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Discriminant Analysis via Joint Euler Transform
and `2,1-norm

Shuangli Liao, Quanxue Gao, Zhaohua Yang, Fang Chen, Feiping Nie, and Jungong Han

Abstract—Linear Discriminant analysis (LDA) has been widely
used for face recognition. However, when identifying faces in the
wild, the existence of outliers that deviate significantly from the
rest of data can arbitrarily skew the desired solution. This usually
deteriorates LDA’s performance dramatically, thus preventing it
from mass deployment in real-world applications. To handle this
problem, we propose an effective distance metric learning method
based LDA, namely Euler LDA-L21 (e-LDA-L21). e-LDA-L21 is
carried out in two stages, in which each image is mapped into a
complex space by Euler transform in the first stage and the `2,1-
norm is adopted as the distance metric in the second stage. This
not only reveals nonlinear features but also exploits the geometric
structure of data. To solve e-LDA-L21 efficiently, we propose
an iterative algorithm, which is a closed-form solution at each
iteration with convergence guaranteed. Finally, we extend e-LDA-
L21 to Euler 2DLDA-L21 (e-2DLDA-L21) which further exploits
the spatial information embedded in image pixels. Experimental
results on several face databases demonstrate its superiority over
the state-of-the-art algorithms.

Index Terms—Linear Discriminant Analysis, Two-dimensional
Linear Discriminant analysis, Dimensionality reduction, Euler
transform, `2,1-norm.

I. INTRODUCTION

F INDING an effective representation for image has been a
fundamental problem in the fields of pattern recognition

and machine learning. During the last few decades, many
approaches have been developed for this task, among which
principal component analysis (PCA) [1] and linear discrim-
inant analysis (LDA) [2] turn out to be two representatives.
PCA is a unsupervised method used for extracting the most
representative features, while LDA is a supervised one capable
of extracting the most discriminative features. Not surprisingly,
LDA generally performs better when conducting data classi-
fication task.

In the domain of image analysis, it is essential to reshape
the original two-dimensional image into a high-dimensional
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vector prior to applying the aforementioned methods. This
may impair the spatial structure information embedded in the
pixels of image. To tackle this problem, many image matrix-
based dimensionality reduction methods have been developed,
most of which follow the idea of directly estimating the scatter
matrices from image matrices and then solving the projection
matrix by optimizing the criterion function. Such matrix based
methods include two-dimensional PCA (2DPCA) [3], multi-
linear PCA [4], two-dimensional LDA (2DLDA) [5], tensor
LDA [6], and direction tensor independent component analysis
[7]. Despite the impressive results obtained in many cases,
these approaches struggle with the outliers existed in the real-
life applications. The reason behind is that all of the above
approaches characterize the geometric structure of data by
squared `2-norm, which is not robust in the sense that outlying
measurements would arbitrarily skew the acquired solution
from the desired solution [8] [9].

Most existing works have demonstrated that distance metric
learning based methods can effectively improve the robust-
ness of algorithms against outliers [10]–[18]. Team Bischof
proposed KISSME metric learning [10], which is based on a
statistical inference perspective. Martinel et al. [11] proposed a
Kernelized Saliency-based method for multiple metic learing.
Li et al. [12] integrated the distance metric to the SVM
decision fuction. Alternatively, Liao et al. [13] incorporated
the dimension reduction and metric learning, and further
used the PSD constraints [14] to enhance the robustness of
the learned metric. To handle the small sample size (SSS)
problem, Zhang et al. [15] proposed a method by matching
samples in a discriminative null space of the training data. It
is noted that there are some other methods based on temporal
model [16] and video [17].

Compared to squared `2-norm, nuclear-norm [19] [26] and
`1-norm [20]–[26] are more robust to outliers for dimension-
ality reduction. Using nuclear-norm as the distance metric,
Zhang et al. [26]. proposed nuclear-norm based 2DPCA (N-
2DPCA) that seeks the projection matrix by minimizing the
nuclear-norm based reconstruction error. Similarly, many sub-
space learning methods employ `1-norm as the distance metric
in order to obtain more robust projection vectors. For example,
L1-PCA [20] employed `1-norm to calculate the reconstruc-
tion error, which was minimized afterwards via a greedy
algorithm. To further speed up the L1-PCA algorithm, Kwak
[21] proposed to seek the projection vectors by maximizing
the `1-norm variance. This method is called PCA-L1, which
was extended later to 2DPCA with L1-norm maximization
(2DPCA-L1) [22]. Nie et al. proposed a non-greedy iterative
method to solve PCA-L1 [23], which was extended to non-
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greedy 2DPCA-L1 [24]. To encode the discriminant infor-
mation better, some `1-norm based LDA methods have been
developed for image classification [27]–[30]. Two of the most
popular methods are LDA-L1[28] and l1-norm based kernel
LDA [29], where the former used l1-norm to calculate the
within-class scatter matrix and between-class scatter matrix,
while the latter employed l1-norm as the distance metric in
kernel LDA. Liu et al. [31] and Wang et al. [32] proposed
non-greedy algorithms to solve `1-norm based discriminant
analysis methods, which can optimize the criterion function.
To well exploit discriminant spatial structure, Li et al. [33]
proposed L1-2DLDA for image classification.

However, `1-norm subspace methods do not well character-
ize the geometric structure due to the fact that the solution
of `1-norm subspace methods relates nothing to scatter ma-
trices that characterize the geometric structure of data [34]–
[36]. Moreover, `1-norm based subspace techniques cannot
provide the subspace with join-feature spareseness [37]–[41].
To handle this problem, Ding et al. [35] developed `2,1-
norm and used it to estimate the reconstruction error of data.
Based on it, a novel method R1-PCA, which seeks low-
dimension space by minimizing `2,1-norm reconstruction error,
was proposed to improve the robustness of PCA. Nie et al. [38]
showed that `2,1-norm helps select useful features from high-
dimensional data. Inspired by these works, `2,1-norm has been
widely used as the regularization term in the criterion function.
For example, Wong et al. [40] proposed `2,1-norm based
tensor feature selection for image analysis. Gui et al. [37]
used `2,1-norm as the regularized term in subspace learning
and proposed a joint feature extraction and selection method
for data classification. Since all of them still used squared
Euclidean distance to measure the similarity between data,
the flexibility and robustness of the algorithms are adversely
affected. Moreover, for image classification, most existing
discriminant methods still measure the similarity in the pixel
space, thus leading the methods to be sensitive to illumination
and outliers. Finally, the aforementioned robust discriminant
methods do not reveal non-linear features which can actually
help improve the robustness of algorithms.

