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COMMUNICATION

Breakdown of Curly Arrow Rules in Anthraquinone

Jehan Alqahtani,[a] Hatef Sadeghi

Understanding and controlling quantum interference QI in 

single molecules is fundamental to the development of QI based 

single molecule electronics. Over the past decade, simple rules such 

as counting rules, curly arrow rules, circuit rules and more recent

magic ratio rules have been developed to predict QI patterns in 

polycyclic aromatic hydrocarbons. These rules have been successful 

in explaining observed electronic transport properties of molecular 

junctions and provide helpful design tools for predict

molecules before their synthesis. Curly arrow rules are widely used 

by chemists, material scientists and physicists to predict destructive 

QI. Here we examine the validity of curly arrow rules in fully 

conjugated anthracene and dihydroxya

anthraquinone and broken conjugated dihydroanthracene attached 

to graphene or gold electrodes through pi

C anchors. For the first time, we demonstrate that curly arrow rules 

break down in molecular junctions formed by cross

anthraquinone. In contrast with the destructive QI predicted by curly 

arrow rules for a meta connected anthraquinone core, we 

demonstrate that QI is constructive. This behavior is independent of 

the choice of electrode material or anchor groups. This is significant, 

because by changing the redox state of meta connected 

dihydroxyanthracene to form meta connected anthraquinone, the 

conductance of the junction increases by couple of orders of 

magnitude due to the cross over f

This opens new avenues for realization of quantum interference 

based single molecule switches. 

Single molecule electronics has recently witnessed significant 

. Much attention has been drawn to phase coherent 

uantum interference (QI)
[2]

, which plays an essential role in electronic 

transport through single molecules

, curly arrow rules

more recently magic ratio rules
[6]

effect of interference patterns in polycyclic aromatic hydrocarbons 

(PAHs). When a molecule is connected to metallic electrodes with 

different connectivities, electrons traversing multiple paths interfere 

constructively or destructively
[7]

. This constructive (destructive) QI 

leads to a high (low) conductance. The above rules are helpful in 

identifying if destructive or constructive QI is expected for a given 

connectivity. In addition, magic ratio rules provide information about 

atios of conductances belonging to different constructive 

connectivities. These simple rules provide basic understanding of a 

molecular scale junctions and can qualitatively explain various 

.  

Over the past decades, curly arrow rules (C

to predict destructive QI in molecules

movement of pairs of electrons
[4]

. When an electron is placed on a site 
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C anchors. For the first time, we demonstrate that curly arrow rules 
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anthraquinone. In contrast with the destructive QI predicted by curly 

arrow rules for a meta connected anthraquinone core, we 

demonstrate that QI is constructive. This behavior is independent of 

terial or anchor groups. This is significant, 

because by changing the redox state of meta connected 

dihydroxyanthracene to form meta connected anthraquinone, the 

conductance of the junction increases by couple of orders of 

magnitude due to the cross over form constructive to destructive QI. 

This opens new avenues for realization of quantum interference 
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[3]
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, curly arrow rules
[1c,4]

, quantum circuit rules
[6]

 have been developed to predict the 

effect of interference patterns in polycyclic aromatic hydrocarbons 

(PAHs). When a molecule is connected to metallic electrodes with 

different connectivities, electrons traversing multiple paths interfere 

. This constructive (destructive) QI 

leads to a high (low) conductance. The above rules are helpful in 

identifying if destructive or constructive QI is expected for a given 

connectivity. In addition, magic ratio rules provide information about 

atios of conductances belonging to different constructive 

connectivities. These simple rules provide basic understanding of a 

molecular scale junctions and can qualitatively explain various 

Over the past decades, curly arrow rules (CARs) have been used 

to predict destructive QI in molecules
[1c]

. Curly arrows predict the 

. When an electron is placed on a site 
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anthraquinone. In contrast with the destructive QI predicted by curly 
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because by changing the redox state of meta connected 

dihydroxyanthracene to form meta connected anthraquinone, the 

conductance of the junction increases by couple of orders of 
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[5]

en developed to predict the 

effect of interference patterns in polycyclic aromatic hydrocarbons 

(PAHs). When a molecule is connected to metallic electrodes with 

different connectivities, electrons traversing multiple paths interfere 
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leads to a high (low) conductance. The above rules are helpful in 

identifying if destructive or constructive QI is expected for a given 

connectivity. In addition, magic ratio rules provide information about 

atios of conductances belonging to different constructive 
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as counting rules, curly arrow rules, circuit rules and more recently 

magic ratio rules have been developed to predict QI patterns in 

polycyclic aromatic hydrocarbons. These rules have been successful 

in explaining observed electronic transport properties of molecular 

ing properties of 
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QI. Here we examine the validity of curly arrow rules in fully 

conjugated 

anthraquinone and broken conjugated dihydroanthracene attached 

pi stacking or thiol and Au-
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conjugated 

anthraquinone. In contrast with the destructive QI predicted by curly 

arrow rules for a meta connected anthraquinone core, we 
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. Curly arrows predict the 

