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Abstract

This thesis is concerned with introducing competition into random models. It can be

observed that there are two natural mechanisms for the evolution of a random model;

either by growth or by self interactions. What we do is look at two types of models and

introduce competition within them. The first model, the voter model, is an example

of a self interacting model and we introduce growth into it. The second model, the

Hasting-Levitov model, is a random growth model and we introduce competition

within the model.

In both cases we construct diffusion approximations to model these systems when

the initial population is large for the first case and when the addition of incoming par-

ticles is small in the second. Once these diffusion processes have been constructed we

then analyse the long term behaviour of them and find their asymptotic distribution,

this is done by using the speed measure and scale function.
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Chapter 1

Introduction

This thesis is split into four parts, each dealing with its own specific material. Chapters

2 and 3 serve as a literature review with Chapter 2 providing a grounding in where this

area of research lies. We give a rough overview of two types of models; random growth

models and self-interacting models. As the name suggests, random growth models are

those that consist of a set which increases over time, given some probabilistic rule. We

consider the Pólya urn model since it is simple to describe and also has an asymptotic

distribution, something we are interested in with the models we consider. We also

look at the Eden model and its continuous analogue, the Hastings-Levitov model,

since part of our research focuses on this model.

Self interacting models are those that have states which change over time. We

consider the voter model, which is a simplistic model for representing the votes of

people. Again, this is another model which our research focuses on. We also include

the Moran model and that of Wright-Fisher diffusion. This is because they are both

used in population genetics where Wright-Fisher diffusion could be thought of as the

continuous limit of the Moran model. We include these here as some of our stochastic

differential equations that appear are similar to that of Wright-Fisher diffusion. We

then end the section by considering a deterministic model which contains these two
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types of behaviour.

Chapter 3 focuses on the tools required for us to construct and then analyse our

models. We start by introducing the kernel of a pure jump process. This is a very

useful object since it contains all the information of the process. With the kernel

defined we then look at what a scaling limit is and state a theorem which ensures we

have weak convergence of a sequence of stochastic processes to a diffusion process.

Once we have done this, we then analyse the obtained diffusion process. We look at

the speed measure and scale function, which are required for us to analyse our systems,

along with how to classify the boundary behaviour. This is enough information to

then find the asymptotic distribution.

The next two chapters, Chapter 4 and 5, contain our original work. We use the

tools introduced in Chapter 3 to analyse the models and work out their long term

behaviour.

Chapter 4 consists of the voter model, a self-interacting model, and we study the

behaviour after the introduction of growth. This was originally studied in [Morris

and Rogers, 2014], but we extend these results and reconfirm their results using the

kernel of a process and Kurtz’s theorem. We also give a full characterisation of the

model. We show how the addition of growth has the ability to turn absorbing states

into reflecting ones and then analyse the limiting behaviour.

In Chapter 5 we do the opposite. We consider a random growth model where the

growth is constructed via a sequence of conformal maps, in this case the Hastings-

Levitov model and introduce competition into it. We introduce a form of competition

where we allow the growth to vary depending on the harmonic measure of the regions.

We show it is necessary to allow the size and rate of the added particles to change to

ensure that we do have coexistence between the competing regions.
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Chapter 2

Random Models

The aim of this section is to give an overview of where our area of research lies. To

do this we consider two types of random models. As the name suggests, a random

model is intended to model something with a random element and is often influenced

by the world around us. There are two natural mechanisms to think of when we

consider this; growth and self-interactions. The first type of models that we consider

are those that grow, such as the Eden model. The second type of models that we

consider are those which evolve dynamically so that the states of them change over

time; an examples of this would be the voter model. After we consider these two

types of models, we consider a model that lies in the intersection of these areas; one

which grows but also evolves dynamically. This is the area that we perform research

in.

2.1 Random Growth Models

We shall consider two types of models in this section, those which grow on a lattice,

called lattice models, and those which do not, called off lattice models. Lattice models

are useful since the structure of the lattice allows us to grow clusters in an easy to

explain way. The main disadvantage is that this does not represent many real life
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examples. Off lattice models are a better representation for real world growth, but

can be harder to model mathematically.

2.1.1 Lattice Models

In this section we look at three types of lattice models. In all cases, we are looking

at the square lattice Z2 but these can be expanded to others.

Eden Model

A contender as a model for cell growth, the Eden model is named after Murray Eden

who studied it in [Eden, 1961] and is used to model the growth of a cluster where

the growth is motivated by the splitting of cells. Consider the square lattice with a

particle located at the origin. This has four unoccupied neighbours; we uniformly pick

one of these neighbours at random and the cell divides to occupy this cell too. This

cluster now has six neighbours and we repeat the process, letting the cluster grow,

see Figure 2.1.

Figure 2.1: Possible first steps of the Eden model. The black cells indicate occupied
sites and the white ones are the possible growth sites, which are picked with equal
probability among them.

An interesting question to ask is, when we let the cluster grow for a long time, does

a shape form? To be more precise, does there exist a scaling limit such that when
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t→∞ we obtain a limit object? From computer simulations [Freche et al., 1985] the

authors claim that the model does seem to exhibit anisotropic behaviour, and so is

not isotropic, with large clusters forming a diamond shape, see Figure 2.2.

Figure 2.2: Simulation showing the anisotrophy from the growing clusters. The middle
has been removed to make the boundary clearer. This is Figure 2 from [Freche et al.,
1985].

Though a simple question, it was very hard to prove and very little was known

about the actual shape obtained in the limit for the first 10 years. Various attempts

have been done and some results have been gained. One of the first rigorous results

is listed below

Theorem 2.1.1. Let A be the unit circle and At the Eden cluster at time t, then

there exists a λ > 0 such that for all ε > 0 we have, with probability 1, a large enough

t0 such that for all t > t0,

(1− ε)λA ⊂ Āt/t ⊂ (1 + ε)λA,

where Āt is known as the continuum versions of At formed by replacing each point in

At by a unit square centered at the point.
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This result was first shown to hold in probability in [Richardson, 1973] and then

subsequently strengthened to the almost sure statement above in [Kesten, 1993]. The

main approach to showing these results is to show that the Eden model can be linked to

another model known as First-Passage percolation which we discuss in the next section

and to then show that first passage percolation satisfies a property known as ”sub-

additivity”. This was generalised by Kingmann to produce the subadditive ergodic

Theorem [Kingman, 1973]. For further details see Theorem 2.1 and the surrounding

text in [Deijfen and Häggström, 2007].

Of course, this model can be generalised onto any graph. Consider a graph G =

(V,E) comprising a set V of vertices and E of edges. Set C0 = v0, where v0 ∈ V , to

be the initial cluster. The model grows following the iteration

Cn = Cn−1 ∪ {vn−1}

where vn−1 is a vertex which neighbours the cluster Cn, which is picked uniformly at

random from all possible options.

Percolation

As the name suggests, the following model is used to represent the idea of water

seeping through a porous material. We shall restrict our study to the 2d case but this

can be extended. Imagine an n× n grid composed of 1× 1 squares, with probability

p we let each square either be occupied or not. Some simulations for p = 0.2, 0.4, 0.6

and 0.8 are shown in Figure 2.3.

This model is known as site percolation since it is the sites that are being occupied,

a slight variant known as bond percolation exists where the edges of the lattice are

considered closed or open. Site percolation can be viewed as a sub-model of the

bond percolation since every bond model can be expressed in terms of a site model

(on a different lattice) but the other way round does not hold. For further details see
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Figure 2.3: Simulations of the percolation model for p = 0.2, 0.4, 0.6 and 0.8 listed
from top left to bottom right. Filled in cells are coloured grey with empty ones in
white.

[Grimmett, 1989]. A half way house model has been proposed called bridge percolation

which links the two, see [Chayes and Schonmann, 2000].

The first question of interest is: is it possible for the water to seep through? That

is, is there a path such that we can go from the top to the bottom? This question has

been considered in the case where the lattice in infinite in which case the question is

slightly reworded to; does there exist an infinitely large open cluster containing the

origin? This can be shown to be a probability 0 or 1 event. This in-turn raises an

observation; there must exist a critical probability, denoted by pc such that for p < pc

we will find a an infinitely large set and for p > pc we can not. In our simulations we

can see that in the case when p = 0.2 and 0.4 we can find a path but in the other

two cases there does not exist a path. This is something that has been well studied,

it was shown in 1960 by Harris that for p = 1/2 we can not find a path, see [Harris,

1960] but took another 20 years before Kesten was able to show that percolation does

not occur for p > 1/2 thus showing that pc = 1/2, see [Kesten, 1980]. An overview of

this is given in [Bollobás and Riordan, 2006].
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As mentioned in the previous section, another model stemming from the percola-

tion model exists and is called, first passage percolation, this was first introduced by

Hammersley and Welsh [Hammersley and Welsh, 1965]. The idea is to introduce on

each site a random variable which represents the amount of time it takes for the liquid

to travel through the site, this is known as the passage time. If we denote the passage

time on site si as t(si) then the passage time of a path r which travels through the

site s1, s2, . . . , sn is just given by the sum of the passage times, that is

T (r) =
n∑
i=1

t(si).

The first passage time between two points, say u and v, is denoted by T (u, v) and is

defined to be the shortest time to travel between the two points, that is

T (u, v) = inf{T (r) : r is a path from u to v.}.

The main object of study here is following

B(t) = {v ∈ Zd : T (0, v) ≤ t}

the set of points which can be reached in time t from the origin. For further details

concerning this and percolation in general please see [Kesten, 1987].

Diffusion Limited Aggregation

We now consider another model that is similar to the Eden model, which was first

studied by Witten and Sanders in [Witten and Sander, 1983]. Once again, consider

the square lattice with an initial seed at (0, 0). We start a random walk “at infinity”

and once the random walk reaches an adjacent point to the cluster it sticks. We

then repeat the process, this gives another growing cluster like the Eden model, but
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instead of the addition sites being chosen uniformly over all boundary points, it is now

selected with the harmonic measure of the boundary point, which is the probability

of the point being hit by the random walk. This is different from the Eden model as

in this model there is a possibility of holes being formed as they have no chance of

being filled in, whereas in the Eden model this could not happen. This model is very

hard to study and very little is known about it, a similar case holds for its continuous

variant, off lattice diffusion limited aggregation.

2.1.2 Off Lattice Models

We now look at a type of growing model that takes place in continuous space. In

the previous section, we mentioned a growth model where the growth site was picked

based on the arrival of a simple random walk. The continuous analogue to this is called

off site diffusion limited aggregation. Consider the unit disc and allow particles to

perform a Brownian path until they hit the disc, at which point they join and increase

the size of the cluster. This is very similar to the on site model, in the sense that we

have an initial site and the cluster grows randomly but with the continuous analogue

of the random walk. The probability of hitting a point is given by the harmonic

measure; this is just the probability of a Brownian particle hitting the region. In the

case of a circle, the harmonic measure is the uniform measure on the boundary. If

the shape is a simply connected object, then we can find a conformal map between

it and the circle. Since Brownian motion is invariant under conformal maps, we can

then find the hitting probabilities from the circle. This fact will be of use later.

The problem with this model is that it is very hard to say anything about it, as it

is not mathematically tractable. This is where the model proposed by Hastings and

Levitov is considered, this was first studied in [Hastings and Levitov, 1998].
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Hastings-Levitov HL(α) Model

The model proposed is known as the Hastings-Levitov model and is one that we extend

in Chapter 5. As such, we shall dedicate this section to giving a basic understanding

of the original model. In Chapter 5, we go into more detail concerning the case when

α = 0 as this is the one we shall work with. For a more thorough introduction, please

see [Rohde and Zinsmeister, 2005].

Let K0 be the closed unit disc centered at the origin on the complex plane. We

construct a sequence of compact sets (Kn)n∈N, which represents the cluster after the

addition of n particles. The cluster after the addition of the first particle is given by

K1 = K0 ∪ P0 where P0 is the attachment of a particle at angle θ = 0. In our case,

the particle, P0, will be a slit with length d0, i.e. P0 = (1, 1 + d0].

After the addition of the first particle, we allow particles to arrive with lengths dn

and at angle θn. Though we talk about the slits being of length dn we work with what

is known as the capacity, cn, of the particles. This can be expressed as a function of

the diameter via

ecn = 1 +
d2
n

4(1 + dn)
. (2.1)

Figure 2.4 shows the relation between the values c and d, note that as c→ 0, d �

c1/2. The addition of the first particle is given by the conformal map f : D1 −→ D0.

This can be constructed from a composition of conformal maps

f(z) = (m−1 ◦ r ◦ h ◦m)(z)

where

• m maps the unit circle to the real line

m(z) =
iz − i
z + 1

;
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Figure 2.4: A plot comparing c and d with relation given in Equation 2.1.

• r is a linear scaling

r(z) =
z√

1−
(

c2

2+c2

) ;

• and h maps the upper half plane, minus a line

{
z = si : s ∈

(
0, 1

4

(
c2

2+c2

)2
)}

to the upper half plane

h(z) =

(
c2

2 + c2

)2

+ z2.

Combining this, it is possible to obtain a closed form expression for the function f

[Turner, 2006].

The function f maps the exterior of the cluster unioned with a point attached at

angle θ = 0 back to the exterior of the initial cluster. This can be extended to map

the attachment of any particle at angle θ by eiθf(e−iθz).

