

The Simplicity Project: Managing
Complexity in a Diverse ICT World

N. Blefari Melazzi1, G. Bianchi1, G. Ceneri2, G. Cortese3, F. Davide3, N. Davies4, N.
Dellas5, E. Fischer6, T. Frantti7, A. Friday4, J. Hamard8, M. Helbing9, S. Kapellaki5, K.
Kawamura8, W. Kellerer8, E. Koutsoloukas5, C. Meyer6, C. Niedermeier6, C. Noda8, J.

Papanis5, C. Petrioli10, E. Rukzio11, S. Salsano1, Robert Seidl6, O. Storz4, J. Urban9, I. S.
Venieris5, R. Walker2

1 DIE, Università di Roma “Tor Vergata”,
{blefari, giuseppe.bianchi, stefano.salsano}@uniroma2.it

2 Radiolabs, Consorzio Università Industria – Laboratori di Radiocomunicazioni, Roma,
{gianni.ceneri, richard.walker}@radiolabs.it

3 Telecom Italia Learning Services, g.cortese@computer.org
4 Computing Department, Lancaster University,

{nigel, adrian, oliver}@comp.lancs.ac.uk
5 National Technical University of Athens, School of Electrical and Computer

Engineering, Intelligent Communications & Broadband Networks Laboratory,
 {ndellas, sofiak, lefterisk, jopapan}@telecom.ntua.gr, ivenieri@cc.ece.ntua.gr

6 Siemens Corporate Technologies, Otto-Hahn-Ring 6, D-81739 München, Germany,
{Elisabeth-Anna.Fischer, Carsten.Meyer, Christoph.Niedermeier}@siemens.com
7 Technical Research Centre of Finland (VTT), Kaitoväylä 1, 90571 Oulu, Finland,

tapio.frantti@vtt.fi
8 DoCoMo Communications Laboratories Europe,

{hamard, nick, kellerer, noda}@docomolab-euro.com
9 Siemens Mobile, Sankt-Martinstraße 76, D-81541 Munich, Germany,

{Michael.Helbing, Josef.Urban}@siemens.com
10 CS Department, Rome University “La Sapienza”, e-mail: petrioli@di.uniroma1.it

11 Department "Institut für Informatik", Ludwig Maximilians University, Munich, e-mail:
Enrico.Rukzio@informatik.uni-muenchen.de

Keywords - service personalization, service portability, service adaptability, service
discovery, user profile definition and handling, user mobility, auto-configuration of
terminals, middleware, brokerage functions, orchestration of network resources,
Smart Cards, high-layer re-configurability, Bluetooth, mobile phones as general-
purpose devices.

Table of Contents

1 Introduction... 3
2 Driving Concepts .. 4
3 Simplicity Device: short-term and long-term scenarios.. 5
4 User scenarios ... 9

4.1 A brief Description ... 9
4.1.1 Mobile Worker and Gaming ... 10
4.1.2 Car / Travel / Shopping... 11
4.1.3 The Global Health System .. 12
4.1.4 Buy and Use a Self Learning Simplicity Device... 13

4.2 Methodology for User Scenario Analysis ... 15
4.3 Requirements common to all scenarios... 15

5 Requirements .. 16
5.1 Methodology for deriving requirements ... 18
5.2 Preliminary list of requirements for the SD .. 18

6 System Architecture.. 19
6.1 Horizontal view... 19
6.2 Vertical view ... 20

7 System Functionality .. 21
7.1 Functionality of the Simplicity Device ... 21
7.2 Terminal Broker functionality .. 22
7.3 Network Broker functionality ... 23

7.3.1 Service Deployment/Advertisement ... 23
7.3.2 Service Adaptation.. 24
7.3.3 Network Side Handling... 24
7.3.4 User Profile ... 24

8 State of the Art .. 25
8.1 Personalization and User Profiles ... 25
8.2 Simplicity Device.. 27

8.2.1 USB Devices ... 27
8.2.2 Smart Card Technology .. 28
8.2.3 Java Card Platform.. 29

8.3 Flexible Network Support... 29
8.3.1 Policy-based brokerage frameworks ... 30
8.3.2 Mobile Agent Platforms.. 30
8.3.3 Service Discovery Frameworks .. 31
8.3.4 Simple Storage Management .. 31

8.4 Ambient Intelligence... 32
9 Conclusions... 33

Abstract

As technology develops, people are using an ever broader range of heterogeneous
ICT (Information and Communication Technology) devices and network-based
services. New areas of research, such as pervasive computing, will further increase
the diversity of the devices and services with which users have to deal. The result is
an enormous burden of complexity for users, service providers and network
operators. This creates obstacles to effective exploitation and acceptance of Beyond
3G systems such as ambient intelligence, context-aware services and novel access
technologies. The goal of the Simplicity project is to reduce this complexity by: i)
providing automatic customization of user access to services and the network; ii)
automatically adapting services to terminal characteristics and user preferences; iii)
orchestrating network capabilities.

1 Introduction

The Simplicity project is a European Union research program, scheduled to run for two
years, from January 2004 to the end of 2005 [1]. Simplicity stands for Secure, Internet-able,
Mobile Platforms LeadIng CItizens Towards Simplicity. But “simplicity”, as the acronym
suggests, is also the aim of the project. The goal is to develop and evaluate a series of tools,
techniques and architectures enabling users to customize and use devices and services with
minimal effort.

A trans-European project, Simplicity brings together a combination of expertise from
eleven major European industrial organizations, network operators, SMEs, research labs
and universities [1].

The Simplicity project started from a vision: users today employ a variety of different
terminals and devices to access a range of different “services” in the home, in buildings or
in public spaces, for example, communications, computing capabilities, security support
etc.. Some services may be as simple as remote control of an entertainment device (e.g., a
television) via a wireless link, or access control to a building. Others can be very complex
and may require location awareness, QoS support, message exchanges with network
databases, structured interaction with remote networking devices (e.g., media gateways),
etc.. The emergence of new research areas, such as pervasive computing, will further
increase the diversity of the devices and services with which users have to deal.

But already today, users who attempt to exploit the services on offer have to deal with
multiple procedures for configuring devices, multiple authentication mechanisms and
passwords, multiple billing and payment procedures, multiple access technologies and
protocols. This creates an enormous burden of complexity (as well as the physical burden
of carrying different devices). This complexity is likely to limit the effective exploitation of
the wide range of access, virtual reality, ambient intelligence and context-aware solutions
currently under study and development. It will deepen the digital divide, making it difficult
for non-technical users to benefit from new developments. And of course it will also create
difficulties for network operators, who will be forced to manage the complexity of a multi-
access networking environment.

The strategic goal of Simplicity is to simplify the process of using current and future
“services”. More specifically, the project aims to design and deploy a brokerage level
allowing i) easy personalization of services to match user preferences and needs, ii)
seamless portability of services, applications and sessions across heterogeneous terminals
and devices, and iii) smooth adaptation of services to available networking and service
support technologies and capabilities.

With these goals in mind, Simplicity will:

• describe user scenarios and business models for the Simplicity approach;
• explore new brokerage mechanisms and policies in a multi-access networking

environment;
• design a universal multi-application Simplicity Device providing users with a

simple and uniform mechanism for customizing services and terminals;
• validate the feasibility and benefits of the Simplicity approach;
• contribute to relevant standardization bodies.

In this chapter we will present the main ideas and rationale behind the Simplicity
project, outlining a number of ideas on applications scenarios and research directions
developed during the initial months of the project. We will begin by illustrating the driving
concepts behind the project and a number of user scenarios. These will be used to derive
system requirements, which in turn will determine the system architecture and the related
functional architecture. The chapter concludes with an analysis of the state of the art in
technologies and standards relevant to Simplicity.

2 Driving Concepts

An important feature of 2G wireless systems, e.g., GSM, is the portability of user identities
between different terminals (i.e., mobile phones). In what follows, we propose a
generalization of this concept, allowing users to move seamlessly between different
distributed applications and services using heterogeneous networking technologies and
devices. This approach, we suggest, could provide a user-friendly solution to the challenges
posed by a diverse service and technology environment.

The personalization concept is based on the concept of a “user profile”. Each user
will be provided with a personalized profile, providing access to different services, perhaps
using different classes of terminals. Creating and maintaining the user profile will involve
the automatic processing of behavioral information (though the user will be able to switch
off automatic storage and/or delete specific information). More refined policies on how to
handle specific types of personal information will be part of the user profile and will be
controlled by the user. Full control of personal data, security of information, and user
privacy are key issues for the Simplicity approach.

The personalized user profile will allow: i) automatic, transparent customization and
configuration of terminals/devices and services; ii) uniform mechanisms for recognizing,
authenticating, locating and charging the user; iii) policy-controlled selection of network
interfaces and applications services. Thanks to the profile, users will also enjoy the
automatic selection of services appropriate to specific locations (e.g., the home, buildings,
public spaces), the automatic adaptation of information to specific terminal devices and
user preferences, and the easy exploitation of different telecommunications paradigms and
services.

Depending on users’ characteristics, preferences and abilities, personal profiles could
take the form of i) a standard profile defined by a Service Provider; ii) a pre-defined
template whose parameters can be configured by the user; iii) an open profile designed by
the user using a high-level description language.

The user profile will be stored in a so-called Simplicity Device (SD). Alternatively
storage on the Simplicity Device might be limited to a “pointer”, making it possible to
download the profile from the network. Though it seems natural (from our own everyday
experience of 2G systems) to think of the SD as a physical device (e.g., an enhanced SIM
card, a Java card, a Java ring, a USB pen, etc.) the SD could also be implemented as a
network location or a software agent. If the SD is a physical device, users could personalize

terminals and services by the simple act of plugging the SD into the chosen terminal (see
Figure 1).

One of the main novelties of the SD is that it is not tied to a single networking
environment, or to a single class of user terminals. The SD will provide all the information
necessary to adapt services to the characteristics of the terminal, the nature of the
environment and the user’s personal preferences. This means, for instance, that:

• different users plugging their SDs into the same laptop will see different working
environments, file systems, software tools, connection services, etc;

• a given user who plugs the SD into different terminals will always see the same
personalized working environment (adapted to the characteristics of the terminal);

• users will be able to suspend and resume running applications/sessions by simply
unplugging/plugging the SD; when the user moves from one terminal to another
the application/session automatically adapts to the new context.