. When an electron is placed on a site 

in a PAH, the charges should be balanced. A bond is broken if 

electrons are removed from it; ot

are placed between two atoms. This process is illustrated by curly 

arrows. When an electron path was formed by moving pairs of 

electrons (using curly arrows) between two injection and collection 

connectivities, constru

was not found, destructive QI is predicted

connected anthracene (AC1 in figure 1a), the arrows shows the path 

that the electron could take to travel through the molecule

contrast, in 

formed and the electron entered to the molecule cannot exit

case, the CAR predicts destructive QI. Indeed these predictions for 

anthracene have been observed experimenta

when curly arrows are drawn, due to the presence of oxygen, there is 

no path between both 

CARs predict destructive QI for both 

(AQ1 and AQ2 in figure 1c,d). 

first principles calculations.

Figure 1.

conjugated anthracene labelled by AC1 and AC2, respectively. (c) 

meta 

respectively.

 

In this 

We examine the validity of CARs using anthraquinone based 

molecular junctions. In contrast with curly arrow rules which predict 

destructive QI for both 

anthraquinone, we demonstrate destructive QI for 

anthraquinone (fig. 1c), but constructive QI for 

is independent of the choice of anchor group or electro

contrast to conjugated anthracene, anthraquinone is a cross

conjugated molecule. If each oxygen in anthraquinone was replaced 

by two hydrogens, a broken conjugated dihydroanthracene is obtained. 

In what follows, we also investigate the qua

these three types of molecules. We study the cross

anthraquinone molecular junctions (AQ1 and AQ2 in fig. 2) and 

compare it with its conjugated counterpart anthracene (AC1 and AC2 

in fig. 2) and dihydroxyanthracene (Q

conjugated dihydroanthracene (AH)

junctions are formed by attaching these molecules to gold electrodes 

via thiol

electrodes 

have constructed 22 different molecular junctions by combining ACs, 

AQs, QCs and AHs with 2 electrodes and 3 anchors summarized in 

figures S1, S2 and S3 of the supporting information SI (See fig.

the SI for details of molecular structure).
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when curly arrows are drawn, due to the presence of oxygen, there is 

no path between both 

CARs predict destructive QI for both 

(AQ1 and AQ2 in figure 1c,d). 

first principles calculations.

Figure 1. The curly arrow rule (

conjugated anthracene labelled by AC1 and AC2, respectively. (c) 

 connected cross conjugated 

respectively. 

this communication

We examine the validity of CARs using anthraquinone based 

molecular junctions. In contrast with curly arrow rules which predict 

ructive QI for both 

anthraquinone, we demonstrate destructive QI for 

anthraquinone (fig. 1c), but constructive QI for 

is independent of the choice of anchor group or electro

contrast to conjugated anthracene, anthraquinone is a cross

conjugated molecule. If each oxygen in anthraquinone was replaced 

by two hydrogens, a broken conjugated dihydroanthracene is obtained. 

In what follows, we also investigate the qua

these three types of molecules. We study the cross

anthraquinone molecular junctions (AQ1 and AQ2 in fig. 2) and 

compare it with its conjugated counterpart anthracene (AC1 and AC2 

in fig. 2) and dihydroxyanthracene (Q

conjugated dihydroanthracene (AH)

junctions are formed by attaching these molecules to gold electrodes 

via thiol
[9] 

(fig. 2a) and direct Au

electrodes through pi

have constructed 22 different molecular junctions by combining ACs, 

AQs, QCs and AHs with 2 electrodes and 3 anchors summarized in 

figures S1, S2 and S3 of the supporting information SI (See fig.

the SI for details of molecular structure).
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arrows. When an electron path was formed by moving pairs of 

electrons (using curly arrows) between two injection and collection 

connectivities, constructive QI is expected. Otherwise, if such a path 

was not found, destructive QI is predicted

connected anthracene (AC1 in figure 1a), the arrows shows the path 

that the electron could take to travel through the molecule

connected anthracene (AC2 in figure 1b), a loop is 

formed and the electron entered to the molecule cannot exit

case, the CAR predicts destructive QI. Indeed these predictions for 

anthracene have been observed experimenta

when curly arrows are drawn, due to the presence of oxygen, there is 

no path between both para and meta

CARs predict destructive QI for both 

(AQ1 and AQ2 in figure 1c,d). However, this is not supported with our 

first principles calculations. 

The curly arrow rule (CAR). (a) 

conjugated anthracene labelled by AC1 and AC2, respectively. (c) 

connected cross conjugated anthraquinone labelled by AQ1 and AQ2, 

communication, we show that the curly arrow rule breaks down. 

