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Abstract—Recent years have witnessed the promising
future of hashing in the industrial applications for fast simi-
larity retrieval. In this paper, we propose a novel supervised
hashing method for large-scale cross-media search, termed
Self-Supervised Deep Multimodal Hashing (SSDMH), which
learns unified hash codes as well as deep hash functions
for different modalities in a self-supervised manner. With
the proposed regularized binary latent model, unified bina-
ry codes can be solved directly without relaxation strategy
while retaining the neighborhood structures by the graph
regularization term. Moreover, we propose a new discrete
optimization solution, termed as Binary Gradient Descent,
which aims at improving the optimization efficiency to-
wards real-time operation. Extensive experiments on three
benchmark datasets demonstrate the superiority of SSDMH
over state-of-the-art cross-media hashing approaches.

Index Terms—Cross-Media Retrieval, Deep learning,
Regularized Binary Latent Model.

I. INTRODUCTION

W ITH the explosive growth of multimedia content, such
as text, image/video, and audio, cross-media retrieval

is becoming increasingly attractive, which allows users to
get the results with various media types by submitting one
query of any media type. In the context of big data, we need
retrieval algorithms that are able to accurately search in large-
scale datasets, and meanwhile, ensure the costs related to the
processing overhead and storage requirements do not grow
with the quantity of the data being produced.

Hashing, which represents the high-dimensional data with
the compact binary codes, has drawn a considerable attention
in the field of similarity retrieval for its low memory con-
sumption (binary representation) and fast retrieval speed (bit-
wise XOR calculation). These properties make the hashing
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technique a widely used industrial solution for many applica-
tions [1]–[7], where the systems that have been commercial-
ized include Shazam hashing/fingerprinting for music identifi-
cation [8], Philips video hashing for broadcast monitoring [9]
and Civolution SyncNow for cross-media search [10].

Regarding cross-media hashing, one of the main challenges
is how to tackle the semantic gaps within different modali-
ties. Most existing methods, both in unsupervised [11]–[13]
and supervised [14]–[17] manners, concentrate on learning
a common latent space for the multimodal data during the
training process such that the heterogeneity among modalities
can be minimized [11], [15]. Specifically for unsupervised
methods, Ding et al. [11] adopt collective matrix factoriza-
tion in modelling relations among different modalities, where
unified binary codes are being learned via quantizing real-
valued unified latent space. To deal with large quantization
errors in [11], Wang et al. [13] improve the objective function
to solve unified binary codes directly. However, they both fail
to preserve the neighborhood structures of the original data,
thus compromising the retrieval performance. Although some
promising results have been achieved by the previous unsu-
pervised methods, the overall performance is still far below
satisfactory from the view of the real-world applications. It
is commonly believed that a considerable performance gain
can be obtained in supervised methods with aid of dedi-
cated supervision information (e.g, semantic labels, affinity
matrix) [1]. A semantic pooling approach is proposed by
Chang et al. [18], where the relevance of each segment in
untrimmed videos is evaluated by semantic saliency and then
those shots are prioritized accordingly based on their saliency
scores to make the final analysis with the ordering information
exploited by an isotonic regularizer. Generally, the correlations
among different modalities can be enhanced from the label
information for unified hash codes in the Hamming space. For
example, Lin et al. [15] introduce the probability distribution
to learn unified hash codes with the semantic affinities. While
Xu et al. [16] improve the quality of hash codes by means of
the label information in shallow linear classifier. However, all
the above methods employ a two-step like scheme in learning
hash code, which inevitably yields suboptimal results.

Recently, deep learning technology has been widely incor-
porated in cross-media hashing [19], where several represen-
tative works are discussed briefly in the paper. For instance,
a stacked auto-encoder architecture is proposed by Cao et
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Fig. 1. The overview of our Self-Supervised Deep Multimodal Hashing. There are three subsections in the training process: deep feature learning
(left), deep hash function learning (middle) and regularized binary latent representation learning (right). Specifically, the regularized binary latent
model consists of two loss terms: binary reconstruction loss and graph regularization loss. The yellow arrows indicate the deep feature learning.
The blue arrows show the iterative directions when learning deep hash functions with the guidance of the unified binary code B. Better viewed in
color.

al. [20], where the feature and semantic correlation across
modalities are jointly maximized. While another work from
Cao et al. [21] employs a metric-based approach to train
the visual semantic fusion network with cosine hinge loss.
However, the label information is not fully exploited and
the performance compromises because of the noisy anno-
tations. Subsequently, Li et al. [22] suggest another auto-
encoder framework for unsupervised cross-modal hashing,
which reconstructs the original features from the joint binary
representation without considering the similarity relations.
Jiang and Li [23] adopt a negative log likelihood criterion in
an end-to-end deep framework, where the similarity structure
between real-valued representations is retained. However, such
similarity preservation is only performed on approximated
hash codes with NO restrictions on binary codes in the training
process.

