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Abstract 20	

The detection of climate change and its attribution to the corresponding underlying processes 21	

is challenging because signals such as trends and shifts are superposed on variability arising 22	

from the memory within the climate system. Statistical methods used to characterize change 23	

in time-series must be flexible enough to distinguish these components. Here we propose an 24	

approach tailored to distinguish these different modes of change by fitting a series of models 25	

and selecting the most suitable one according to an information criterion. The models involve 26	

combinations of a constant mean or a trend superposed to a background of white-noise with 27	

or without autocorrelation to characterize the memory, and is able to detect multiple change-28	

points in each model configuration. Through a simulation study on synthetic time-series the 29	

approach is shown to be effective in distinguishing abrupt changes from trends and memory 30	

by identifying the true number and timing of abrupt changes when they are present. 31	

Furthermore, the proposed method is better performing than two commonly used approaches 32	

for the detection of abrupt changes in climate time-series. Using this approach the so-called 33	

“hiatus” in recent global mean surface warming fails to be detected as a shift in the rate of 34	

temperature rise but is instead consistent with steady increase since the 1960s/1970s. Our 35	

method also supports the hypothesis that the Pacific Decadal Oscillation behaves as a short-36	

memory process, rather than forced mean shifts as previously suggested. These examples 37	

demonstrate the usefulness of the proposed approach for change detection and for avoiding 38	

the most pervasive types of mistake in detection of climate change.  39	
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1. Introduction 40	

The pace of climate change is not smooth; it varies year-to-year and decade-to-decade, 41	

naturally. Climate records contain shifts or “abrupt changes” due to internal variability and 42	

natural forcings (volcanic and solar) superimposed on the long-term anthropogenic climate 43	

change trend ( Fyfe et al. 2016; Lean and Rind 2009; Trenberth 2015). For example, the 44	

global annual mean surface temperature (GMST) time-series exhibits periods of warming 45	

separated by a long pause from approximately mid 1940s to mid 1970s (Kellogg 1993) and 46	

potentially a second and shorter one, although highly debated, since the late 1990s/early 47	

2000s (Drijfhout et al. 2014; Karl et al. 2015; Trenberth 2015; Trenberth and Fasullo 2013). 48	

Whether this last so-called “hiatus” can be characterized as a slowdown in the rate of climate 49	

change is the subject of active debate (Medhaug et al. 2017) and has led to a fast growing 50	

number of scientific publications (Lewandowsky et al. 2016; Lewandowsky et al. 2015). 51	

Discrepancies between the continued warming in models and apparent slowdown of warming 52	

in observations since the late 1990s/early 2000s have been suggested to arise from 53	

misrepresentations of forcing or natural variability in models (Huber and Knutti 2014; Meehl 54	

et al. 2014; Risbey et al. 2014; Santer et al. 2014; Schmidt et al. 2014) or from data biases in 55	

observations (Karl et al. 2015), and such change would unlikely be persistent (Knutson et al. 56	

2016). However, few authors have addressed the problem from a statistical change detection 57	

perspective (Cahill et al. 2015; Rahmstorf et al. 2017; Rajaratnam et al. 2015). From this 58	

angle, the main question is whether the GMST trend has changed in the late 1990s/early 59	

2000s and whether a significant slowdown of warming can be detected. 60	

The Pacific Decadal Oscillation (PDO) has been suggested as a main driver of 61	

variability in the GMST increase (Trenberth 2015), with its cold phases corresponding to 62	

periods of paused warming and warm phases corresponding to GMST increase. The PDO has 63	

also been suggested to be responsible for widespread ecosystem shifts in the North Pacific 64	
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with repercussions on the region’s fisheries (Mantua et al. 1997) and drought effects of the El 65	

Niño Southern oscillation (ENSO) (Wang et al. 2014). Whether PDO shifting patterns arise 66	

from internal variability or from a forced bi-stable behavior has also triggered debate in the 67	

literature over the last two decades (Mantua et al. 1997; Newman et al. 2016; Rodionov 2006; 68	