Motivated by the fact that kernel trick can capture the
nonlinear features [42]–[44] and combine the superiority of
`2,1-norm, in this paper, we develop a distance metric learning
based robust LDA, namely e-LDA-L21, for discriminative
feature extraction. e-LDA-L21 first maps the original images
into the complex space by Euler transform, which not only
suppresses outliers but also reveals non-linear patterns em-
bedded in data. Afterwards, it uses `2,1-norm to measure both
between-class scatter matrix and within-class scatter matrix in
the complex space. Likewise, we further extend this concept
to handle 2D data and propose an e-2DLDA-L21 algorithm.
Experimental results reveal the effectiveness of our proposed
method. In contrast to most existing robust subspace methods,
we have the following contributions:
• By analyzing Euclidean distance, `1-norm, and `2,1-norm,

we have showed that `2,1-norm can help enlarge the role
of small between-class distance and weaken the effect
of large between-class distance. Thus, we employ `2,1-
norm as the distance metric in LDA. This helps improve

the robustness of LDA against to outliers.
• Our method extracts nonlinear features with Euler trans-

form in LDA. Different from the commonly used kernel
function, which maps data into a higher-dimensional
hidden space, Euler transform maps data into an explicitly
space which has the same dimensionality as that in the
original data space. As a result, our method can be easily
implemented in real applications. Moreover, we have
showed that cosine distance metric not only helps obtain a
large margin but also improves the separability between
different class images. Thus, our method well encodes
nonlinear discriminant features and simultaneously gets
a large margin which is important for classification.

• Our method integrates both kernel trick and distance
metric learning into the criterion function. It helps fur-
ther improve the robustness of algorithm. Moreover, the
proposed iterative algorithm has a good convergence.

The remainder of this paper is organized as follows. Section
2 reviews the related work. `2,1-norm-based LDA with Euler
representation, namely e-LDA-L21, is proposed in Section 3.
We extend e-LDA-L21 to e-2DLDA-L21 in Section 4. Section
5 reports experimental results. Finally, the conclusions are
drawn in Section 6.

II. LINEAR DISCRIMINANT ANALYSIS

Assume that we have N training images Xj ∈ Rm×n(j =
1, 2, ..., N), where m and n denote the number of rows and
columns of an image, respectively. The given data have c
classes and the ith class has ni samples. X̄i and X̄ denote
the class mean image of the ith class and the mean image
of all image samples, respectively. Denote xj , x̄i and x̄
∈ RM×1(M = m × n) by the vector forms of matrices Xj ,
X̄i and X̄, respectively, i.e., xj = vect(Xj), x̄i = vect(X̄i),
and x̄ = vect(X̄).

A. LDA and 2DLDA

LDA aims to seek the projection matrix W = [w1,w2, · ·
·, wd] ∈ RM×d which minimizes the within-class scatter and
simultaneously maximizes the between-class scatter in the low
-dimensional space. The objective function of LDA is [2]

Wopt = arg max
wk

T wk=1

tr(WTSbW)

tr(WTSwW)
(1)

where wk(k = 1, 2, · · · , d) is the kth column of the matrix
W, tr(·) is the trace operator of a matrix, between-class scatter
matrix Sb and within-class scatter matrix Sw are defined as

Sb =

c∑
i=1

ni(x̄i − x̄)(x̄i − x̄)
T (2)

Sw =

c∑
i=1

∑
j∈ci

(xj − x̄i)(xj − x̄i)
T (3)

where ci denotes the ith class data set.
The objective function (1) is a trace ratio optimization

problem and typically nonconvex, and there does not exist
a closed-form solution for the general trace ratio problem
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(1). Hence, such problems are often transformed into the
simpler yet inexact ratio trace problem, which is equivalent
to the determinant ratio problem [45]. For the model (1), the
corresponding ratio trace (determinant ratio) form is

Wopt = arg max
W

tr
((

WTSwW
)−1 (

WTSbW
))

(4)

The optimal projection matrix Wopt of the objective func-
tion (4) consists of the eigenvectors {wk |k = 1, 2, · · · , d} of
the Eigen-equation (Sw)

−1
Sbwk = λkwk corresponding to

the first d largest eigenvalues {λk |k = 1, 2, · · · , d}.
Each image needs to be transformed into a 1D vector

in LDA-based methods. Thus, they can no longer exploit
the spatial information embedded in pixels. To handle this
problem, 2DLDA is one of the most representative methods.
In order to be consistent with the existing improved methods,
such as L1-2DLDA [33], the model of 2DLDA only considers
the left projection here. The model is

Qopt = arg max
qk

T qk=1

tr
(
QTGbQ

)
tr (QTGwQ)

(5)

where Q = [q1, q2, ..., qd] ∈ Rm×d and qk(k = 1, 2, · · · , d)
is the k-th column of the matrix Q, between-class scatter
matrix Gb and within-class scatter matrix Gw are defined as

Gb =

c∑
i=1

ni
(
X̄i − X̄

) (
X̄i − X̄

)T
(6)

Gw =

c∑
i=1

∑
j∈ci

(
Xj − X̄i

) (
Xj − X̄i

)T
(7)

By simple algebra, the nominators and denominators of the
objective functions (1) and (5) can be respectively rewritten
as

tr(WTSbW) =

c∑
i=1

ni
∥∥WT (x̄i − x̄)

∥∥2
2 (8)

tr(WTSwW) =

c∑
i=1

∑
j∈ci

∥∥WT (xj − x̄i)
∥∥2
2 (9)

tr
(
QTGbQ

)
=

c∑
i=1

ni
n∑
k=1

∥∥QT
(
X̄i(:, k)− X̄(:, k)

)∥∥2
2

(10)

tr
(
QTGwQ

)
=

c∑
i=1

∑
j∈ci

n∑
k=1

∥∥QT
(
Xj(:, k)− X̄i(:, k)

)∥∥2
2

(11)
where X̄i(:, k) and Xj(:, k) denote the kth column of matrices
X̄i and Xj , respectively.

As can be seen in Eqs. (8), (9), (10) and (11), the large
distance will remarkably dominate the solution of the models
(1) and (5). Thus, the optimal solution of the objective function
(1) and (5) is susceptible to the presence of outliers which
deviate significantly from the rest of data. Moreover, squared
`2-norm can suppress the role of small between-class scatter
in the criterion function. Thus, traditional LDA technique is
unlikely to obtain a large margin, which is important for
classification, in the low-dimensional space.

B. LDA-L1 and L1-2DLDA

To improve the robustness of discriminant analysis tech-
nique, many enhanced discriminant methods have been de-
veloped, among which LDA-L1 and L1-2DLDA [33] are two
of the most representative methods. The objective function of
LDA-L1 is

Wopt = arg max
wk

T wk=1

c∑
i=1

ni
∥∥WT (xi − x)

∥∥
1

c∑
i=1

∑
j∈ci
‖WT (xj − xi)‖1

(12)

L1-2DLDA aims to seek projection matrix Q by the model
(13).

Qopt = arg max
qk

T qk=1

c∑
i=1

ni
∥∥QT

(
Xi −X

)∥∥
L1

c∑
i=1

∑
j∈ci

∥∥QT
(
Xj −Xi

)∥∥
L1

(13)

where ‖•‖L1 denotes the `1-norm of a matrix which can be
defined as ‖X‖L1 =

∑
k

‖X(:, k)‖1, X( :, k) is the kth column

of matrix X.
Although the linear discriminant analysis technique based

on `1-norm is robust to outliers, compared with traditional
LDA, the solutions of both the models (13) and (12) are
irrelevant to the scatter matrices that characterize the geometric
structure. Thus, neither LDA-L1 nor L1-2DLDA can well
reveal the geometric structure that is crucial for classification.
Moreover, it is difficult to solve `1-norm optimization problem.
Consequently, it is unclear whether `1-norm can help improve
the role of small between-class scatter in the models (13) and
(12).

