent Poisson69

processes [Simpson et al., 2007, Mort et al., 2016]. In the context of cell migration, this is70

equivalent to assuming that cells proliferate after an exponentially distributed random time.71

However, experimental observations show that the cell cycle time distribution (CCTD) is typi-72

cally non-monotonic and differs substantially from an exponential distribution (see Figure 1 (f)73

for an example) [Golubev, 2016, Yates et al., 2017, Chao et al., 2018].74

There is a vast literature regarding the appropriate representation of the CCTD [Csikász-75

Nagy et al., 2006, Gérard and Goldbeter, 2009, Powathil et al., 2012]. One class of representa-76
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tions, known as multi-stage models (MSMs), have gained particular attention in several recent77

studies [Yates et al., 2017, Vittadello et al., 2018, Chao et al., 2018]. The main idea of MSMs is to78

partition the cell cycle into N sequential stages. As time evolves, each cell can transit from one79

stage, i, to the next one, i+1, after an exponentially distributed waiting time with parameter λi.80

When a cell is found at the last stage, N , it can proliferate with rate λN , which leads the cell to81

split into two daughter cells, both initialised at the first stage. The main motivation that makes82

MSMs mathematically appealing is the Markov property of the exponentials which simplifies83

both the analytical investigation of the model and its computational implementation. Moreover,84

MSMs lead to CCTDs that are hypoexponential and hypoexponential distributions have been85

shown to provide an excellent agreement with experimental data [Golubev, 2016, Yates et al.,86

2017, Chao et al., 2018].87

Despite the fact that there is some evidence to suggest that the cell cycle is a series of88

uncoupled exponentially distributed phases [Chao et al., 2018], Yates et al. [2017] were at pains89

to point out that the stages in their MSM do not correspond to the phases in the cell cycle, but90

are tools which allow to fit the correct cell cycle distribution. Similarly, here, we are reticent91

to link the N stages of our model to N realistic steps in biological cell cycles. Especially since,92

when fitting to experimental data, different choices of N can give almost equally good agreement93

to cell cycle distributions data.’ In particular, the stages of the MSMs should not be confused94

with the biological phases of the cell cycle which, in general, are not exponentially distributed95

(see Figure 1) [Chao et al., 2018].96

Whilst previous studies have investigated MSMs extensively in the case of spatially uniform97

scenarios [Yates et al., 2017], there is still little understanding about the effect which MSMs have98

on invading waves of cells. In particular, it is not clear how, and to what extent, a multi-stage99

representation of the CCTD can impact on the speed of invasion.100
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Figure 1: Panels (a-c): Mouse NIH-3T3 fibroblasts with Fucci2a status migrating into open space
[Mort et al., 2014]. The Fucci2a system incorporates genetically encoded probes that highlight
in red the nuclei of cells in the G1 phase and in green those of cells in one of the other phases,
S/G2/M. Panels (d-f): experimental distributions of the time length of the G1 phase (panel (d)),
S/G2/M phases (panel (e)) and total CCTD (panel (f)). Both the G1 and S/G2/M distributions
show a clear non-monotonic trend, which indicates that are not exponentially distributed. To
capture both these non-monotonicities using a MSM for the CCTD, a minimum of four stages
is required, two for each of the two phases.

The most recent progress on this was made by Vittadello et al. [2018]. In their work, the

authors derive an analytical expression for the invasion speed of a 2-stage MSM in terms of the

two rates of stage transition, λ1, λ2, and the diffusion coefficient of cells, D:

c =
√

2D
[
−λ1 − λ2 +

√
λ2

1 + 6λ1λ2 + λ2
2

]
. (1)

The findings of Vittadello et al. [2018] provide useful insights in the qualitative effect of the MSMs.101

However a general expression for the invasion speed, as in equation (1), but for biologically102
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realistic MSMs, which typically have ten or more stages [Yates et al., 2017, Chao et al., 2018], is103

not feasible analytically. Hence, there are important questions about the quantitative effect of104

MSMs on the invasion speed which remain unanswered. In particular, the range of variability in105

speed for a general N -stage MSM has yet to be studied.106

To investigate the effect of incorporating a general CCTD into the invasion models, we follow107

two distinct approaches. In the first part of the paper, we formulate a generalisation of the Fisher-108

KPP equation in which the cell population is structured by age. By studying the traveling wave109

solutions of the model, we derive an implicit equation for the speed of invasion in terms of the110