As discussed above, we summarize three major limitations
in the existing cross-modal hashing schemes as follows. First-
ly, solving the discrete-constrained objective function usually
undergoes a two-step procedure. At the relaxation step, su-
pervised information is exploited to guide continuous hash
codes learning, which are converted into binary codes by using
rounding technology at the second step. Such a two-stage
solution yields large quantization errors, which will be further
magnified after the iterative code learning. Moreover, feature
learning and bianrization are viewed as two independent steps
in most previous methods, thus giving rise to suboptimal
results. Last but no least, supervision knowledge cannot be
fully explored in the code generation, as well as the hash
function learning, which limits the improvement space of
the hash code quality. The situation gets even worse when
inaccurate or incomplete labels are provided [15], [16], [24]–
[26]. Obviously, the retrieval performance would be heavily

affected by those drawbacks, thus preventing the existing
methods from mass deployment in the industrial applications.

To address the above issues, we propose a novel super-
vised cross-modal hashing method, termed as Self-Supervised
Deep Multimodal Hashing (SSDMH), which integrates deep
learning and regularized binary latent representation model
jointly in a unified framework. Specifically, the discrete-
constrained objective function is optimized directly without
relaxation, and the deep hash functions are built via engaging
deep feature learning with code learning in a self-supervised
manner. The framework of SSDMH is illustrated in Fig. 1 and
the corresponding contributions are summarized as follows:

1) The matrix factorization based supervised cross-modal
hashing method is proposed to incorporate the deep feature
learning and binarization seamlessly into a unified deep
learning framework, where the deep hash functions are
being built in a self-supervised manner via projecting the
original features from various modalities into a common
binary space.

2) A novel regularized binary latent model is proposed during
the code learning, where the discrete unified binary codes
can be solved without relaxation and the weights of dif-
ferent modalities are optimized dynamically. Particularly,
to make the most advantage of supervision knowledge,
we propose to minimize the graph regularization loss,
which explicitly preserves the neighborhood structures of
the original data and is prone to produce the discriminative
hash codes.

3) An alternating optimization strategy is adopted in solving
the discrete-constrained objective function, where deep
parameters and unified binary codes are optimized jointly.
Particularly, a novel discrete optimization method, termed
as Binary Gradient Descent, is proposed to accelerate
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TABLE I
THE NETWORK CONFIGURATIONS FOR TWO MODALITIES.

Modality Layer Description

Image conv1− conv5 Follow the same configuration as AlexNet [27]

fc6 I , fc7 I , fcb I 4096-d, 4096-d, m-d

Text fc6 T , fc7 T , fcb T 4096-d, 4096-d, m-d

the optimization speed dramatically, in contrast to the
traditional bit-by-bit fashions.

The reminder of the paper is organized as follows. We
elaborate the proposed SSDMH in Section II. Experimental
results along with data analysis are provided in Section III.
Finally, the proposed method is concluded in Section IV.

II. PROPOSED METHOD

Fig. 1 illustrates the basic structure of the proposed SS-
DMH, where the sub procedures are described concisely as:
we extract the deep features from the corresponding deep
networks and then utilize those features to generate the unified
binary representation via a novel regularized binary latent
model. After that, the learnt binary code is adopted as ‘su-
pervision information’ to re-train the previous deep networks,
which exhibits the idea of the self-supervised manner. Those
processes can be repeated iteratively to obtain the deep hash
functions finally. In the next subsections, we will elaborate the
proposed SSDMH in details.