Figure 1: Overall reference scenario

In brief, the core functions of the Simplicity framework include automatic terminal
and network configuration, location-based services, authentication, authorization and
accounting services, service discovery, as well as user interface and content adaptation to
terminal capabilities. Services and applications built on top of core Simplicity features will
provide users with a simple way to perform complex tasks, allowing them to take full
advantage of a multitude of terminals supporting modern communication facilities without
having to perform complex configuration decisions.

3 Simplicity Device: short-term and long-term scenarios

The key role of the Simplicity Device is to store user profiles, preferences and policies (and
possibly data), in a secure way. Potentially, it will be a “universal device”, compatible with
a broad range of terminals (including both legacy and emerging devices), and with the

ability to interact with many different environments. Ideally, the SD should meet the
characteristics listed in Table 1 below.

Table 1: Ideal characteristics of the Simplicity Device

Characteristic Comment

• A “universal” device, compatible
with a broad range of terminals

This is difficult, since we are talking of terminal devices ranging from
phones to PCs to home equipments

• Small, light-weight and low cost Not exceeding a credit card
• High level of user acceptance Users must think of it as a familiar and trusted object
• Include processing power Needed to i) run security algorithms; ii) start user sessions when

physically plugged into terminals, without necessarily requiring
actions on the terminal itself (bootstrap function); iii) complement
terminal host capabilities, if needed (e.g., a display or an actuator)

• Largest possible storage
capability

To store user data as well as profiles and preferences

• Easily configurable To allow users to quickly and simply install and configure profiles,
perhaps via a GUI

• Able to become “virtual” To give users the choice of having a physical or a virtual
personification of their preferences (e.g., network location or a
software agent)

At first glance, Table 1 may be seen as nothing more than a wish list. It is nonetheless

perfectly possible with current technology. The real issues are the following: i) will
manufacturers be willing to combine all the facets of our ideal Simplicity Device into a
single object? ii) will all terminal devices have slots to accept this SD? iii) will this SD
enjoy widespread user acceptance?

On the one hand, we are confident that current trends go in the direction traced by this
approach. On the other, we would like to find an easily implemented solution, which we
can bring to market as quickly as possible. Thus, as a project, we want to follow two
parallel routes: a mid/long term one and a short term one. In turn, the mid/long term
solution includes two sub-options: i) assume to have a single object with all the
aforementioned characteristics; ii) design a Simplicity Device concept able to be “adapted”
to several instances of an idealized single solution.

To specify the mid/long term scenario and to identify a short term solution, it is
useful to analyze devices that are currently available “off the shelf”, to play the role of
Simplicity Device. In this light, Table 2 summarizes pros and cons of some of these
devices.

Table 2: Pros and cons of currently available devices

Candidate device Pro Cons

Smart Card

: it has processing power

: limited storage; difficult
to plug in into current devices;
hard to say if future PCs, home
equipments and phones will have a
reader

USB stick

: huge amount of storage; easy
to plug in into PCs;

: no processing capability;
some PDAs use USB, phones are
more difficult (some phones have a
USB “slave” port)

Secure Digital memory card

: similar to a USB stick, but
perhaps easier to use in
PDAs and mobile phones;

.

: no processing capability;
difficult for phones

Virtual card
(or biometric identification)

: very “light-weight”

: no storage nor processing
capability in itself; requires
Internet connection; requires
“smart” users; difficult to envisage
the interaction with mobile phones
and other relatively “dumb”
devices; security issues: will users
consider it a trustable object? In
case of biometric identification,
similar considerations apply, added
to the necessity of adaptors

GSM SIM

: users think of it as a familiar
and trusted object;

: not easy to plug in into
current PC and laptops; if the same
SIM is used for the mobile phones
and for other devices, it would be
necessary to plug the SIM in and
out the phone; this could be
annoying for users; limited
storage; no processing capability

Sensor (e.g., Mote with
TinyOS)

: easy and powerful interaction
with the environment

: necessity of adaptors

None of the solutions in Table 2, provide a genuinely convincing solution for the very

short term.

PDA

Laptop

Desktop

Ambient

Mobile Phone

Entertainment
device

Simplicity Device

User

Terminal Host

Figure 2: The Simplicity Device Dilemma

As regards the short term scenario, to find a solution, we have to take the concept of
the Simplicity Device to extremes. The original idea of the SD was to store user preferences
and data in a single device (possibly smaller than a laptop…), allowing users to personalize
several different kinds of terminals/devices as well. This would take us towards a storage
and processing device. We could go further along this path and arrive at a virtual card
solution, but in this way we would loose the concept of the SD as a physical device: a
distinctive pro in many situations, and for many users. What can we find in between a
completely immaterial solution and a powerful-yet-small-card with storage and processing
power? What we are looking for, at least in a short term perspective, is a “trigger”: a device
that can activate, prompt, and elicit reactions from more powerful components with more
memory. From this point of view, the most common and widespread trigger we know is the
GSM SIM: a universally accepted and trusted device.

Taken in itself, the GSM SIM is rather “autistic” (or too specialized) and would need
specific adaptors to reach terminals other than mobile phones. However, the SIM could use
mobile phone’s capabilities to transfer data related to its role of Simplicity Device:
Bluetooth, IR or even Internet connections (via GSM/GPRS/UMTS).

Thus, the short term implementation of the Simplicity Device could consist of a
suitably adapted GSM SIM, installed in a phone equipped with Bluetooth/IR (though in
some contexts, this solution could be replaced by/combined with other implementations).
Bluetooth/IR allows the SIM to interact with other devices (e.g., PCs). In addition, a smart
phone can provide additional processing power, current SIMs are Java-enabled, typical
SIMs contain 64K memory and 128K SIMs are already on the market. Hence a SIM+smart
phone is not very far from the ideal characteristics of the storage and processing device
outlined above.

Probably, the strongest point of this solution is that it is very good from the point of
view of user acceptance. Users already trust their SIM to store sensitive identity and
charging data and are used to carrying their mobile phones wherever they go; there is thus
no need for them to carry additional devices. Finally, mobile operators could be interested
in selling or offering Simplicity in their SIMs, complementing their current services. With
the SIM + Smart Phone as a SD we can also imagine complementary solutions, in which
the GSM SIM provides also access to storage on a USB stick (carried by the user) or on the
network. All that the user would have to do to “bootstrap” Simplicity, would be to walk

near a PC with a suitably equipped phone (and perhaps plug in a USB stick, if a large
amount of personal data is needed as well).

 PDA

Laptop

Desktop

Ambient

Entertainment
device

+
Bluetooth

Simplicity Device

User

Terminal Host

Figure 3: An interim solution: SIM + Bluetooth Mobile Phone

To summarize, our proposed system will be based on a so-called Simplicity Device.
The project has not yet decided a medium/long-term strategy for the implementation of the
SD. In the short term, key characteristics and functions of our solution could be
implemented, demonstrated and applied using an SD based on a Bluetooth-equipped GSM
phone.

4 User scenarios

4.1 A brief Description
Organizations like the WWRF (Wireless World Research Forum) are currently outlining
visions for systems beyond 3G [2], [3]. These visions emphasize that the successful design
of future mobile networks will require a user-centered approach. The WWRF report
introduces the concept of personalized communication spaces and points out the need to
consider the user context, that is user goals, activities, tasks and focus of attention, users’
physiological and emotional state, their location, their social and physical environment (e.g.
the identity or properties of surrounding people, objects, and buildings), as well as the
availability of resources (services, devices and networks). Systems beyond 3G will support
many different classes of terminal and network technology. This in turn will increase the
complexity of the system, bringing with it the risk of user dissatisfaction. Our Simplicity
solution intends to mitigate these difficulties.

Definition of user scenarios is a common technique for illustrating user requirements
and a good basis for identifying system features, discovering alternative solutions and
deriving business models. During the initial phase of Simplicity, the project partners
developed 25 user scenarios. Below we describe four of these, entitled, respectively:

• Mobile Worker and Gaming
• Car / Travel / Shopping
• The Global Health System
• Buy and Use a Self Learning Simplicity Device

In this section , we describe the scenarios; in section 4.2 we outline the methodology
used to analyze them; in 4.3 we identify a set of basic requirements common to all.

4.1.1 Mobile Worker and Gaming

The key features of this scenario are presented in Figure 4.

Figure 4: Mobile Worker and Gaming

• Every morning Brad plugs his Simplicity Device (SD card) into his mobile phone to
access his company network. A Bluetooth connection means he can connect to a
desktop PC without having to plug the device in and out. A Simplicity Personal
Assistant (SPA) selects one of the available office working places according to
Brad’s preferences. The SPA automatically configures Brad’s personalized business
environment with a uniform login procedure and with access to his business
applications, data storage systems and to the peripherals (e.g., printers), available at
his location. The SPA adapts the services provided by the company network to the
capabilities of the work environment and to the user profile.

• At noon, Brad has to attend an important customer meeting. He orders a train ticket
via his office PC. The SPA uses Brad’s personal travel profile to choose the best
connection, taking into account his calendar and meeting information. It prepares
the booking via the company travel department. Brad checks the system proposal
and confirms the booking.

• When Brad leaves the office for his business trip, his SPA automatically saves the
status of the applications he was just working on and performs the logout procedure.

• During his business trip, the SPA detects many different location-based services and
filters them according to Brad’s preferences.

• When Brad reaches the train station, his SPA notifies him that he has received a free
upgrade to a first class train ticket. The SPA supports Brad in finding the station
platform and his seat in the train, based on available local guidance services.

• Brad takes his seat and reads his newspaper, while the SPA detects the capabilities
of the new work environment, e.g., a display in front of his seat, a WLAN hotspot
and GPRS cellular access.

• Suddenly his phone rings; from the ring tone Brad can tell it is his secretary. The
secretary asks him to call the customer, where he is going. When he does so, the
customer suggests new ideas for his presentation.