III. EULER LDA-L21
A. Motivation

As can be seen from the above analysis, squared Euclidean
distance actually makes the outlying measurements dominate
the solution of the objective function (1). This leads the ob-
jective function (1) to be more prone to the outliers. To handle
this problem, the distance metric in the model (1) should
not only suppress the outliers but also enlarge the role of
small between-class scatters. Combining the aforementioned
analysis and the recent works [42] [43], we present an efficient
and robust LDA for dimensionality reduction. It aims to seek
a robust projection matrix W such that the projected data can
well reveal not only discriminant geometric structure of data
but also non-linear features.

Prior to formulating the proposed method, we first introduce
the definition of `2,1-norm and cosine distance metric that can
be viewed as a kernel function [42] [43], and then analyze their
advantages to outliers and discriminant geometric structure.

Definition 1 [35]. Given an arbitrary matrix A = [A(i, j)] ∈
Rm×n, the `2,1-norm of matrix A is defined as

‖A‖L2,1
=

n∑
j=1

√∑m

i=1
A2(i, j) =

n∑
j=1

‖A(:, j)‖2 (14)

As can be seen in Eq. 14, from the norm point of view,
`2,1-norm of matrix is essentially the `2-norm which has no
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Figure 1. (a) Directions of LDA, LDA-L21 and LDA-L1; (b) projected data
of LDA, LDA-L21 and LDA-L1; (c) projected data of LDA, LDA-L21 and
LDA-L1 with outliers.

essential difference with squared `2-norm. Thus, if `2,1-norm
is employed as the distance metric in the criterion function,
it can well reveal the geometric structure of data. Moreover,
compared with squared `2-norm, `2,1-norm can further help
enlarge the role of small between-class distance and weaken
the effect of large between-class distance in the criterion
function. This results in not only the enhanced robustness to
outliers but also a large margin in the low-dimensional space,
thus improving the performance of algorithm. For example, we
randomly produce three classes data points, which are marked
with different shapes and each class has 20 data points. The

three data classes follow Gaussian distribution with covariance
matrices being [0.3 0; 0 0.3] and means being [0.5 -0.5]
and [0 2], and [10 -1], respectively. Moreover, we also add
two outliers whose color is green. Two outliers belong to the
second class. Taking these data points as training samples,
we show the directions of LDA, LDA-L21, and LDA-L1, and
the corresponding low-dimensional representation in Figure 1.
WLDA, WLDA−L21 and WLDA−L1 denote the directions of
LDA, LDA-L21 and LDA-L1 respectively when training data
do not include outliers. Woutlier

LDA , Woutlier
LDA−L21 and Woutlier

LDA−L1
denote the directions of the aforementioned methods when
training data have outliers. As can be seen in Figure 1, when
training data are clean, LDA with `2,1-norm as distance metric
obtains a large margin between class 1 and class 2 in the
low-dimensional space and well separates all classes in the
low-dimensional space, whereas traditional LDA and LDA-L1
do not. When training data include outliers, both our model
and LDA can correctly classify all data, while LDA-L1 does
not. Moreover, our model achieves a larger margin than LDA.
This observation motivates us to employ `2,1-norm as distance
metric in LDA criterion function.

Figure 2. Examples motivating the use of the cosine-based dissimilarity
measure. Images from left to right are the original image, a second image of
the same subject, an occluded version of the original image and an image of
another subject.

Figure 3. Examples motivating the use of the cosine-based dissimilarity
measure. Images from left to right are the original image, a second image of
the same subject, an illumination change version of the original image and
an image of another subject.

Definition 2 [42] [43]. Given two arbitrary vectors xp and
xq ∈ RM×1, the cosine distance metric between them is

d (xp,xq) =

M∑
k=1

{1− cos (απ (xp (k)− xq (k)))} (15)

where α is an alpha mask [42], which is also known as alpha
matte or alpha channel and associates variable transparency
with an image. xp (k) and xq (k) are the k-th element of xp
and xq , respectively.
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TABLE I
COMPARISON OF NORMALIZED DISSIMILARITY MEASURES BETWEEN

IMAGES IN FIGURE2.
Dissimilarity metric A-B A-C A-D
Euclidean distance 6.5437 11.5016 8.5694
`1-norm distance 158.2643 326.4584 275.6062
Cosine-based distance 352.1622 622.0739 851.188

TABLE II
COMPARISON OF NORMALIZED DISSIMILARITY MEASURES BETWEEN

IMAGES IN FIGURE 3.
Dissimilarity metric A-B A-C A-D
Euclidean distance 1.2629 16.4548 13.1405
`1-norm distance 29.6755 450.4374 359.8113
Cosine-based distance 28.0423 1159.577 1240.738

By simple algebra, Eq. (15) becomes

d(xp,xq)=
M∑
k=1

{1− cos (απ(xp(k)− xq(k)))}

=
1

2

M∑
k=1

{
(cosαπxp(k)− cosαπxq(k))

2

+(sinαπxp(k)− sinαπxq(k))
2
}

=
∥∥∥ 1√

2
(eiαπxp − eiαπxq )

∥∥∥2
2

= ‖zp − zq‖22

(16)

where

zq =
1√
2

 eiαπxq(1)

...
eiαπxq(M)

 =
1√
2
eiαπxq (17)

is called Euler representation of xq .
Eq. (16) illustrates that cosine distance metric between

two images in the pixel space is equivalent to the squared
`2-norm between the corresponding two images with Euler
representation.

Let us consider two motivating examples in which different
dissimilarity measures are applied to the images that are shown
in Figure 2 and Figure 3. Table I and Table II list the Euclidean
distance, `1-norm distance and cosine distance metric between
images in Figure 2 and Figure 3, respectively. As can be seen
in Figure 2, Figure 3, Table I and Table II, Euclidean distance
and `1-norm distance associate a smaller distance between the
original image and an image from a different subject, while the
distance between image A and image C, which belong to the
same person with occlusion or different illumination, is large.
In contrast, the use of the cosine-based measure results in a
large distance between images that are from different persons.

Combining the aforementioned analysis, we have the fol-
lowing interesting observations:
• First, the cosine distance metric enlarges the distance

between all images, so cosine distance metric can be
beneficial to the data classification.

• Second, the distance between the same class images is
enlarged a smaller multiple than the distance between the
different class images by the cosine distance metric. This
clearly shows that cosine distance metric not only helps
obtain a large margin but also improves the separability

between different class images, compared with Euclidean
distance and `1-norm.