Set Dn = (C ∪ {∞})/Kn. By the Riemann mapping theorem we know that there
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exists a unique conformal map Φn : D0 → Dn. The map Φn is formed from a sequence

of the maps fn. This in turn will construct our sequence of growing clusters, (Kn).

With θn representing the addition of a particle at that angle and cn being a sequence

of non-negative numbers we can generate a sequence of maps fn and Φn

fn(z) = eiθnfcn(e−iθnz) and Φn = f1 ◦ . . . ◦ fn.

In our case, the angles θn are distributed uniformly and cn = c a constant. The

Hastings-Levitov model differs from DLA since the conformal maps cause the slits to

become deformed.

The model HL(α) has the parameter α ∈ [0, 2) which is related to the size of the

attached particle dn. The role of α is given by

dn = d
∣∣Φn−1(eiθn)

∣∣−α/2 .
Recall that cn and dn are linked by Equation (2.1) and when α = 0 we obtain the

constant case as mentioned.

Remark 2.1.1. When α = 0 the sequence of maps are independently identically dis-

tributed. This means that before we apply the conformal maps the added particles

are the same size but they become deformed after we apply the maps. When α = 2,

the addition of particles is changed such that, after applying the conformal maps, the

size of the particles being added is constant. The case α = 2 is of interest since is was

thought that this could be a good model to represent DLA since in DLA the size of

the added particles are all the same, after the application of the conformal maps.

From this set up, it is now possible to analyse the system. It is shown in [Norris

and Turner, 2012] that the limiting shape is a circle. Question such as the boundary

behaviour and the anisotropic case have also been considered, see [Johansson Viklund

et al., 2012] and [Silvestri, 2017] for example.
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2.1.3 Pólya Urn Model

There are many different types of urn models and the rules that govern them vary,

but they all follow the same set up. Suppose we start with an urn which contains

r red balls and b black balls. We operate in discrete time and at each time step

we pick a ball out of the urn, we then return that ball into the urn but also place

an additional ball into the urn of the same colour. The first question of interest is,

does such a system stabilise? That is, if we continue picking and adding balls a large

number of times, will the proportion of black and red balls converge? The answer to

this question is yes; this is easy to see as the proportion of balls is a martingale and

since the proportion of balls is bounded between 0 and 1, we can conclude that it will

converge as all bounded martingales do.

Once we know that the process converges, the next question of interest is, what

does the process converge to? If we were to repeat the process again would we

expect the process to converge to the same point or something else? In this case the

proportion of balls will converge to a distribution.

We state a more general result, intuition may suggest that if we start with an equal

number of black and red balls so that b = r then we would expect the proportion of

balls to remain 50-50. However, this is not the case, in fact, the limit is given by the

following theorem.

Theorem 2.1.2. Suppose we have a Pólya urn model with r red balls and b black balls

and at each time step we pick a ball from the urn at random. We then return the ball

and add k balls of the same colour. Let Rn and Bn represent the number of red and

black balls at time n and let Pn = Rn
Rn+Bn

be the proportion of red balls at time n, then

Pn ⇒ P∞ (in distribution) where P∞ ∼ Beta
(
r
k
, b
k

)
Proof. See [Mahmoud, 2009], Theorem 3.2 for further details.

This model is of interest as we will see that it is very similar to a special case of
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the model we study in Chapter 4; the fully connected voter model when there are

no internal mechanics and growth is governed by replication. The main differences is

that the voter model is a continuous process whereas the Pólya urn model is a discrete

time model. This still enables the study of the long term behaviour via the Pólya urn

model as we shall discuss later.

As mentioned, there are many variants on the Pólya urn model. We have listed a

well known result for a generalised case when there are two balls. This model could

be extended to the case where there are a different number of colours or when balls

are returned by following a distribution.

2.2 Model with Internal Behaviour

So far we have only considered models that over time grew, we now consider another

type of model known as self-interacting models. As the name suggests, these are

models which change states over time based on the current configuration of the system.

We start this section by looking at the voter model and then consider two models

well known in the field of population genetics, the Moran model and Wright-Fisher

diffusion.

2.2.1 Voter Model

The voter model was first studied in [Clifford and Sudbury, 1973] and is a model for

the way people vote. This model allows people to vote one of two ways and allows

people to update their vote in continuous time based on the way their neighbours are

planning on voting. We describe the standard voter model, which is a generalisation

of the model we shall be working with.

Consider a connected graph G = (V,E). At each vertex there is a person who

can vote one of two ways. We let v ∈ V denote a person and σv denote the person’s
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vote with σv ∈ {−1, 1}. The set of edges, e ∈ E, represents connections between two

people. If there is an edge linking them then they shall notify each other of how they

plan on voting and this in turn influences their vote and whether or not they will

change their vote.

In the standard model, each person changes their decision at rate 1. This can be

simulated by selecting a person at random with the time given by an exponential 1

random variable. The probability of them changing their vote is proportional to the

number of people who have the opposite view to them divided by the total number

of neighbours. In Figure 2.5 we can see that the selected cell has three neighbours,

all of which share the opposite view to it and so the probability of switching is 1.

−1 +1 −1

−1

−1 +1 −1

−1

−1 −1 −1

−1

Figure 2.5: A person is picked at random, highlighted in dashed red and changes their
vote with probability based on the proportion of votes it has from its neighbours. In
this case, since all are opposite to it, they will change with probability 1.

It is clear that, given the rules of evolution, there are two invariant distributions,

when all voters agree with each other, either ±1. It can be shown that these are in

fact asymptotic distributions and, regardless of the initial configuration, will always

converge to one of these.

2.2.2 Moran Model

The Moran model, which is named after Patrick Moran, is a model for the reproduc-

tion of genes. Suppose that initially we have N genes not necessarily all distinct. At

each time step we select two different genes at random, one of which divides into two
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and the other of which dies. This ensure the population remains constant and can be

thought of as two parent cells generating an offspring which inherits one of the parents

genes. In the long term it can be seen that one gene will eventually dominate and

is an absorbing state, meaning once reached we remain there. If we label the genes

1, 2, . . . , N and set XN
n to be the number of type k ∈ {1, 2, . . . , N} genes at time n,

then it can be seen that this is simply a Markov process with jumps ±1 or 0, as at

each time step only one cell reproduces and one cell dies. The transition probabilities

for XN
n are given by

P(XN
n+1 = i+ 1|XN

n = i) =
i(N − i)
N2

P(XN
n+1 = i− 1|XN

n = i) =
i(N − i)
N2

P(XN
n+1 = i|XN

n = i) =
(N − i)2 + i2

N2
.

This clearly shows that there are two absorbing states for XN , when XN is equal to

N or 0. When XN = N this represents dominance among the other genes which must

all be equal to 0 which represents extinction. This model has been studied further

by considering whether or not the specific genes dominate. This can be studied using

knowledge of hitting times and is discussed in further detail in [Etheridge, 2011].

2.2.3 Wright-Fisher Diffusion

In the previous section we looked at the Moran model and looked at the process XN
n ,

which represented the number of genes of type N and time n. If we scale this process

by 1/N we then obtain the proportion of total genes that are of type N . If we send

N to infinity we obtain a continuous time Markov process known as Wright-Fisher

Diffusion. Such a process satisfies the following stochastic differential equation

dXt =
√
Xt(1−Xt) dBt.
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Observe that when Xt = 0 or Xt = 1 the derivative is zero, which shows they are

stationary states. It can further be shown that the process will always converge to

0 or 1. By symmetry, if the process starts at 1
2
, then it must reach each point with

probability 1
2

thus making it an asymptotic distribution, see Chapter 3 and the scale

measure for further details.

What is useful about Wright-Fisher diffusion, is that it carries many of the prop-

erties of the finite Moran model but allows us to use a different set of tools to study it.

This is an example of a scaling limit, where we have changed the scale of the original

process and looked at the limiting behaviour, which is a continuous time process.

This method is useful since continuous time processes are very well understood

and have a large number of tools from Itô calculus to analyse them.

2.3 Random Growth Models with Competition

In this section we consider a model that lies at the intersection of the two previous

areas. That is, a model that has some form of interaction but also where the pop-

ulation size changes. We shall look at the Lotka-Volterra model which is a simple

deterministic model representing the population of two competing species.

2.3.1 Lotka-Volterra System

Consider the populations of two species of animals, one a predator, the other the prey.

As time evolves the population of these two species will evolve but will depend on

each other. As the number of predators increase the number of prey will decrease.

However, once the population of prey has decreased sufficiently, there will not be

enough food for the predator and this will cause a decrease in their population. This

will then have a knock on effect and cause the population of the prey to increase. The

system then repeats. This model was first studied independently by Alfred Lotka and
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Vito Volterra, who were both looking at these types of interactions. For Lotka, he

was concerned with a chemical reaction and Volterra was interested in applications in

Biology, see [Goel et al., 1971] for more details.

The System

Let x(t) and y(t) represent the number of prey and predators respectively, then the

Lotka-Volterra equations are

dxt
dt

= axt − bxtyt and
dyt
dt

= dxtyt − cyt

where a, b, c, d are non-negative constants.

It can easily be seen that xt = 0 and yt = 0 are fixed points of the above equation,

this would represent extension of both parties. There is also another fixed point to the

above pair of equations, this is given by xt = c/d and yt = a/b and would represent

steady co-existence between the two species, the rate at which they die would be equal

to the rate of birth and so we would see no change in the population.

Figure 2.6 shows a numerical solution to the differential system with certain pa-

rameters. As you can see, the system appears to be periodically fluctuating up and

down as the other species does. Figure 2.7 highlights this periodic nature by plotting

the two populations against each other. We can see that it does indeed look periodic

and this fact is true for any values of a, b, c and d and any choice of starting points.

If we multiply and rearrange the two equations to separate the variables and then

integrate, we obtain the following

−c log(xt) + dxt = a log(yt)− byt +D,

where D is the constant of integration. This is the equation plotted in Figure 2.7.

This is a very simple model since it is deterministic and so does not allow any
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Figure 2.6: Plot of solution for a = 30, b = 1, c = 20 and d = 5.

random fluctuations, which would be expected in real life. Another shortfall of this

model is that for low values the behaviour seems unrealistic. For certain choices of the

parameters, it is possible to have the population size incredibly small, for example,

less than one. This is unrealistic since we know that a population size cannot be this

small but also, even after reaching this small size, the population still recovers and

can become large again.

Even though the model is simple, it still highlights the interest in trying to model

population size and how competition can affect this.

2.3.2 Introducing randomness

The model we have described so far is a model with growth and competition which

is something we are interested in but it does not contain any random elements. This

means we know for certain how the model will evolve over time and does not take

into account any random fluctuation that may appear such as from a harsh winter
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etc. This is one reason why this model is not a good fit to the real world. One way to

try and make the model more realistic is to allow randomness to occur, this is done

by making the process a pure jump process with the rates being motivated by the

differential equations above which describes the evolution of the system. Consider the

following system comprising of predators Xt and prey Yt which evolves like so

(x, y)→



(x+ 1, y) at rate ax

(x− 1, y) at rate bxy

(x, y + 1) at rate dxy

(x, y − 1) at rate cy

The first two lines relate the the number of prey in the system and are related to

the birth and death of one respectively. The last two are the same for the predator.

Again, this system can be seen that when both are zero we have a fixed point but

now, because of the randomness we have, there cannot be any other fixed point. An

issue with the system described above is that it does allow the prey to become extinct

to which the predator will only evolve by growing, similar to the deterministic model.

Other attempts to introduce randomness into the Lotka-Volterra system have been

considered and for further reading please see [Dimentberg, 2002] and [Cai and Lin,

2004] for example.
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Chapter 3

Diffusion Theory

In the previous section we had a look at a few models; some of which were discrete

others of which were continuous. In this section, we shall look at how, from a contin-

uous time Markov chain, we can scale the process to generate a sequence of stochastic

processes such that they converge to a continuous time Markov process. The obtained

continuous Markov process will be defined via a stochastic differential equation and

we shall look at the tools required to understand such a process. We look at the

speed measure and scale function along with the Feller boundary conditions. Once

we have classified the boundary behaviour of our process we show how that is enough

to understand the long term behaviour of the process.

3.1 Motivation

Let us have a look at a simple random process which takes jumps ±1 both with rate

1 and starts at 0. Some simulations of this process are given after a different number

of steps, shown in Figures 3.1 and 3.2. As you can see, the process after 1000 steps

looks like a continuous process. This is because we have constrained the plot to fit

inside the box. A question arises though, is it possible to scale the process such that

when we tend the jump size to zero we obtain a continuous process? The answer to
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this is yes, and there exists many theorems depending on the type of process you are

considering and the limit process you wish to obtain. In this section, we shall look at

a few that have been of use to us along with a few examples to help illustrate things.

We shall restrict our study to that of pure jump Markov processes. A pure jump

process is one whose movements are given purely by jumps and a Markov process is

one whose movement is only dependant on its current position and does not require

knowledge of the past. Though this may sound restrictive, this still incorporates a

large class of processes such as Poisson processes which are used in queueing theory

and the study of birth-death processes.

Definition 3.1.1. We say that a process Xt is a pure jump process if we can express

the evolution of the process in terms of jumps and its current location only. That is,

we can write

X →



X + J1(X) at rate R1(X)

X + J2(X) at rate R2(X)

...

X + Jn(X) at rate Rn(X)

where n is finite, Ji are the jumps of the process and Ri are the rates for the jumps

Ji respectively.