Rudnick and Davis 2003), and has implications for its predictability.  69	

Statistical approaches to characterize change in time-series behaving as a 70	

superposition of several components such as long-term trends, shifts (i.e. either in the rate of 71	

change or between two stable states) and internal variability, must be flexible enough to 72	

distinguish these components. Internal variability is often characterized by a short-memory 73	

process, in which the ocean and other slow components of the climate system (e.g. ice sheets) 74	

respond slowly to random atmospheric forcing, producing climate variability at a longer time 75	

scale than the white noise atmospheric weather. This mechanism is often referred to as “red 76	

noise” in the climate literature (Frankignoul and Hasselmann 1977; Hasselmann 1976; Vallis 77	

2010). Natural fluctuations caused by the internal memory can be large enough to mask the 78	

long-term warming trend and create periods of apparent slowdown, possibly akin to a 79	

“hiatus”, as well as exaggerate the warming trend for short periods, which implies risk for 80	

ecosystems (Mustin et al. 2013). Long-term trends and shifts above that level of short-term 81	

memory should represent natural or external forcings.  82	

Climate science has typically put greater emphasis on statistical model interpretability 83	

rather than flexibility because focus is more on a system-level understanding rather than 84	

prediction of single events (Faghmous and Kumar 2014). Therefore, statistical approaches 85	

used to quantify long-term change in climate time-series typically assume the change is linear 86	

in time (Hartmann et al. 2013), and may not allow for all features described above in the 87	

same model, thus leading to five possible misuses of statistics, which are illustrated in Fig. 1.  88	
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The first type of misuse can occur when characterizing GMST changes (Seidel and 89	

Lanzante 2004), i.e. fitting a linear trend in presence of shifts in the mean or shifts in trend 90	

(Fig. 1a), which can potentially bias the estimated rate of change. A series of alternative 91	

piecewise linear models has been suggested to represent the GMST time-series including 92	

periods of warming separated by a pause from the mid 1940s to 1970s (Seidel and Lanzante 93	

2004). However, the performance of such piecewise models to characterize change in the 94	

GMST depends on their ability to identify the timings separating the intervals of different 95	

rates of warming. Advances in statistics allow identifying the timing of such changes in time-96	

series using change-point detection (Beaulieu et al. 2012; Reeves et al. 2007), and these 97	

approaches have recently been used to analyze the GMST time-series by fitting piecewise 98	

linear models to objectively detect the timing of changes in the rate of warming (Cahill et al. 99	

2015; Rahmstorf et al. 2017; Ruggieri 2012). More commonly in climate studies, however, 100	

change-point detection has been used to detect only shifts in the mean of a time-series, for 101	

example by applying the STARS approach (Rodionov 2004). This often leads to the second 102	

type of misuse (Fig. 1b): fitting shifts in the mean in presence of a background trend. Because 103	

the null model of the STARS approach is a constant mean and not a secular trend, shifts in 104	

the mean will tend to provide a better fit to the trend than a constant mean. As such, the 105	

method typically interprets a trend as a “staircase” series of abrupt changes (Beaulieu et al. 106	

2016). However, an approach based on model selection, allowing one to distinguish shifts in 107	

the mean from a background trend, can prevent the problem of confusing different types of 108	

signals as per the first and second misuses (Beaulieu et al. 2012; Reeves et al. 2007). 109	

In addition to different types of signal that may be confused, internal variability may 110	

also be misinterpreted as a forced signal, e.g. as a long-term trend or mean shifts (Fig. 1c-d). 111	

Patterns created by the internal memory of the system are challenging signal detection in 112	

climate time-series as they pose the risk to be misinterpreted as trends or shifts. The risk is 113	
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greater in presence of short records (Wunsch 1999). The short-term memory or “red noise” is 114	

often represented by a first-order autocorrelation process, AR(1), and challenges signal 115	

detection as the risk of false alarms is increased when using statistical techniques designed 116	

for independent data (von Storch 1999; von Storch and Zwiers 1999). In trend detection, the 117	

internal variability can be distinguished from a secular trend by fitting a regression model 118	

containing a trend and AR(1) through generalized least squares (Chatfield 2003) or by 119	

adjusting the sample size by the effective number of independent observations, which is 120	

reduced in presence of autocorrelation (von Storch and Zwiers 1999), thus avoiding the third 121	

misuse. As for detecting abrupt changes, some methods have proposed approaches to 122	

distinguish change-points from autocorrelation using information criterion and Monte Carlo 123	

methods (Beaulieu et al. 2012; Robbins et al. 2016), or pre-whitening of the time-series 124	