B. Objective function

To improve the robustness of discriminant analysis tech-
nique, we present our model with the aforementioned analysis,
which employs `2,1-norm as the distance metric to measure the
similarity between data in the Euler space. Specifically, we first
map each image xq onto the Euler space by Eq. (17) and then
use `2,1-norm to reveal within-class and between-class scatter
matrices in the Euler space. Our model is as follows.

Wopt = arg max
wk

Hwk=1

c∑
i=1

ni
∥∥WH (z̄i − z̄)

∥∥
2

c∑
i=1

∑
j∈ci
‖WH (zj − z̄i)‖2

(18)

where zj , z̄i and z̄ are the Euler representation of xj , x̄i and
x̄, respectively. They can be calculated by Eq. (17).

The matrix form of model (18), called e-LDA-L21, is as
follows.

Wopt = arg max
wk

Hwk=1

∥∥WHΦb

∥∥
L2,1

‖WHΦw‖L2,1

(19)

where Φb = [n1(z̄1 − z̄), n2(z̄2 − z̄), · · · , nc(z̄c − z̄)], Φw =
[z1 − z̄1, · · · , zN − z̄c].

By simple algebra, the numerator of Eq. (19) can be
rewritten as

∥∥WHΦb

∥∥
L2,1

=

c∑
i=1

∥∥WHΦb(:, i)
∥∥
2

=

c∑
i=1

∥∥WHΦb(:, i)
∥∥2
2

1

‖WHΦb(:, i)‖2

=

c∑
i=1

tr
(
WHΦb(:, i)diΦb(:, i)

H
W
)

= tr
(
WHΦbDΦb

HW
)

(20)

where D = diag( 1
‖WHΦb(:,1)‖2

, ..., 1
‖WHΦb(:,c)‖2

).
Similarly, the denominator of Eq. (19) can be rewritten as

follows: ∥∥WHΦw

∥∥
L2,1

=

N∑
j=1

∥∥WHΦw(:, j)
∥∥
2

=

N∑
j=1

∥∥WHΦw(:, j)
∥∥2
2

1

‖WHΦw(:, j)‖2

= tr
(
WHΦwEΦw

HW
)

(21)

where E = diag( 1
‖WHΦw(:,1)‖2

, ..., 1
‖WHΦw(:,N)‖2

).
Substituting Eq. (20), Eq. (21) into Eq. (19), the objective

function (19) becomes

Wopt = arg max
wk

Hwk=1

tr
(
WHΦbDΦb

HW
)

tr
(
WHΦwEΦw

HW
) (22)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * * 6

In the literature [2] [5] [45], Eq. (22) can be converted to

Wopt = arg min
wk

Hwk=1

tr
(
WHΦwEΦw

HW
)

s.t. WHΦbDΦb
HW = T

(23)

where T is a constant matrix with all elements being constants.
The model (23) is a constrained optimization problem,

which is usually solved by Lagrange multiplier method. The
Lagrangian function of the problem (23) is

L (W) = tr
(
WHCW

)
− tr

(
Λ
(
WHBW −T

))
(24)

where Λ is a diagonal matrix for enforcing the constraints in
Eq. (23), B = ΦbDΦb

H and C = ΦwEΦw
H .

The KKT condition for the optimal solution is that the
gradient of L (W) must be zero, i.e.,

∂L (W)

∂W
= CW −BWΛ = 0 (25)

By simple algebra, we have

B−1CW = WΛ (26)

The optimal projection matrix W of the objective func-
tion (23) consists of the eigenvectors of the Eigen-equation
B−1Cwk = λkwk(k = 1, · · ·, d) corresponding to the first d
smallest eigenvalues except zeros. The aforementioned process
needs to solve the inverse of matrix B which may not exist if
the data dimensions are very high, and easily causes unstable
solution due to the small sample size problem. To handle this
problem, we use complex PCA to reduce the dimension of B
and C in advance. Denote P by PCA projection matrix, then

Ψb = PHBP (27)

Ψw = PHCP (28)

Let U = [u1,u2, · · · ,ud], uk and λk (k = 1, · · ·, d) be the
eigenvector and the corresponding eigenvalues of the following
eigen-equation, respectively, and ordered λ1 ≥ λ2 ≥ · · · ≥ λd.

(Ψb)
−1

(Ψw) uk = λkuk (29)

then
W = PU (30)

We summarize the pseudo code of solving the objective
function (23), i.e., e-LDA-L21 in Algorithm 1.

C. Convergence analysis

Corollary 1. In t-th iteration of Algorithm 1, we have

tr
((

W(t+1)
)H

ΦwE(t+1)Φw
HW(t+1)

)
≤ tr

((
W(t)

)H
ΦwE(t)Φw

HW(t)
)
(31)

Proof: For t-th iteration, W(t+1) is the optimal solution of
the objective function (23) according to the Eq. (24) and Eq.
(25). Thus the following inequality holds.

tr
((

W(t+1)
)H

ΦwE(t)Φw
HW(t+1)

)
≤ tr

((
W(t)

)H
ΦwE(t)Φw

HW(t)
)
(32)

Algorithm 1: e-LDA-L21 algorithm
Require:

Initialize X = [x1,x2 · · ·xN ] ∈ RM×N as data sample.
Initialize parameter α = 1.1, ε=1e− 8, W(1) ∈WM×d

which satisfies wk
Hwk = 1 (k = 1, 2, · · · , d), t = 1.

Ensure:
1. Calculate zj by Eq. (17).
2. Calculate the PCA projection matrix P.
3. Calculate δ=

∣∣J(W(t))−J(W(t−1))
∣∣, where

J(W(t))=
c∑
i=1

∑
j∈ci

∥∥∥(W(t))
H

(zj − z̄i)
∥∥∥
2

while δ ≥ ε do
4. Calculate Ψb by Eq. (27) and calculate Ψw by Eq. (28).
5. Calculate the eigenvector U of (Ψb)

−1
(Ψw).

6. Calculate W = PU.
7. Update δ.
8. Update t : t← t+ 1 .
end while
Output: W

Let F(t) = Φw
HW(t), then we get

tr

((
F(t+1)

)H
E(t)F(t+1)

)
≤ tr

((
F(t)

)H
E(t)F(t)

)
(33)

Substituting E(t) into Eq. (32) then

N∑
j=1

∥∥F(t+1) (:, j)
∥∥2
2∥∥F(t) (:, j)

∥∥
2

≤
N∑
j=1

∥∥∥F(t) (:, j)
∥∥∥
2

(34)

According to a2 + b2 ≥ 2ab, we can get

2
∥∥∥F(t+1) (:, j)

∥∥∥
2
−
∥∥∥F(t) (:, j)

∥∥∥
2
≤
∥∥F(t+1) (:, j)

∥∥2
2∥∥F(t) (:, j)

∥∥
2

(35)

Then
N∑
j=1

(
2
∥∥∥F(t+1) (:, j)

∥∥∥
2
−
∥∥∥F(t) (:, j)

∥∥∥
2

)
≤

N∑
j=1

∥∥F(t+1) (:, j)
∥∥2
2∥∥F(t) (:, j)