Before we consider these limit theorems though, we need to introduce one thing

that is central in the study of all these processes and this is known as the kernel. This

gives us another identical way of describing a pure jump process.

Definition 3.1.2. We say that the process Xn is a pure jump Markov process with

kernel, K, if it is a pure jump process and for all n ∈ N,

P
(
Jn ∈ dt,∆XJn ∈ dy|Jn > t,XJn−1 = x

)
= K(x, dy)dt
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where J1, J2, . . . are the jump times of the process.

The kernel is useful since it contains all the information we require about the

behaviour of the process. It informs us of the probability of jumping and the direction

of the jumps.

We say that the two definitions are identical in the sense that we can derive one

from the other since they both inform us of the jumps and the rates of the process

which is all we need. We end this section with a couple of illustrative examples.

Example 3.1.1. Consider the process Xt discussed so far with jumps given by the

following,

x −→


x+ 1 at rate 1

x− 1 at rate 1.

Such a process would have the following kernel associated with it,

K(x, dy) = δ1 + δ−1

where δx represents the Dirac point measure which is defined such that for a subset

A ⊂ R, δx(A) = 1 if x ∈ A and 0 otherwise.

We can also extend the process such that it takes jumps of ±1 but this time with

rates given by λ and µ respectively. This process is known as a birth-death process.

If µ = 0, then the process is known as a pure birth process. Such a process would

have kernel given by

K(x, dy) = λδ1 + µδ−1.

We now turn our attention into how we can use the kernel to show that the process,

after an appropriate scaling, converges.
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3.2 Limit Theorem

In this section, we look at a theorem which states sufficient conditions to ensure that

the processes introduced in the previous section converges to a continuous process.

The result that we give is found in [Ethier and Kurtz, 1986] Chapter 7, though we

have altered it such that it includes the kernel directly. Similar results exist for other

types of diffusion processes, though we do not discuss them in much detail here. A

similar result for Markov chains which converge to a non-deterministic process is given

in [Gikhman and Skorokhod, 1996].

Inhomogeneous Markov Processes

The result we use is concerned with space inhomogeneous Markov processes, that is,

those processes whose movements are determined only by its current location. The

first theorem in this section will state what are the required conditions such that a

process converges weakly but before we state the theorem we need to introduce a few

concepts.

We firstly define the Skorokhod metric, this is a metric on the space D[0,∞). Let

Λ be the space of strictly increasing continuous functions mapping [0,∞) to itself and

let ||f || be the supremum norm, that is

||f ||= sup
x>0
|f(x)|,

then the Skorokhod metric, σ(f, g), for f, g ∈ D[0,∞) is given by

σ(f, g) = inf
λ∈Λ

max {λ− I, f − g ◦ λ}

where I is the identity function on [0,∞).

Let (XN
t )N∈N and Xt all be stochastic processes in D[0,∞). We shall define µN
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(respectively µ) corresponding to XN (respectively X) to be the measure defined to

be

µ(A) = P (Xt ∈ A) (respectively µN(A) = P
(
XN
t ∈ A

)
)

where A is an element of the σ−Algebra of Borel subsets of D[0,∞).

Definition 3.2.1. We say that a sequence of measures (µN)N∈N converges weakly to

µ if for all continuous bounded functionals f on D[0,∞) with the Skorokhod metric

we have

lim
N→∞

∫
f(x)µN(dx) =

∫
f(x)µ(dx).

If this is the case, we shall write µN ⇒ µ (or XN ⇒ X). Further details concerning

the notion of weak convergence and the Skorokhod metric can be found in [Billingsley,

1968], Chapter 1 Section 5 and Chapter 3 Section 14 respectively.

Also the notion of Brownian motion will be of use throughout the rest of this thesis

and so we include it here.

Definition 3.2.2. A stochastic process Bt which has the following properties is known

as Brownian motion:

• For any s < t < u < v the increment Bt −Bs is independent of Bv −Bu.

• For any s, t > 0, Bs+t−Bs is normally distribution with mean 0 and variance t.

• The process Bt has almost surely continuous sample paths.

When B0 = 0 then we shall refer to it as the Standard Brownian Motion.

The following theorem is what shall be key in our study of Markov processes to

obtain a scaling limit. We shall firstly state it in the way it shall be used but this is

not how it is stated in [Ethier and Kurtz, 1986]. After stating the theorem we shall

explain how this is obtained from their theorem.
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Theorem 3.2.1. Let a = (ai,j) be a Lipschitz continuous, symmetric, non-negative

definite d× d matrix valued function on Rd and let b : Rd −→ Rd be Lipschitz contin-

uous. Let KN(x, dy) be the kernel associated with the process XN , which takes values

on some subset I ⊆ Rd and define

bN(x) =

∫
Rd
yKN(x, dy) and aN(x) =

∫
Rd
yyTKN(x, dy).

Suppose that,

sup
x∈I
|aN(x)− a(x)|→ 0 and sup

x∈I
|bN(x)− b(x)|→ 0

and that

sup
t>0
|XN

t −XN
t−|→ 0

as N → ∞. If XN
0 = X0, then, setting σ2(x) = a(x), XN

t → Xt weakly in D[0,∞)

where Xt is a solution to the stochastic differential equation given by

dXt = b(Xt)dt+ σ(Xt)dBt.

where Bt is the standard one dimensional Brownian motion.

We now state the original Theorem and Corollary as stated in their book. Though

their terminology and notation is slightly different we will explain how it relates to

the theorem we use above.

Theorem 3.2.2 (Theorem 4.1 [Ethier and Kurtz, 1986]). Let a = (ai,j) be a con-

tinuous, symmetric, nonnegative definite, d× d matrix valued function on Rd and let

b : Rd −→ Rd be continuous. Let

A =
{

(f,Gf) : f ∈ C∞c (Rd)
}
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where

Gf =
1

2

∑
aij∂i∂jf +

∑
bi∂if

and suppose that the CRd [0,∞) martingale problem for A is well-posed. For n =

1, 2, . . ., let Xn and Bn be processes with sample paths in DRd [0,∞), and let An =

(Ani,j) be a symmetric d × d matrix-valued process such that Ani,j has sample paths

in DR[0,∞) and An(t) − An(s) is nonnegative definite for 0 ≤ s < t. Set Fnt =

σ (Xn(s), Bn(s), An(s) : s ≤ t) .

Let τnr = inf {t : |Xn(t)|≥ r or Xn(t−) ≥ t} and suppose that

Mn ≡ Xn −Bn

and

Mn
i M

n
j − Ani,j, i, j = 1, 2, . . . , d,

are Fnt -local martingales, and that for each r > 0, T > 0, and i, j = 1, 2, . . . , d

lim
n→∞

E

[
sup

t≤T∧tnr
|Xn(t)−Xn(t−)|2

]
= 0 (3.1)

lim
n→∞

E

[
sup

t≤T∧tnr
|Bn(t)−Bn(t−)|2

]
= 0 (3.2)

lim
n→∞

E

[
sup

t≤T∧tnr

∣∣Ani,j(t)− Ani,j(t−)
∣∣2] = 0 (3.3)

sup
t≤T∧τnr

∣∣∣∣Bn
i (t)−

∫ t

0

bi(X
n(s))ds

∣∣∣∣→ 0 in probability (3.4)

and

sup
t≤T∧τnr

∣∣∣∣Ani,j(t)− ∫ t

0

ai,j(X
n(s))ds

∣∣∣∣→ 0 in probability. (3.5)

Suppose that PXn(0)−1 ⇒ ν ∈ P(Rd). Then (Xn) converges in distribution to the

solution of the martingale problem for (A, ν).
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In essence the above theorem states that if for a given sequence of processes (Xn)

you can find functions a and b such that they satisfy the above conditions, then

the sequence (Xn) converges weakly to the process X which satisfies the stochastic

differential equation given by

dXt = b(Xt)dt+ σ(Xt)dBt.

This is precisely what is means to be a solution to the martingale problem. The

problem arises with how to find the functions a and b. This is where the corollary is

of use.

Corollary 3.2.1 (Corollary 4.2 [Ethier and Kurtz, 1986]). Let a, b and A be as in the

previous theorem and suppose the martingale problem for (A, ν) has a unique solution

for each ν ∈ P(Rd). Let µn(x,Γ), n = 1, 2, . . . , be the transition function on Rd, and

set

bn(x) = n

∫
|y−x|≤1

(y − x)µn(x, dy)

and

an(x) = n

∫
|y−x|≤1

(y − x)(y − x)Tµn(x, dy).

Suppose for each r > 0 and ε > 0.

sup
|x|≤r
|an(x)− a(x)|→ 0,

sup
|x|≤r
|bn(x)− b(x)|→ 0

and

sup
|x|≤r

nµn(x, {y : |y − x|≥ ε})→ 0. (3.6)

Let Y n be a Markov chain with transition function µn(x,Γ) and define Xn(t) =

Y n([nt]). If PYn(0)−1 ⇒ ν, then (Xn) converges in distribution to the solution of
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the martingale problem for (A, ν).

The above corollary states that from the kernel we can construct functions an and

bn and if these function converges to a and b then subject to some other conditions we

have weak convergence. The reason we do not go into much further detail concerning

the other conditions is because they are automatically satisfied for us in all our cases.

The condition given by equation (3.6) is a requirement that the jump sizes of the

process Xn decrease as we increase n. The other condition given by PYn(0)−1 ⇒ ν

is stating that the initial distributions must converge which in our case holds since

they are all equal. The only other difference between this corollary and our theorem

is that we use Kn = nµn

Proof of Theorem 3.2.1. See Theorem 7.4.1 and Corollary 7.4.2 in [Ethier and Kurtz,

1986].

In the previous theorem, the functions b(x) and a(x) can be thought of as the

infinitesimal drift and diffusivity of the process Xt respectively. This is why we require

the functions bN(x) and aN(x) to converge. We also require the jump sizes to tend

to zero which is clearly necessary. Our final requirement is that the starting points

of all the processes coincide, this can be relaxed such that the starting points follow

a distribution and that this sequence of distributions must converge to the starting

distribution of Xt. We do not include it here since it will not be of need to us. We

shall now give a few examples where we can use the above theorem.

Example 3.2.1. Consider the birth death process given in Example 3.1.1. If we

construct the process XN
t := 1√

N
XNt then this would have kernel

KN(x, dy) = Nδ −1√
N

+Nδ 1√
N
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which yield the functions

bN(x) = 0 = b(x) and aN(x) = 1 = a(x)

hence, by tending N → ∞ we see that the jump sizes tend to zero. Assuming that

XN
0 = X0, we can conclude, by Theorem 3.2.1, that the process XN

t converges to the

process Xt which satisfies the stochastic differential equation

dXt = 0dt+ 1dBt,

which in other words means that the process Xt = Bt, a Brownian path.

Example 3.2.2. Consider again the birth-death process given in Example 3.1.1 but

with λ(x) = x and µ = 0. Such a process is known as a pure birth process; since

µ = 0, the process can only increase. This is an example of an inhomogeneous space

process since the λ depends on the location of the process Xt. The process is still

a Markov chain as we only require knowledge of its current position. Consider the

process XN
t = 1

N
XNt, this has the kernel

KN(x, dy) = Nxδ 1
N

which yields the equations

aN(x) = x = a(x) and bN(x) = 0 = b(x).

Again, the jump sizes decrease to zero as we increase N and we make the assumption

that X0 = XN
0 for all N . Combining this, by Theorem 3.2.1, we obtain the ordinary

differential equation given by

dXt = Xtdt
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which can be solved to give Xt = X0e
t.

One question that the above theorem does not answer is: though we know that

we have convergence of the process, what is the speed at which it converges? This

can be useful at times since this helps us obtain the error when approximating for

finite N or when running simulations. In the case where the limit is deterministic, as

in Example 3.2.2 we can apply what is known as the fluid limit which shows we have

exponential convergence to the deterministic process, for further details see [Darling

and Norris, 2008].

3.3 Analysis of Diffusion Processes

In this section, we analyse the behaviour of the stochastic differential equations that

we can obtain by applying the theorem in the previous section. The main question

that we are interested in is: what is the long term behaviour of the process as t→∞?

The process may settle down and converge to a point, it may converge to a set of points

with certain probabilities or it may not settle down at all. If the process does not

settle down, is it possible to find a distribution for X∞? To answer these questions,

it turns out that it is sufficient to know about the boundary behaviour along with

something called the speed measure. We shall look at the speed measure and see how

this is of use to us along with the scale function, this is a function which converts

suitable diffusion processes into martingales, which reduces the complexity. Once this

is done we shall use the speed measure to classify the boundary behaviour into one

of three types, either absorbing, reflecting, or inaccessible and we will then combine

this knowledge to understand the long term behaviour.
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Scale function

Firstly, suppose we have a stochastic process Xt which satisfies the following stochastic

differential equation,

dXt = µ(Xt)dt+ σ(Xt)dBt. (3.7)

Such a process is known as a diffusion process and the functions µ and σ are known

as the drift and diffusivity respectively. As mentioned earlier, if we could reduce the

problem such that the above process, or some invertible function of the above process,

was a martingale, then we could analyse the martingales behaviour and that in turn

would tell us the behaviour of our original process.

To do this, we use Itô’s formula which allows us to calculate functions of stochastic

processes given in the form above. We state the theorem below

Theorem 3.3.1 (Itô’s Formula). Let Xt be given in (3.7) and let f be a twice differ-

entiable continuous function, then

df(Xt) =

(
µ(Xt)f

′(Xt) +
1

2
σ2(Xt)f

′′(Xt)

)
dt+ σ(Xt)f

′(Xt)dBt.