• Brad starts up his laptop. The SPA automatically establishes a remote connection to
the company network, using authentication support from the SD card. The new
work environment is similar to his office and even includes additional features
offered by the new location; e.g., the system proposes that Brad could view
documents with the display in front of his seat. These contain critical data. Brad
declines and reads the documents on his laptop.

• He works online with his colleagues in the office and with external consultants to
update the presentation. During the work he uses data from central storage at the
office. When he has finished the work he is convinced that he is well prepared and
that the team did a good job.

• Later on, Brad asks his SPA for a connection to his private environment to continue
the fun game offered last night by his Service Provider. The SPA establishes access
to the game, which is stored in the Service Provider network and to Brad’s game
data, held on his Home Network. In this way he can continue gaming at the level he
reached the previous night.

• Suddenly the system notifies him that his friend Alice is online. She invites him for
an ego shooter session orchestrated by a central Gaming Server. Brad joins the
session because there is one hour left before he reaches his destination and gaming
with his friends is much more challenging. He asks his SPA to join the gaming
environment. When his terminal is ready for the game, he sees that his friends,
Andrea, who is on a sailing trip in the Caribbean, and Bob, who lives in Canada,
have already joined the game. The session is established according to Brad’s
personal settings, which means that sound is enabled and he uses WLAN rather than
GPRS. This time Brad accepts the suggestion to use the train screen, which is more
comfortable than the one on his laptop.

• When the train arrives, Brad stops gaming; the SPA saves the game results and
provides logout. He is now relaxed and ready to meet his customer.

• His SPA guides him to the customer’s offices, using a navigation service offered by
a local Network Provider. At the gate, his SPA provides automatic authorization
with the Customer’s Entry Service. Brad is guided to the conference room.

• Upon entering the room, his SPA detects a wireless business network and
automatically configures a guest account, using the credentials he received at the
gate. Using this account Brad connects to his e-mail server. Simultaneously, his
SPA configures a connection to the equipment in the conference room.

4.1.2 Car / Travel / Shopping

This scenario refers to a private environment involving a Mobile Travel Assistant (MTA), a
Mobile Shopping Assistant (MSA) and a Mobile Sightseeing Assistant (MSSA), residing
on a Simplicity-enhanced handset (see Figure 5).

Figure 5: Car / Travel / Shopping

The main features of this scenario are presented below:

• Car Rental
Arriving at a foreign airport, Brad asks his MTA for car rental support. After
communication with Service Providers in the hotspot and consideration of Brad’s
travel profile, the system makes its proposals. Electronic contracting and car
handling are supported by the MTA, after Brad has made his choice.

• Travel Navigation
While traveling, the MTA provides information about the condition of the car,
available petrol stations, local shopping centers and hotels. The navigation system
may be combined with a Route Planning Service which uses data on the user’s
interests and preferences to propose attractive routes.

• Shopping and Sightseeing:
The Mobile Shopping Assistant (MSA) can be asked to find the best offerings in a
foreign shopping centre; it can also help to find the restaurants which most closely
match the user’s preferences. To learn about the most important places to visit, the
user can activate the Mobile Sightseeing Assistant (MSSA).

In the above scenario, the MTA, MSA, MSSA are functions to be suitably defined and
mapped onto the Simplicity architecture.

4.1.3 The Global Health System

This scenario (see Figure 6) assumes that all hospitals are registered with a Global Health
System and that doctors and patients can access medical services via their Simplicity
Devices.

Figure 6: The Global Health System

• The doctor’s case. A doctor is relaxing on her sailing boat where she receives an
emergency call from one of her patients. To obtain help she inserts the Simplicity
card into her notebook, implicitly activating the Doctor’s Simplicity Assistant
(DSA) and automatically configuring her working environment. This allows her to
access the hospital’s database and the data for the patient who is calling. Transfer of
patient data will depend on the networks available, (e.g. GPRS on the boat). The
doctor identifies this as an emergency session, thereby accelerating access the
hospital server. Using the patient’s past history and other information provided by
the DSA she can advise the patient and provide him with information about the
nearest pharmacy where he can obtain the medicine he needs. After concluding the
call, the doctor updates the patient’s history with the new information.

• The patient’s case: A patient, enrolled with the Global Health System, uses a
Simplicity card to store medical information for use in emergencies. In the event of
an accident, a doctor in the ambulance can insert the patient’s Simplicity card into a
laptop to obtain useful information, such as the patient’s blood type or any
medication he may be taking. If further information is required, the doctor can
remotely access servers at the patient’s hospital. All actions performed by the
ambulance crew will be documented on the patient’s Simplicity card.

4.1.4 Buy and Use a Self Learning Simplicity Device

The fourth scenario (see Figure 7) highlights some of the possible functions and services
provided by the Simplicity Device (SD), such as auto-filling of forms or content and device
adaptation.
Sven is a manager in a software company. He travels quite often and has recently bought a
new (empty) SD which he wishes to use on his next trip, e.g. to a conference.

Figure 7: Buy and Use a Self Learning Simplicity Device

• Sven uses his laptop, (which is connected to the empty SD) to buy a round trip train
ticket over the Internet. He types in details of his name, address, bank account, and
preferences: he wants to have a window seat in a non-smoking area and a broadband
internet connection.

• Next, he books a hotel room. The SD ‘remembers’ the data from his train booking,
automatically fills in the name and address, and chooses a non-smoking room.

• During this time the SD analyzes the data collected by the laptop, using Bluetooth
to connect to Sven’s smart phone. Via this connection, the SD accesses personal
information management (PIM) data like addresses, notes, e-mails, bookmarks and
appointments and configuration data (email accounts, preferred applications) for the
laptop and the smart phone.

• As a next step, Sven searches for news headlines on his laptop and saves the results
on his SD.

• Sven goes to the station. Once in the train, he inserts his SD into a smart phone to
read the news. Given Sven’s preferences, the news is displayed without pictures.

• During the train journey Sven’s smart phone rings.
• He looks at the display and recognizes that it is his mother who is calling him. Sven

pushes the mute button.
• Afterwards, Sven opens the policy application on his smart phone and creates a rule

that that every private incoming call during work time should be forwarded to his
mailbox. He dislikes telephoning people in the train and decides that incoming calls
during train journeys should not activate the ring tone. These “policies” are
automatically stored on his SD.

• Sven drives to the hotel and checks in. The hotel room contains a Simplicity-
enabled alarm clock, which checks the calendar and programs an alarm one hour
before the first meeting.

• On the next day, Sven wants to take the subway to the congress centre. He plugs the
SD into the ticket machine. The Simplicity-enabled ticket service recognizes the
meeting, the meeting place (congress centre) and the start time. Based on this
information and the round trip train ticket he has already bought it pre-selects a one-
day city ticket for zones 1 and 2.

• Once Sven confirms the ticket pre-selection, his bank account is charged and the
ticket is issued, e.g., as e-ticket stored on the SD. In addition, an optimized route to
the congress centre is transferred to the SD.

4.2 Methodology for User Scenario Analysis

The goal of user scenarios is to explore and illustrate the potential of the Simplicity
approach and to guide the specification of the Simplicity architecture. Scenarios were
prepared using the template shown in Table 3

Table 3: User scenarios template used in the requirement analysis of the Simplicity Device

Narrative Description:
Describes the use case in natural language.
Use case:
Use case identifier or reference number: unique name expressing purpose
Description:
Describes the main goals of the use case. It should list the sources for the requirements, preceded by the
keyword sources.
Actors:
Primary and/or secondary actors. Primary actors have a goal requiring the assistance of the system. Secondary
actors help the primary actor in achieving this goal
Preconditions/Assumptions:
Assumptions (described in the form of a proposition evaluates to true or false)
Steps:
The sequence of interactions necessary to achieve the goal of the use case.
Variations (optional):
More detail about a step may be given by variations:
Non-functional requirements:
<keyword>:<requirements in natural language or appropriate formalism>
Issues:
List of issues awaiting resolution. Notes on possible implementation strategies or impact on other use cases.
Comments from the use case:
In natural language.

In section 5, we will identify comprehensive set of “basic” functionalities, based on a
detailed functional analysis of the user scenarios. Support for these functionalities is the
main requirement we are considering during the design of the Simplicity architecture. In
section 4.3 below we present a “higher level” analysis of a set of common requirements that
can be extracted from the user scenarios.

4.3 Requirements common to all scenarios

• System Metaphor: Simplicity requires a system metaphor allowing users to
understand the ways in which they can interact with the system. It is suggested that
Simplicity can best be understood as a “Personal Assistant”. By “personal” what is
meant is that Simplicity takes account of user data and user preferences, e.g. the
data stored on a Simplicity Device. By “assistant” we mean that a computer based
background process determines how best to respond to user requests based on user
preferences, terminal and network capabilities, context information and service
availability.

• Convenient User-System Interaction: easy user-system interaction is a major
requirement for the effective use of a Personal Assistant. User context, behavior,
profile and preferences should enable implicit user interactions and assist users in
achieving their goals instead of requesting them to configure multiple devices or

personally search for content and services. Where necessary the system can ask for
user input to disambiguate its inferences. From the output point of view, device
selection, interaction modality (e.g., sound, visual), and content adaptation are
major concerns.

• Learning system: the Personal Assistant should store a history of user behavior and
use this, where appropriate, to learn implicit user preferences.

• Interaction with the environment: this includes communication with the user
terminal and the Simplicity Device, detection and selection of access networks,
detection, access and use of network services (e.g., for authentication), discovery of
location-based services, ambient awareness, routing capabilities, access to private
and business data stores and connectivity to other users.

• Service discovery and handling: the Personal Assistant should detect new services
and match them against user interests. It should also support handling of new
services, taking into account user capabilities and preferences.

• System flexibility and easy integration: Simplicity requires an iterative solution
approach. User interactions with the system should be optimized step by step, based
on experience; new access networks should be included, when available, and new
context should easily be integrated within the system.

• Authentication and data security: successful deployment of Simplicity requires
high quality authentication and secure data access from any location. The benefits
of Simplicity (e.g., health support, remote access to critical business data or
electronic banking) will only be accepted by users, if Simplicity can provide
protection against unwanted intrusion.