∥∥
2

(36)
Combining Eq. (34) and Eq. (36) yields

N∑
j=1

∥∥∥F(t+1) (:, j)
∥∥∥
2
≤

N∑
j=1

∥∥∥F(t) (:, j)
∥∥∥
2

(37)

Substituting F(t) and F(t+1) into Eq. (37) then
N∑
j=1

∥∥∥Φw
HW(t+1) (:, j)

∥∥∥
2
≤

N∑
j=1

∥∥∥Φw
HW(t) (:, j)

∥∥∥
2

(38)

According to Eq. (21), we get

tr
((

W(t+1)
)H

ΦwE(t+1)Φw
HW(t+1)

)
≤ tr

((
W(t)

)H
ΦwE(t)Φw

HW(t)
)
(39)

Eq. (39) shows that the objective of e-LDA-L21 in each
iteration is monotonically non-increasing. Then combining
the solution process in Eq. (24) and Eq. (25), we have that
Algorithm 1 converges to a local solution of e-LDA-L21.
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IV. EXTENSION TO EULER 2DLDA-L21

A. Objection function

For image recognition, in order to well exploit the spatial
information embedded in image pixels, we extend e-LDA-L21
to Euler 2DLDA-L21 (e-2DLDA-L21) in this section. Prior to
formulating e-2DLDA-L21, we first introduce the matrix form
of cosine distance metric. The matrix form of Eq. (15) is

d (Xp,Xq) =
∑
h,k

{1− cos (απ (Xp (h, k)−Xq (h, k)))}

(40)
where Xp(h, k) and Xq(h, k) denote the element of the hth-
row and kth-column of matrices Xp and Xq , respectively.

By simple algebra, Eq. (40) becomes

d (Xp,Xq) =
∑
h,k

{1− cos (απ (Xp (h, k)−Xq (h, k)))}

=
∑
h,k

∥∥∥ 1√
2

(
eiαπXp(h,k) − eiαπXq(h,k)

)∥∥∥2
2

= ‖Zp − Zq‖2F
(41)

where
Zq =

1√
2
eiαπXq ∈ Cm×n (42)

is called Euler representation of Xq ∈ Rm×n.
In e-2DLDA-L21, the between-class and within-class scatter

matrices are respectively defined as

tr
(
QHGbQ

)
=

c∑
i=1

ni
∥∥QH

(
Z̄i − Z̄

)∥∥
L2,1

(43)

tr
(
QHGwQ

)
=

c∑
i=1

∑
j∈ci

∥∥QH
(
Zj − Z̄i

)∥∥
L2,1

(44)

where Zj , Z̄i and Z̄ are the corresponding Euler representation
of Xj , X̄i and X̄, which can be obtained by Eq. (42),
respectively.

According to the Eq. (43) and Eq. (44), the objective
function of e-2DLDA-L21 can be rewritten as

Qout = arg max
qH
k qk=1

∥∥QHΦb

∥∥
L2,1

‖QHΦw‖L2,1
(45)

where Φb =
[
n1
(
Z̄1 − Z̄

)
, n2

(
Z̄2 − Z̄

)
, · · · , nc

(
Z̄c − Z̄

)]
,

Φw =
[
Z1 − Z̄1, · · · ,Zj − Z̄ci , · · · ,ZN − Z̄c

]
.

B. Algorithm

Before solving the objective function (45), we first in-
troduce the following equations. Given an arbitrary matrix
A ∈ Cm×n, according to the definition of L21-norm, we have

‖A‖L21
=

n∑
k=1

‖A(:, k)‖2

=

n∑
k=1

tr(
A(:, k)A(:, k)

H

‖A(:, k)‖2
)

= tr(AΛAH)

(46)

where Λ = diag
(

1
‖A(:,1)‖2

, 1
‖A(:,2)‖2

, ..., 1
‖A(:,n)‖2

)
.

According to the Eq. (46), we have∥∥QHΦb

∥∥
L2,1

=

c×n∑
k=1

∥∥QHΦb (:, k)
∥∥
2

= tr
(
QHΦbDΦb

HQ
)

(47)∥∥QHΦw

∥∥
L2,1

=

N×n∑
k=1

∥∥QHΦw (:, k)
∥∥
2

= tr
(
QHΦwEΦw

HQ
)

(48)
where D = diag

(
1

‖QHΦb(:,1)‖2
, · · · , 1

‖QHΦb(:,c×n)‖2

)
, E =

diag
(

1
‖QHΦw(:,1)‖2

, · · · , 1
‖QHΦw(:,N×n)‖2

)
.

Substituting Eq. (47), Eq. (48) into Eq. (45), the objective
function of e-2DLDA-L21 becomes

Qopt = arg max
qk

Hqk=1

tr
(
QHΦbDΦb

HQ
)

tr
(
QHΦwEΦw

HQ
) (49)

Eq. (49) can be converted to

Qopt = arg min
qkHqk=1

tr
(
QHΦwEΦw

HQ
)

s.t. QHΦbDΦb
HQ = T

(50)

where T is a matrix whose elements are constants.
With reference to the solution process of e-2DLDA-L21 in

Eq. (24), Eq. (25) and Eq. (26), we can derive the Lagrangian
function corresponding to the model (50), and then let the
result be equal to zero. Finally, we can get

Ψb
−1ΨwQ = QΛ (51)

where Ψb = ΦbDΦb
H and Ψw = ΦwEΦw

H .
The optimal projection matrix Q of the objective func-

tion (50) consists of the eigenvectors of the Eigen-equation
Ψb
−1Ψwqk = λkqk(k = 1, · · ·, d) corresponding to the first

d smallest eigenvalues except zero.
Finally, we summarize the pseudo code of solving the

objective function (50) in Algorithm 2.

Algorithm 2: e-2DLDA-L21 algorithm
Initialize:
Initialize parameter α, ε, Q(1) ∈ Qm×d which satisfies
qk

Hqk = 1(k = 1, 2, · · · , d), t = 1.
Iteration:
1. Calculate Zj (j = 1, 2, · · · , N) by Eq. (42).
2. Calculate Ψw and Ψb.
3. Calculate Qt by Eq. (51) and select d eigenvectors
corresponding to the first d smallest eigenvalues except zero
as Qt.
4. t = t+ 1, go to until converges.
Output: Qt

V. EXPERIMENTAL RESULTS

In this section, we validate our approaches in five face
datasets (Extended Yale B, AR, CMU PIE, LFWcrop and
SUFR-W) and compare them with the some representative
methods such as LDA-L1 [28], ILDA-L1 [30], Wang’s method
[27], KISSME [10], XQDA [13], and DNS [15], 2DPCA [3],
2DPCA-L1 [24], 2DLDA [5], L1-2DLDA [33]. In our experi-
ments, we use 1-nearest neighbor (1NN) for classification. For



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * * 8

Figure 4. Some samples of one person in the Extend Yale B database.The
second row is noised images. The third row is face images+object images
(outliers).