Laplace transform of the CCTD. We obtain an expression for the minimum wave speed under111

this model and show that for a general CCTD the invasion can be arbitrarly fast.112

In the second part of the paper, we focus our attention on MSMs. We study a spatially113

extended ABM which is designed to mimic cell invasion on a regular two-dimensional lattice. For114

each agent, we implement a general N -stage MSM to simulate the stochastic waiting time before115

the agent attempts to divide into two daughters. Through a mean-field closure approximation on116

the average agent density, we derive a system of N reaction-diffusion PDEs which represents a117

generalisation of the model of Vittadello et al. [2018]. By applying the front propagation method118

[Van Saarloos, 2003] to the system of PDEs, we reduce the computation of the invasion speed119

to an eigenvalue problem in terms of the rates of transition between consecutive stages, λi. We120

use this result to study the case of identical transition rates, that corresponds to modelling the121

CCTD as Erlang. In this case we provide the exact analytical expression for the speed. Finally,122

we formulate a result for the maximum and minimum speed for a general N -stage MSM.123

The paper is organised as follows. In Section 2 we define the age-structured model and we124

derive the implicit equation for the invasion speed for general CCTD. In Section 3 we define two125

MSMs: a stochastic ABM and the corresponding mean-field approximation. In Section 3.1 we126
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explain how to apply the front propagation method and we state the eigenvalue problem. We127

present our results on Erlang distributed cell cycle times and the general hypoexponential case in128

Section 3.2. We conclude in Section 4 with a brief discussion of this work and future challenges.129

2 Age-Structured Model130

The Fisher-KPP equation implicitly assumes Markov dynamics for the individual cells making131

up the population, implying a cell cycle time with an exponential distribution [Fisher, 1937].132

One way to adapt the model to allow for an arbitrary cell cycle time distribution is through the133

addition of age-structure. Cells have an associated age, denoted by a, which takes values in the134

positive real numbers and increases as time evolves. Cell motility is modelled as diffusion, with135

diffusivity D, and they proliferate with an age-dependent rate, h(a).136

We can write down a simple linear PDE for the density of cells with age a and spatial location

x at time t, C(a, x, t), as follows

∂

∂t
C(a, x, t) = − ∂

∂a
C(a, x, t) +D

∂2

∂x2C(a, x, t)− h(a)C(a, x, t)

C(0, x, t) = 2
∫ ∞

0
h(s)C(s, x, t)ds .

(2)

The function h(s) is the hazard rate, related to the probability density function f(s) of the age

at which cells divide (i.e. the CCTD) via

h(s) = f(s)∫∞
s f(a) da , f(s) = h(s) exp

(
−
∫ s

0
h(a)da

)
. (3)

The boundary condition for C(0, x, t) in equation (2) gives the density of newborn cells as twice137

the total rate of cell division. Note that we have neglected from our formulation in system (2)138

any non-linear terms arising from crowding effects, as these are not relevant to the speed of the139
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front propagation. This model is a simple spatial adaptation of the McKendrick-Von Foerster140

equation for growing age-structured populations, and has been studied before [Webb and Webb,141

1985, Al-Omari and Gourley, 2002, Gabriel et al., 2012].142

As our first result, we show that the speed of propagation for the model (2) is determined by

the Laplace transform of the CCTD, defined by

L{f}(s) =
∫ ∞

0
e−saf(a)da . (4)

Theorem 1 If lims→∞ L{f}(s) < 1/2 then the PDE (2) admits travelling wave solutions with

propagation speed c > 2
√
Dλ, where λ > 0 is the unique solution to

L{f}(λ) = 1/2 . (5)

Proof. The system (2) is separable, hence we seek solutions of the form C(a, x, t) = v(a)w(x−ct),

corresponding to a travelling wave with speed c and internal age structure given by v. Inserting

into (2) and rearranging, we find

c
w′

w
+D

w′′

w
= v′

v
+ h . (6)

The left-hand side here is a function only of x− ct, whilst the right-hand side is a function only

of a. We thus determine that both are equal to a constant, say −λ. The w equation becomes

λw + cw′ +Dw′′ = 0 , (7)

which is well-known as the linearisation of the Fisher-KPP equation, admitting travelling wave
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solutions for all c > 2
√
Dλ . The equation for v has solution

v(a) = v(0) exp
(
−aλ−

∫ a

0
h(α)dα

)
. (8)