(Robbins et al. 2016; Rodionov 2006; Serinaldi and Kilsby 2016; Wang 2008) to prevent 125	

from the fourth misuse. Finally, as the natural variability is characterized by an AR(1) 126	

process, it carries memory that offers short-term predictability. Forecasting a time-series 127	

using a stationary AR(1) model when there is an underlying trend and/or shifts in the mean is 128	

the fifth possible misuse (Fig. 1e) and will lead to poor predictions.  129	

Our work is thus motivated by the need for distinguishing signals and internal 130	

variability in climate and environmental time-series, which is fundamental to better 131	

understanding their behavior and predicting future changes. We investigate the behavior of 132	

the GMST and PDO time-series (Fig. 2) by developing an approach, which fits a series of 133	

models to a time-series and identifies the most appropriate according to the Akaike 134	

information criterion (AIC), which is twice the model likelihood penalized by the number of 135	

parameters fitted. The models involve combinations of a constant mean or a trend, with a 136	

background of white-noise or an AR(1) process, and include the possibility of change-points 137	

in each model configuration so as to yield eight models in total (Fig. 3). When a model with 138	
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change-points is considered, the number is estimated using an optimal segmentation 139	

algorithm (Killick et al. 2012). We refer to our approach as “Environmental time-series 140	

change-point detection” (EnvCpt) and have also created software available as an R package 141	

on the Comprehensive R Archive Network (CRAN) (Killick et al. 2016). Details on the 142	

methodology are provided in the next section. We further demonstrate the appropriateness of 143	

the methodology through a simulation experiment in which we apply EnvCpt to synthetic 144	

time-series mimicking signals and noise observed in climate time-series such as the GMST 145	

and the PDO. We compare our approach to two methodologies that have been used to 146	

investigate change-points in the GMST and PDO time-series respectively. More specifically, 147	

we compare EnvCpt with the STARS methodology (Rodionov 2004), which has been 148	

designed to detect mean change-points and has been used to investigate change-points in the 149	

PDO among many other applications in the climate and oceanography literature. We also 150	

compare EnvCpt with a Bayesian linear regression multiple change-point detection method 151	

(BMCpt), which has been used to investigate change-points in the GMST (Ruggieri 2012).  152	

 153	

2. Methods 154	

a. Data 155	

We use five annual GMST datasets: 156	

1) Met Office Hadley Centre and Climatic Research Unit surface temperature dataset 157	

(HadCRUT4) 158	

The HadCRUT4 dataset (version HadCRUT.4.5.0.0; available at 159	

http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html) (Morice et al. 160	

2012) comprises sea surface temperatures (SST) from the Hadley Centre SST dataset version 161	
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3 (HadSST3; (Kennedy et al. 2011a, 2011b) and land surface temperatures from the Climatic 162	

Research Unit version 4 (Jones et al. 2012). The dataset anomalies are relative to 1961-1990. 163	

2) HadCRUT4 infilled by kriging (HadCRUT4krig) 164	

We use a variation of the HadCRUT4 dataset, in which regions with no observations were 165	

infilled by kriging, mainly across the Arctic, Antarctic, parts of Africa and other small areas  166	

(Cowtan and Way 2014); available at http://www-167	

users.york.ac.uk/~kdc3/papers/coverage2013/series.html). The reference period for the 168	

anomalies is the same as for HadCRUT4.  169	

3) Merged Land–Ocean Surface Temperature Analysis (MLOST) 170	

The MLOST dataset from the National Oceanic and Atmospheric Administration National 171	

Centers for Environmental Information (Smith et al. 2008; Vose et al. 2012; available at 172	

https://www.ncdc.noaa.gov/cag/time-series/global) combines land air temperatures from the 173	

Global Historical Climatology Network version 3.3.0 (GHCNv3.3.0) and the Extended 174	

Reconstructed Sea Surface Temperature version 4 (ERSST.v4) (Huang et al. 2015; Liu et al. 175	

2015). The anomalies are with respect to the 1971-2000 period. 176	

4) Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP)  177	

The GISTEMP dataset also combines land and SST temperatures from GHCNv3.3.0 and 178	