Figure 5. Some samples of one person in the CMU PIE database.The second
row is noised images. The third row is face images+object images (outliers).

all 1D methods, we empirically set the maximum number of
projection vectors to the number of input-data class minus 1,
and set the parameter α in e-LDA-L21 to 1.0 for AR, CMU
PIE, LFWcrop and SUFR-W databases, [0.1,0.3,0.7,0.7] for
four groups of experiments on the Extended Yale B database.
For all 2D methods, we set the maximum number of projection
vectors to 25, and set the parameter α in e-2DLDA-L21 to
1.0 for all databases. All the experiments are performed on
the windows-7 operating system (Intel Core i6-4770 CPU @
3.40 GHz 8 GB RAM).

A. Databases

The Extended Yale B database [46] includes 2414 face
images that were sampled from 38 persons under frontal-view
with different illuminations. In the Extended Yale B dataset,
most classes (person) have 64 images except for the 11th, 12
th, 13th, 14th, 15th, 16th and 17th that have 60, 59, 60, 63, 62,
63, and 63 images, respectively. Each image was resized to be
32×32 pixels. 14 images per person were randomly selected
and placed two types of noise, respectively. One is the black
and white dots. The ratio of the pixels of noise to number
of image pixels is intervenient 0.05 to 0.15. Another is the
16× 16 pixels block of object images. Thus, we got two new
galleries for the experiments. Figure 4 show some images of
one person, where the second and third rows denote the first
and second types of noised images, respectively.

Figure 6. Some samples in the LFWcrop database.

Figure 7. Some samples in the SUFR-W database.

AR dataset [47] contains over 4000 color face image of 126
people, including frontal views of faces with different facial
expressions, lighting conditions and occlusions. The pictures
of 120 individuals (65 men and 55 women) were taken in two
sessions (separated by two weeks). Each session contained 13
color images, which include 6 images with occlusion and 7
full facial images with different facial expressions and lighting
conditions. In this dataset, we converted each color image to
gray image by Matlab function rgb2gray and then normalized
it to 50×40 pixels [3].

The CMU PIE dataset [48] has 2856 frontal-face images
sampled from 68 persons (classes) with various illumination.
In the PIE dataset, each image was resized to 32×32 pixels. 10
images per person were randomly selected and placed the two
same types of noise as that in the Extend Yale B database.
Thus, we got two galleries for the experiments. Figure 5
shows some images of one person, where the second and
third rows denote the first and second types of noised images,
respectively.

LFWcrop dataset [49] is a cropped version of the Labeled
Faces in the Wild (LFW) dataset. In the vast majority of im-
ages, almost all of the backgrounds are omitted. The extracted
area was then scaled to 64x64 pixels. Figure 6 shows some
images of one person in the LFWcrop. The cropped faces in
LFWcrop exhibit real-life conditions, including misalignment,
scale variations, in-plane as well as out-of-plane rotations.

SUFR-W dataset [49] is a new unconstrained natural image
dataset which contains both grayscale and color images. In this
dataset, we converted each color image to gray image and then
normalized it to 64x64 pixels. Figure 7 shows some images
of one person in the SUFR-W.

B. Experiments for 1-D methods

In the AR dataset, we randomly select 13 images per person
for training and the remaining images for testing, and then re-
spectively use the aforementioned four 1-d methods to extract
features. We repeat this process 10 times. Table III lists the
top average recognition accuracy with corresponding standard
deviation (std) and average running time with corresponding
standard deviation (std).

In the Extended Yale B dataset, we conduct two group
experiments for each type of noised image, respectively. In
the first group experiment, we randomly choose 32 images
per person, which include 18 noise-free images and 14 noised
images, for training, and the remaining images are viewed as
testing images. In the second group experiment, we randomly
choose 32 images including 7 noised images per person
for training and the remaining images for testing. All of
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the aforementioned experiments are repeated 10 times. Table
IV lists the top average recognition accuracy and standard
deviation.

In the CMU PIE dataset, we do the same experiments as
those in the Extended Yale B databaset for each type of
noised image. In the first group experiment, 21 images per
class, including 11 noise-free images and 10 noised images are
randomly selected for training, and the remaining images for
testing. In the second group experiment, we randomly select
21 images (5 noised and 16 noise-free images) per person for
training and the remaining images are viewed as testing data.
All of the aforementioned experiments are repeated 10 times
in the experiments. Table V lists the top average recognition
accuracy and standard deviation.

In the LFWcrop dataset, we choose person who has more
than 20 photos but less than 100 photos as the sub-database,
which contains 57 classes and 1883 images. For each person,
we randomly choose ninety percent of all images for training,
and the remaining images for testing. We repeat this process
10 times. Table VI lists the top average recognition accuracy
and standard deviation.

In the SUFR-W dataset, we choose person who has more
than 50 photos but less than 60 photos as the sub-database,
which contains 54 classes and 2921 images. For each person,
we randomly choose ninety percent of all images for training,
and the remaining images for testing. We repeat this process
10 times. Table VI lists the top average recognition accuracy
and standard deviation.

Figure 8 plots the average classification curves of four
methods versus the number of projection vectors on the AR
database, Extended Yale B database and CMU PIE database.
Figure 9 plots the average classification curves of four methods
versus the number of projection vectors on the LFWcrop and
SUFR-W databases.

TABLE III
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) WTIH

CORRESPONDING STANDARD DEVIATION(STD) AND AVERAGE TRAINING
TIME WITH CORRESPONDING STANDARD DEVIATION (STD)ON THE AR

DATABASE.

Methods accuracy std running time std
e-LDA-L21 98.87 0.46 9.4465 0.0757
ILDA-L1 96.65 0.56 75.6425 1.7764
LDA-L1 92.72 1.37 14.2829 0.5127
Wang’s 97.52 0.51 46.4280 1.9850

KISSME 97.86 0.38 8.3278 0.6236
XQDA 98.46 0.29 8.7592 0.4930
DNS 97.78 0.64 6.5290 2.5289

As can be seen in the aforementioned experiments, we have
• LDA-L1 is inferior to ILDA-L1, this is because that

LDA-L1 solves the optimal projection vectors by greedy
strategy and the obtained solution does not best optimize
the corresponding trace ratio objective function, while
ILDA-L1 avoids this problem by non-greedy algorithm.
Wang’s method is superior to the other two `1-norm based
methods. The reason may be that Wang’s method takes
into account the relationship between projection vectors
which is important for classification. LDA-L1 and ILDA-
L1 are inferior to e-LDA-L21. This is due to the fact