The boundary condition then gives us

1 = 2
∫ ∞

0
h(a) exp

(
−aλ−

∫ a

0
h(α)dα

)
da , (9)

from which the definition of the hazard rate, equation (3), gives the result 1 = 2L{f}(λ). Unique-143

ness of the solution (when one exists) follows from the monotonicity of the Laplace transform of144

a probability density.145

We can use the previous result to investigate the range of speeds for an arbitrary CCTD with

a given mean, µ̄. By using Jensen’s inequality we have that for any positive supported f with

mean µ̄

L{f}(λ) ≤ e−λµ̄ = L{δµ̄}(λ) , (10)

where δµ̄ is the Dirac delta function concentrated at µ̄ > 0. From the monotonicity of the

Laplace transform of a probability density, it follows that the minimum speed is obtained by

using f = δµ̄, which gives

c ≥ 2
√
D ln 2
µ̄

(11)

We now use Theorem 1 to show that there is no upper bound for the speed of invasion of a

general CCTD with a given mean. Consider the set of probability density functions defined as

fε(x) = 1
2
(
δεµ̄ + δ(2−ε)µ̄

)
, (12)
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where ε ≤ 1. It follows immediately that each member of this set of functions have mean µ̄ and

Laplace transform given by:

L{fε}(λ) = 1
2
(
e−λεµ̄ + e−λ(2−ε)µ̄

)
. (13)

By substituting the expression (13) into equation (5) and rearranging, we obtain the implicit

equation for λ given by

λεµ̄ = − ln
(
1− e−2λµ̄

)
. (14)

The right-hand side of equation (14) is a strictly decreasing function of λ that converges to 0 as146

λ→∞. Therefore, we can always choose ε small enough so that the solution of equation (14) is147

arbitrarily large.148

This demonstrates that, assuming that the CCTD is a general function with mean µ̄ and

positive support, the range of possible invasion speeds is given by

c ∈
[
2
√
D ln 2
µ̄

,∞
)
. (15)

The result in Theorem 1 is important because it establishes the connection between a general149

CCTD and the corresponding invasion speed. However, for some particular classes of distribu-150

tions, solving equation (5) analytically can be challenging and the method of this Section does151

not provide any deeper insights. In particular, this is true for hypoexponential distributions,152

which are of special interest in the context of cell proliferation. In remaining part of the paper153

we further explore this class of distributions using a MSM of cell migration.154
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3 Multi-Stage Models155

In this section we introduce the two MSM that we will use throughout the remainder of this156

paper. Firstly, we define a discrete ABM, in which the multi-stage representation of the CCTD157

is implemented as a stochastic feature of each cell at the microscale. Secondly, we introduce a158

system of deterministic PDEs describing the average cell density in a macroscopic manner.159

The ABM We consider a continuous-time ABM on a two-dimensional regular square lattice,160

with a given spacing denoted by ∆. Each cell is modelled as a single agent which moves and161

proliferates. Volume exclusion is incorporated by allowing at most one agent to occupy a given162

lattice site.163

Agents move according to a simple excluding random walk on the lattice. Each agent attempts164

a movement after an exponentially distributed waiting time with rate α. When this happens,165

a new position is chosen uniformly from one of the four nearest neighbouring sites and the166

movement takes place only if the selected site is empty. The event is aborted otherwise.167

We implement cell proliferation using a MSM. We divide the cell cycle into N sequential168

stages. Agents at one of the first N − 1 stages, i = 1, . . . , N − 1, move to the next stage after169

an exponentially distributed waiting time of rate λi. Agents at the last stage, N , can attempt a170

proliferation event, after a further exponentially distributed waiting time of rate λN . In order to171

attempt a proliferation event, a target site is selected uniformly at random from one of the four172

nearest neighbouring sites. If such site is empty, a new first-stage agent is located on it, and the173

proliferating agent is returned to the first stage. If the target site is occupied, the proliferation174

event is aborted and the proliferating agent remains at the last stage1.175

1Alternatively, we could choose to return the proliferating agent to the first stage every time an abortion occurs.
This model has been studied in Yates et al. [2017] for homogeneously distributed agents. This modification does
not substantially change our results. This is because our analysis of the speed of the wave front is based on low
density regions, where abortion of events does not play an important role. For this reason, we decided to focus
only on the stated version of the model.
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We simulate the cell invasion by populating the first 10 columns of the lattice with agents at176

stages that are chosen uniformly at random. We impose zero flux boundary conditions on the177

x-direction and periodic boundary conditions on the y-direction. Agents are displaced uniformly178

at random in the vertical direction, so we can reduce the dimensionality of the problem by179

considering the average column density [Simpson et al., 2009].180

The PDE model Here we define the continuous model for the average column density which181

will be the object of the invasion speed analysis.182

We denote by Si(x, t) the density of i-stage agents in the column x at time t, averaged over

multiple realisations of the ABM. Let C(x, t) be the total density of column x at time t, i.e.