Proof. See Theorem 15.19 in [Kallenberg, 2002].

This is of use since if we have a process of the form (3.7) and we suppose that

we have a function f which satisfies the assumed conditions, we can apply f to the

process and determine it’s stochastic differential equation by applying Itô’s theorem

to see what the resulting process would be. If we now suppose that f satisfies

µ(x)f ′(x) +
1

2
σ2(x)f ′′(x) = 0

then after Itô’s formula we would obtain a process which only has a diffusive part and

so must be a martingale. Such a function is called the scale function and we denote
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it by ρ. It can be shown that ρ must satisfy

ρ(x) =

∫ x

0

exp

(
−2

∫ y

m

µ(u)

σ2(u)
du

)
dy

where m is a point in the interior of the interval the process takes, provided that µ/σ2

is integrable. This is an assumption we shall need to make throughout since if this

does not hold we would not be able to transform the process.

After applying the scale function ρ we obtain the process Yt = ρ(Xt) which is of

the form

dYt = σ̃(Yt)dBt

and so is a martingale.

Definition 3.3.1. Any process whose scale function is linear is said to be in natural

scale.

If the process is not in natural scale, then after applying ρ it will be. This can be

seen since any martingale is in natural scale as µ(x) ≡ 0. This reduces the study of

the diffusion process into that of a martingale. We now turn our attention to them.

For us to analyse martingales, we need to look at something called the speed measure.

Speed Measure

As we have shown with the use of the scale function, we can reduce any suitable

diffusion process into that of a martingale. This is useful since all martingales are

time changes of Brownian motion. This time change is given by the speed measure,

m. Combining this we obtain that

ρ(Xt) = Bm(t).
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For a process of the form

dXt = σ(Xt)dBt

the speed measure is given by

m(dx) =
1

σ2(x)
dx.

In general, for a process of the form (3.7), the speed measure is given by

m(dx) =
1

σ2(x)
exp

(
2

∫ x

0

µ(y)

σ2(y)
dy

)
dx.

The speed measure is of use since for any martingale, knowledge of the boundary

behaviour is given explicitly in terms of the speed measure. This in turn will allow

us to classify the long term behaviour of the process.

Boundary Behaviour

We now turn our attention to the boundary points of a process. Suppose we have a

process Xt which takes values on the interval [θ, λ], which may be infinite. We wish

to understand what these boundary points are. There are three types of boundary

points; inaccessible, absorbing and reflecting.

Definition 3.3.2. For a stochastic process Xt we say that an endpoint θ is inaccessible

if the probability of hitting it from any internal point is 0.

Remark 3.3.1. If the boundary point is ±∞ then it is inaccessible.

Definition 3.3.3. For a stochastic process Xt we say that an endpoint θ is absorbing

if the event {Xs = θ} ⇒ {Xu = θ} for all u ≥ s.

Remark 3.3.2. Though we do not consider it, if Zθ has positive Lebesgue measure but

not equal to the whole real line, then we say that the process Xt is sticky or elastic.
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If the processes is sticky, it spends some positive amount of time at the end points

before leaving. See [Feller, 1952] for his original work.

Definition 3.3.4. For a stochastic process Xt we say that an endpoint θ is reflecting

if the set Zθ = {t ≥ 0 : Xt = θ} is such that int(Zb) = ∅.

Informally, an end point is inaccessible if we can not reach it, an end point is

accessible and reflecting if once reached the particle is ejected out immediately and

the endpoint is absorbing if the process remains in the end point indefinitely.

If the endpoint is accessible then it must be either absorbing or reflecting, if it is

not accessible then it must be inaccessible. The following theorem helps us classify

the end points.

Theorem 3.3.2 (Boundary behaviour, Feller). Let m be the speed measure of a regular

diffusion on a natural scale in some interval I = [θ, λ], and fix any u ∈ int(I). Then,

(i) λ is accessible iff it is finite with
∫ λ
u

(λ− x)m(dx) <∞

(ii) λ is accessible and reflecting iff it is finite with m(u, λ] <∞.

Proof. See Theorem 20.12 of [Kallenberg, 2002].

Let us look at some examples to see how this can be of use.

Example 3.3.1. Consider the process Xt such that X0 = 0 and the process satisfies

the stochastic differential equation given by

dXt =
√

1−X2
t dBt.

Clearly such a process must take values on the interval [−1, 1] and so we wish to

understand the boundary points ±1. Firstly we calculate the speed measure, in this

case we have

m(dx) =
dx

1− x2
.
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It can be seen that ∫ 1

u

(1− x)m(dx) =

∫ 1

u

dx

1 + x
<∞

but

m(u, 1] =

∫ 1

u

dx

1− x2
=∞

and so, from Theorem 3.3.2 the boundary point 1 is accessible but not reflecting and

so must be an absorbing boundary point. Similar calculations can be done on −1 to

show that it too is an absorbing point.

Example 3.3.2. Now consider a slight variant on the one above, consider the process

Xt which satisfies the equation

dXt = (1−X2
t )dBt.

Again, ±1 are boundary points but this time we have

∫ 1

u

(1− x)m(dx) =

∫ 1

u

dx

(1− x)(1 + x)2

≥
∫ 1

u

dx

4(1− x)
=∞

and so in this case the boundary point 1 is not accessible, similarly for -1. This is

because, as the process approaches the boundary points, the rate of change decreases

faster than the process can move and so does not reach the boundary point.

This raises the question of how quickly does the diffusive term need to go to zero

to ensure the end point in the above cases are accessible.

Proposition 3.3.1. Consider the stochastic process Xt which satisfies the stochastic

differential equation

dXt = (1−X2
t )αdBt
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for α > 0. Then the boundary points are accessible for α ≤ 1/2 and inaccessible for

α > 1/2.

Proof. Since the process is in natural scale it is clear to see that the speed measure is

m(dx) = (1− x2)−2αdx. Applying Theorem 3.3.2 (i) we see that the
∫ 1

0
(1− x)m(dx)

is finite when α ≤ 1/2 and infinite otherwise. A similar argument holds for the lower

boundary point.

Example 3.3.3. Consider another variant which takes values on [−1, 1]. Suppose we

have a process Xt which satisfies

dXt = −1

2
Xtdt+

√
1−X2

t dBt.

This is not in natural scale and so we cannot classify the end points directly. We must

first calculate the scale function which in this case is

ρ(x) = sin−1(x).

Considering the process Yt = sin−1(Xt) and applying Itô’s formula yields,

dYt = dBt ⇒ Yt = Bt.

Observe that this shows that the process Xt = sin(Bt). Since the original process Xt

takes value on the interval [−1, 1] and we are now considering the process Yt, this must

takes values on [−π, π]. We firstly classify these boundary points and then this in

turn will classify those of Xt. Since Yt = Bt it can easily be verified that m(dx) = dx

the standard Lebesgue measure. This means that for the boundary point π we have

m(u, π] = π − u <∞

39



and so the point π is an accessible reflecting point. A similar argument shows that

−π is an accessible reflecting point. Since both these points are reflecting, when we

look at Xt we can conclude that they too must be reflecting points.

We now know how to classify the end points for a wide variety of processes, but how

can we use this knowledge to work out the long time behaviour of such processes? The

next theorem is what shall be of use. Beforehand, we need the following definitions.

Definition 3.3.5. A stochastic process Xt taking values on an interval A is said to

be recurrent if for any x, y ∈ A

Px (Ty <∞) = 1

where Px is the measure associated with the process Xt with X0 = x and Ty = inf{t >

0 : Xt = y}.

A recurrent process can be further split into being null recurrent or positive re-

current.

Definition 3.3.6. A stochastic process Xt taking values in A which is recurrent is

called positive recurrent if for all x, y ∈ A,

Ex(Ty) <∞.

If this is not the case then the process is called null recurrent.

Definition 3.3.7. A diffusion Xt with speed measure m(dx) on an interval I shall

be called m-ergodic if it is recurrent and the limit distribution of Xt has density

proportional to m for all X0 ∈ I.

We now let (, [ and [[ denote the boundary point being inaccessible, absorbing or

reflecting respectively (e.g. [[0, 1] means that the point 0 is a reflecting point and 1 is

an absorbing point).
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Theorem 3.3.3 (Feller, Maruyama and Tanaka, Theorem 20.15 [Kallenberg, 2002]).

For any regular diffusion on a natural scale and with speed measure m, the ergodic

behaviour is the following, depending on the initial position x and the nature of the

boundaries,

1. (−∞,∞): m-ergodic if m is bounded, otherwise null-recurrent;

2. (0,∞): converges to 0 a.s.;

3. [0,∞): absorbed at 0 a.s.;

4. [[0,∞): m-ergodic if m is bounded, otherwise null-recurrent;

5. (0, 1): converges to 0 or 1 with probabilities x and 1− x , respectively;

6. [0, 1): absorbed at 0 or converges to 1 with probabilities x and 1−x , respectively;

7. [0, 1]: absorbed at 0 or 1 with probabilities x and 1− x , respectively;

8. [[0, 1): converges to 1 a.s.;

9. [[0, 1]: absorbed at 1 a.s.;

10. [[0, 1]]: m-ergodic.

As such, for us to understand the long term behaviour of the process, we first

use the function ρ to transform the process into a martingale so that it is in natural

scale. We then calculate the speed measure of the process, this will allow us to

work out the behaviour of the boundary points. Once we have done that we can use

the above theorem, after applying an affine transformation, to work out what the

limiting behaviour of the transformed process is and then, using the fact that ρ is

strictly increasing (and so invertible), we can work out the limiting distribution of the

original process. We end this section with a few examples.
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Example 3.3.4 (Example 3.3.1 Cont.). In Example 3.3.1 we showed that ±1 are

both absorbing points for the process Xt satisfying dXt =
√

1−X2
t dBt. As such, we

are in case 7 of Theorem 3.3.3, and so the probabilities are directly proportional to

the distance to the boundaries. Since our process takes values on [−1, 1] we need a

linear map to map it to the interval [0, 1]. In this case we have f(x) = 1
2
(1 + x) and

so if our process starts at x0 ∈ [−1, 1] we obtain that the distribution X∞ is given by

X∞ =


+1 with probabilty 1

2
(1 + x0)

−1 with probabilty 1
2
(1− x0).

Example 3.3.5 (Example 3.3.2 Cont.). Example 3.3.2 showed that ±1 are inacces-

sible for the process Xt satisfying dXt = (1 − X2
t )dBt. As such, we are in case 5 of

Theorem 3.3.3, and so the probabilities are directly proportional to the distance to

the boundaries. Though they are not absorbed at the endpoints, they still converge

to these points and so we obtain the same distribution as the previous example.

Example 3.3.6 (Example 3.3.3 Cont.). For the process given as a solution to the

stochastic differential equation

dXt = −1

2
Xtdt+

√
1−X2

t dBt

we know that we have reflecting boundary points at ±1, this puts us in case 10 of the

theorem. This means our process is ergodic and the distribution at infinity is given

by the arcsine distribution. This can be seen since the process, Xt above has scale

function ρ(x) = sin−1(x) giving Yt = ρ(Xt) = Bt with the boundary points for the

process Yt being reflecting. The distribution is given by the uniform distribution on

the interval [−π, π], mapping this back through gives us the arcsine distribution.
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Chapter 4

Addition of Growth to the Fully

Connected Voter Model

4.1 Introduction

Discrete random dynamical systems typically evolve according to one of two mecha-

nisms: growth, in which the addition of individuals or particles are governed by some

rule; or internal dynamics, in which particles within the system interact with each

other. Examples of pure growth dynamical systems include the Eden model, 2d per-

colation and the Pólya urn model. See [Lindgren, 1963] for the original work by Eden

concerning his model, [Grimmett, 1989] for details on percolation and [Johnson and

Kotz, 1977] concerning the Pólya urn model. Examples of models with purely internal

dynamics include the voter model, which is studied in [Clifford and Sudbury, 1973] or

the Metropolis-Hastings algorithm for sampling from the Ising model (originally pub-

lished in [Ising, 1925]). In this chapter, we consider a model that incorporates both

of these mechanisms; a model that has growth and internal dynamics. The model we

look at is the fully-connected voter model with growth, which was first introduced in

[Morris and Rogers, 2014] by Morris and Rogers. In their paper, Morris and Rogers
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consider one type of internal behaviour and two different types of growth. We extend

these results in a rigorous manner. We show how to approximate the proportion of

votes for a large initial population with a diffusion process. We also calculate the limit

distributions and show how the behaviour of states can change by increasing the rate

from constant growth to exponential growth. The case where the initial population

size is small is also discussed and we comment on how our limit distribution results

still hold for all except two cases. In the cases where it does not, we show how in

one case we obtain a system that is similar to the Pólya urn model and so the limit

distribution can be explicitly calculated.

4.1.1 The fully connected voter model with the addition of

growth

Following the set up given by [Morris and Rogers, 2014], we firstly introduce the basics

of the voter model. Consider a graph G = (V,E) comprising a set V of vertices and

E of edges. On each vertex v ∈ V there exists a discrete random variable, which we

denote as σv where σv ∈ {−1, 1}. The point v represents a voter and σv is the vote

of a person on the site. The way that each person may vote is influenced by their

neighbours. We shall consider the mean-field case where everyone is connected to one

another. Since we are not concerned with the individual behaviour of each person,

but the average of them, we shall look at the proportion of votes, which we denote by

x. This is a function based upon the configurations of the votes and is defined to be

x(σ) =
1

|V |
∑
v∈V

σv.