ERSSTv4, but also includes the Scientific Committee on Antarctic Research (SCAR) stations 179	

over Antarctica (Hansen et al. 2010) available at http://data.giss.nasa.gov/gistemp/). The 180	

anomalies are relative to 1951-1980. 181	

5) Berkeley Earth Surface Temperatures (BEST) 182	
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The BEST dataset (Rohde et al. 2013; available at  http://berkeleyearth.org/data/) uses SST 183	

derived from HadSST3 combined with air temperatures from CRUTEM4 and stations from 184	

the GHCN network. Anomalies are given with respect to 1961-1990. 185	

We use the HadCRUT4, HadCRUT4krig and BEST annual GMST datasets from 1850-2016 186	

and the MLOST and GISTEMP annual GMST datasets from 1880-2016 (Figure 2). These 187	

datasets share core common observations, but have been processed, bias-corrected and 188	

interpolated independently (Jones and Kennedy 2017; Jones 2016). 189	

The PDO dataset used was derived as the leading principal component of monthly sea surface 190	

temperature in the North Pacific (downloaded from: 191	

http://jisao.washington.edu/pdo/PDO.latest) (Mantua et al. 1997; Zhang et al. 1997). Annual 192	

means from 1900-2016 were calculated from the monthly values as a mean from January to 193	

December for each year, and presented in Figure 2. 194	

b. EnvCpt description 195	

EnvCpt fits eight models often used to represent climate and environmental time-196	

series and selects which one provides the best fit to represent the time series. The simplest 197	

models for the time-series assume that the series is well represented by either a constant mean 198	

or a linear trend in addition to a background white noise. These simple models are also fitted 199	

superposed to an AR(1), leading to four types of models without change-points. Then, 200	

models including change-points in all model parameters (mean or trend, variance and 201	

autocorrelation) are also fitted, leading to a total of eight models that are described below.  202	

1) a constant mean (Mean) 203	

 𝑦! = 𝜇 + 𝑒!         (1) 204	

where 𝑦! represents the time-series, t is the time, 𝜇 is the mean and 𝑒! is the white-noise 205	
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errors, which are independent and identically distributed following a Normal with a mean of 206	

zero and variance 𝜎!. 207	

2) a constant mean with first-order autocorrelation (Mean + AR(1)) 208	

 𝑦! = 𝜇 + 𝜑𝑦!!! + 𝑒!        (2) 209	

where 𝜑 is the first-order autocorrelation coefficient. 210	

3) a linear trend (Trend) 211	

 𝑦! = 𝜆 + 𝛽𝑡 + 𝑒!        (3) 212	

where 𝜆 and 𝛽 represent the intercept and trend parameters, respectively. 213	

4) a linear trend with first-order autocorrelation (Trend + AR(1)) 214	

𝑦! = 𝜆 + 𝛽𝑡 + 𝜑𝑦!!! + 𝑒!       (4) 215	

5) multiple change-points in the mean  216	

 𝑦! =

𝜇! + 𝑒!                           𝑡 ≤ 𝑐!
𝜇! + 𝑒!                𝑐! < 𝑡 ≤  𝑐!

⋮
𝜇! + 𝑒!          𝑐!!! < 𝑡 ≤  𝑛

      (5) 217	

where 𝜇!,… , 𝜇!  represent the mean of each of the m-segments with variance 𝜎!!,… ,𝜎!!  218	

respectively, 𝑐!,… , 𝑐!!!the timing of the change-points between segments and n is the length 219	

of the time-series. 220	

6) multiple change-points in the mean and first-order autocorrelation 221	

 𝑦! =

𝜇! + 𝜑!𝑦!!! + 𝑒!                           𝑡 ≤ 𝑐!
𝜇! + 𝜑!𝑦!!! + 𝑒!                𝑐! < 𝑡 ≤  𝑐!

⋮
𝜇! + 𝜑!𝑦!!! + 𝑒!          𝑐!!! < 𝑡 ≤  𝑛

    (6) 222	

where 𝜑! ,… ,𝜑! represent the autocorrelation in each segment. 223	
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7) a trend with multiple change-points in the regression parameters  224	

 𝑦! =

𝜆! + 𝛽!𝑡 + 𝑒!                           𝑡 ≤ 𝑐!
𝜆! + 𝛽!𝑡 + 𝑒!                𝑐! < 𝑡 ≤  𝑐!