C(x, t) =
N∑

i=1
Si(x, t) . (16)

By writing down the master equation of Si, for i = 1, . . . , N and taking the limit as ∆→ 0,

while keeping α∆2 constant, one can derive a system of reaction-diffusion PDEs for the column

densities of the different stages:





∂S1
∂t = D ∂

∂x

[
(1− C)∂S1

∂x + S1
∂C
∂x

]
+ 2λN (1− C)SN − λ1S1

∂Si
∂t = D ∂

∂x

[
(1− C)∂Si

∂x + Si
∂C
∂x

]
+ λi−1Si−1 − λiSi for i = 2, . . . , N − 1

∂SN
∂t = D ∂

∂x

[
(1− C)∂SN

∂x + SN
∂C
∂x

]
+ λN−1SN−1 − λN (1− C)SN ,

(17)

where D = lim∆→0
α∆2

4 . Notice that other types of tessellations than the regular square lattice183

are common in the literature [Deutsch and Dormann, 2007, Simpson et al., 2018]. However, the184

model formulation and the corresponding mathematical analysis in these cases do not change185

substantially. For example, a detailed derivation for the three-stage model on an hexagonal186
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lattice can be found in Simpson et al. [2018]. Moreover, we should underline that the diffusivity187

of the cells in our model is independent of their stage which is not always true for real cells. We188

discuss this and other possible generalisations of the model in Section 4.189

System (17) consists of a set of N reaction-diffusion PDEs with non-linearities in both the

diffusion and the proliferation terms due to the effect of volume exclusion. Specifically, the term

(1−C) accounts for the reduction in rate due to volume exclusion. Notice that by summing all

the equations in (17), we obtain

∂C

∂t
= D

∂2C

∂x2 + λN (1− C)SN . (18)

In other words, although the diffusion terms in each of the equations (17) are non-linear, the190

motility at the population-level is simple diffusion [Simpson et al., 2009]. Conversely, due to the191

dependence of equation (18) on SN , it is not possible to obtain a closed PDE for the total agent192

density without further assumptions.193

We conclude this section by showing a comparison of the two models in Figure 2. In the194

example, we choose realistic values of motility rate, α, and proliferation rate, λ̄, as in Treloar195

et al. [2013] and Haass et al. [2014], respectively. We consider an ABM with five stages with196

increasing rates (the stage-to-stage transition rates are chosen to facilitate the visualisation of197

the different density profiles). In panels (a), (b) and (c) three successive snapshots are shown198

and the formation of the travelling wave appears clearly. As previously observed by Vittadello199

et al. [2018], due to the presence of volume exclusion, the travelling wave solutions of the N200

subpopulations of cells are of two qualitatively different types. The density profile of the first201

N − 1 subpopulations have the form of moving pulses located at the front of the total wave with202

the amplitude which depends on the rate of the corresponding stage. The profile of the last stage203

subpopulation, instead, appears as a moving wavefront which dominates the density at the back204
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Figure 2: Comparison between the average column density for the ABM (full lines) and the PDE
model (dotted lines) with a five-stage MSM. The panels show three snapshots of the evolution of
the two models at time 0 (a), 150 (b) and 300 (c). In all cases, the profiles for the five different
subpopulations are shown in different gradations of orange and the total density is plotted in
black. The ABM profiles are obtained by averaging over 20 identically prepared simulations on a
2000×400 lattice. The other parameters of the models are ∆ = 20, α = 4, λ̄ = 0.0233, λ1 = 0.15,
λ2 = 0.19, λ3 = 0.25, λ4 = 0.37 and λ5 = 0.75.

of the total wave.205

The numerical solutions of the PDEs agree well with the average behaviour of the ABM.206