A. Problem Definition
Without loss of generality, we use image and text to

explain the proposed method. Assuming that the multimodal
dataset contains n training instances, which is denoted as
O = {Xi}2i=1, i = {1, 2}. Each instance has features from
the image and text modality, which is represented by X1 =
{xj1}nj=1 and X2 = {xj2}nj=1, respectively. Consequently, we
use xj1 ∈ Rd1 to denote the feature vector or the raw pixels of
the j-th image and xj2 ∈ Rd2 represents the feature vector
of the j-th text, where d1 and d2 (usually d1 6= d2) are
the dimensionalities. The affinity matrix Sn×n ∈ [0, 1] is
also provided as the supervision information, which measures
the similarity between data points. In the proposed SSDMH,
the aim is to learn the deep hash functions Fi(Xi; Θi) that
binarize the training data from two modalities into a set of
unified binary codes B = {bi}ni=1 ∈ {−1,+1}m×n, such that
the similarities in the original spaces can be preserved. m
denotes the code length, Xi are the input streams to those
deep networks for two modalities. Here, the deep network
parameters including weights and biases are uniformly defined
as Θi.

B. Deep Architecture
Considering the favorable feature expressive ability and the

deployment flexibility1, we adopt AlexNet and Multi-Layer
Perceptrons (MLP) as the feature modelers for the image

1The model sizes for AlexNet and MLP are < 240MB and < 90MB
after training, which are affordable on most portable devices.

and textual modalities, as shown in Fig. 1. For the purpose
of making the networks compatible to the application, the
last fully-connected (fc) layers of the original networks are
replaced with the new bottleneck layers (fcb I and fcb T )
comprising m hidden units to facilitate the network training
afterwards. Tanh function is added at the end of the last layers
as the activation function to make the outputs fall into [−1, 1].
The network configurations are summarized in Table I. In this
paper, the deep architectures not only provide the deep features
(e.g. Hi ∈ R4096×n from fc7 I and fc7 T ) in learning the
unified binary representation, but also act as the deep hash
functions Fi(Xi; Θi) to generate hash codes for new queries.

C. Regularized Binary Latent Model
In the hash code learning, we propose a novel regularized

binary latent representation model to generate the unified
binary code B for two modalities. Particularly, the proposed
model consists of two loss terms: binary reconstruction loss
and graph regularization loss. We formulate the objective
function of the proposed model as below:

min
B,Ui,αi

2∑
i=1

αγi (‖Hi −UiB‖2F + βTr(BLBT )), (1)

where β and γ are balance parameters. γ is a positive number
controlling the weight of each modality while β estimates
the impact of the loss term in (1). Hi ∈ R4096×n are
the deep features extracted from fc7 I and fc7 T layers,
Ui ∈ R4096×m are the latent factor matrices, L ∈ Rn×n is the
Laplacian matrix. αi(αi > 0) are the weight factors for two
modalities separately and satisfy

∑2
i=1 αi = 1. Tr(.) is the

trace norm. Those terms are elaborated in the next subsections.
1) Binary Reconstruction Loss: As shown in (1), the first

term measures the reconstruction losses from their latent
common binary representation B to the deep features Hi,
which shares similar idea with CMFH [11]. However, it differs
from [11] in two aspects. Firstly, CMFH adopts a two-step
approach in generating the unified binary representation, which
solves the real-valued latent common space V ∈ Rm×n first
and binarizes it afterwards, as shown in the top part of (2).
This inevitably yields the large quantization errors, no matter
which rounding schemes are used [13], [15]. However, this
problem can be avoided in the proposed model by solving the
binary code directly as the bottom of (2).

min
Ui,V

α‖H1 −U1V‖2F + (1− α)‖H2 −U2V‖2F

⇒ min
Ui,B,αi

2∑
i=1

αγi ‖Hi −UiB‖2F .
(2)

Moreover, the modality weight is set empirically in CMFH
(e.g. α = 0.5 ), while the weights αi are optimized dy-
namically in the proposed model. It is more sensible for
the important modality to hold the dominant position in the
optimization [13], [28].

2) Graph Regularization Loss: In the second term, we
introduce graph regularization to preserve the semantic consis-
tency of data points from multiple modalities, which aims at
restricting the neighboring relationships in solving the unified
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binary code [29]. Particularly, the spectral graph problem can
be formulated as:

1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2FSij = Tr(BLBT ), (3)

where S ∈ Rn×n represents the semantic affinity matrix that
can be derived from manual scoring [15], sij = 1 if xi1 and xj2
share the same label and otherwise 0. D is the diagonal matrix
whose entries are the column sum of S, i.e., Dii =

∑n
j=1 Sij .

The Laplacian matrix L can be calculated as L = D− S.