TABLE IV
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) AND

CORRESPONDING STANDARD DEVIATION(%) ON THE EXTENDED YALE B
DATASET

Methods
Black and white dots Image outliers

Exp1− 1 Exp1− 2 Exp2− 1 Exp2− 2

e-LDA-L21 90.10±0.69 87.90±0.77 90.40±0.62 87.49±1.12
ILDA-L1 85.18±0.78 85.40±0.87 85.36±1.08 82.13±1.09

LDA-L1 69.99±2.47 71.12±2.04 67.53±6.53 68.12±6.41

Wang’s 85.64±0.59 85.68±0.76 85.10±5.09 84.08±1.41

KISSME 85.74±0.93 86.95±0.64 85.93±0.55 83.69±0.95

XQDA 87.97±0.61 86.81±0.74 88.73±0.73 86.65±1.02

DNS 90.04±0.89 85.01±0.95 88.03±1.41 83.28±1.31

TABLE V
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) AND

CORRESPONDING STANDARD DEVIATION(%) ON THE CMU PIE DATASET

Methods
Black and white dots Image outliers

Exp1− 1 Exp1− 2 Exp2− 1 Exp2− 2

e-LDA-L21 99.99±0.02 99.69±0.17 99.94±0.09 98.20±0.29

ILDA-L1 99.05±0.38 98.20±0.34 98.70±0.63 95.22±0.43

LDA-L1 89.43±1.26 89.10±0.58 90.04±1.43 88.50±1.30

Wang’s 99.28±0.39 98.51±0.27 99.38±0.48 97.32±0.43

KISSME 99.01±0.30 99.15±0.16 99.29±0.44 97.03±0.47

XQDA 99.22±0.36 98.87±0.23 99.55±0.21 98.51±0.33
DNS 99.75±0.21 99.18±0.23 99.68±0.34 96.43±0.57

TABLE VI
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) AND

CORRESPONDING STANDARD DEVIATION(%) ON THE LFWCROP AND
SUFR-W DATASETS

Methods
LFWcrop SUFR-W

accuracy std accuracy std

e-LDA-L21 54.55 3.33 40.11 2.60
ILDA-L1 40.55 2.76 27.78 1.56

LDA-L1 28.58 2.79 24.67 2.02

Wang’s 43.90 2.51 31.98 1.80

KISSME 44.08 2.06 31.89 2.38

XQDA 49.59 3.12 36.78 1.81

DNS 45.05 3.09 39.81 2.06

that LDA-L1 and ILDA-L1 measure the similarity in
the image pixel space, which is sensitive to outliers and
illumination. Another reason is that they do not well
characterize both the geometric structure of data and
nonlinear features.

• KISSME considers two independent generation processes
for observed commonalities of similar and dissimilar
pairs which utilize the statistical characteristics of the
data itself. XQDA performs better than the aforemen-
tioned four algorithms. Here, XQDA is used in the
single-view scenario, which is equivalent to the quadratic
discriminant analysis (QDA) algorithm. The quadratic
discriminant analysis algorithm is similar to the linear
discriminant analysis algorithm. The difference is that
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Figure 8. Average classification accuracy versus the projection vectors number of different methods on three databases. (a) AR, (b)Exp2-1 on the Extended
Yale B, (c)Exp2-1 on the CMU PIE.
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Figure 9. Average classification accuracy versus the projection vectors number of different methods on two databases. (a) LFWcrop, (b)SUFR-W.
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Figure 10. Convergence curves of e-LDA-L21 on the AR, CMU PIE,
Extended Yale B, LFWcrop and SUFR-W databases.

when the covariance matrices of different classification
samples are different, quadratic discrimination analysis
should be used. The performance of the DNS algorithm
is not stable, which may be due to the images of the same
person are collapsed into a single point in the null space,

thus leading to overfitting.
• Figures 8 and 9 illustrate that our method e-LDA-L21

is superior to the other four methods and can obtain the
best recognition accuracy among the four methods with
the same number of projection vectors. The reason may
be that e-LDA-L21 calculates the dissimilarity between
data in the Euler space which can suppress outliers and
improve the separability of data to obtain a large margin
for different classes. Moreover, as the aforementioned
analysis in section III, `2,1-norm enlarges the role of small
between-class distance in the criterion function. This also
helps encode the discriminant information.

• Table VI shows that under uncontrolled scenarios (with
non precise face crops), the performance of our method
degrades remarkably, compared with the performance in
other datasets. The reason may be that subspace-based
learning methods are not robust to some complicated con-
ditions including misalignment, illumination variations,
in-plane as well as out-of-plane rotations. But our method
is still remarkably superior to the other LAD based robust
subspace methods LDA-L1, ILDA-L1 and Wang’s.

• Figure 10 indicates that our method monotonically de-
creases the value of the objective function and has a good
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Figure 11. Average classification accuracy versus the projection vectors number of different methods on three databases. (a) AR, (b)Exp1-2 on the Extended
Yale B, (c)Exp1-2 on the CMU PIE.

convergence. Table III illustrates that our method is faster
than the other LDA-based methods, but slightly slower
than the other three comparison algorithms. The reason
may be that all LDA-based methods including ours need
to iteratively solve the projection vectors, but our method
converges very quickly.

C. Experiments for 2-D methods
In this section, we do the same experiments as those for

the 1-D methods in the Extended Yale B, AR, and CMU PIE
databases to validate e-2DLDA-L21, and compare with some
two-dimensional methods. Tables VIII, IX and VII list the av-
erage recognition accuracy of each method and corresponding
standard deviation (Std) on the Extended Yale B, CMU PIE
and AR databases, respectively. Figure 11 plots the average
classification accuracy of each approach versus the number
projection vectors, and Figure 12 shows the convergence curve
of e-2DLDA-L21 in these databases.

TABLE VII
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) AND

CORRESPONDING STANDARD DEVIATION(STD) ON THE AR DATABASE.

Methods accuracy std
e-2DLDA-L21 96.08 0.60

2DPCA 82.71 0.94
2DPCA-L1 82.72 0.95

2DLDA 89.93 0.68
L1-2DLDA 94.22 0.79

As can be seen in the aforementioned experimental results
for tow-dimensional methods, we have that
• Discriminant methods are consistently superior to

2DPCA and 2DPCA-L1. This is probably because that
2DPCA and 2DPCA-L1 are unsupervised and do not
well encode the discriminant information. L1-2DLDA is
overall superior to traditional 2DLDA. The reason is that
`1-norm is robust to outliers, compared with squared `2-
norm. However, 2DLDA is superior to L1-2DLDA in
some experiments. This is probably because that L1-
2DLDA does not relate to scatter matrices that well
characterize geometric structure of data, while 2DLDA
does.