Therefore, we focus our attention on the the speed of the PDE model which we can investigate207

using an analytical approach (see Section 3.1).208

It is important to note that the quantitative validity of our results on the PDE model will209

extend to the ABM only for the range of parameters which preserves the good agreement between210
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Figure 3: Histogram distance error (HDE) between column density profiles of ABM and the
mean-field model for different parameters of movement and proliferation. The colour of each
square denotes the HDE between the total density of the PDE and the ABM (averaging over
1000 simulations) as described in the legend. Dark squares represent small HDE which denotes
good agreement between the two models, whereas light squares represent large HDE which denote
a loss of agreement. The models are simulated on a 2000 × 400 domain with ∆ = 20 and the
HDE is computed at the time when half of the domain in the mean-field model is occupied. All
the ABMs are simulated with N = 5 and with transition rates proportional to the one of Figure
2. The red mark denotes the realistic parameter choice corresponding to Figure 2.

the two models. In Figure 3 we compare the total averaged column density profiles of the ABM211

and PDE for different parameters. The heat map shows the histogram distance error (HDE)2212

between ABM and the PDE model for different rates of movement and proliferation. When213

the rate of proliferation is large compared to the motility rate, the mean-field approximation214

loses its accuracy. This is a well known phenomenon which is caused by the presence of strong215

spatial correlations between occupied sites, induced by the proliferation [Middleton et al., 2014].216

Increasing the motility parameter tends to break up spatial correlations of neighbouring sites217

2The HDE between two normalised histograms with values ai and bi at point i (i.e.
∑

ai =
∑

bi = 1) is
defined as HDE =

∑
|ai − bi|/2 [Cao and Petzold, 2006].
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and, consequentially, to improve the accuracy of the mean-field approximation.218

The results of Figures 2 and 3 confirm that for realistic choice of parameters (α ≈ 4 and219

λ̄ ≈ 0.02 [Treloar et al., 2013, Haass et al., 2014]) the PDE model provides a good approximation220

of the ABM. This motivates us to focus our analysis on the continuum model. It is possible to221

derive more accurate descriptions in those cases where the agreement is lost using higher order222

moment closure schemes (see for example Baker and Simpson [2010], Markham et al. [2013]),223

but this is beyond the scope of this paper.224

3.1 Wavespeed Analysis225

In this Section we apply the front propagation method of Van Saarloos [2003] to system (17) to226

study the speed of invasion of the PDE model.227

228

The system of equations (17) has two equilibria, an unstable empty state, Si(x, t) ≡ 0 for

i = 1, . . . , N , and a stable occupied state, Si(x, t) ≡ 0 for i = 1, . . . , N − 1 and SN (x, t) ≡ 1.

Firstly we linearise the system about the unstable steady state, giving





∂S1
∂t = D ∂2S1

∂x2 + 2λNSN − λ1S1

∂Si
∂t = D ∂2Si

∂x2 + λi−1Si−1 − λiSi for i = 2, . . . , N .

(19)

We substitute

Si(x, t) ∝ exp (−ιω(k)t+ ιkx) ,

into equations (19), where ι is the immaginary unit, ω(k) is the dispersion angular frequency of
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the Fourier modes and k is the spatial wavenumber. Upon simplification, we obtain





−ιω(k) = −Dk2 + 2λN − λ1

−ιω(k) = −Dk2 + λi−1 − λi for i = 2, . . . , N .

Following the front propagation method [Van Saarloos, 2003], the expression of the wave

speed, c, is given by

c = Im [ω(k∗)]
Im [k∗] , (20)

where k∗ = ιq, with q real, and such that

dω
dk (k∗) = Im [ω(k∗)]

Im [k∗] . (21)

Notice that we can write down ιω(k) in the form

ιω(k) = k2D − ρ , (22)

where ρ is an eigenvalue of the matrix

Λ =




−λ1 0 . . . 0 2λN

λ1 −λ2 0 . . . 0

0 λ2 −λ3 . . . 0

... . . . . . . ...

0 . . . λN−1 −λN




. (23)
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From expression (22) it follows that

dω
dk (k∗) = 2qD ,

Im [ω(k∗)]
Im [k∗] = q2D + Re [ρ]

q
.