D. Deep Hash Function Learning
Having obtained the unified binary representation B, the

next step is to train the deep hash models 2 Fi(Xi; Θi) with
Euclidean loss layers, which aims at projecting the original
features from different views into the common binary space.
This strategy integrates the learning processes of deep feature
and hash function in a self-supervised manner, thus predicting
the discriminative hash code for new query instance in the
testing stage [5]. The problem is formulated as:

min
Θi

2∑
i=1

‖Fi(Xi; Θi)−B‖2F . (4)

Particularly, Euclidean distances are minimized between the
outputs of the deep networks and the unified binary code B,
while the network parameters Θi can be updated through the
back-propagation with Stochastic Gradient Descent (SGD). It
is worth noting that the original images or features (i.e, Xi) are
fixed and used as the input streams for the deep architecture
to facilitate the network training.

E. Objective Function and Optimization
By combining (1) and (4), the overall objective function of

SSDMH is written as below:

min
Θi,B,Ui,αi

2∑
i=1

αγi (‖Hi −UiB‖2F + βTr(BLBT ))

+ λ

2∑
i=1

‖Fi(Xi; Θi)−B‖2F ,
(5)

where B ∈ {−1,+1}m×n. The proposed objective function is
a NP-hard problem and cannot be solved directly because of
the binary constraints. Subsequently, we adopt an alternating
strategy to solve (5), where the involved parameters are
optimized iteratively by the following steps.

1) Ui-Step: Firstly, by fixing all other variables except for
Ui, (5) is reduced as:

min
Ui

2∑
i=1

αγi ‖Hi −UiB‖2F , s.t. B ∈ {−1,+1}m×n. (6)

Then we calculate the derivation of (6) with respect to Ui

and the closed-form solution of Ui can be obtained by setting
the derivation as 0:

Ui = HiB
T (BBT )−1. (7)

2Other predictive models like linear classifier and kernel logistic re-
gression can also be applied here [13], [15], we will leave those in the
future research.

2) B-Step: Then, with all variables fixed but B as the only
argument, (5) is re-written as:

min
B

2∑
i=1

αγi (‖Hi −UiB‖2F + βTr(BLBT ))

+ λ

2∑
i=1

‖Fi(Xi; Θi)−B‖2F , s.t. B ∈ {−1,+1}m×n.
(8)

Then we can expand (8) to:

min
B

2∑
i=1

αγi (Tr(BTUT
i UiB− 2BTUT

i Hi) + βTr(BLBT ))

+ λ

2∑
i=1

Tr(BBT − 2BTFi(Xi; Θi))

= min
B
‖GTB‖2F − 2Tr(BTQ) + Tr(BKBT ),

(9)

where G = [
√
αγ1U1;

√
αγ2U2]T , K =

∑2
i=1 α

γ
i βL + 2λIn,

Q =
∑2
i=1(αγiU

T
i Hi + λFi(Xi; Θi)). Following discrete

cyclic coordinate descent (DCC) [30], we denote bT as the
j-th row of B, and B′ the matrix of B excluding b. Similarly,
let gT be the j-th row of G, G′ be the matrix of G excluding
g and qT be the j-th row of Q, then we have

min
b

(gTG′
T
B′ − qT )b+ bTKb = min

b
pT b+ bTKb,

s.t. p = (B′
T
G′g − q) ∈ Rn, B′ ∈ {−1,+1}m−1×n.

(10)

Obviously, the above equation can be considered as the
classical Binary Quadratic Programming (BQP) problem in
most previous papers and it can be optimized via solving
each entry of b sequentially (flip one entry per time) as
described in some coordinate descent based methods [24],
[30], [31]. However, those methods usually suffer from the
slow convergence issues, especially for the cases with long
code. In this paper, we propose a new solution called Binary
Gradient Descent (BGD), which is detailed in the following
paragraphs, to accelerate the convergence in optimizing (10).

Suppose that the current value of b is b0 and the new value
b1 can be obtained by adding an offset ∆ to b0, namely b1 =
b0 + ∆. We substitute b0 and b1 into (10), the deviation L
between the values of (10) is calculated as follows:

L = bT1 Kb1 + pT b1 − bT0 Kb0 − pT b0
= (b0 + ∆)TK(b0 + ∆) + pT (b0 + ∆)− bT0 Kb0 − pT b0
= 2∆TKb0 + ∆TK∆ + pT∆

= ∆TK∆ + (2Kb0 + p)T∆.
(11)

Since there is only one entry with the value3 of −2 or 2 in ∆,
then we have ∆TK∆ = 4Kj,j , where j is the index for the
entry that is non-zero in ∆. Thus, (11) can be reformed as:

L = 4diag(K) + (2Kb0 + p)T∆, (12)

3The position of −2 or 2 in ∆ is based on the corresponding entry in
b0 so as to change −1 to 1 with 2 or 1 to −1 with −2. All the rest entries
are 0 in ∆.
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where diag(K) preserves the diagonal elements of K. There-
fore, the deviation L must be negative if we try to find b1 to
make the objective function descent and it can be obtained by
calculating another vector h regarding each entry in b0 as:

h = 4δ + (2Kb0 + p)� d, (13)

where δ is the column vector of all diagonal elements of K,
� denotes the entry-wise multiplication of the vector, and d
satisfies: 1) if the j-th entry of b0 is 1 , then dj = −2; 2) if the
j-th entry in b0 is −1, then dj = 2. The optimization process
will be completed if the smallest value in h is non-negative,
otherwise we only retain the value of the corresponding entry
in d, and set other entries to 0 to obtain ∆. After getting b1
with ∆ + b0, we update b0 above and recalculate the new ∆
accordingly. Essentially, the proposed method flips all the en-
tries by repeating the above computations and selects the entry
that is most likely to make the objective function descend in a
monotonic discrete manner. As observed from the experiments,
it usually requires n/2 updates on the entries such that the
objective function descends. The proposed BGD only needs
1 iteration to make (10) descent with faster converging speed
compared to the later cases that require at least n iterations,
thus obtaining the local optimal solution efficiently.

3) αi-Step: With other parameters fixed except for αi, we
formulate (5) as below:

min
αi

2∑
i=1

αγi Ei, s.t. αi > 0, (14)

where Ei = ‖Hi−UiB‖2F +βTr(BLBT ). Subsequently, the
Lagrange function of (14) can be formulated as:

2∑
i=1

αγi Ei − µ(

2∑
i=1

αγi − 1), (15)

where µ is the Lagrange multiplier. Taking
∑2
i=1 αi = 1 into

consideration, the optimal solution of αi is derived as:

αi =
(1/Ei)

1
γ−1∑2

i=1(1/Ei)
1

γ−1

. (16)

4) Θi-Step: When fixing all other parameters but Θi, the
objective function (5) is reduced to

min
Θi

2∑
i=1

‖Fi(Xi; Θi)−B‖2F , s.t. B ∈ {−1,+1}m×n, (17)

where the deep hash functions Fi(Xi; Θi) can be solved by
optimizing the network parameters Θi under the guidance of
the unified binary code via mini-batch back-propagation [5].
Repeating the above optimization processes until convergence,
the deep hash functions can be learned and deployed for the
large-scale multimodal retrieval application. When giving new
query instances Xq

i /∈ O, the new hash codes can be obtained
by calculating sign(Fi(Xq

i ; Θi)). The proposed SSDMH is
summarized in Algorithm 1.

Algorithm 1. Self-Supervised Deep Multimodal Hashing

Input: Original feature Xi, code length m, parameters β and
γ, affinity matrix S. Randomly initialize binary code B,
latent matrices Ui and deep parameters Θi. Set weights
αi = [0.5, 0.5], i = {1, 2}.

Output: Deep hash functions Fi(Xi; Θi);
1: for T = 1 to 5 do
2: Extract the feature matrices Hi from fc7 I and fc7 T

layers of two deep networks, respectively;
3: for t = 1 to 5 do
4: Update the latent factor matrices Ui by (7);
5: Update the unified hash code B by (8)∼(13);
6: Update the weight factors αi by (16);
7: end for
8: Update the network parameters Θi by (17);
9: end for

10: return Fi(Xi; Θi);

F. Computational Complexity

The computational complexity of SSDMH is composed
of two parts: learning binary code and deep hash function.
However, it is not straightforward to calculate the complex-
ity for network training, which depends on many external
conditions. Regarding the regularized binary latent model,
the computational complexity is O(d2n + dn) during each
optimization iteration and d = max{d1, d2,m}. In total,
the training complexity is O((d2n + dn)t), where t is the
maximum iteration (less than 5) in updating the binary code.

III. EXPERIMENT

In this section, extensive experiments are conducted on three
datasets to evaluate the performance of the proposed SSDMH.