This means x ∈ [−1, 1] with the boundary points being achieved only when the voters

all align with the same party, either −1 or +1, respectively. We denote N = |V | to

be the number of people initially in our system. If we let fu(x) be the rate at which a
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person changes their vote from +1 to −1 and fd(x) be the rate of switching the other

way. We can express such as system in the following way.

Definition 4.1.1. The fully connected voter model is a process XN
t which has jumps

given by

x −→


x− 2

N
at rate fu(x)N(1 + x)/2

x+ 2
N

at rate fd(x)N(1− x)/2.

Though originally intended for use as a model for votes, we shall use the termi-

nology of Morris and Rogers [Morris and Rogers, 2014], in which it is formulated as a

model for magnetism. Instead of calling each element v a voter we shall refer to them

as a particle and the value σv shall be the spin of that particle. The values +1 and

−1 represent whether the spin is up or down.

We now introduce growth into the system. Again, the initial size of our system

shall be N , but now St is defined to be the scale of the system at time t, so that NSt

is the number of particles in the system at time t. Particles are introduced with the

rate of addition being proportional to the size of the system to some power, which we

denote by α with α ∈ [0, 1]. This condition can be relaxed further without changing

the work so that it is only asymptotically proportional, but we do not provide the

details here. Particles are introduced into the system at rate gu(x) being positive and

at rate gd(x) being negative. The combined process ZN
t = (XN

t , S
N
t ) is a pure jump

process, which is defined in Section 4.2 [Ethier and Kurtz, 1986].

Definition 4.1.2. The growing voter model with rate α is a process (XN
t , S

N
t ) with

the initial condition that (XN
0 , S

N
0 ) = (x0, 1) where x0 ∈ [−1, 1], which has jumps
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given by the following:

(x, s) −→



(
x− 2

sN
, s
)

at rate fu(x)sN(1 + x)/2(
x+ 2

sN
, s
)

at rate fd(x)sN(1− x)/2(
x+ 1−x

sN+1
, s+ 1

N

)
at rate λsαNαgu(x)(

x− 1+x
sN+1

, s+ 1
N

)
at rate λsαNαgd(x),

where λ is a constant of proportionality, 0 ≤ α ≤ 1 and fu(x), fv(x), gu(x) and gv(x)

are as defined.

4.1.2 Overview

Such a model is of interest as the addition of growth can substantially alter the

behaviour of the process. For example, it was observed in [Morris and Rogers, 2014]

that it can turn what was once an absorbing state into a repelling state. They showed

how a change in the growth rate from α = 0 to 0 < α ≤ 1 can break ergodicity of the

process.

In Section 2, we construct diffusion processes to approximate our system for large

N (after an appropriate time change). We need to consider different cases depending

on the functions fu, fd, gu and gd. It is shown that for any non-deterministic behaviour

to be seen, we must have it that the internal behaviour is set so that fu(x) = 1
2
(1 +x)

and fv(x) = 1
2
(1 − x), so that the system is self-stabilising. Where possible, we

use Kurtz’s Theorem (Theorem 3.2.1) to show that as N → ∞ we can find a time

change such that we obtain a diffusion process for the combined process Zt = (Xt, St),

where Xt and St have the property of being decoupled, i.e. they can be written as a

differential equation in terms of themselves only. In the cases where we can not apply

Kurtz’s Theorem, we show that there exists no such time change for us to see any

non-trivial behaviour.
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Section 3 then looks at the limit distribution of the processes obtained in Section

2. We look at the speed measure and scale functions of a process and show how

these, along with knowledge of the boundary points, can be used to determine the

limit distribution of the process. To simplify arguments, we restrict ourselves to the

case where fu, fv, gu and gv are linear, however standard arguments can be applied to

the general case. We end this section by considering the case where N is fixed and

show that when the limiting distribution for the asymptotic case is not dependent

on the initial condition, then the limiting distribution is the same for the case where

N →∞.

Finally, in Section 4 we end with some illustrative examples, which show how the

behaviour does change, and we compare our results to some simulations.

4.2 Diffusion Estimates

Our main tool in finding diffusion approximations is Kurtz’s Theorem which we stated

in Chapter 3, from this we can construct diffusion processes.

We will firstly apply Kurtzs theorem to our process
(
XN
t , S

N
t

)
with the initial

conditions that
(
XN

0 , S
N
0

)
= (x0, 1).

Example 4.2.1 (No Growth). Consider the fully connected case but without growth

as defined in Definition 4.1.1. We shall apply Theorem 3.2.1 to find its natural limit

as N →∞. This process has the kernel given by

KN(x, dy) =
1

2
fu(x)N(1 + x)δ−2/N +

1

2
fd(x)N(1 + x)δ2/N

where we have used the notation that δx is the Dirac point measure already defined.

This yields

bN(x) = −fu(x)(1 + x) + fd(x)(1− x) = b(x)
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and

aN(x) =
2

N
[fu(x)(1 + x) + fd(x)(1− x)]→ 0 = a(x).

Hence, given any Lipschitz functions fu(x) and fd(x) the process XN
t converges weakly

to the process Xt, which is given by the ordinary differential equation

dXt = [−fu(Xt)(1 +Xt) + fd(Xt)(1−Xt)] dt with X0 = x0. (4.1)

If we set fu(x) = 1−x
1+x

fd(x) then (4.1) is equal to zero and so we do not see any

interesting behaviour. To see any non-trivial limiting behaviour, it is necessary to

apply a time change. Increasing all the rates by Nγ (for some γ to be determined)

we obtain the following functions

bN(x) = [−fu(x)(1 + x) + fd(x)(1− x)]Nγ = 0 = b(x)

and

aN(x) = 2Nγ−1 [fu(x)(1 + x) + fd(x)(1− x)] .

Setting γ = 1, we obtain convergence of aN to a given by

a(x) = 2 [fu(x)(1 + x) + fd(x)(1− x)] .

By Theorem 3.2.1, we can deduce that in this case XN
τ(t), with dτ

dt
= N (i.e. τ(t) = Nt),

converges weakly to Xt, which is a solution to the stochastic differential equation

dXt =
√
fu(x)(1 + x) + fd(x)(1− x) dBt with X0 = x0.

Combining we get the following:

Suppose τ(t) = Nγt and consider the limit of XN
τ(t) as N →∞.

a) If fd(x) 6≡ 1+x
1−xfu(x) then, for a non-trivial limit to exist, γ = 0 and the limit
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process Xt satisfies the following ordinary differential equation

dXt = [fd(Xt)(1−Xt)− fu(Xt)(1 +Xt)] dt with X0 = x0.

b) If fd(x) ≡ 1+x
1−xfu(x) then, for a non-trivial limit to exist, γ = 1 and the limit

process Xt satisfies the following stochastic differential equation

dXt =
√

2(1 +Xt)fu(Xt) dBt with X0 = x0.

Example 4.2.2 (Pure Growth). Consider the process ZN
t = (XN

t , S
N
t ) which we in-

troduced in Definition 4.1.2. The scale process is independent from the magnetisation

and so we can obtain a one dimensional process SNt satisfying SN0 = 1 and with jumps

given by

s −→ s+
1

N
at rate sαNα

where α ∈ R. This is a simple birth process with kernel given by

KN(s, dy) = sαNαδ1/N

which allows us to compute

bN(s) = sαNα−1 and aN(s) = sαNα−2.

By Theorem 3.2.1, the process SNτ(t), where dτ
dt

= N1−α, converges to the process St

which satisfies the following differential equation

dSt = Sαt dt.
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This has solution

St =


[(1− α)t+ 1]

1
1−α when α < 1 for t ≥ 0

exp (t) when α = 1 for t ≥ 0

[(1− α)t+ 1]
1

1−α when α > 1 for 0 ≤ t < t∗

(4.2)

where t∗ = 1/(α − 1) is the explosion time of the process after which the process is

infinite.

Example 4.2.1 is informative as it shows us that it is necessary to consider different

cases depending on whether the functions satisfy certain equations (namely fu(x) =

1−x
1+x

fd(x) in this example). Example 4.2.1 also shows us that we may need to speed

up the system to see any interesting behaviour which is of use when considering the

growing system.

We now turn to our system of interest, the fully connected voter model with

growth included. The limit will vary depending on the functions fu, fd, gu and gd and,

depending on what these functions are, determine the value of γ required to rescale

the rates to obtain a non-zero limit such that the processes are independent of one

another. In the theorem we use the notation f(x) ≡ g(x) which means f(x) = g(x)

for all x. We state our results in the following theorem.

Theorem 4.2.1. For all 0 ≤ α ≤ 1, and Lipschitz functions fu, fd, gu and gd, with

gu and gd non-negative either:

(1) There exists a γ = γ(α) such that by setting dτ
dt

= (SNt N)γ, the process ZN
τ(t) =

(XN
τ(t), S

N
τ(t)) converges weakly in D[0,∞) to Zt = (Xt, St) where Xt and St are

decoupled, with Xt satisfying a non-trivial differential equation.

(2) There does not exist a time change for which the limit process is non-trivial.

We list all the possible cases below. In all cases (X0, S0) = (x0, 1) where x0 ∈ [−1, 1].
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(a) If fd(x) 6≡ 1+x
1−xfu(x) then γ = 0, St = 1 for all t and

(i) for 0 ≤ α < 1,

dXt = [fd(Xt)(1−Xt)− fu(Xt)(1 +Xt)] dt (4.3)

(ii) for α = 1,

dXt = [(1−Xt)fd(Xt)− (1 +Xt)fu(Xt) (4.4)

+ gu(Xt)(1−Xt)− gd(Xt)(1 +Xt)] dt.

(b) If fd(x) ≡ 1+x
1−xfu(x) and gu(x) 6≡ 1+x

1−xgd(x) then γ = 1− α, St = et and

(i) for α = 0,

dXt = [gu(Xt)(1−Xt)− gd(Xt)(1 +Xt)] dt+
√

4(1 +Xt)fu(Xt) dBt

(4.5)

(ii) for 0 < α ≤ 1,

dXt = [gu(Xt)(1−Xt)− gd(Xt)(1 +Xt)] dt. (4.6)

(c) If fd(x) ≡ 1+x
1−xfu(x) with fu(x) 6≡ 0 and gu(x) ≡ 1+x

1−xgd(x) then

(i) for α = 0, γ = 1− α, St = et and

dXt =
√

4(1 +Xt)fu(Xt) dBt (4.7)

(ii) for 0 < α ≤ 1, there is no non-trivial limit as

lim
N→∞

sup
t≥0
|XN

t − x0|= 0. (4.8)

51



(d) If fu(x) ≡ fd(x) ≡ 0 and gu(x) ≡ 1+x
1−xgd(x) then there is no non-trivial limit as

lim
N→∞

sup
t≥0
|XN

t − x0|= 0. (4.9)

Proof. The kernel of the process ZN
τ(t) with dτ

dt
= (StN)γ is given by

KN(x, s, dy) = fu(x)(sN)γ+1 1 + x

2
δ

(
− 2

sN
, 0

)
+ fd(x)(sN)γ+1 1− x

2
δ

(
2

sN
, 0

)
+ (sN)α+γgu(x)δ

(
1− x
sN + 1

,
1

N

)
+ (sN)α+γgd(x)δ

(
− 1 + x

sN + 1
,

1

N

)

where δ(x) = δx is the Dirac point measure already defined. This gives the following

drift and diffusive functions

bN(x, s) = bN1 (x, s)(sN)γ + bN2 (x, s)(sN)α+γ−1 (4.10)

aN(x, s) = λaN1 (x, s)(sN)γ−1 + λaN2 (x, s)(sN)α+γ−2 (4.11)

where

bN1 (x, s) = [fd(x)(1− x)− fu(x)(1 + x)] (1, 0) (4.12)

bN2 (x, s) =

(
gu(x)

1− x
1 + 1/(sN)

− gd(x)
1 + x

1 + 1/(sN)
, s

)
(4.13)

aN1 (x, s) = [2fu(x)(1 + x) + 2fd(x)(1− x)]

1 0

0 0

 (4.14)

aN2 (x, s) =

gu(x) (1−x)2

(1+1/(sN))2
+ gd(x) (1+x)2

(1+1/(sN))2
sgu(x)(1−x)−gd(x)(1+x)

1+1/(sN)

sgu(x)(1−x)−gd(x)(1+x)
1+1/(sN)

s2

 . (4.15)

We now consider aN and bN as N → ∞. For convergence they both must be finite,

this is our first constraint and so the leading power of N in each function must be no

greater than 0, with at least one of the leading powers being equal to 0 for one of the
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two functions. Our second constraint is that we want the limit to be such that the

limit processes have components decoupled.

Observe that for α ∈ [0, 1], equations (4.12)-(4.15) are the coefficients from equa-

tions (4.10) and (4.11) in descending power of N and, as a result, show the required

γ depending on the choice of functions fu, fd, gu and gd. We then obtain the following

cases

1. If bN1 (x, s) 6≡ 0 for all 0 ≤ α ≤ 1 then γ = 0

2. If bN1 (x, s) ≡ 0 and bN2 (x, s) 6≡ 0 then γ = 1− α

3. If bN1 (x, s) ≡ 0 and bN2 (x, s) ≡ 0 but aN1 (x, s) 6≡ 0 then for α = 0, γ = 1

4. If we are in any other case then no γ exists to give a non-trivial limit.

The conditions on the function fu, fv, gu and gv that must hold in order that the above

functions be identically zero correspond to the different cases in Theorem 4.2.1.