⋮
𝜆! + 𝛽!𝑡 + 𝑒!         𝑐!!! < 𝑡 ≤  𝑛

     (7) 225	

where 𝜆! ,… , 𝜆! and 𝛽! ,… ,𝛽! represent the intercept and trend in each segment. 226	

8) a trend with multiple change-points in the regression parameters and first-order 227	

autocorrelation (Trend cpt + AR(1))  228	

𝑦! =

𝜆! + 𝛽!𝑡 + 𝜑!𝑦!!! + 𝑒!                           𝑡 ≤ 𝑐!
𝜆! + 𝛽!𝑡 + 𝜑!𝑦!!! + 𝑒!                𝑐! < 𝑡 ≤  𝑐!

                        ⋮
𝜆! + 𝛽!𝑡 + 𝜑!𝑦!!! + 𝑒!         𝑐!!! < 𝑡 ≤  𝑛

   (8) 229	

The theoretical parameter ranges are real numbers for the means, trends and intercepts, 230	

positive real numbers for the variances, [-1,1] for first-order autocorrelation coefficients and 231	

[p, n-p] for the change-point timings with p parameters in the model form. The methodology 232	

considers all possible parameters and number of changes across the 8 models.  233	

Each model is fitted according to maximum likelihood estimation. For the change-234	

point models, we find the number and location of change-points using the Pruned Exact 235	

Linear Time (PELT) algorithm (Killick et al. 2012), which identifies change-points by 236	

performing an exact search considering all options for any possible number of changes 237	

(varying from 1 to the maximum number of change-points given the set minimum segment 238	

length). The search strategy is exact with a computational cost that is linear in the number of 239	

data points. The PELT method is used in combination with the modified Bayesian 240	

information criterion (MBIC) as the penalty function (Zhang and Siegmund 2007) to select 241	

the optimal number of change-points, as this approach balances the overall fit against the 242	

length of each segment. Hence it naturally guards against small segments unless it produces a 243	
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significantly improved fit. The PELT methodology may choose no change-point as the best 244	

model in which it reduces to the same likelihood as the no change equivalent model. The 245	

model selection is automated using the Akaike information criterion (AIC), which penalizes 246	

the model likelihood by the number of parameters fitted for each model considered (Akaike 247	

1974). The EnvCpt package provides the likelihood and number of parameters fitted for each 248	

model. As such, any other criteria or metric based on the likelihood can be used for the model 249	

selection. However, we use the MBIC for determining change-points as the AIC has been 250	

shown to systematically overestimate the number of changes (Haynes et al. 2017). The 251	

pseudo algorithm for EnvCpt and additional details about PELT are presented in Appendix A.  252	

The best model is selected as the one with the smallest AIC. While the choice 253	

according to the minimum AIC does not provide a measure of uncertainty, the AIC 254	

differences (Δ!) between the best model and the remaining models can be used to evaluate 255	

plausibility of the models fitted: 256	

Δ! = 𝐴𝐼𝐶! − 𝐴𝐼𝐶!"#        (9) 257	

where i denotes the models fitted (i=1,…,8).  The larger the difference, the less plausible a 258	

model is, given the data and models considered (Burnham and Anderson 2002). As a rule of 259	

thumb, a Δ!  of 0-2 provides substantial support for model i, while Δ! of 4-7 has considerably 260	

less support, and essentially none if the difference is larger than 10 (Burnham and Anderson 261	

2002). While comparing the differences to a rule of thumb is useful to identify a subset of 262	

models at play, we can also quantify the plausibility of the models fitted given the data using 263	

Akaike weights: 264	

 𝑤! =
!"# (!!.!∙Δ!)

!"# (!!.!∙!!)!
!!!