TABLE VIII
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) AND

CORRESPONDING STANDARD DEVIATION(%) ON THE EXTENDED YALE B
DATABASES

Methods
Black and white dots Image outliers

Exp1− 1 Exp1− 2 Exp2− 1 Exp2− 2

e-2DLDA-L21 98.03±0.29 97.69±0.30 97.77±0.30 94.34±0.59
2DPCA 55.64±1.44 58.33±0.69 51.58±0.80 51.48±0.85

2DPCA-L1 53.77±1.07 59.44±0.60 51.61±0.72 51.43±0.88

2DLDA 81.81±0.56 85.41±0.55 85.16±1.18 84.71±1.11

L1-2DLDA 82.25±0.52 84.70±0.46 83.54±1.08 81.42±1.23

TABLE IX
THE TOP AVERAGE CLASSIFICATION ACCURACY(%) AND

CORRESPONDING STANDARD DEVIATION(%) ON THE CMU PIE
DATABASES

Methods
Black and white dots Image outliers

Exp1− 1 Exp1− 2 Exp2− 1 Exp2− 2

e-2DLDA-L21 99.94±0.15 99.71±0.11 99.99±0.02 97.30±0.21
2DPCA 77.58±0.45 85.09±0.72 77.54±1.49 76.50±1.58

2DPCA-L1 79.09±0.50 85.61±0.57 77.38±1.49 76.50±1.59

2DLDA 97.49±0.72 98.59±0.30 99.11±0.57 95.78±0.67

L1-2DLDA 99.20±0.42 98.42±0.30 99.24±0.47 95.24±0.68

• Our approach e-2DLDA-L21 is superior to the other two-
dimensional methods. This is probably because that our
method well reveals nonlinear features and discriminant
features by Euler transform and `2,1-norm. Another rea-
son is that our method relates to scatter matrices and
well exploits geometric structure of data. Figure 12 shows
that our proposed algorithm monotonically decreases the
value of the objective function and has a good conver-
gence.

• Compared to the experiments including 1D methods and
two-dimensional methods, we have that two-dimensional
methods are superior to the corresponding 1D discrimi-
nant methods in Extended Yale B. The reason may be that
two-dimensional methods encodes the spatial geometric
structure embedded in pixels of image. However, in the
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Figure 12. Convergence curves of e-2DLDA-L21 on three databases.

TABLE X
THE AVERAGE CLASSIFICATION ACCURACY(%) AND CORRESPONDING

STANDARD DEVIATION(%) ON THE EXTENDED YALE B DATASET

Methods
Black and white dots Image outliers

Exp1− 1 Exp1− 2 Exp2− 1 Exp2− 2

e-LDA-L21 90.10±0.69 87.90±0.77 90.40±0.62 87.49±1.12
LDA-L21 87.94±0.62 86.58±0.67 87.73±0.72 84.40±1.12

e-LDA-L1 84.58±0.89 84.23±0.97 82.53±0.91 80.36±0.87

LDA-L1 69.99±2.47 71.12±2.04 67.53±6.53 68.12±6.41

other datasets, two-dimensional methods are inferior to
the corresponding 1D discriminant methods. The reason
may be that two-dimensional methods would be con-
fronted with the heteroscedastic problem and the problem
would be more serious for two-dimensional methods than
the one for 1D-dimensional methods [52].

D. Discussion

1) : `2,1-norm and Euler transform
To discuss the effects of Euler transform and `2,1-norm for

discriminant analysis respectively, we compared e-LDA-L1,
e-LDA-L21, LDA-L1 and LDA-L21 on the Extended Yale
B, LFWcrop and SUFR-W databases. In the experiments,
we selected the aforementioned training images and corre-
sponding testing images on these datasets. Tables X and XI
list the average recognition accuracy of each approach and
corresponding standard deviation (Std), respectively. Figure
13 plots the average classification accuracy of each approach
versus the number projection vectors on the Extended Yale B,
LFWcrop and SUFR-W databases, respectively.

As can be seen in the aforementioned experiments, we have
• Discriminant methods with Euler transformation (e-LDA-

L21 and e-LDA-L1) are superior to the corresponding
methods without Euler transformation (LDA-L21 and
LDA-L1). The reason may be that e-LDA-L21 and e-
LDA-L1 calculate the dissimilarity and similarity be-
tween data in the Euler space which can suppress outliers
and reveal nonlinear features. Moreover, Euler space can
help improve the separability of data and obtain a large
margin for different classes.

TABLE XI
THE AVERAGE CLASSIFICATION ACCURACY(%) AND CORRESPONDING

STANDARD DEVIATION(%) ON THE LFWCROP AND SUFR-W DATASETS

Methods
LFWcrop SUFR-W

accuracy std accuracy std

e-LDA-L21 54.55 3.33 40.11 2.60
LDA-L21 45.18 1.77 33.44 1.81

e-LDA-L1 49.08 1.48 39.85 2.53

LDA-L1 28.58 2.79 24.67 2.02

• Methods, which employ `2,1-norm as distance metric,
are superior to `1-norm based methods. The reason is
that `2,1-norm based methods reveal within-class and
between-class scatters, while `1-norm based methods
do not. Moreover, `2,1-norm enlarges the role of small
between-class distance. This helps get a large margin
which is important for classification. However, it is un-
clear whether `1-norm plays the same role.

• Table XI shows that LDA-L21 is inferior to e-LDA-L1.
The reason may be that LDA-L21 does not well encode
nonlinear discriminant features. It also illustrates that
Euler transform well revels nonlinear features.

• Figure 13 illustrates that e-LDA-L21 is superior to the
other three methods and obtains the best recognition
accuracy among the four methods under the same number
of projection vectors.

2) : The sensitivity analysis of the parameter α.
In order to well illustrate the influence of parameter α in our

model, we added some experiments on the Extended Yale B,
AR and SUFR-W databases. In the experiments, we selected
the aforementioned training images and corresponding testing
images on these datasets. Figure 14 plots the curves of
classification accuracy versus parameter α on three databases,
respectively, and also marks the maximum value for each
group experiments.

As can be seen in the aforementioned experiments, we have
• From Figure 14 (a), we can see that α has a large

influence for the classification accuracy of our method
under the different group experiments on the Extend Yale
B database. It is unable to select the same α in this
dataset. Thus, we select different α for different group
experiments on the Extended Yale B dataset.

• Figure 14 (b) illustrates that α has little influence for
the classification accuracy of our method on the AR and
SUFR-W databases. When α is in [0.9 1.1] interval, our
method overall has good performance. Thus, we set α as
1.0 in the experiments on the AR and SUFR-W datasets.

VI. CONCLUSION

We present a robust supervised approach, namely Euler
LDA-L21(e-LDA-L21), for dimensionality reduction. e-LDA-
L21 maps image onto Euler space and employs `2,1-norm
as distance metric to measure within-class and between-class
scatters in the criterion function. It is similar to kernel LDA,
but they are essentially different. The the main difference
between them is that, e-LDA-L21 maps the original image
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Figure 13. Average classification accuracy versus the projection vectors number of different methods on three databases. (a)Exp2-2 on the Extended Yale B,
(b)LFWcrop, (c)SUFR-W.
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Figure 14. The curve of classification accuracy versus the parameter α. (a) Extended Yale B, (b)AR and SUFR-W.

space to an explicit Euler feature space and does not in-
crease the dimensionality of features, while kernel LDA does
not. Compared with most existing robust LDA methods, our
method not only is robust to outliers but also helps obtain a
large margin in the low-dimensional space. Thus, our method
encodes discriminant information. Experiment results illustrate
that our proposed algorithms have a good convergence and our
methods are superior to the other robust methods for image
classification.

For feature extraction, rotational invariance is one of the
important properties [50] [51]. As the aforementioned anal-
ysis, from the norm point of view, `2,1-norm and traditional
squared `2-norm have no essential difference, thus, our method
retains traditional LDA’s rotation invariance. We will study this
problem in future work.
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