Observe that the jump sizes of (XN , SN) are no greater than 1/N and that for

cases (a), (b) and (c)(i) there exists functions a(x) and b(x) such that bN(x) → b(x)

and aN(x) → a(x) as N → ∞. Thus, by Theorem 3.2.1 we deduce that the process

(XN
t , S

N
t ) converges weakly to the limit processes (Xt, St).

An issue arises for cases (c)(ii) and (d) as in this change of time the scale function

explodes instantaneously in the limit and so we are not able to apply Theorem 3.2.1

to deduce a limit. However, we show that regardless of the scaling used, the process

shall be identically zero in the limit. We employ the use of the exponential martingale

inequality (see [Darling and Norris, 2008], Theorem 4.2) for case (c)(ii) and Bernstein’s

inequality (see [Freedman, 1975], Proposition 2.1) for case (d). In both cases we can

only use these inequalities if the process is a martingale. This is true for the processes

given in case (c)(ii) and (d) since if we calculate bN(x, s) we will see that this is

identically zero, this means that there is no drift for each N , and so we expect the

process to remain where it is, exactly what a martingale is.
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Starting with case (c)(ii), our aim is to firstly use Doob’s inequality from [Darling

and Norris, 2008] to show that

P
(

sup
t

∣∣XN
t

∣∣ > 1

N1/3

)
≤ 4N2/3 sup

t
E
[
|XN

t |2
]
≤ 4

N1/3
.

Setting AT to be the event that
{

supt<T
∣∣SNt − et∣∣ < 1

2
et
}

, observe that we have the

following,

E
(∣∣XN

t

∣∣2) = E
((
XN
t

)2
∣∣∣AT)P (AT ) + E

((
XN
t

)2
∣∣∣AcT)P (AcT )

≤ E
((
XN
t

)2
∣∣∣AT)+ P (AcT ) .

where we have used the fact that |Xt|≤ 1 for all t for the second line. It can be shown,

with γ = 1− α so that SNt → et, that

E
(∣∣XN

t

∣∣2∣∣∣At) ≤ E
[
fu(X

N
t )(1 +XN

t ) + fd(X
N
t )(1−XN

t )

2SNt N

∣∣∣∣AT]
≤ K

N
,

where we have obtained the first line from the kernel of the process and used the fact

that SNt > 1 and set K = 2 supx(fu(x)∨ fd(x)) in the second line. Note that the final

line is independent of t. Using Itôs formula with f(x, t) = e−tx it is possible to show

that the process MN
t = e−tSNt − 1 is a martingale and so by use of Doob’s inequality

we get that

P
(

sup
t<T

∣∣SNt − et∣∣ ≥ 1

2
et
)

= P
(

sup
t<T

∣∣MN
t

∣∣ ≥ 1

2

)
≤ 16E

[(
MN

T

)2
]
.

Furthermore, it can be shown that, with KN(s, dy) = Nsδy(1/N), the kernel of the
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process SNt that

E
[(
MN

T

)2
]
≤
∫ T

0

∫
R
E
[
(e−uy)2KN(SN , dy)du

]
=

∫ T

0

e−2u

N
E
(
SNu−

)
du

=

∫ T

0

e−u

N
du =

1− e−T

N

≤ 1

N

which is also independent of T . Combining all this together we deduce (4.2). Case

(d) is simpler since the only way this process can evolve is by the addition of particle.

Since we are only interested in the asymptotic distribution we can consider the jump

process Y N
n = XN

Jn
where Jn are the jump times of the process since the limiting

behaviour of this process will be the same as the original process. We then use

Bernstein’s inequality with a suitable constant C and with E
∣∣XN

n −XN
n−1

∣∣2 ≤ 4
(N+n)2

to obtain the same conclusion. An alternate proof is given later on.

Remarks It is interesting that while α plays an important role in determining

what limit process is obtained, the limit processes do not feature α.

4.3 Limit Distributions

In Section 4.2 we showed that if the internal behaviour, type of addition and the rate

at which particles are added are known, we can find diffusion processes to approximate

the system when N →∞. In this section we study the long time behaviour of these

processes, that is we find the distribution of X∞ = limt→∞Xt which exists in all

cases. We first consider when we obtain deterministic limits, then martingales and

then diffusion processes.
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4.3.1 Deterministic

We obtained five cases where the limiting process from Theorem 4.2.1 was given by an

ordinary differential equation. These were cases (a)(i), (a)(ii), (b)(ii), (c)(ii) and (d).

Cases (c)(ii) and (d) are trivial with X∞ = X0. In the remaining cases, to simplify the

presentation, we make the assumption that the functions fu, fd, gu and gd are linear;

our results can be extended to the non-linear case.

In all cases we can write dXt = µ(Xt)dt for some suitable function µ with the

property that µ is Lipschitz and µ(1) > 0 and µ(−1) < 0 (or vice versa). By Picard’s

existence Theorem we know that a unique solution must exists for any given initial

condition (see pages 463-468 [Blazy et al., 2013] for more details). Piecing this together

we can conclude that there must exist a point x ∈ [−1, 1] such that µ(x) = 0. Since we

have assumed that our functions are linear we know there can be only one root. This

point must be the limit point for any other solution with a different starting point

since on both sides the derivative is towards the fixed point and so it is an attractive

fixed point.

4.3.2 Martingales and Diffusion Processes

We now use our knowledge of the speed measure and scale function to work out the

long term behaviour of the processes we obtained.

Theorem 4.3.1. Suppose that the functions fu, fd, gu and gd are all linear. Then,

if Xt is the limit process obtained from the process XN
τ in Theorem 4.2.1, Xt always

converges in distribution to X∞ as t → ∞ with the distribution of X∞ depending on

fu, fd, gu and gd in the following ways:

(a) Deterministic

(i) If fd(x) 6≡ 1+x
1−xfu(x) then the limit distribution is a point mass at the unique

fixed point of (4.3) or (4.4) for 0 ≤ α < 1 and α = 1 respectively.
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(ii) If fd(x) ≡ 1+x
1−xfu(x), gu(x) ≡ 1+x

1−xgd(x) and 0 < α ≤ 1 then the limit

distribution is a point mass at the unique fixed point of (4.6).

(iii) If fd(x) ≡ 1+x
1−xfu(x), fu(x) 6≡ 0, gu(x) 6≡ 1+x

1−xgd(x) and 0 < α ≤ 1 then

X∞ = x0.

(iv) If fd(x) ≡ fu(x) ≡ 0, gu(x) 6≡ 1+x
1−xgd(x) and 0 < α ≤ 1 then X∞ = x0.

(b) Point-masses

(i) If fd(x) ≡ 1+x
1−xfu(x), fu(x) 6≡ 0, gu(x) ≡ 1+x

1−xgd(x) and α = 0 then

X∞ =


+1 w.p. 1

2
(1 + x0)

−1 w.p. 1
2
(1− x0)

(c) Ergodic

(i) If fd(x) ≡ 1+x
1−xfu(x), fu(x) 6≡ 0 and gu(x) 6≡ 1+x

1−xgd(x), then α = 0 with

distribution given by

m(dx) =
1

4(1− x)fu(x)
exp

(
2

∫ x

0

gu(y)(1− y)− gd(y)(1 + y)

4(1− y)fu(y)
dy

)
.

Proof. In cases (a)(i) and (a)(ii) the limit process is deterministic and it is well known

that the process will converge to the fixed point of its equation. Case (a)(iii) and

(a)(iv) are also obvious since the limit process is the constant function. These are the

only deterministic cases.

Case (b)(i) obtains a martingale in the limit, this is already in natural scale and

so we do not need to consider the scale function. Since we have assumed that the

functions are all linear we know that ±1 are the only roots to the stochastic differ-

ential equation. The end points are clearly not repelling so are either absorbing or

inaccessible, either way, by Theorem 3.3.3 we know that the process converges to the
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end points with probability proportional to the starting points. Hence we obtain the

only point mass case.

The final case has conditions which yield a stochastic differential equation with

drift and diffusive terms. Since we are not in natural scale, we are required to calculate

the scale function, in this case we get

ρ(z) =

∫ z

0

exp

(
−2

∫ y

0

gu(x)(1− x)− gd(x)(1 + x)

4(1 + x)fu(x)
dx

)
dy.

It can be shown that ρ(±1) <∞ and so we need to determine to boundary behaviour.

Using the definition of m(dx) given, it can be shown that m(0, 1] <∞ and m[−1, 0) <

∞ and so by Theorem 3.3.2 we can deduce they are both reflecting points and so by

Theorem 3.3.3 we conclude the process is m-ergodic.

4.3.3 Limit Distribution for fixed N

Throughout we have only considered the situation when N → ∞. We now look at

the process XN
t when N is fixed and find the distribution of XN

∞. Again, we make

the assumption that the functions are linear since the matter is more complicated

when the functions are not linear as there could be multiple roots to the differential

equation obtained. If this is the case, then the starting point does play a part since

in the finite case the process could ‘jump’ over these stationary points.

The reason we discuss the finite N case is to compare our results to that obtained

in [Morris and Rogers, 2014] which motivated our study. In their paper, they consider

for fixed N the limit as they tend t → ∞ and then tend N → ∞ whereas in ours,

we tend N → ∞ and then t → ∞. It is interesting to compare the two as naively

you may expect the two results to coincide but this is not necessarily true. A simple
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counter example would be the double sequence given by an,t = n/(t+ n) since

lim
t→∞

lim
n→∞

an,t = 1 but lim
n→∞

lim
t→∞

an,t = 0.

However, we shall argue that in most cases the limits do coincide. We do not go into

full details since this is not what is of interest to us but we shall give a strong argument

as to why this must be the case. In this section we shall make the assumption the N

is even, this is simply so that we can start with XN
0 = 0 as we have done throughout

and it simplifies the mathematics since the process in this case in symmetric about

0. The case where N is odd can be calculate in a similar way albeit slightly more

complicated. Another assumption that we shall make is that for the case when the

process converges to a fixed point, we shall assume that fixed point is rational. The

reasoning behind this is that our process takes values on the rationals and so this

assumption means that for the process the fixed point is accessible. When the limit

point is not rational it will need to be argued that the values XN take on the interval

[−1, 1] becomes dense as t→∞ which can easily be seen since SNt →∞.

Another motivation for considering the case when N is fixed it to see how it relates

to our results when N →∞, to see if they coincide. We shall argue that in all cases,

except those of case (c)(ii) and (d), the asymptotic distributions are identical, that is

XN
∞ = X∞.

The case of (c)(ii) and (d) can very easily be seen to be different since in the finite

case XN
∞ is non-degenerate. The process is still a bounded martingale and so will

converge but this distribution is no longer a point mass at the starting point. We

give an illustrative example by considering the functions in case (d) but with fixed

N <∞. In this case the system is identical to that of the Pólya urn model which has

been extensively studied (see [Mahmoud, 2009] for example). If we impose the initial

condition that there are m up particles and n down particles then the distribution of

59



X∞ is given by

P(X∞ = x) =
Γ(m+ n)

2m+n−1Γ(m)Γ(n)
(1 + x)m−1(1− x)n−1.

Remark This gives an alternate proof for case (d) when N → ∞. By having

m = N(X0 + 1)/2 and n = N(X0 − 1)/2 and tending N → ∞ we obtain the limit

distribution in the infinite case, which is a point mass at X0.

The above reasoning also explains why our results for case (c)(ii) differ from that

obtained by Roger and Morris, in there paper, since N is fixed the process is able

to move more than ours and so has positive probability of reaching ±1 causing point

masses to accrue there unlike ours.

Arguing that in the other cases the limits are identical is slightly more complicated.

Firstly, since N is finite the process XN is a Markov chain, this will be of use since the

process only takes discrete jumps. We shall explain the situation for case (c)(i) which

can be modified for all the other cases except case (b)(i) which we discuss separately.

In case (c)(i) we have some knowledge of how XN
t and SNt can behave. Firstly,

it should be noted that XN
t is a Markov chain with the points +1 and −1 being

accessible absorbing points. This means that, letting A represent that state-space

of the process XN we have that whenever the process is in Int(A) it has positive

probability of reaching +1 or −1 and once reaching one of these two states it remains

there. Furthermore, the process is symmetric about 0 so if XN
0 = 0 we can conclude

that the absorbing points must be reached with equal probability. That is,

XN
∞ =


+1 w.p 1

2

−1 w.p 1
2
.

A similar argument can be use for all other cases remaining except for case (b)(i).

Since again from any state the process has positive probability of reaching the ab-
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sorbing point as it is an accessible point. Since it is an absorbing point is remains

there once reach and so again we conclude that XN
∞ = x∗ where x∗ denotes the fixed

point to the system. The reason the point is accessible is this point is rational and so

can be written in the form x∗ = p/r where p, q ∈ N, q 6= 0. If we take it that p, q do

not share any factors we can write x∗ = (2p)/(2q) which is useful since the process

XN is of this form infinitely often since SN →∞ and so is even infinitely often.