We examine the validity of CARs using anthraquinone based 

molecular junctions. In contrast with curly arrow rules which predict 

ructive QI for both para (fig. 1c) and 

anthraquinone, we demonstrate destructive QI for 

anthraquinone (fig. 1c), but constructive QI for 
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by two hydrogens, a broken conjugated dihydroanthracene is obtained. 
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junctions are formed by attaching these molecules to gold electrodes 

(fig. 2a) and direct Au-C
[10

through pi-pi stacking with pyrene anchors

have constructed 22 different molecular junctions by combining ACs, 

AQs, QCs and AHs with 2 electrodes and 3 anchors summarized in 

figures S1, S2 and S3 of the supporting information SI (See fig.

the SI for details of molecular structure).
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Figure 2. The structure of three systems with three central cores (AC, QC and AQ) via different connectivities. (a) A direct C

gold. (c) Pyrene with graphene.

In order to investigate the electronic properties of the junctions, we 

obtain the mean-field Hamiltonian of each structure from the optimized 

geometry of the junctions shown in figure S2 of the SI 

functional theory DFT

Hamiltonians with the transport code Gollum

transmission coefficient 

one electrode to the other. The conductance is proportional to 

Landauer formula 

F is the Fermi energy of electrode (see methods). 

Figure 3. Transmission coefficients for electrons p

with graphene electrodes via pyrene anchor groups. (a,b) example of junctions 

formed by AQ cores connected to the anchors from 

Transmission coefficients for (c) AC1 and AC2, (d) QC1 and QC2 and (e) AQ1 

and AQ2. The features around 

number open channels in graphene electrodes.

Figure 3 shows the calculated transmission coe

with graphene electrodes. Figures 3a,b show examples of the 

junctions formed using graphene electrodes, where AQ’s are 

connected from different connection points to two pyrene electrodes 

through acetylene linkers. Pyrene anchors are 

electrodes (shaded regions in figure 3a,b) through pi

the pi system of graphene. The molecular structures of the junctions 

formed with graphene electrodes and these 6 molecules are shown in 

figure S2 in the SI. Figure 3

graphene junctions formed by AC cores. In agreement with previous 

theoretical
[3b,14] 

and experimental studies

para connected AC1 (fig. 2) shows high conductance due to a 

constructive QI whereas a low conductance is obtained in AC2 due to 

a destructive QI (fig. 3c). Note that since the junction including leads 

and molecule is formed from carbon and hydrogen, a uniform charge 

distribution is expected. Therefore, the DFT Fermi energy lies c
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diamond involving Vb=0V and V

avenues for realization of quantum interference based single molecule 

to understand how interference patterns are affected by 

replacing oxygen atoms in AQ with two hydrogens to form broken 

conjugated dihydroanthracene (AH), we calculate the transmission 

coefficients for two para and meta

or gold electrodes through either pi

C anchors. Figure S9 shows the transmission coefficient for these 

junctions. There is no signature of a strong destructive interference dip 

in these junctions in contrast with the

CARs. The transmission is slightly lower for 

para ones around DFT Fermi energy. Replacing 

hydrogens with methyl groups does not change the overall trends 

although the magnitude of difference

conectivities is generally more pronounced (fig. S10).

In summary, we demonstrated that curly arrow rules break down 

in molecular junctions formed by cross

Curly arrow rules predict destructive QI for a 

anthraquinone core, whereas the first principle material specific 

calculation predicts constructive QI. This behavior is independent of 

choice of electrode material or anchor groups and arises from the 

evolution of the HOMO of dihydroxyanthrace

anthraquinone upon removal of the Hs from the pendant OH groups of 

dihydroxyanthracene. This pushes the anti

LUMO gap of meta-connected dihydroxyanthracene into the 

LUMO+1 gap of meta-connected anthraquinone

we find that the destructive interference predicted by curly arrow rules 

in broken conjugated dihydroanthracene is not apparent in DFT

transport calculations. Although, curly arrow rules are widely used by 

chemists, material scientists and engineers and have been successful 

in predicting destructive QI in many molecular junctions, it is not valid 

conjugated anthraquinone with 

Computational methods

The Hamiltonian of the structures described in this paper was obtained 

using DFT as described below or constructed from a simple tight

model with a single orbital per atom of site energy 

neighbor couplings γ =−1. On-site energies 

Density Functional Theory (DFT) Calculation. 

state Hamiltonian and overlap matrix elements of each 

structure were self-consistently obtained using the SIESTA

 of DFT. SIESTA employs norm

pseudopotentials to account for the core electrons and linear 

combinations of atomic orbitals to construct the valence states. The 

generalized gradient approximation (GGA) of the exchange and 

correlation functional is used with the Perdew
[15], a double-ζ polarized basis set, a real

defined with an equivalent energy cutoff of 250 Ry. The geometry 

optimization for each structure is performed for the forces smaller than 40 

Transport calculation. Transport Calculation. The mean

Hamiltonian obtained from the converged DFT calculation or a simple 

binding Hamiltonian was combined with Gollum

the nonequilibrium Green’s function method to 
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Curly arrow rules breakdown in 

molecular junctions formed by cross

conjugated anthraquinone. In contrast 

with the destructive quantum 

predicted by curly 

arrow rules for a meta connected 

anthraquinone core, we demonstrate 

that QI is constructive. 
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