A. Dataset Descriptions

The Wiki [32] dataset is made up of 2,866 image-text pairs
collected from Wikipedia. Each image is represented by a 128-
dimensional SIFT feature vector and a 10-dimensional topic
vector is given to describe the text. These pairs contain 10
semantic categories and each pair is manually assigned to one
of them. All data pairs are split into the training (2,173) and
query (693) sets. The MIRFlickr [33] dataset collects 25, 000
instances from Flickr, which are annotated by at least one
of 24 provided labels. A 100-dimensional SIFT descriptor is
provided to represent each image, while the text is expressed as
a 500-dimensional tagging vector. We randomly select 2, 000
image-text pairs as the queries and use the remaining pairs
for training. The NUS-WIDE [34] dataset contains 269,648
images and each image is associated with a textual tag. Those
instances are manually labeled with 81 different concepts.
Following [11], [15], we only retain the instances annotated
with the 10 most frequent concepts, thus preserving 186,577
image-tag pairs for the experiment. Each image is represented
by a 500-dimensional SIFT feature vector and an index vector
of the most frequent 1,000 tags is provided for each text.
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TABLE II
MAP RESULTS FOR ’IMAGE→TEXT’ AND ’TEXT→IMAGE’ TASKS ON THREE DATASETS AT VARIOUS CODE LENGTHS (BITS) WHEN USING

DIFFERENT METHODS. THE BEST PERFORMANCE IS SHOWN IN BOLDFACE.

Task Method
Wiki MIRFlickr NUS-WIDE

16 32 64 128 16 32 64 128 16 32 64 128

IMH [12] 0.219 0.222 0.224 0.213 0.591 0.593 0.588 0.601 0.616 0.612 0.603 0.576

DBRC [22] 0.278 0.283 0.291 0.302 0.554 0.59 0.597 0.607 0.621 0.629 0.632 0.639

RFDH [13] 0.369 0.373 0.377 0.388 0.674 0.718 0.742 0.766 0.659 0.707 0.742 0.764

DCMH [23] 0.264 0.269 0.279 0.284 0.732 0.747 0.748 0.752 0.584 0.603 0.612 0.623

Image→Text CAH [20] 0.242 0.248 0.253 0.261 0.688 0.705 0.708 0.715 0.509 0.542 0.567 0.582

SCMFH [11] 0.284 0.294 0.299 0.305 0.651 0.654 0.655 0.664 0.495 0.499 0.506 0.624

DisCMH [16] 0.375 0.394 0.395 0.392 0.72 0.727 0.721 0.732 0.683 0.758 0.775 0.764

SePHkm [15] 0.399 0.405 0.408 0.412 0.763 0.769 0.773 0.776 0.739 0.75 0.761 0.767

SSDMH 0.421 0.436 0.446 0.451 0.797 0.801 0.808 0.823 0.803 0.809 0.821 0.834

IMH [12] 0.489 0.495 0.472 0.473 0.553 0.583 0.592 0.603 0.608 0.615 0.604 0.578

DBRC [22] 0.594 0.608 0.613 0.621 0.596 0.599 0.605 0.613 0.634 0.648 0.646 0.658

RFDH [13] 0.619 0.626 0.646 0.65 0.655 0.692 0.701 0.711 0.616 0.645 0.677 0.704

DCMH [23] 0.621 0.628 0.648 0.658 0.733 0.745 0.749 0.753 0.639 0.656 0.661 0.678

Text→Image CAH [20] 0.373 0.386 0.393 0.402 0.661 0.674 0.694 0.722 0.514 0.545 0.584 0.608

SCMFH [11] 0.635 0.641 0.656 0.664 0.682 0.703 0.716 0.726 0.569 0.612 0.657 0.684

DisCMH [16] 0.676 0.662 0.663 0.654 0.747 0.758 0.75 0.759 0.652 0.736 0.75 0.749

SePHkm [15] 0.664 0.696 0.695 0.702 0.727 0.731 0.748 0.743 0.686 0.695 0.709 0.711

SSDMH 0.716 0.735 0.737 0.745 0.833 0.836 0.843 0.852 0.815 0.821 0.833 0.836

Finally, 2,000 image-tag pairs are randomly picked up as the
queries and the rest pairs are used for training. Each pair is
labeled with at least one of the 10 concepts and two image-tag
pairs are considered to be similar if one of labels matched.