Case (b)(i) requires a different argument since the process is ergodic. We shall use

this fact to help us. We know the following two facts: 1) The process Xt converges

to X∞ as t → ∞ regardless of the initial value of X0 and 2) That XN converges to

X as N → ∞. As such, if we can show that XN
t converges to X as t → ∞ then we

are done since X converges to X∞. This holds since as t increases SNt →∞ meaning

that ∆XN
t → 0 thus that the process converges to a continuous one, further more by

looking at the drift and diffusive terms we see that this converges to that of X.

4.4 Applications

In this section we shall focus on some specific examples that are of particular interest

and highlight how the addition of growth may change the behaviour of our process.

In these examples we take fu(x) = 1
2
(1− x) and fd(x) = 1

2
(1 + x) so that the system

is self-stabilising.

Example 4.4.1 (Growth by Replication). Consider a non-growing system with the

flips given by the functions fu(x) = 1
2
(1− x) and fd(x) = 1

2
(1 + x). From Example 1

in Section 2 we can see that the limit process would follow a path given by

dXt =
√

1−X2
t dBt.

Since there is no drift term this is a martingale and so is in natural scale. The end

points are absorbing points and with our process starting at X0 = 0, both points are
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equidistant and so the limit distribution, X∞, of our process is given by equal point

masses at the points ±1 (see Figure 4.1).

We now add growth to see how this changes the behaviour of the system. Set

gu(x) = 1
2
(1 + x) so that the addition of particles is dependent on the magnetisation

of the system. When α = 0, Theorem 4.2.1 gives the limit process Xt as identical to

that of the non-growing case and so the limit distribution X∞ is identical (see Figure

4.2).

If we increase the rate of addition of the particles further so that 0 < α ≤ 1 then

the addition of the particles now overwhelms the system and the internal mechanics

do not have time to play a part. This causes the process to remain in the original

state so that Xt = X0 as seen in Figure 4.4. This recovers the results obtain in [Morris

and Rogers, 2014].

Example 4.4.2 (Growth from Unmagnetised Reservoir). In the last example the

growth could be considered as the replication of the system, in this case we shall

introduce particles from an unmagnetised reservoir so that the addition of particles

has an equal chance of being up and down. This is done by setting gu(x) = gd(x) = 1
2
.

We already know what would happen in the non-growing case from the previous

example. Consider α = 0. In this case we would obtain the limit given by case (b)(i),

i.e.

dXt = −Xtdt+
√

2(1−X2
t ) dBt.

We can see straight away that the drift and diffusivity terms do not share any roots

and so we can conclude that the process is ergodic. To see what the distribution is

we look at the speed measure and scale function which in this case are

m(dx) =
1

2
√

1− x2
dx and ρ(x) = sin−1(x).

Since ρ(x) is strictly increasing on [−1, 1] we deduce that X∞ has the distribution
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given by m(x) which is an arcsine distribution. Simulations are given in Figure 4.3.

Increasing the rate of addition further, so that α > 0, the process becomes deter-

ministic given by the ordinary differential equation dXt = −Xtdt. This has solution

Xt = x0e
−t which tends to zero as t increases. This case is of interest as there is a

change in the behaviour when there is no growth, α = 0 and α ∈ (0, 1] (Figure 4.5).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Tau

P
ro

po
rt

io
n 

of
 V

ot
es

(a) Simulated sample path .

Proportion

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0
0

1
2

3
4

5

(b) The distribution of 10000 sample paths.

Figure 4.1: Sample path and distribution of the no growth process (see Definition 1)
with N = 100 and the process stopped at τ = 1.
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(b) The distribution of 10000 sample paths.

Figure 4.2: Sample path and distribution in Example 3 (Constant Replication
Growth) with N = 100 and the process stopped at τ = 1.
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(b) The distribution of 10000 sample paths.

Figure 4.3: Sample path and distribution in Example 3 (Constant Unmagnetised
Growth) with N = 100 and the process stopped at τ = 1.
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(b) The distribution of 10000 sample paths.

Figure 4.4: Sample path and distribution in Example 3 (Accelerated Replication
Growth) with N = 50000, α = 0.75 and the process stopped at τ = 1.
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(b) The distribution of 10000 sample paths.

Figure 4.5: Sample path and distribution in Example 4 (Accelerated Unmagnetised
Growth) with N = 50000, α = 0.75 and the process stopped at τ = 1.
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Chapter 5

Introducing Competition within

HL(0)

5.1 Introduction

We consider a planar random growth model devised by Hastings and Levitov [Hastings

and Levitov, 1998]. This is a model which uses conformal mapping theory to model

a growing cluster formed by the aggregation of particles. The model has a parameter

α ∈ [0, 2], however in this paper we only consider the case when α = 0. Much research

has been conducted regarding this model, see [Johansson Viklund et al., 2012] and

[Silvestri, 2017] for example. We introduce competition into the model by considering

two competing areas and having incoming particles join the team that they land in.

By considering the harmonic measure of the areas, we show that by changing the size

and rate of the addition of particles, based on the harmonic measure, allows us to

construct cases where at any given time there is a positive probability that each area

has positive measure.
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5.1.1 The Hastings-Levitov Model

Before we can introduce competition into our model of interest, we must firstly define

the model itself. The model of interest, known as the Hasting-Levitov model, is a

growing sequence of clusters formed by a sequence of conformal maps which represent

the addition of a particle to the cluster. Let c > 0, we consider a slit of length d = d(c)

and attach it to the unit circle, T at the point 1. The value c is known as the capacity

of the particle and is another way to consider the ‘size’ of the particles being added. It

is easier to describe the length of a slit and so we introduce d but it is mathematically

more convenient to work with the capacity and so we include the relationship between

them here. For further work concerning the capacity please see the introduction of

[Johansson Viklund et al., 2012]. The relationship between c and d is given by

ec = 1 +
d2

4(1 + d)
.

Observe that d � c1/2 as c → 0. The attachment of such a particle can be given

uniquely by the conformal map

f c : ∆ := {z ∈ C : |z|> 1} ∪ {∞} → D1 := ∆ \ (1, 1 + d]

with f c(z) = ecz +O(1) at infinity. From this we can construct a model to represent

random aggregation which is constructed from a sequence of conformal maps derived

from the function f c. Let (θn)n∈N be a sequence of Uniform[−π, π) random variables

and t1, t2, . . . be the arrival times of the particles which arrive at rate 1. From this we

obtain a sequence of maps (fn)n∈N from f c by

f cn(z) = eiθnf c(e−iθnz),
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which is a rotation and rescaling on the original map. From this sequence of maps set

Φt(z) = f c1 ◦ f c2 ◦ . . . ◦ f cn(z), tn ≤ t < tn+1.

Since Φt is a composition of conformal maps, it too is one, and maps the exterior disc

to the complement of a compact set, which we denote by Kt. In other words,

Φt : ∆→ C \Kt.

The sets (Kt)t∈R are called clusters which satisfy Ks ⊆ Kt for s ≤ t. The set Kt

represents the growing cluster after the addition of n particles for tn ≤ t < tn+1.

Throughout the rest of this paper we shall omit the c to simplify notation when

needed.

5.1.2 Harmonic Measure Flow

Our motivation behind the Hastings-Levitov model stems from the aim of modelling

growing clusters formed by the aggregation of particles. Such a model is know as

diffusion limited aggregation (DLA). The DLA model is constructed by having an

initial cluster and adding particles. The addition of each particle is from a Brownian

path which starts at infinity and is added to the cluster at the point it hits the unit

disc. This model is very hard to analyse mathematically and this is why we study the

Hasting-Levitov model, it is similar to DLA except that the conformal maps distort

the size and shape of the added particles.

For the unit disc, the probability of the Brownian particle hitting the boundary is

given by a uniform distribution. This is an example of the harmonic measure.

Definition 5.1.1. Let D ⊂ R2 and let ∂D represent the boundary of D. Then, for
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any A ⊆ ∂D and x ∈ D the harmonic measure of the set A is defined to be

µxD(A) = P(Bτ ∈ A|B0 = x)

where τ = inft>0{Bt ∈ ∂D}.

The harmonic measure of a subset of the boundary is the probability a Brownian

path, starting from within the set, exits through that subset. In our case, the set is

(C ∪ {∞}) \Kt with the starting point being ∞.

Calculating the harmonic measure of such a set directly is complicated, since the

set Kt can be quite intricate. What is of use though, is that the set Kt is simply

connected and the harmonic measure of a simply connected set can be given by the

harmonic measure of the unit disc and the mapping between the set Kt and the unit

disc. This is possible since Brownian motion is invariant under conformal maps.

Since the harmonic measure is a one dimensional object taking values in R+, we

can turn the maps into a one dimensional object too. If we define γn = (log f−1
n ) /2π,

we can consider the movement of a point after the addition of n particles. The

sequence (Zt)t∈R formed by the composition of map, Zt(x) = γn ◦ γn−1 ◦ . . . ◦ γ1(x),

for tn ≤ t < tn+1, is known as the harmonic measure flow. The individual functions

γn represent the change in harmonic measure.

Example 5.1.1. If we denote A0 = [0, π], the the evolution of the harmonic measure

as the process evolves would be given by

µ∞Kt(At) = Zt(π)− Zt(0).

In a similar way that fn was constructed from f by rotating for the addition of a

particle at angle θn The function γn(x) = γcn(x) can be expressed explicitly from the
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Figure 5.1: Plot of the function γc(x) with c = 0.01 along with the identity function
(dashed).

function γc where

γc(x) = 2sgn(x) tan−1
√
ec tan2(πx/2) + ec − 1 , x ∈ (−1, 1]/{0}

with t1, t2, . . . being the arrival time of the particles, see Figure 5.1 for a plot.

The relation between γc and γcn is given by

γcn(x) = θn + γc(x− θn).

The process Zt, known as the harmonic measure flow, can be constructed itera-

tively from the functions γcn. If we define Z0 = 0 then we can define Zt by

Zt = θn + γcn(Zs − θn), Z0 = z0 ∈ (1, 1] (5.1)

where tn−1 ≤ s < tn ≤ t < tn+1. In the limit, after scaling the space, as c → 0 this

gives Brownian motion.
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This can further be extended by considering an infinite number of starting po-

sitions simultaneously. If we consider an infinite sequence, Zt = (Z1
t , Z

2
t , . . .), with

Z1
0 = z1

0 , Z
2
0 = z2

0 , . . . with each zn0 unique, then in the limit as c→ 0, the process Zt,

after an appropriate scaling, converges to the Brownian web. This, along with the

previous result was shown in [Turner, 2006].

5.1.3 Introducing Competition

So far we have introduced the original growth model. In this section we add some

form of competition. To do this, we split the unit disc into two regions and colour

the upper half red and the lower half blue. We then run the model as normal but

upon hitting the disc the particle attaches itself and becomes the colour of the region

it attaches to. That is, if it attaches to the blue region it becomes blue, similarly for

the red area.

What we consider is the harmonic measure of these two regions. The measure of

a section being zero means that the probability of a Brownian path hitting it starting

at infinity is zero and so the cluster must be surrounded by the other region, which

would have measure 1. Our aim is to ensure that, at any time, the probability of each

region having positive harmonic measure has a positive probability.

To understand this model it is sufficient to look at the harmonic measure and so

we are only required to look at the boundary points between the two, marked as the

black dots in Figure 5.2.

If we consider the two regions and do not alter the way that particles are added

we would be in the same case as in the previous section and so would obtain a process

that performs Brownian motion. This in turn would mean that eventually one of

the areas harmonic measure will be zero. As such, for us to ensure some form of

competition, we allow the size of the incoming particles and rate of growth to be

dependant on the harmonic measure of the red area.
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If we set X+
0 = 0 and X−0 = π to be the initial boundary points between the red

and blue surfaces, we can then look at the evolution of these points after the addition

of each particle as c→ 0. The evolution of these points is given precisely by (5.1). As

previously mentioned, in the original case, these points would behave like Brownian

motions and so with probability one these two points will meet. This would mean

the measure of one region is zero and the other is one and so one area will always

surround the other and there is no competition.

Figure 5.2: An illustrative example showing the initial system, a particle joining,
then applying the conformal mapping which absorbs the particle. This causes the
boundary between the dashed red curve and solid blue curve to change.

Our aim is to ensure the survival of both areas. As mentioned, we allow the size

of the incoming particle and the rate of addition to be functions of the harmonic

measure of the red area. To introduce competition, we shall change the rate such that

it is a function of the harmonic measure of the red area and change the size of the

particles in the red and blue region, again as a function of the harmonic measure of

the red area. To to this, we introduce functions r(x, c), s+(x, c) and s−(x, c). These

are defined such that the rate of addition is given by r(x, c) and the size of particles

in the red and blue region is given by s+(x, c) and s−(x, c) respectively. To generalise

the process to take into account the rate change and to allow the particle size to vary

as a function of the harmonic measure, we redefine γ(u) to be

γcs(x,c)(u) = 2sgn(u) tan−1
√
ecs(x,c) tan2(πu/2) + ecs(x,c) − 1 .
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5.1.4 Outline

In this section we show that it is possible to ensure coexistence of the two regions by

choosing the rate and size of the particle to be appropriate functions of the harmonic

measure of the red region. In Section 5.2 we introduce the kernel of a process and

apply Kurtz’s Theorem to find a scaling limit and list all possible cases, that is we

find a limiting process Xt from the process Xc
t after an appropriate scaling. Section

5.3 then turns our attention to the asymptotic distribution, X∞, of the process Xt

obtained in Section 5.2. We use the speed measure and scale function to analyse the

boundary behaviour which in turn will give us our distributions. Finally we end with

a few illustrative examples in Section 5.4.