(24a)

(24b)

By substituting equations (24) into (21), we obtain q2 = Re [ρ] /D. Note that Λ is Metzler, and

hence by Perron-Fobenius its rightmost eigenvalue is real. Hence, from (20), the wave speed of

the invasion is given by

c = 2
√
Dρ , (25)

where ρ is the maximum real eigenvalue of Λ, defined in terms of the characteristic polynomial

of the matrix Λ, PΛ(x), as follows

ρ(Λ) = max {x ∈ R | PΛ(x) = 0} . (26)

This shows that the problem of finding the speed of invasion of the PDE model is equivalent to229

computing the maximum real eigenvalue of the matrix Λ, ρ(Λ).230

3.2 Results231

The characteristic polynomial of the matrix Λ can be computed directly from the matrix and it

reads

PΛ(x) =
N∏

i=1
(λi + x)− 2

N∏

i=1
λi . (27)

In general, an analytical formula of the roots of the polynomial function PΛ(x) is not available.232

In this section we first consider the case of λi = λ for i = 1, . . . , N for which the maximum233

eigenvalue ρ(Λ) can be computed analytically. This corresponds to a special case of the general234
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hypoexponential distribution, known as the Erlang distribution. We conclude by proving a235

theorem in which we state the range of speed variability for the general hypoexponential CCTD.236

The Erlang distribution Consider the case λi = λ for i = 1, . . . , N , which corresponds the

Erlang CCTD. Under this assumption, we can write down the characteristic equation of the

matrix Λ, using formula (27), as

(λ+ x)N = 2λN . (28)

The eigenvalues of Λ are then given by the solutions of equation (28) which are xj = λ
(
ξj N
√

2− 1
)

for j = 1, . . . , N , where ξ = exp (2πι/N) is the primitive N -th root of unity. Hence, we obtain

that

ρ(Λ) = λ
(

N
√

2− 1
)
. (29)

By substituting the expression (29) into equation (25) we obtain the formula for the speed of

invasion for the model with Erlang distribution

c = 2
√
Dλ

(
N
√

2− 1
)
. (30)

Notice that for N = 1, which corresponds to exponential CCTD, we recover the well known237

expression of the speed for the Fisher-KPP equation, 2
√
Dλ.238

The general case For the case of a general hypoexponential distribution, there is no analytical239

formula for the expression of the maximum real eigenvalue of the matrix Λ. However, we find240

that the Erlang case and the exponential case, for which we do have the analytical formula of241

the speed, correspond to the lower and upper bound (respectively) for the speed of travelling242

waves with hypoexponential CCTD and a given total proliferation rate, λ̄. This result follows243
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directly from the following theorem on the range of ρ(Λ).244

Theorem 2 Let ρ(Λ) be defined by equation (26) as the maximum real eigenvalue of the matrix

Λ. Then

λ̄N
(

N
√

2− 1
)
≤ ρ(Λ) < λ̄ , (31)

where λ̄ =
(∑N

i=1 1/λi
)−1

.245

A proof of Theorem 2 can be found in the appendix. It is immediate to interpret the result

of the Theorem 2 in terms of invasion speeds. In particular, by using equation (25), together

with the two inequalities (31), we deduce that the speed of the invasion of the PDE model with

diffusion coefficient D and a general N -stage representation of the CCTD with total growth rate

given by λ̄, lies in the interval

c ∈
[
2
√
Dλ̄N

(
N
√

2− 1
)
, 2
√
Dλ̄

)
. (32)

We can generalise this result even further by taking the limit as N → ∞ in the right-

hand side of equation (32). Hence we obtain a general interval which holds for any multi-stage

representation, regardless of the number of stages, which reads

c ∈
(
2
√
Dλ̄ ln 2, 2

√
Dλ̄
)
, (33)

where we used N
(

N
√

2− 1
)

= ln 2 +O (N−1).246

Notice that the lower bound of the interval (33) is equivalent to the lower bound for the247

general CCTD, obtained in (15) of Section 2. This can be intuitively understood by observing248

that, as we let number of stages of an hypoexponential distribution go to infinity while keeping the249

total rate, λ̄, fixed, the variance of the distribution tends to zero. Consequently, the distribution250
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Figure 4: Illustration of the range of invasion speeds for a fixed mean proliferation rate and
diffusion coefficient, D = 1. The two coloured regions represent the range of speed for a general
CCTD. The dark grey subregion highlights the range of speeds for hypoexponential CCTDs. The
global minimum speed is obtained by using the Dirac distribution (red line). The exponential
CCTD (blue line) is the hypoexponential distribution which leads to maximum speed. There is
no upper bound for the general case. Two examples of Erlang CCTDs with two stages (yellow
line) and four stages (green line) are also shown.

converges to a Dirac function concentrated in the mean, µ̄ = λ̄−1, which we have proved in251