B. Experiment Settings

We compare the proposed SSDMH with some ex-
tremely competitive works published previously, including
IMH [12], RFDH [13], DBRC [22], DCMH [23], CAH [20],
SCMFH4 [11], DisCMH [16] and SePHkm [15] in the ex-
periments. For the fair comparison, the identical training and
query sets are utilized in the performance evaluation and
the best results are reported by adopting and tuning the
suggested parameters in their papers. Regarding the evalu-
ation metrics, we generally adopt two widely-used criteria
in the multimodal retrieval: Mean Average Precision (MAP)
and Precision-Recall (PR) curve, as the main metrics in the
following experiments [11], [15]. The number of top returned
instances is set to 50 when calculating MAP. In this paper, we
focus on two cross-media retrieval tasks: ‘Image Query versus
Text database’ (Image→Text) and ‘Text Query versus Image
database’ (Text→Image).

Following the settings in [11], [12], [15], the whole training
set for the Wiki dataset is utilized in generating the unified
binary representation. While for the other two benchmarks,
5, 000 instances are randomly sampled from their training sets
to produce the binary code. For fair comparison, instead of
using the original image features (e.g. SIFT), the 4096-d deep
feature vectors are extracted from the fc7 layer of the pre-
trained AlexNet for those non-deep methods (e.g. RFDH [13],
SePHkm [15]) during the code learning. For the parameter
settings in the semantic binary latent model, γ, β and λ are

4We adopt the supervised version of CMFH in the comparison.

set to 5, 1 and 1, respectively. The maximum iteration t is
set to 5 in updating the binary code. When building the deep
hash functions, the original image pixels and their tagging
vectors are kept fixed and employed as the inputs to those
deep networks for two modalities, respectively. We adopt SGD
optimizer in the network training with the basic learning rates
0.0001 and 0.01 for the image and text modality, respectively.
The batch sizes are fixed as 512 and they take 10 epochs at
most until the networks converge. In this paper, we construct
the deep architectures using Caffe [35]. The codes for the
above prior arts are implemented by MATLAB 2014a on an
Ubuntu 14.04 LTS machine, which is configured with Intel
Core i7-6700k CPU, 64GB RAM and NVIDIA 1080i GPU.

C. Results and Analysis
1) Architecture Investigation: In this section, we first in-

vestigate the impact of each loss term in the regularized
binary latent model on the multimodal retrieval performance.
Particularly, two different cases are analyzed: SSDMHbrl and
SSDMHbrl+grl, where brl and grl are shorts for binary recon-
struction loss and graph regularization loss respectively. Here,
SSDMHbrl is realized by setting β as 0 during the optimiza-
tion. We report the MAP results on three datasets at 128 bits

TABLE III
MAP RESULTS AT THE CODE LENGTH OF 128 WHEN INVOLVING
VARIOUS LOSS TERMS DEPLOYED IN THE PROPOSED METHOD:

SSDMHbrl AND SSDMHbrl+grl .

Method Task
Dataset

Wiki MIRFlickr NUS-WIDE

SSDMHbrl Image→Text 0.408 0.745 0.774

Text→Image 0.703 0.767 0.802

SSDMHbrl+grl Image→Text 0.451 0.823 0.834

Text→Image 0.745 0.852 0.836
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Fig. 2. The Precision-Recall curves at 128 bits on three datasets.

in Table III. As can be seen, the worst performance has been
achieved by SSDMHbrl without any supervision information.
With the graph regularization loss involved, SSDMHbrl+grl
improves the MAP values by approximately 3.4% ∼ 8.5% on
two retrieval tasks, implying the importance of preserving the
neighborhood structure within the original data in the hash
code learning.

2) Overall Comparisons with Baselines: To validate the
superiority of the proposed SSDMH, we compare it with the
state-of-the-arts and report the MAP results at various code
lengths on three datasets, as shown in Table II. Generally, the
proposed SSDMH outperforms all baselines in terms of MAP
on two retrieval tasks. Specifically, regarding ‘Image→Text’
tasks, the MAP values from SSDMH are 3.9%, 4.7% and 6.7%
higher than those achieved by the most competitive baselines
at the code length of 128 on Wiki, MIRFlickr and NUS-
WIDE, respectively. While for ‘Text→Image’ task, the gaps
have increased to 4.3%, 9.3% and 8.7%. When dealing with
the short codes (e.g. 16, 32 bits), SSDMH still achieves the
best performance showing the great potential of SSDMH on
wide deployment in the industrial applications. Moreover, we
also plot the PR curves at 128 bits when using those methods
on three datasets, as shown in Fig. 2. It can be seen the curves
of the proposed SSDMH are always at the top of the figures,
which comply with the results in Table II.