5.2 Diffusion Estimates

To analyse the model, we use the framework given by Kurtz to obtain diffusion pro-

cesses as c→ 0. We will make use of the material covered in Chapter 3.

Example 5.2.1. The kernel for the process associated with the harmonic measure

flow of a single point is given by

Kc(x, dy) =
1

2

∫ 1

−1

δy (γc(x− θ)− (x− θ)) dθdy. (5.2)

where δy(x) is the dirac delta for y. It was shown in [Turner, 2006] that if Xc
t is the

process associated with the above kernel then Xc
τ(t) converges weakly in D[0,∞) to

Bt, Brownian motion where τ(t) = c−3/2t.

Since we are only interested in the harmonic measure of the red region, we can

rotate the cluster object and this will not affect the harmonic measure. This is of use

since we can attach a particle which will cause the boundary points to move and then

rotate the cluster such that the left most boundary point is π. This makes it easier to
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construct the kernel and yields

Kc(x, dy) =
1

2

∫ 1

−1

δy (γ̃c(1− θ)− γ̃c(1− θ − x)) dθdy, (5.3)

with γ̃c(x) = γc(x)− x

Example 5.2.2. Consider the process Xc
t with kernel given by (5.3). Using Theorem

3.2.1 we get weak convergence of Xc
t to Xt as c → 0. This diffusion process satisfies

the stochastic differential equation

dXt = I(−1,1)(Xt)dBt.

Remark 5.2.1. In the above example we saw that if the process reaches the end points

1 or -1 the process then stops. To avoid the need for indicator functions while writing

stochastic differential equations, whenever we write t we mean t∧τ where τ = min{t >

0 : Xt ∈ {−1, 1}}.

Extending the previous kernel to take into account the change in rate and size of

the incoming particles, as functions of the harmonic measure of the red region, we

obtain,

Kc(x, dy) =
1

2
r(x, c)

∫ 1

1−x
δy
(
γ̃cs+(x,c)(1− θ)− γ̃cs+(x,c)(1− θ − x)

)
dθdy

+
1

2
r(x, c)

∫ 1−x

−1

δy
(
γ̃cs−(x,c)(1− θ)− γ̃cs−(x,c)(1− θ − x)

)
dθdy.

(5.4)

Remark 5.2.2. Setting r(x, c) = 1 retrieves the original case considered.

Theorem 5.2.1. Consider the process Xc
t with kernel given by (5.4) with Xc

0 = x0

for some x0 ∈ [0, 2], then Xc
t converges weakly to the process Xt in D[0,∞) with

X0 = x0. The limit is determined by the function r(x, c), s+(x, c) and s−(x, c). We

list the possible cases below:
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(a) If there exists a function µ(x) such that

sup
x
|r(x, c)s+(x, c)− s−(x, c)c log(c)− µ(x)|→ 0

and

sup
x

∣∣c−3/2r(x, c)
∣∣→ 0

as c→ 0, then the limit process satisfies

dXt = µ(Xt)dt (5.5)

(b) If there exists functions µ(x) and σ(x) such that

sup
x
|r(x, c)s+(x, c)− s−(x, c)c log(c)− µ(x)|→ 0

and

sup
x

∣∣c−3/2r(x, c)− σ2(x)
∣∣→ 0

as c→ 0, then the limit process satisfies

dXt = µ(Xt)dt+ σ(Xt)dBt.

(c) If there exists a function σ(x) such that

sup
x
|s+(x, c)− s−(x, c)|c log(c)→ 0

and

sup
x

∣∣∣∣32

3
c−3/2r(x, c)− σ2(x)

∣∣∣∣→ 0
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as c→ 0, then the limit process satisfies

dXt = σ(Xt)dBt.

Proof. We use Theorem 3.2.1 to prove weak convergence. To do this, we are required

to calculate the functions ac and bc to ensure they converge to functions a and b as

c→ 0, after a suitable scaling to be determined. Observe that

bc(x) =
1

2
r(x, c)

∫ 2

0

∫ 1

1−x
δy
(
γ̃cs+(x,c)(1− θ)− γ̃cs+(x,c)(1− θ − x)

)
dθdy

+
1

2
r(x, c)

∫ 2

0

∫ 1−x

−1

δy
(
γ̃cs−(x,c)(1− θ)− γ̃cs−(x,c)(1− θ − x)

)
dθdy

=
1

2
r(x, c)

∫ 1

1−x

(
γ̃cs+(x,c)(1− θ)− γ̃cs+(x,c)(1− θ − x)

)
dθ

+
1

2
r(x, c)

∫ 1−x

−1

(
γ̃cs−(x,c)(1− θ)− γ̃cs−(x,c)(1− θ − x)

)
dθ

= r(x, c)I[0,1)(x)

∫ x

0

(
γ̃cs+(c)(u)− γ̃cs−(c)(u)

)
du

r(x, c)I[1,2](x)

∫ 2−x

0

(
γ̃cs+(c)(u)− γ̃cs−(c)(u)

)
du.

We used Fubini’s Theorem in the first line and then a change of variables and the

periodicity of γ in the final line. With a similar argument it can be shown that

ac(x) = r(x, c)I[0,1)(x)

[∫ x

0

(
γ̃2
cs+(x,c)(u)− γ̃2

cs−(x,c)(u)
)
du− 2

∫ 1

0

γ̃2
cs−(x,c)(u) + du

]
− r(x, c)I[0,1)(x)

∫ x

0

(
γ̃cs−(x,c)(u)γ̃cs−(x,c)(u+ x)− γ̃cs+(x,c)(u)γ̃cs+(x,c)(u+ x)

)
du

+ 2r(x, c)I[0,1)(x)

∫ 1

0

γ̃cs−(x,c)(u)γ̃cs−(x,c)(u+ x)du

+ r(x, c)I[1,2](x)

[∫ 2−x

0

(
γ̃2
cs−(x,c)(u)− γ̃2

cs+(x,c)(u)
)
du+ 2

∫ 1

0

γ̃2
cs+(x,c)(u)du

]
− r(x, c)I[1,2](x)

∫ x

0

(
γ̃cs+(x,c)(u)γ̃cs+(x,c)(u+ x)− γ̃cs−(x,c)(u)γ̃cs−(x,c)(u+ x)

)
du

− 2r(x, c)I[1,2](x)

∫ 1

0

γ̃cs+(x,c)(u)γ̃cs+(x,c)(u+ x)du.
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As such, we need to obtain approximations for γ̃cs(x,c) to calculate the above integrals

as c → 0. To obtain these approximations we shall approximate γ for when x ≤ c

and x > c. By suitable Taylor expansions, it can be shown that

sup
u≤c

∣∣∣γcs(x,c)(u)−
√
u2 + 4cs(x, c)

∣∣∣→ 0

and

sup
u>c

∣∣∣∣γcs(x,c)(u)−
[
u+

cs(x, c)

tan(u/2)

]∣∣∣∣→ 0.

as c→ 0. Hence we deduce that

sup
c

∣∣∣∣c−3/2ac(x)− 16

3
r(x, c)

∣∣∣∣→ 0

and

bc(x) = cr(x, c)(s+(x, c)− s−(x, c)) (1 + 2 log sin(x/2) + log 16)

+ cr(x, c)s−(x, c) log(4s−(x, c))− cr(x, c)s+(x, c) log(4s+(x, c))

− r(x, c)(s+(x, c)− s−(x, c))c log c+ o(c).

For us to use Kurtz’s theorem, we must check that both function ac and bc converge.

To ensure that the limit is not trivial, we must ensure that the limit for at least one

of them is non-zero. These are precisely the conditions we state in the theorem. If we

are outside these cases then either the limiting process is trivial or we do not obtain

convergence in at least one of the processes ac or bc.

Finally, we observe that the other condition also holds since Xc
0 = X0 for all c and

the sizes of the jumps decrease as c→ 0.
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5.3 Limit Distributions

In this section we aim to analyse the long term behaviour of the processes obtained in

the previous section. To do this, we make use of the speed function, ρ(x), and scale

measure, m(dx).

Theorem 5.3.1. Let Xt be the limit process obtained from Xc
t in Theorem 5.2.1.

Then the limit distribution X∞ of Xt depends solely on r(x, c), s+(x, c) and s−(x, c).

We list the possible cases below in terms of ρ(x) where

ρ(x) =

∫ x

1

exp

(
−2

∫ y

c

µ(u)

σ2(u)
du

)
dy, c ∈ (0, 2).

- Deterministic If s+(x, c) 6≡ s−(x, c) then the limit is a fixed point to (5.5)

which we denote by x∗ if 0 < x∗ < 2 else it is 0 if x∗ ≤ 0 or 2 if x∗ ≥ 2.

- Point mass

– If ρ(±1) <∞ then the limit is given by

X∞ =


2 w.p. x0/2

0 w.p. (2− x0)/2.

– If ρ(−1) =∞ and ρ(1) <∞ then X∞ = 1.

– If ρ(1) =∞ and ρ(−1) <∞ then X∞ = −1.

- Null Recurrent If ρ(±1) =∞ and m(−1, 1) =∞.

- Ergodic If ρ(±1) = ∞ and m(−1, 1) < ∞ then the process is ergodic and the

distribution is given by

m(dx) =
3

64r(x, c)
exp

(
3

16

∫ x

1

h+(y)− h−(y)dy

)
dx.

78



Proof. We do not discuss the deterministic case further as the results are well known.

In the case where the function is a martingale, the process is already in natural scale.

Since the end points can not be repelling they are either absorbing or inaccessible, in

either case the process converges to the boundary points proportional to the distance

away thus obtaining our first point mass result.

The case where we obtained a diffusion process with both drift and diffusive parts

is more complicated since the behaviour will depend on the choice of rate and size

functions. In all cases, the process is not in natural scale. If we apply ρ to the process

Xt and then classify the boundary behaviour of Yt = ρ(Xt) we can then identify the

behaviour of Yt from the above theorem. Since ρ is invertible this in turn allows us

to understand Xt. The cases that then need to be considered are exactly those listed

in the theorem, mainly whether or not the function ρ(x) maps one or both of the

boundary points to ∞ or to a finite point.

As such, there exist cases where there is coexistence between the two regions. To

construct a case where there is coexistence we need to change the rate of the system

as we approach the boundary and increase the size of the particles that land in the

dying region and decrease the size of those in the larger region.

What is of interest is that the way we change the size of the particles is very

subtle and is not as large as seen in the previous chapter. In the previous chapter

where we considered the voter model and introduced competition we saw that a linear

function of the system generated different behaviour, in this case, if we were to apply

a linear function, we would obtain a deterministic process as this would be too strong

an influence.
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5.4 Examples

We now consider a few specific cases to see how the theory can be applied to turn the

naturally absorbing points into inaccessible points and produce an ergodic process.

Inaccessible case

Set r(x, c) = c−3/2x2(2− x)2 and set s+(x, c) ≡ s−(x, c) ≡ 1 we obtain in the limit a

process with the stochastic differential equation

dXt = Xt(2−Xt)dBt.

Such a process can easily be verified as a martingale and so already is in natural

scale. Furthermore, by calculating the speed measure, it can be shown that the end

points are inaccessible. As such, we have managed to turn absorbing endpoints into

inaccessible points by changing the rate of the process. If we look at the long term

behaviour though, it can be shown that in the limit, we have X∞ distributed as

X∞ =


0 w.p. x0/2

2 w.p. (2− x0)/2

which is identical in the limit to the original case.
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Figure 5.3: Sample path and distribution in Case 1 (Inaccessible) with c = 0.001 and
the process stopped once time jumps exceeded 2. Observe how we still converge to
one of the end points.

An Ergodic Process

Set r(x, c) = c−3/2 3
64
x(2− x) and

s+(x, c) = 1− 3(1− x)

4r(x, c)c log c
and s−(x, c) = 1− 3x

4r(x, c)c log c
.

This puts us in case (c) of Theorem 5.2.1 and so we obtain in the limit the process

Xt which satisfies the stochastic differential equation

dXt =
3

2
(1−Xt)dt+

√
Xt(2−Xt) dBt.

This gives a stochastic process which is not in natural scale. After calculating the scale

function ρ, we can see that we map the process Xt to Yt = ρ(Xt) which takes values

on the interval (−∞,∞), and so we are in case 1 of Theorem 5.2.1. Furthermore, this

process is ergodic and so mapping back to Xt must be ergodic too. The process Xt
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can be shown to be ergodic with distribution given by the Lebesgue measure on the

interval [−1, 1].
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richardson model with unbounded initial configurations. Ann. Applied Probability.

[Dimentberg, 2002] Dimentberg, M. F. (2002). Lotka-volterra system in a random

environment. Phys. Rev. E, 65:036204.

83



[Eden, 1961] Eden, M. (1961). A two-dimensional growth process. In Proceedings of

the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume

4: Contributions to Biology and Problems of Medicine, pages 223–239, Berkeley,

Calif. University of California Press.

[Etheridge, 2011] Etheridge, A. (2011). Some mathematical models from population

genetics, volume 2012 of Lecture Notes in Mathematics. Springer, Heidelberg. Lec-

tures from the 39th Probability Summer School held in Saint-Flour, 2009, École
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