• Cost information: costs will also have a major impact on the uptake of Simplicity.
When Simplicity asks a user to take a decision (e.g., choosing a Network Provider,
when roaming between different Providers or when downloading remote data) it
should always include cost information.

Summing up, authentication and security features, service discovery and adaptation,

automatic configuration of terminal equipment, adaptive user interfaces and personalization
are recurrent requirements in many different scenarios. These requirements, complemented
with proposals for appropriate business models, lie at the core of the Simplicity vision.

5 Requirements

Telecommunication systems beyond IMT2000 have two main characteristics, namely
personalized communication spaces for users and interoperability of networks. In the
future, end-users will be able to access different service domains using different kinds of
terminals with adaptive user interfaces, without being aware of the underlying networking
technologies. Simplicity will focus on these goals, introducing a personal device that
simplifies the creation of a personalized communication space and a network-based
brokerage framework supporting the adaptation of terminals, services and network
resources.

Requirements engineering and analysis provide appropriate techniques to understand
end-user desires and to define required functionalities for devices. Key steps in the process
include analyzing needs, assessing feasibility, looking for a reasonable solution, specifying
the solution, validating and verifying specifications and managing the translation of
requirements into an operational system.

A detailed analysis of the user scenarios produced the list of functional requirements
in Table 4. The table includes 18 main functionalities (listed in bold) and several sub-
functionalities (reported in normal font).

Table 4: General functionalities of the Simplicity Device as determined by the requirements analysis.

1 Use 3rd party services 8 Determine cost, QoS, etc. of network/bearer
2 Download application from 3rd party 9 Connection monitoring
3 Network access 10 Storage functionalities
 WLAN access SD Storage Card Functionalities
 PAN access Simplicity Network Database / Storage

utilization
 Cellular access PIM (Personal Information Manager)
 Access to fixed network 11 Authentication & Payment
4 Location awareness Network authentication
 Receive coordinates of target location Service authentication
 Identify location of user SD login
 Navigation Identity and Payment
5 Personalization based on user preferences Delegation of credentials and/or privileges
 Device personalization based on user

preferences
12 Session saving / transferring

 Connection personalization based on user
preferences

13 Terminal capability discovery

 Personalization of application based on user
preferences

14 User preference gathering

 Personalization of network service based on
user preferences

15 Tasks automation

 Content Adaptation 16 Context/environment awareness
6 Network and bearer discovery 17 Download/upload information to SD
7 Service discovery 18 SD plugability support

The requirement to use 3rd party services includes access to services provided by a

service provider, e.g., the user connects to a car rental service and the Simplicity Device
chooses and reserves a car, based on end-user preferences. In some cases, the user may
need to Download an application to her current terminal. The Simplicity Device has also
to support different underlying networking technologies (Network access), and to make the
most appropriate choice of network, based on user preferences and/or the coverage of
specific networks. The SD should be location aware, so that it can guide end-users to their
destinations. Personalization based on user preferences is one of the most important
requirements for the Simplicity Device. Devices, connections, application functionality etc.
have to be automatically adapted to match the user preference stored on the SD. The SD
should also support the discovery of different access technologies and network providers
network, choosing the connection which best matches user preferences, for example by
using a company’s WLAN instead of an alternative commercial GPRS connection.
Similarly the SD should also support service discovery. It should be able to determine
costs for different kinds of connections and for different levels of QoS. The SD should also
be able to monitor its connection. The storage functionalities required by the SD can be
roughly defined to include USB–stick like memory and the ability to access database
storage over a client-server network connection. Authentication and payment
functionality includes SD login, network and service authentication, identification and
payment as well as delegation of credentials and privileges. SD should also be able to save
and reactivate sessions during and after session interruptions. One very crucial required
feature for the SD is the ability to discover terminal capability before adapting it or

configuring connections and services. The SD should also be able to gather user
information during use and adapt future sessions accordingly. It should be able to
automate different kinds of predefined task, such as the updating of calendar information
to include a flight reserved via the SD. The SD device should also be able to understand its
environment, i.e., be context-aware. The device should support upload/download of data
over the network connection. To ensure widespread market acceptance it should be a plug
in device

5.1 Methodology for deriving requirements

To reach a final definition of the functionalities to be included in the implementation, some
of the scenarios in the initial set were merged and a set of 7 critical scenarios were selected
for further analysis.

In the next step in the analysis, UML (Universal Modeling Language) will be used to
formalize selected scenarios via use case diagrams and first level sequence diagrams and to
explore the functional relationships between them. Using this analysis we will answer the
following questions:

• is each proposed functionality consistent with the overall objective?
• are the functionalities described at the proper level of abstraction?
• are all the functionalities really needed?
• are all the functionalities bounded and unambiguous?
• is there source for each functionality?
• is each functionality technically achievable?
• will each functionality be stable once it is implemented?

5.2 Preliminary list of requirements for the SD

The SD has to be able to interact with its environment, which may contain one or several, ,
devices. Devices can be of sensor type (providing context information) or of actuator type,
allowing the SD to perform actions. They can also be processing devices with input and
output. The SD may include several hardware or software interfaces for user interaction and
connection purposes. For example, the SD could use the user interface of the device to
which it is connected (via a wired or wireless connection). The SD should also be able to
gather and store information, discover networks, services, devices and communicate with
these entities in a secure and cost effective way. This leads to the following functional
requirements:

Table 5: Functional requirements for the SD

Functionality Description

information gathering profiles, contexts, services
information storage auto-saving of:

• profiles
• sessions
• files
• settings/configurations

device, service and network discovery adaptivity
session continuity
authentication
authorization

task execution trigger actions

Another question raised by the scenario analysis is whether and how to divide

functionalities between the SD and other devices. In one scenario the SD performs most of
its tasks on its own; in another, devices with embedded middleware could collect
information from the SD. This is a crucial issue for the definition of the system architecture
and the design specification and will be tackled in more detail at a later stage in the project
life cycle.

6 System Architecture
The Simplicity Device will provide a uniform model for the personalization of terminals,
network access and services by storing personalization rules for the individual user.
However, the SD will be deeply integrated in a system framework able to decouple user
needs and service deployment issues from the underlying terminal devices, networking
technologies and service support platforms. The goal of the Simplicity system is to manage
this complexity, while limiting end-user interaction to special decisions.

To describe the system architecture, we use a horizontal (layered) view and a vertical
(user/terminal/network roles) view, as described below.

6.1 Horizontal view

A first step in the architecture design is to define a logical architecture, showing
layers and components for service provisioning, rather than defining the location of explicit
software components in specific physical nodes (such as devices and networks).

To increase the re-usability of middleware components, the logical architecture of the
Simplicity System is defined in terms of a layered approach. As shown in Figure 8, and as
suggested by [4], this middleware consists of a User Support Layer, a Service Support
Layer and a Network Support Layer.

The User Support Layer supports autonomous and proactive agent functions,
providing personalization, adaptation and coordination components, which are lacking in
traditional middleware. The User Support Layer simplifies user interactions with the
system and provides user-centric services, by analyzing user contexts and user preferences.
























Figure 8: Logical architecture: layered view

The Service Support Layer contains traditional middleware components, such as
advertisement/discovery, profiling and security functions. A dynamic service delivery
pattern enables discovery, advertisement, authentication, and authorization functions and is
used to negotiate the conditions of service delivery according to users needs.

The Network Support Layer provides components for network communications
control in heterogeneous networks, including mobility management and QoS management.

6.2 Vertical view

It is crucial that operations to be performed on the user side should be clearly separated
from those to be performed on the network side. Since there may be a number of possible
solutions, we will carry out a preliminary comparative analysis to understand which
solution best suits the Simplicity system. Figure 9 depicts the basic components we expect
to find in the Simplicity System, and a first proposal for the separation of functionality
among them. The proposed system encompasses three main components: the Simplicity
Device, the Terminal Broker and the Network Broker.

As discussed in Section 2, the role of the Simplicity Device (SD) is to store user’s
profiles, preferences and policies. It also stores and enforces user-defined mechanisms for
service personalization, and for the automatic adaptation of services to terminal and
network capabilities.

The Terminal Broker is the entity that manages the interaction between the
information stored in the SD and the terminal device. The Terminal Broker enables the SD
to perform terminal capability and services discovery, adapting services to network
capabilities and other features of the environment, It is the Terminal Broker that handles the
user interaction with the Simplicity system.

User
Preferences

Security
Management

Policies

User
Profiles

Terminal
Capabilities
Detection/
Adaptation

Ambient
Awareness

Personalization

Network
Detection/
Adaptation

Service
Discovery

User
Interaction
Interface

Service
Deployment/
Advertisment

Inter-Broker
Communication

Security

AAA Services

QoS/Mobility
Issues

Policies/Profiles
Management

Profile Transfer
Techniques

Ambient
Awareness

Access
Technologies
Management

User Side Network Side

Simplicity
Device

Terminal
Broker

Network
Broker

Figure 9: Physical architecture: component view

The Network Broker provides support for service description, advertisement and
discovery, orchestrating interactions among distributed networked objects. It is the Network
Broker that handles the issues that arise when several users simultaneously access the same
resources, services, and locations. The Network Broker’s role includes the sharing and
allocation of available resources, and the management of value-added networking
functionality, such as service level differentiation and quality of service, location-context-
awareness, and mobility support.

7 System Functionality

In this section, we provide a more detailed view of the system functionality that the
Simplicity project aims to provide. For ease of presentation, the description adopts a
vertical/component view (Simplicity Device, Terminal Broker, and Network Broker). The
development of the functionality described in this section will nonetheless take advantage
of the horizontal (layered) view discussed in Section 6.

7.1 Functionality of the Simplicity Device

The key role of the Simplicity Device is to store user profiles, preferences and policies in a
secure and safe way, thereby allowing dynamic, automatic discovery and registration of
terminal and network capabilities. Another role for the SD is to facilitate the adaptation of
services to network technologies and related capabilities. The SD is an important entity in
the architecture. Users cannot access the Simplicity System and exploit its benefits without
it, even if there is a Terminal Broker on the terminal and a Network Broker is available.
The SD is the user’s passport to the Simplicity world.