3) Effect of Training Size: Moreover, the variations on the
MAP results are evaluated when using different amount of data
points in the code learning, as shown in Table IV. Specifically,
we report the results on MIRFlickr and NUS-WIDE at 64 bits

TABLE IV
EFFECT OF TRAINING SIZE ON MIRFLICKR AND NUS-WIDE AT THE

CODE LENGTH OF 64.

Dataset Task
Training Size

1k 2k 5k 10k 15k

MIRFlickr Image→Text 0.761 0.769 0.808 0.815 0.821

Text→Image 0.793 0.811 0.843 0.854 0.861

NUS-WIDE Image→Text 0.761 0.783 0.821 0.834 0.837

Text→Image 0.781 0.803 0.833 0.842 0.85
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Fig. 3. MAP versus γ, β and λ at 64 bits on three datasets.

on two retrieval tasks. As can be seen, the MAP values keep
increasing with more data points employed in the initial stage
and tend to converge after the size of 10, 000. It is worth
pointing out that SSDMH still achieves competitive results
when limited data points (e.g., 5, 000) available.

4) Parameter Sensitivity Analysis: We further analyze the
retrieval performance variations from adjusting the hyper-
parameters in the code learning. By fixing the code length
to 64 bits in the experiments, we plot the MAP variations
in Fig. 3 when altering γ, β and λ. As can be seen, the
MAP results have minor changes when varying the parameters,
which indicates that SSDMH is not very sensitive to the hyper-
parameters. Moreover, the empirical values of γ, β and λ are
close to the optimal settings in the figures and they can make
great contribution in yielding superior retrieval performance.

5) Convergence Study: Fig. 4 is plotted to estimate the
convergence rates in solving the unified binary code and learn-
ing the deep hash functions at 128 bits. As can be seen, the
objective function values converge very fast within 5 iterations
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Fig. 4. (a) Objective function values after each iteration (t) when solving
the unified binary code at 128 bits; (b) Euclidean losses after every
iteration (T ) when learning the deep hash functions at 128 bits.
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binary code at 128 bits on three datasets when using BGD and One
Entry [30] separately.

in the code learning, while the deep hash functions for two
modalities can be built efficiently after 3 ∼ 5 iterations.

6) BGD versus One Entry: We further compare the effi-
ciency of the proposed BGD and One Entry (namely flipping
one entry per time) [30], where the latter one denotes the most
representative method in the discrete optimization [24], [31].
As can be observed from Fig. 5, the proposed BGD costs
much shorter time, averagely over 80%, against One Entry
in solving one row of the unified binary code at 128 bits,
thus accelerating the code optimization dramatically. Although
some recent papers [24], [36] make minor changes during the
discrete optimization, they all utilize the same entry flipping
strategy as One Entry. There is no evidence showing that such
efficiency issue could be alleviated in their methods.

7) Training Efficiency: Finally, the training costs of the
proposed SSDMH at 128 bits on three datasets are reported
in Table V. There are two main sub processes: code learning
and network training, during the optimization in each loop.
As can be seen, the optimization for each loop can be done
within 18 minutes for most cases. Considering the proposed
SSDMH usually converges within T = 5 loops for one code
length, the total optimization costs less than 1.5 hours while
the values for other cases of short codes are far below.

IV. CONCLUSION

This paper has provided an industrial solution for fast
large-scale cross-media retrieval. Specifically, a novel self-
supervised deep multimodal hashing method, SSDMH, is
presented, where the deep feature learning and the semantic
binary code learning are integrated in a unified framework.

TABLE V
TIME COSTS (IN SECONDS) IN THE TRAINING PROCESSES OF

SSDMH ON THREE DATASETS AT 128 BITS FOR ONE LOOP (T ).

Dataset Code Learning
Network Training

Image Text

Wiki 117.3 123.2 15.7

MIRFlickr 614.4 362.3 27.3

NUS-WIDE 582.1 413.1 38.3

Particularly, by solving the discrete constrained objective
function in an alternating manner, the unified binary code
can be generated directly without relaxation. Moreover, the
semantic affinity matrix is utilized in the code learning with
the neighborhood structure of original data preserved. Besides,
Binary Gradient Descent is proposed to accelerate the discrete
optimization. Extensive experiments on three datasets demon-
strate the superiority over several state-of-the-art baselines.
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