Section 2 to be the distribution corresponding to the minimum invasion speed. In Figure 4 we252

summarise our findings about the range of invasion speed for different CCTD through a graphical253

representation.254

4 Conclusion255

In this work we investigated the quantitative effect of implementing a realistic CCTD into models256

of cell invasion. Firstly, we derived a general result from a generalised version of the Fisher-KPP257

equation. Then we investigated the case of MSMs by implementing a simple ABM of cells under-258

going undirected migration and proliferation by division, in which the time between successive259

divisions is modelled using a multi-stage representation (i.e. the CCTD is hypoexponential). By260
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studying a continuous version of the ABM, we connected the type of CCTD to the speed of the261

corresponding invasion.262

The results indicate that, for a fixed mean division time, the minimum speed of invasion is263

obtained by the Dirac distribution, while there is no upper bound. In other words, the invasion264

can be, in general, infinitely fast. However, when we focus our attention to the case of MSMs,265

which are known to represent well the experimental CCTD, our analysis shows that the speed can266

vary in a bounded interval (see Figure 4). More precisely, we show that the maximum invasion267

speed is reached by adopting an exponential CCTD, which leads to the classic the Fisher-KPP268

model. On the other hand, the minimum speed is obtained by partitioning the CCTD into269

multiple exponential stages with identical rates, which corresponds to the case of Erlang CCTD.270

Finally, by considering the limiting case of infinitely many stages, we find that the infimum value271

of the speed for the class of hypoexponential CCTD coincides with the global minimum for a272

general CCTD.273

The results indicate the invasion speed changes with the variance of the CCTD, i.e. decreasing274

the variance in the proliferation time distribution leads to slower invasion. We found that the275

maximum reduction in comparison to the classical formula for the Fisher-KPP model, is given276

by a multiplicative factor of
√

ln 2 ≈ 0.83. Whilst interpreting this result in the context of277

experimental data is beyond the aim of this work, we want to stress that for number of stages278

N � 1, which is typically the case for experimentally observed distributions [Golubev, 2016,279

Yates et al., 2017, Chao et al., 2018], the speed converges to the lower bound of equation (33)280

with order given by O (N−1). This suggests that, with the only information of the mean of the281

CCTD (equivalently, the total rate), including the factor
√

ln 2 in the formula for the speed leads282

to a more accurate estimation than the classic expression of Fisher-KPP.283

In Section 3 we used a discrete ABM, but it is important to notice that alternative modelling284
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approaches might lead to different results. Although discrete space ABMs are widespread in285

the literature [Deutsch and Dormann, 2007, Simpson et al., 2007, Cheeseman et al., 2014, Mort286

et al., 2016, Simpson et al., 2018, Vittadello et al., 2018], a considerable number of studies focus287

on lattice-free ABMs in which cells’ positions are not constrained to a grid [Grima, 2008, Dyson288

et al., 2012, Dyson and Baker, 2014, Middleton et al., 2014, Matsiaka et al., 2017]. Another289

alternative approach, known as compartment-based model, consists in allowing multiple cells290

occupying a single lattice site [Taylor et al., 2015, 2016, Cianci et al., 2017]. In the context of our291

work, adopting alternative modelling regimes, such as lattice-free or compartment-based models,292

would lead to different nonlinear factors in system (17). Since the analysis of the wave speed is293

based on a linearisation of system (17), we believe that our results would still hold qualitatively.294

However, a rigorous comparison of these modelling approaches is beyond the scope of this paper.295

An important question that remains unanswered is the role of motility heterogeneity within296

the cell cycle. Experimental studies have found that the motility of a cell can depend on its297

cell cycle phase [Vittadello et al., 2018]. For example, during the mitotic phase, cells tend to298

reduce their movement [Mort et al., 2016]. In order to investigate this phenomenon in the light299

of the invasion speed, we could modify our model to allow different diffusion coefficients, Di for300

i = 1, . . . , N , for each stage in the system (17). Another aspect of the cell movement that can301

vary within the cell cycle is the directional persistence. Our models do not incorporate directional302

persistence of cells. However, it is possible to combine a MSM with existing models of directional303

persistence [Codling et al., 2008, Gavagnin and Yates, 2018]. Unfortunately, the application of304

the front propagation method of Van Saarloos [2003] (see Section 3.1) to these models leads to305

a dead end and it may be necessary to study the problem using a different approach. We will306

investigate this in future research.307
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Appendix421

A Proof of Theorem 2422

Proof. Let µi = 1/λi for every i = 1, . . . , N . By writing the characteristic equation PΛ(x) = 0

in terms of the parameters µi and upon rearranging, we obtain

N∏

i=1
(µix+ 1) = 2 . (A.1)