The SD can be plugged into other devices in the environment (specifically, mobile
devices) or interact with them via short-range wireless networking e.g. BlueTooth. Such
integration is possible both for software and hardware implementations of the SD. The
latter might take the form of a Smart Card [5], [6], [7], [8] or Java card [9], [10], [11].

For this reason, user profiles, device capabilities, preferences, policies, etc. should be
defined and stored in the SD using a high-level description language, such as XML. This
will make it possible to provide a globally applicable, abstract functionality layer.

The SD requires memory. This can be located internally, on the SD, or externally, on
devices in the environment. In the latter case, the SD can store a set of pointers to network
locations (e.g., Profile Repositories, see Section 7.3). Appropriate entities in the Terminal
and/or Network Broker could retrieve and process these pointers, allowing users to
download essential software and data that cannot be stored in the SD (e.g. because of
storage limitations). The stored information will enable dynamic, automatic discovery and
registration of terminal and network capabilities, as well as the automatic adaptation of
services to network technologies and terminals. Specifications for profiles will take
advantage of a large amount of work which has already been carried out in standardization
groups. One example of a 3GPP solution to user profiling is the Generic User Profile
(GUP) [12], [13], based on XML. The most important feature of GUP is that it can be
adapted to any kind of system and context, thus providing the flexibility needed by
Simplicity.

7.2 Terminal Broker functionality

The user terminal/device contains a so-called Terminal Broker (TB). The TB is the entity
that “interfaces” the user to the network.

At this early stage, the division of functions between the SD and the TB is not yet
clear. It will depend on a number of factors, including physical constraints and
requirements (e.g., memory, processing power, passive/activeness support). In any case, the
role of the TB is to complement the SD i) by retrieving information from the SD regarding
user’s preferences, profiles and behavior, and ii) supporting specific actions depending on
this data.

A key function of the TB is to provide the user with a means to read/write/modify the
personalization information stored in the SD. From the terminal point of view, the user
interface to services has to be adapted to fit terminal capabilities and specific contexts of
use; from the services and appliances viewpoint, it might be necessary to adopt a general
User Interface (UI)-description language, and a common interface to all networked devices
and services. This would simplify development.

A second important function of the TB is to enable the SD to perform discovery of
terminal capabilities and service adaptation to the surrounding environment. A number of
XML-based Discovery Protocols (e.g., Universal Plug and Play (UPnP) [14] and JXTA
[15]) have been promoted in peer-to-peer frameworks and are worthy of consideration
Simplicity. The TB applies user preferences to the working environment on the terminal,
perhaps by collecting contextual information (e.g., user location, user actions, surrounding
devices and services) from sensors. This information will be matched to specific terminal
capabilities in order to instantiate the proper service components on the terminal (as well as
in the network, when functions such as remote trans-coding of downloaded information
will be necessary). The TB can configure applications and network settings and can
dynamically download plug-ins and applications.

Last, the TB is the entity that allows user preferences and policies, stored in the SD,
to drive service adaptation to networking technologies and capabilities. Through its
interface with the network, the Terminal Broker selects the most appropriate access option,
and dynamically estimates current network capabilities (where necessary taking account of
congestion, etc).

To conclude, the key characteristic of the TB is that its functions are adapted to the
needs of the user who has to use the interfaces. An important requirement for the TB is that
it should sit on top of existing and emerging terminal and network technologies. The role of
the components in the Terminal Broker is to decouple Simplicity system functions from
specific networking technologies and from specific terminal characteristics. Such
components might, where necessary, be dynamically downloaded.

7.3 Network Broker functionality

As shown in Figure 10, the Network Broker (NB) acts as an intelligent edge to the IP
networking domain. The NB provides a network-based platform, offering the user a
unified, personalized view of available services. The platform takes account of user
profiles, the characteristics of the environment, and terminal capabilities as well as the
network side, handling user requests in an optimized and personalized way.

Internet

PSTN

IP domain

Internet
Application

Platforms

Internet
Application Servers

Media
Gateway

Mobility, Connection
& Control Servers

Mobility
Gateway

Network Broker

APAP

APAP

Storage

Servers

Simplicity-enabled
terminal

Figure 10: Network Broker

The NB architecture will enable functional enhancements without major changes to
existing solutions and should be flexible enough to be used over several types of networks,
e.g., business networks, banking networks and home networks. In this way, network
services can be identified once and for all, provided over different kind of networks and
specified only once.

7.3.1 Service Deployment/Advertisement

A key issue for the NB is Service Deployment and Advertisement. Users should be able to
browse available services and select those that suit them best. To this end, the NB provides
users with a platform for the deployment/advertisement of application services. The NB
will address the issue of the on-demand delivery of client code to user terminals. In
addition, it will require the following features:

• application service providers will need to deploy client components on provisioning
servers, and to associate these components with descriptive information that can be
used by clients during the discovery phase;

• users need to perform discovery of software components, taking into account their
preferences, contract, terminal, position, and download/install capabilities. Different
methods to provide this component (e.g., MIDP OTA, JNLP) will be supported
through adapters.

7.3.2 Service Adaptation

After the user selects a service, the service adaptation phase begins. The NB needs to
communicate with the TB to retrieve information about the user profile and device
capabilities. The Profile Transfer Techniques functional block contacts the TB and retrieves
the necessary information. Another factor that plays a significant role in service adaptation
is the user environment. The Ambient Awareness component interacts with the
corresponding component on the TB and acquires the necessary information (e.g., location
of the user, surrounding devices etc.). Services use this information to adapt to current
conditions.

An attractive solution for the implementation of the NB would be to use an adaptive
agent-based service platform, providing services specifically targeted to individual needs in
specific environments. The platform could select these services by using information on
users’ current environment, their past behavior and the behavior of other users in similar
situations.

7.3.3 Network Side Handling

As far as the network side is concerned, the NB combines policy-based technologies (e.g.,
policies for mobility support, QoS, security, software downloads), stored in a policy
repository (Policies / Profiles Management Module), and a number of specific modules,
handling AAA services, Security, Quality of Service / Mobility Management, and Access
Technologies Management. These modules orchestrate events and available resources, the
adaptation of network capabilities and the management of different access technologies and
networking alternatives. The NB interacts with NBs on adjacent networks (via the Inter-
Broker Communication module) to provide an optimized end-to-end service across network
domains.

7.3.4 User Profile

The User Profile is of major importance within the Simplicity architecture. For this reason
the design of the Profile Repository is a very significant issue. This repository should
provide generic, flexible and easily updatable descriptions of compatible and available
devices, services, technologies and users profiles. Such descriptions can be referred to as a
Generic Profiles or Template Profiles. Generic Profiles can be divided into User Generic
Profiles, Device Generic Profiles, Service Generic Profiles etc. Profiles for users, devices
and services can be categorized into groups sharing common features. A standardized
Generic Profile can be created for each category and stored in the repository. Examples of
generic user profiles might be Business, Entertainment, Emergency etc.. Generic device
profiles might include profiles for PDAs, Laptops, Mobile Phones. From the services
perspective, we can categorize services based on the different service domains to which
they might belong and then create the appropriate Generic Profiles. Such domains might
include for example: enterprise network, home network, service provider network etc.
Figure 11 presents a possible classification of Generic Profiles.

The transition from a Generic Profile to a specific User Profile will take place on the
terminal. Users will be able to download any Generic Profile and modify/configure the

profile according to their preferences. Device profiles will be configured automatically
with the assistance of the Terminal Capabilities Discovery module that resides within the
Terminal Broker. The completed User Profile will consist of a combination of all the
modified/configured generic profiles. Services selected by the user will be adapted
according to the completed profile.

The User Profile will be stored within the SD or uploaded to the Profile Repository.
In the former case, the User Profile will be downloaded on demand and processed by the
SD. In the latter case, personal data is involved and security issues will have to be taken
into consideration. The Network Broker provides a secure, location–transparent storage
service that can be used for this purpose as well as for storing session and other,
application-related data.

Profiles will be more than a mere static listing of features and capabilities. They will
also embody dynamic representations, containing both features and logic. To this end, we
might envisage a Mobile Agent approach. Mobile Agents could migrate to the SD on
demand and operate in a co-operative way to formulate reconfiguration decisions that are
optimal for the user’s environment.

Figure 11: Categorization of Generic Profiles

8 State of the Art

The aim of this Section is to present a thorough analysis and qualitative evaluation of the
technologies, standards and studies of relevance to the development of Simplicity.

8.1 Personalization and User Profiles

Simplicity creates a Personal Service Environment (PSE) which relies on user profiles for
adaptation and personalization of services and terminals. In general, a personal profile is a
collection of electronic information describing the user’s personal characteristics and

preferences and prescribing related rules and tasks. In this section we will examine the state
of the art on user profiling, service/terminal adaptation and personalization.

A 3GPP solution to user profiling, currently under standardization, is the Generic
User Profile (GUP)[19] [20], based on XML. 3GPP GUP proposes a structure for the
organization of data, but allows designers great flexibility in defining the content of this
data. The data stored in 3GPP GUP might include, for example, data on authorized and
subscribed services, general user information, user privacy control data, information about
specific services and billing information. Historical/Statistical and Runtime data is not
included in the GUP. In the 3GPP solution profiles are stored in and downloaded from the
network. Network cooperation is thus essential. This approach can nonetheless be adapted
and extended to support a user side architecture where information is stored directly in the
SD. The most important aspect of GUP is that it can be adapted to any system and context,
thus providing the flexibility needed by Simplicity.

Another interesting solution is the Application Configuration Access Protocol
(ACAP) [17] that is designed to support remote storage and access to customization,
configuration and preference information. The data storage model is designed to allow a
client to access all the information needed for automatically adapting and personalizing
service. New information can be easily added without server re-configuration, thus
allowing the use of standardized data as well as custom or proprietary data.