We can write ρ(Λ) = ρ(µ1, . . . , µN ) = ρ(µ) as

ρ(µ) = max
{
x ∈ R |

N∏

i=1
(µix+ 1) = 2

}
, (A.2)

for every µ ∈ {R>0}N . It is easy to observe that ρ(µ) is a positive continuous function and we423

can extend the definition (A.2) to µ ∈ {R≥0}N \ {(0, . . . , 0)}, by continuity.424

Now fix λ̄ =
(∑N

i=1 µi
)−1

; without loss of generality we can take ∑N
i=1 µi = 1, whence (31)

becomes N
(

N
√

2− 1
)
≤ ρ(µ) < 1. The case of general λ̄ follows by multiplying by rescaling

factor. Since ρ is a continuous function, we aim to find the stationary points of ρ(µ) in the

N -dimensional simplex:

UN =
{

(µ1, . . . , µN ) ∈ (0, 1]N
∣∣∣
N∑

i=1
µi = 1

}
. (A.3)

We apply the Lagrange multipliers method. Hence we study the Lagrangian function given by

L(µ1, . . . , µN , σ) = ρ(µ) + σ

(
N∑

i=1
µi − 1

)
. (A.4)
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Throughout we adopt the notation Lj = ∂L
∂µj

and ρj = ∂ρ
∂µj

. By imposing Lj = 0 we obtain

ρj = −σ , (A.5)

for all j = 1, . . . , N . We can now differentiate equation (A.1) respect to µj , which gives us

0 =
N∑

i=1

∏

k 6=i
(1 + µkρ) (ρ δi,j + µiρj) (A.6)

where δi,j denotes the Kronecker delta. If we multiply and divide each term of the right-hand

side of equation (A.6) by (1 + µiρ), we obtain

0 =
N∑

i=1

ρ δi,j + µiρj
1 + µiρ

= ρ

1 + µjρ
+ ρj

N∑

i=1

µi
1 + µiρ

, (A.7)

By combining equations (A.5) and (A.7) we gain a condition on the coordinate µj of the station-

ary points, namely

ρ

1 + µjρ
= σ

N∑

i=1

µi
1 + µiρ

. (A.8)

Notice that equation (A.8) holds for every j = 1, . . . , N and it is independent of j, hence the425

only stationary point of ρ(µ) in the simplex UN is the given by the centre µ∗N = (1/N, . . . , 1/N).426

To conclude we need study the value of ρ(µ) on the boundary of the simplex, defined as

∂UN =
{

(µ1, . . . , µN ) ∈ [0, 1]N
∣∣∣
N∑

i=1
µi = 1 and µj = 0, ∃j ∈ {1, . . . , N}

}
. (A.9)

Let us consider the elements of ∂UN with exactly n non-zero coordinates, with n = 1, . . . , N − 1.
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Without loss of generality we can focus on the points of the form

(µ1, . . . , µn, 0, . . . , 0) ∈ ∂UN , (A.10)

where (µ1, . . . , µn) ∈ Un. Notice that the ρ(µ) is well defined in such points by continuity, as

observed before. By repeating the Lagrange multiplier method in the sub-simplex Un, we find

that the only stationary point of ρ(µ) of the form (A.10) is the one with µ1 = µ2 = · · · = µn,

i.e.:

µ∗n = (1/n, . . . , 1/n︸ ︷︷ ︸
n

, 0, . . . , 0) ∈ ∂UN . (A.11)

This holds for every n = 1, . . . , N − 1, so we can write all the stationary points of ρ(µ) in ∂UN427

upon permutation of the coordinates in the form (A.11).428

All the stationary points µ∗n, for n = 1, . . . N , correspond to an Erlang distribution for which

we can compute the expression of ρ directly from the definition (A.2) as

ρ(µ∗n) = n
(

n
√

2− 1
)
, (A.12)

for n = 1, . . . , N . The right-hand side of equation (A.12) is a decreasing function of n. We

deduce that the centre of the simplex, µ∗N ∈ UN , corresponds to the global minimum, i.e. for all

µ ∈ UN

ρ(µ) ≥ ρ(µ∗N ) = N
(

N
√

2− 1
)
. (A.13)

Finally, µ∗1 ∈ ∂UN and all the points obtained by permuting its coordinates, correspond to
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supremum points, i.e. for all µ ∈ UN

ρ(µ) < ρ(µ∗1) = 1 . (A.14)

429
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