In the field of terminal capabilities description technologies, the Composite
Capabilities/Preferences Profile (CC/PP) framework is an important standardization effort,
which defines how to specify a user agent profile [16]. The goal of the CC/PP framework is
to specify how client devices express their capabilities and preferences (the user agent
profile) to the server that originates content (the origin server). The origin server uses the
‘user agent profile’ to produce and deliver content appropriate to the client device. In
addition to computer-based client devices, particular attention is being paid to other kinds
of devices, such as mobile phones. The framework describes a standardized set of CC/PP
attributes that can be used to express a user agent profile in terms of capabilities, and the
user’s preferences for the use of these capabilities.

The User Agent Profile Specification [23] is a specification, which extends the WAP
v1.1 standard to enable the end-to-end flow of a user agent profile in mobile environments.
The UAProf specification defines so-called Capability and Preference Information (CPI),
which is communicated between the WAP client, intermediate network points, and the
origin server. The specification seeks to interoperate seamlessly with emerging standards
for Composite Capability/Preference Profile (CC/PP) distribution over the Internet. It uses
the CC/PP model to define a robust, extensible framework for describing and transmitting
CPI about the client, user, and network. The specification defines a set of components and
attributes that WAP-enabled devices may convey within the CPI.

RDF [18], the Resource Description Format, was designed by the W3C consortium
for dynamic content adaptation. It defines a mechanism for describing (Web) resources
(meta-data), and thus to enable “automated” processing of these resources. It provides a
model for representing these meta-data, and proposes XML as the syntax for this model. No
assumption is made about a particular application domain.

A number of interesting projects propose the use of policy-based technologies or rule
languages to achieve flexibility and generality [21] [22]. The most important rule languages
are Jess, ZKB/XKB and RuleML.

Jess [25], which is entirely written in Java, is a well-established rule engine and
scripting environment that is based on the CLIPS expert system shell. XKB/ZKB is a rule
language included in Mandarax [26], an open source Java class library. Both Jess and
XKB/ZKB allow the definition of reactive rules and facts that refer to and act on Java

objects representing for example user models, device capabilities, applications or network
characteristics.

The Rule Markup Initiative has developed a semiformal XML-based language called
RuleML [24] that allows Web-based rule storage, interchange, retrieval, and application.
RuleML makes it possible to define integrity constraints, derivation rules and reacting
rules. A number of DTDs/Schemas, engines, translators, user interfaces and rule libraries
have already been developed.

Both the Simplicity Device and the terminal will incorporate policies expressing user
preferences and terminal-specific information required for service-adaptation. These
policies have to interact with policy-based technologies on the network side. This raises
issues concerning the IETF policy framework, the Ponder framework and the Policy
Description language. If policies are to be treated consistently it will be necessary to adopt
a single policy technology or policy exchange language.

8.2 Simplicity Device

The Simplicity Device (SD) is the part of the Simplicity system that lies on the user side.
All users are equipped with a SD which can be plugged into a range of terminal types and
which supports automatic service discovery, AAA and policy-based configuration of the
Simplicity environment. The SD combines the functionality of a hardware authentication
token, a mobile storage device and a portable processing utility able to perform trivial as
well as more complex tasks.

The SD could be implemented in hardware, in which case it could be a USB disk, or
an enhanced Smart Card. Alternatively it could take the form of a software agent for use in
special environments. A hardware implementation is, however, preferable. Since mobile
code execution capabilities are desirable, the most suitable hardware is probably a Smart
Card. Even though USB disks provide storage space ranging from several hundred Mbytes
up to a few Gbytes and connectivity with most computing equipment, they lack processing
capabilities: a desirable feature for the SD. Smart Cards on the other hand are pluggable to
any terminal type that provides connectivity to some sort of card reader equipment. They
also provide tamper-resistant storage space for sensitive personal identification information.
Rapid advances in processing capabilities and improvements in embedded software support
those who believe in their potential as mobile general-purpose platforms for code execution
[27].

The following sections review the state of the art in USB devices and Smart Card
technology, provide a brief description of the Java Card architecture, one of the most
important Smart Card software platforms available. On the basis of this analysis we will
argue that the first SD implementation should be based on Java Card technology.

8.2.1 USB Devices

The last few months have seen the rapid spread of USB memory stick devices. This spread
has been encouraged by improvements in manufacturing processes and the consequent
lowering of prices, growing storage capacity and the flexibility of USB interfaces.

USB specifications [28] have gone through three steps: version 1.0, provided a bit-
rate of 1.5Mbps; version 1.1 offered 12Mbps, now version 2.0 has a bit-rate of 480Mbps.
Given that profile data occupies only a small number of KB, the transfer rates offered by
USB interfaces are fully compliant with SD requirements. The storage capacity offered by
USB memory sticks goes from 32MB up to 2GB, which is very impressive if we think that

these device are the same size as a standard key. USB devices can be easily attached to a
key-ring; they thus meet the crucial Simplicity requirement for physical portability.

USB memory stick devices are well integrated with current computing and
communication equipment. Most current PC/PDA operating systems provide complete
support. The user simply has to plug the bar into a USB port and the service is immediately
available. This is a perfect match with the SD concept. It should be noted here that many
set-top boxes are also introducing support for USB devices.

The reliability of USB memory stick devices is a very important issue. Memory sticks
carry information that it is very hard to retrieve from other sources. They thus have to be
error-free. Nowadays, USB memory stick devices have a life-cycle of about 1.000.000 re-
writes with 10 years of data retention [29]. Studies have demonstrated that the higher the
number of re-write operations, the lower the retention time. When the maximum number of
write operations has been reached, the retention time decreases to about 3-4 days.

There are a lot of USB memory stick devices that implement security mechanisms in
order to ensure user data confidentiality. Mechanisms include PIN-PUK code,
username/password and finger-print matching. An example of algorithms used to encrypt
data is AES-128bit. The use of this kind of mechanism allows the protection of user data
against external attacks and un-authorized copies.

A critical aspect of USB memory stick devices is that they have no computational
capabilities. This is a serious problem for the SD since a device based on a USB memory
would be unable to perform processing tasks on behalf of host systems.

8.2.2 Smart Card Technology

A Smart Card is a tamper-proof hardware device in which an IC (integrated circuit) chip is
embedded in a plastic card. There are two sizes of Smart Cards on the market. The first
meets the specifications for credit cards (as defined in ISO/IEC 7816-4 [30]) and is used
primarily in banking, insurance and transportation. Telecommunications applications, on
the other hand, use a 15mm*17mm Smart Card such as the GSM SIM (Subscriber Identity
Module) or the 3G UICC (Universal IC Card) standardized by 3GPP and ETSI SCP (Smart
Card Platform) [31].

A typical Smart Card is equipped with an 8-bit or 16-bit processor with a clock speed
of a few MHz, a few kilobytes of RAM memory, ROM memory containing built-in
functionality and 32-64kb of non-volatile memory (e.g. flash memory). Recent high
performance Smart Cards have incorporated attractive features such as 32-bit processors, an
optional cryptographic co-processor and up to a few Mbytes of storage (combined RAM
and flash memory). Smart Cards interface with terminals of various types via a card reader,
also called a card acceptance device. Smart Cards conform to the ISO7816 [32] series of
international standards, which define all Smart Card features, from physical characteristics
to the mechanisms for interaction with the external world.

The software on Smart Cards has evolved along with the processing capabilities of
their embedded ICs. [33] describes four generations of Smart Card software, ranging from
the monolithic embedded operating systems of the past to today’s modular, adaptable open
platforms featuring secure multi-application execution environments, post-issuance
application loading capabilities and object-oriented development models. Examples of such
platforms include the Java Card Platform [34], a special subset of Java technology for
resource-constrained devices and the Multi-Application Operating system (MultOS) [35],
which provides a secure execution environment for multiple applications on the same card.
Such platforms rely on open standards that ensure interoperability with operating systems,
the most important being the Microsoft PC/SC Specifications [36] that standardize

interactions between Smart Cards and Microsoft operating systems, and the Open Card
Framework [37], that standardizes Java based Smart Card solutions.

These Smart Card features, combined with their practical nature as lightweight
portable electronic devices, have made Smart Cards into an important mobile platform for
code execution. Their value is further enhanced by active research into applications for user
mobility [38], e-commerce, personalized information services [39] [40], security [41] and
interoperability using agent technology [42]. The experience gained from this research will
be valuable for the implementation of the SD as a Smart Card.

8.2.3 Java Card Platform

The Java Card Platform is an attractive choice for the implementation of the SD, bringing
the proven value and quality of Java technology to the embedded software scene, and
providing features such as code portability, enhanced security and object-oriented
development. Java Card technology is widely supported in the Smart Card industry and is
constantly evolving to take advantage of advances in hardware.

Java Card Technology is a subset of Java, suitable for resource-constrained devices
like Smart Cards. Java Card provides a multi-application execution environment inside the
Smart Card that enforces strict separation between applications, thereby enhancing security
and data integrity [43]. Java Card applications execute inside a virtual machine which runs
on the card's specific operating system. The development of Java Card applications, or
“applets”, follows an object-oriented methodology. Applets are portable to cards from
different manufacturers and can be loaded after the card has been issued, a feature which
facilitates software updates and the development of new services for Java Card users.

The Java Card Platform Specification [44] consists of three parts; the specification of
the Virtual Machine and the Java language subset, the specification of the runtime
environment for applets, and the Java card API, the framework for developing applets. A
typical Java Card application consists of a back-end information system that interacts with
a reader-side host application. The host application exchanges commands and responses
packed into Application Protocol Data Units (APDU), which are defined in the ISO7816-4
[30] set of standards. For this purpose it uses a Card Acceptance Device (CAD), which
interacts with the VM on the Java card and with the applets running on the VM. As well as
the message passing communication model based on the exchange of APDUs, Java Card
provides an alternative communication method using Java Card Remote Method Invocation
(JCRMI), a subset of RMI distributed object model technology.

The features of Java Card technology make it an attractive solution for the
implementation of the SD. In particular Java Card makes it possible to maintain flexibility
and functionality while meeting the tight security requirements for a device which will
store and process sensitive information such as credit card numbers, authentication
information for online services, network access credentials and operator contract
information.

8.3 Flexible Network Support

One of the main goals of the Simplicity project is to provide flexible network support for
context-aware adaptation and personalization of services and terminals The envisaged
technical solution will have the following main characteristics:

• adoption of a brokerage framework using policy-based techniques to achieve
optimal control and adaptation;

• a combination of flexible agent-based technologies supporting the distribution and
execution of code across a variety of different terminals

• a distributed solution for service discovery as a key element in a decentralized
framework.

• reliable data storage as a basic service for handling distributed data, e.g. profile and
context information.

The subsections below review the state of the art in these four areas.

8.3.1 Policy-based brokerage frameworks

A broker is an entity responsible for the management of resources. A broker’s
responsibilities are isolated from those of other entities. As a result, all administrative
actions are performed through requests to the appropriate broker. Overall administration of
resources is achieved through broker cooperation and coordination, with the aid of an
enabling technology that facilitates interaction among distributed entities. The broker
concept was initially introduced by [45], where QoS was achieved through interaction
between brokers residing at the end points. It was later adopted in the MASA project,
which applied the concept to adaptive multimedia services in mobile contexts [46] and
extended it to include additional brokers (called network brokers) residing not at the end
points but in access and core networks [47], [48].

A broker is responsible for orchestrating different functions and subsystems within a
domain. Management across different domains is based on negotiations between different
brokers, controlled by policy-based decision mechanisms. A broker itself consists of
independent but inter-operating subsystems. Again, the operation and inter-working of
these subsystems is controlled and coordinated using policy rules. It is important that
policies should be modular in nature, allowing the addition and elimination of policy rules
without affecting other parts of the rule base. [49] has pointed out that the benefits of
policy-based management in distributed systems arise from the use of proper syntax and
policy management tools.

By using ambient awareness mechanisms (e.g. based on sensors), a broker can
generate up-to-date context information and use this information as a basis for negotiations
with other brokers. Context information, in combination with policy-based decision
mechanisms, facilitates flexible adaptive end-to-end management of services [50] [51].
Support for context-aware systems in smart spaces can be provided by Context Brokers that
employ common ontologies, a shared context model and a common policy language [52].

A possible Simplicity implementation of the broker concept might include a terminal
broker to orchestrate user preferences, terminal capabilities and operation of local
applications based on context information describing the user, the terminal, and the access
network. The terminal broker would be supported by a system of network brokers which
would orchestrate network features. Different types of network brokers could handle the
specifics of access networks, core networks and service provider domains. Network brokers
could be replicated to provide a scalable network infrastructure.

8.3.2 Mobile Agent Platforms

Mobile Agents are intelligent/autonomous software entities with the ability to migrate and
execute their logic in several computational nodes. They are considered as a middleware
technology enhancing distributed computing technologies such as CORBA, RMI and Web
Services [53] [54] [55]. A Mobile Agent Platform (MAP) enables agents to execute on
distributed nodes. A MAP consists of a set of APIs that exploit the capabilities and

mechanisms of the underlying middleware. Prominent MAPs include LEAP JADE,
MicroFIPA-OS, AgentLight, JACK, Grasshopper and April.

The benefits of mobile agents are communication and execution state transparency,
autonomous and intelligent execution, programming and communication flexibility,
adaptability to specific conditions, life cycle management, robustness, fault-tolerance, and
interoperability. With regard to Simplicity, these features are valuable for the
implementation of broker coordination procedures and to meet requirements such as service
discovery and dynamic code distribution. Accessing services in a visited network
environment often requires support for mobility in the form of code download. JSR 24
(J2EE Client Provisioning) [64] provides a configurable and extensible framework to
implement a context-aware software distribution mechanism. On the client side,
standardization and research work (e.g. [63]) is currently under way to define a more
flexible, robust Java-based execution platform for mobile devices, supporting full
component lifecycle management (including secure download, activation and disposal).

8.3.3 Service Discovery Frameworks

The use of brokers supporting peer-to-peer (P2P) communications is one way to make a
distributed system more flexible. In this model, there is no longer a central point
responsible for the publication of services and information; all brokers can transparently
share information in a global space.

Service discovery frameworks are conceived as a method to discover available
services and resources in a network. The most important service discovery protocols
relevant to P2P communications are Universal Plug and Play (UPnP) [56] and JXTA [57].
Both consist of a set of communication protocols based on XML-encoding. In UPnP, a
Simple Service Discovery Protocol (SSDP) enables devices to publish their presence and
service descriptions by multicasting advertisements; to discover services, clients listen at
the multicast port. Alternatively clients can search for services by multicasting requests.
JXTA provides additional support for community-based activities across different P2P
systems. It enables peers to create peer groups providing a common set of services. The
default protocol is the Peer Discovery Protocol, which allows a peer to find advertisements
from other peers or peer groups.

8.3.4 Simple Storage Management

Technologies which aim to deliver network-based reliable, secure storage services provide
the ability to store and access personal data independently of user location, network point
of access and terminal. In the case of Simplicity, user profile data and context data could be
transparently stored and replicated on the network as an alternative to keeping the data on
the SD).

Important projects in this area include OceanStore [58] (backed by IBM), Microsoft
FarSite, PAST [60], and CFS [59]. In each case the service proposed by the project is built
on top of a DHT routing layer. DHT middleware ([61]) provide an application-level routing
layer which can be exploited by higher level middleware services and applications (such as
event notification, multicast, storage and file systems, and naming systems). Since user data
is distributed in the network, security and integrity are primary concerns. Smart Card
mechanisms are typically used to provide encryption, to generate and verify certificates, to
manage storage quotas etc. There have been early attempts (POST [62], MINO) to build
email services on top of these infrastructures. These projects have shown how user
metadata (folders, preferences, contact lists) can be stored in the network, while remaining
accessible to users, regardless of the client they use to connect to the service.

8.4 Ambient Intelligence

Sal awakens: she smells coffee. A few minutes ago her alarm clock, alerted by her restless
rolling before waking, had quietly asked "coffee?", and she had mumbled "yes." "Yes" and
"no" are the only words it knows...

These are the opening sentences of a powerful scenario [70] that Mark Weiser used in
1991 to outline his vision of a futuristic, computer-assisted world. His revolutionary
thoughts and ideas soon began to inspire researchers all over the world and provided a
foundation for emerging areas of research, i.e. ubiquitous computing and ambient
intelligence. Weiser envisioned a future where computational power and intelligence would
be embedded into our everyday world in a seamless fashion. Hundreds, possibly thousands
of computational devices, sensors and actuators would turn every physical space into a
smart, intelligent space. Doing so would create a world that had the possibility to assist
humans in their activities.

Examples of current state-of-the-art Ambient Intelligence and Ubiquitous Computing
projects include, but are not limited to:

• Georgia Tech’s Aware Home [65] with a focus on providing support for the elderly
in their own homes.

• MIT’s Project Oxygen [68], trying to create smart environments by using a variety
of embedded or handheld devices and adaptive networking technologies. Particular
highlights include new means of human-computer interaction, e.g. via natural
language and gestures.

• The Interactive Workspaces Project [67] at Stanford University, exploring the use of
collaborative, interactive workspaces.

• GAIA [69] at UIUC with a strong emphasis on mobility support for people, devices
and applications.

A key element in Weiser’s vision is the desire to minimize explicit interactions
between humans and their smart environments. Smart spaces are expected to act
proactively instead of merely reacting to explicit input from users. This requires systems
with the ability to collect and process rich sets of contextual data, including information
about human users, physical objects and software entities.

Simplicity aims to contribute to Weiser’s vision. The Simplicity Device will thus
provide means to:

• store and supply contextual information about its owner, e.g. in the form of profiles
• authenticate users, either by directly using the owner’s Simplicity ID or through

credentials stored within a user’s Simplicity device
• discover and personalize services; Simplicity’s intelligent brokering framework will

be able to discover services that are relevant to the user’s context, preferences and
objectives.

Simplicity will need to operate in smart environments developed outside the project.
For example, it will be necessary to discover and interact with the services provided by
these environments. While Simplicity does not intend to advance the state of the art in
smart environments themselves. it will provide mechanisms for easily customizing these
environments. As a result, we plan to base our Simplicity prototypes on an existing smart
environment platform. Our requirements for this platform are that it should support a
decoupled, asynchronous communications model making it possible to incorporate the
additional infrastructure elements in the Simplicity architecture without impacting on the
operation of the rest of the smart environment. Having reviewed the systems presented
earlier we have decided to base our work on the iROS platform [67] developed at Stanford
University, extended with features enabling it to generalize beyond the context of a meeting
room for which it was originally developed.

The Interactive Room Operating System (iROS) is part of the Interactive Workspaces
Project. It comprises three main subsystems: iCrafter (a framework for service discovery
and the dynamic composition of user interfaces), the Data Heap (a shared data space with
support for transcoding) and the Event Heap. The Event Heap represents the core
component of the iROS system. Extending the classic tuple-space paradigm [66], the Event
Heap provides an asynchronous, event-based communication framework for
interconnecting components in distributed systems. It is suitable for building loosely
coupled applications, thereby catering for important aspects of mobile and ubiquitous
computing systems such as fault-tolerance and support for mobility and temporary
disconnections. Furthermore, a loose coupling of components facilitates the introduction of
new entities into existing systems, making iROS a suitable platform for prototyping and
research. It is therefore our aim to investigate possible ways of using Simplicity for
customizing iROS-based smart spaces.

9 Conclusions

The Simplicity project addresses a crucial issue for systems beyond 3G and proposes a
solution to handle the increasing complexity of systems, services and technologies. The
concepts developed in the project can directly impact the way citizens live and work. We
intend to prove this concept by designing our proposed architecture and implementing its
main concepts, thereby showing its feasibility.

Acknowledgements

This work has been partially funded by the European Union as part of IST project 2004-
507558. We gratefully acknowledge the contribution of all Simplicity partners. This
support should not, however, be construed as an endorsement of the views, results and
conclusions expressed in this document, for which the Authors are wholly responsible.
Likewise, any errors or omissions are the sole responsibility of the Authors.

References

[1] Website of the Simplicity project: http://www.ist-Simplicity.org
[2] Wireless World Research Forum, The book of Visions 2001 – Version 1.0, December 2001.
[3] S.Y. Hui, K.H. Yeung, "Challenges in the Migration to 4G Mobile Systems", IEEE Communications,

Dec. 2003, pp. 54-59
[4] C. Noda, A. Tarlano, L. Strick, M. Solarski, S. Rehfeldt, H. Honjo, K. Motonaga, I. Tanaka:

“Distributed Middleware for User Centric System”, WWRF#9 conference, Zurich, July 2003.
[5] Aran Ziv, Tal Segalov, “FlashDrive Performance and Reliability, White Paper”, September ’03
[6] ISO/IEC 7816-4:1995, “Information technology -- Identification cards -- Integrated circuit(s) cards

with contacts -- Part 4: Interindustry commands for interchange”
[7] ETSI TS 102 221, “Smart Cards; UICC-Terminal interface; Physical and Logical characteristics”,

V6.0.0, 02-2003
[8] ISO/IEC 7816, Information technology - Identification cards - Integrated circuit(s) cards with contacts,

1997-2004
[9] Damien Deville, Antoine Galland, Gilles Grimaud, Sebastien Jean, "Smart Card Operating Systems:

Past, Present and Future", The 5th USENIX/NordU Conference, 2003, pp. 2-4
[10] Java Card Technology, http://java.sun.com/products/javacard/index.jsp
[11] Open Card Framework, http://www.opencard.org

[12] 3GPP TS 22240-600: “3GPP GUP, Requirements, Stage 1 Release 6”, March 2003. See:
www.3gpp.org

[13] 3GPP TS 23240-110: “3GPP GUP, Architecture Specifications, Stage 2 Release 6”, April 2003. See:
www.3gpp.org

[14] UPnP, http://www.upnp.org/
[15] JXTA, Project JXTA, http://www.jxta.org
[16] “Composite Capabilities/Preference Profiles: Requirements and Architecture”, Mikael Nilsson et al.

(eds). W3C Working Draft, 21 July 2000. See: http://www.w3.org/Mobile/CCPP/
[17] Newman, C., et al., “ACAP – Application Configuration Access Protocol, Internet Request for

Comments”, RFC 2244, November 1997. See: http://www.ietf.org/rfc/rfc2244.txt
[18] “Resource Description Framework (RDF) Model and Syntax Specification”. Ora Lassila, et al., (eds.).

W3C Recommendation 22 February 1999. See: http://www.w3.org/TR/REC-rdf-syntax
[19] 3GPP TS 22240-600: “3GPP GUP, Requirements, Stage 1 Release 6”, March 2003. See:

www.3gpp.org
[20] 3GPP TS 23240-110: “3GPP GUP, Architecture Specifications, Stage 2 Release 6”, April 2003. See:

www.3gpp.org
[21] Patricia Lago, “A Policy-based Approach to Personalization of Communication over Converged

Networks”, 3rd International Workshop on Policies for Distributed Systems and Networks
(POLICY'02), 2002.

[22] Lalitha Suryanarayana, Johan Hjelm, “Profiles for the situated web”, in Proceedings of the eleventh
international conference on World Wide Web, 2002, pp. 200-209

[23] Wireless Application Group, User Agent Profile Specification, WAP Forum Approved Specification
WAP-174, 10 November 1999. See: http://www1.wapforum.org

[24] RuleML, http://www.dfki.uni-kl.de/ruleml/
[25] Jess, http://herzberg.ca.sandia.gov/jess/
[26] Mandarax http://mandarax.sourceforge.net/
[27] Roger Kehr, Michael Rohs, Harald Vogt, "Mobile Code as an Enabling Technology for Service-

oriented Smartcard Middleware", 2nd IEEE International Symposium on Distributed Objects and
Applications, Antwerp, Belgium, 2000, p.2

[28] Universal Serial Bus, http://www.usb.org
[29] Aran Ziv, Tal Segalov, “FlashDrive Performance and Reliability, White Paper”, September ’03
[30] ISO/IEC 7816-4:1995, “Information technology -- Identification cards -- Integrated circuit(s) cards

with contacts -- Part 4: Interindustry commands for interchange”
[31] ETSI TS 102 221, “Smart Cards; UICC-Terminal interface; Physical and Logical characteristics”,

V6.0.0, 02-2003
[32] ISO/IEC 7816, Information technology - Identification cards - Integrated circuit(s) cards with contacts,

1997-2004
[33] Damien Deville, Antoine Galland, Gilles Grimaud, Sebastien Jean, "Smart Card Operating Systems:

Past, Present and Future", The 5th USENIX/NordU Conference, 2003, pp. 2-4
[34] Java Card Technology,

http://java.sun.com/products/javacard/index.jsp
[35] Multi-Application Operating System (MULTOS), http://www.multos.com
[36] PC/SC Workgroup, http://www.pcscworkgroup.com/
[37] Open Card Framework, http://www.opencard.org
[38] IST Project FASME, "Facilitating Administrative Services for Mobile Europeans",

http://www.fasme.org
[39] IST Project SM-PAYSOC, "Secure Mobile PAYments and Services On Chip", IST-2001-32526,

http://www.smpaysoc.org
[40] IST Project SMARTCITIES, “Multi-Application Smart Cards in Cities”, IST-1999-12252
[41] IST Project VERIFICARD, “Tool-assisted Specification and Verification of JavaCard Programmes”,

IST-2000-26328, http://www.verificard.com
[42] IST ACTS-SCARAB, “Smart Card and Agent enabled Reliable Access”
[43] Sun Microsystems Inc, "Java Card Platform Security", Technical White Paper pp. 6-9,

http://java.sun.com/products/javacard/JavaCardSecurityWhitePaper.pdf
[44] Sun Microsystems Inc, “ Specification for the Java Card Platform, v2.2.1",

http://java.sun.com/products/javacard/specs.html
[45] Klara Nahrstedt, Jonathan M. Smith, “The QoS Broker”, IEEE Multimedia, 2(1), Spring 1995.

[46] Hannes Hartenstein, Andreas Schrader, Andreas Kassler, Michael Krautgärtner, Christoph
Niedermeier, “High Quality Mobile Communication”, Kommunikation in Verteilten Systemen 2001:
279-289.

[47] Andreas Kassler, Andreas Schorr, Christoph Niedermeier, Reiner Schmid, Andreas Schrader: “MASA
- A scalable QoS Framework”, Proceedings of Internet and Multimedia Systems and Applications
(IMSA) 2003, Honolulu, USA, August 2003.

[48] Andreas Kassler, Andreas Schorr, Lingang Chen, Christoph Niedermeier, Carsten Meyer, Michael
Helbing, Michal Talanda: “Multimedia Communication in Policy-based Heterogeneous Wireless
Networks”, IEEE Vehicular Technology Conference VTC2004-Spring, Milan, Italy, May 2004.

[49] Damian Marriott, Morris Sloman, “Management Policy Service for Distributed Systems”, IEEE 3rd
Int. Workshop on Services in Distributed and Networked Environments (SDNE’96), Macau, June
1996.

[50] M. E. Anagnostou, A. Juhola, E. D. Sykas. “Context-aware services as a step to pervasive computing”,
Lobster Workshop on Location-based Services for accelerating the European-wide deployment of
Services for the Mobile User and Worker, Mykonos, Greece, 4-5 October, 2002.

[51] John Keeney, Vinny Cahill: “Chisel: A Policy-Driven, Context-Aware, Dynamic Adaptation
Framework”, Proceedings of the Fourth IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), Lake Como, Italy, June 2003.

[52] Harry Chen, Tim Finin, Anupam Joshi. “An Intelligent Broker for Context-aware Systems”, Adjunct
Proceedings of Ubicomp 2003, Seattle, Washington, USA, October 2003.

[53] P. Bellavista et al., “CORBA Solutions for Interoperability in Mobile Agents Environments”,
International Symposium on Distributed Objects and Applications, September 2000, Belgium.

[54] J. Delgado et al., “An Architecture for Negotiation with Mobile Agents”, IFIP MATA02, October
2002, Spain.

[55] I. Foukarakis, A. I. Kostaridis, C. G. Biniaris, D. I. Kaklamani and I. S. Venieris, "Implementation of a
Mobile Agent Platform based on Web Services", MATA, Marrakech, Morocco, October 8-10, 2003.

[56] UPnP, http://www.upnp.org/
[57] JXTA, Project JXTA, http://www.jxta.org
[58] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,

Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. OceanStore: An architecture for global-scale
persistent storage. In Proceeedings of the Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000) (Boston, MA, November 2000),
pp. 190-201.

[59] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP '01) (Oct.
2001).

[60] Rowstron, A., and Druschel, P. Storage management and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01) (Oct. 2001).

[61] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica ‘Looking Up Data in
P2P Systems’ Communications of the ACM, Vol. 46, No. 2, February 2003, pp. 43-48

[62] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel, Dan S. Wallach, Xavier
Bonnaire, Pierre Sens, Jean-Michel Busca, and Luciana Arantes-Bezerra, "POST: A Secure, Resilient,
Cooperative Messaging System"

[63] Java Mobile Operation Management. See: http://www.jcp.org/jsr/detail/232.jsp
[64] J2EE Client Provisioning. See http://www.jcp.org/jsr/detail/124.jsp
[65] G. Abowd, A. Bobick, I. Essa, E. Mynatt and W. Rogers: The Aware Home: Developing Technologies

for Successful Aging. Proceedings of AAAI Workshop and Automation as a Care Giver – held in
conjunction with American Association of Artificial Intelligence (AAAI) Conference. July. 2002..

[66] D. Gelernter: Generative communication in Linda. ACM Trans. Program. Lang. Syst., vol. 7(1): pp.
80–112, 1985. ISSN 0164-0925.

[67] B. Johanson, A. Fox and T. Winograd: The Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms. IEEE Pervasive Computing Magazine, vol. 1(2), Apr. 2002.

[68] MIT – Massachusetts Institute of Technology: Project Oxygen. http://oxygen.lcs.mit.edu/, Nov. 2002.
[69] M. Roman and R. Campbell: GAIA: Enabling Active Spaces. 9th ACM SIGOPS European Workshop.

Sep. 2000. Kolding, Denmark.
[70] M. Weiser: The Computer for the 21st Century. Scientific American, pp. 94–104, Sep. 1991.