        (10) 265	
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The weights, 𝑤!, represent the evidence in favor of model i being the best model given the 266	

data and the set of eight models fitted.  267	

c. Simulation of synthetic series 268	

Synthetic series mimicking typical features observed in GMST and PDO time series 269	

issued from the eight general models described in the previous section were generated to 270	

assess the performance of EnvCpt. We generated a set of synthetic series inspired by the 271	

GMST record with a total of 166 years that corresponds to the four models including a trend 272	

component fitted to the GMST (Fig. 3a) with a) a long-term trend, b) a long-term trend with 273	

first-order autocorrelation, c) a trend with three change-points in 1906, 1945 and 1976, and d) 274	

one change-point in the trend and autocorrelation in 1962. We also generated synthetic time-275	

series inspired by the PDO with a length of 116 years to represent the competing models 276	

suggested to characterize the PDO behavior: a) mean change-points in 1948 and 1976 with or 277	

without a background of AR(1) (Rodionov 2004, 2006) and b) first-order autocorrelation 278	

model (Newman et al. 2016). For completeness, the constant mean model used here 279	

represents a “null” model for the two hypotheses. Figure 4 presents the eight cases of 280	

synthetic series generated to mimic the GMST and PDO. The specific parameters used to 281	

simulate the synthetic series are presented in Appendix A (Table A1). For each category, a 282	

total number of 1,000 synthetic series were generated and analyzed. 283	

d. Comparison with STARS 284	

We compare our approach to STARS (Rodionov 2004, 2006) using the code available 285	

from http://www.climatelogic.com/download. This approach has been used previously to 286	

investigate the presence of mean shifts in the PDO (Rodionov 2004, 2006). STARS uses a 287	

binary segmentation algorithm that identifies changes sequentially. As such, this procedure 288	

finds the most likely change-point, then splits the data at the change if it is significant, and 289	
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searches for further changes in each segment. This procedure is repeated iteratively until no 290	

more changes are detected or the segments are becoming smaller than the set minimum 291	

segment length. The decision rule for the presence of change-points is based on a t-test 292	

between segments (Rodionov 2004). A minimum segment length default of 10 observations 293	

and a critical level of 5% were used in the present study. Thus we set the same default 294	

minimum segment length with EnvCpt to carry out the simulations, although other options 295	

can be used. The STARS methodology is developed to detect shifts in the mean, however we 296	

present results for all considered models to demonstrate the errors produced when trends are 297	

not accounted for within the model. Furthermore, STARS is not originally designed to handle 298	

autocorrelation, and pre-whitening of the time-series has been suggested when its presence is 299	

suspected (Rodionov 2006). Thus, we also applied STARS with two pre-whitening 300	

approaches after some parameter tuning (Appendix C). The results obtained after pre-301	

whitening are presented in Appendix D.  302	

e. Comparison with BMCpt 303	

We also compare our approach to a Bayesian identification of multiple change-points 304	

in a regression model (BMCpt), which has been used to investigate the presence of change-305	

points in the GMST (Ruggieri 2012). We use the code made freely available from 306	

http://mathcs.holycross.edu/~eruggier/software.html. This approach allows for the detection 307	

of changes in the parameters of a regression model and thus can detect changes in the mean, 308	

trend and/or variance. The exact solution to the multiple change-point detection is obtained 309	

using dynamic programming recursions. Here we use a minimum segment length between 310	

two shifts of 10, the same as used for EnvCpt and STARS. This approach necessitates setting 311	

several other parameters, which are chosen as per the recommendations in Ruggieri (2012) 312	

and are described in Appendix B. The hyper-parameters for the variance prior are optimized, 313	

as these have an effect on the number of change-points detected (Fig. A1; Appendix B). 314	
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BMCpt is also designed to fit a regression model with independent residuals. Thus, we also 315	

apply it to the models with AR(1) after pre-whitening. Again, the choice of pre-whitening 316	

parameters is determined by optimizing them to give the best performance and is presented in 317	

Appendix C. 318	

 319	

3. Results 320	

a. Analysis of the GMST and PDO time-series 321	

The eight EnvCpt models are fitted to the GMST datasets and the PDO in Fig. 3. 322	

Table 1 presents the AIC differences for each model and their respective weights. For most 323	

datasets, the evidence for the Trend cpt + AR(1) model is strong, with probabilities of 1 for 324	

BEST, MLOST and GISTEMP, respectively (Table 1). For these three datasets, none of the 325	

seven other models are considered plausible ( Δ! > 10;  𝑤! = 0; 𝑖 = 1,… ,7) . The 326	

HadCRUT4krig dataset reveals more uncertainty, with substantial evidence for both the 327	

Trend cpt + AR(1) and the Trend cpt models (Δ! < 2; 𝑖 = 7,8), but a higher probability for 328	

the Trend cpt + AR(1) model (0.68 for Trend cpt + AR(1) as opposed to 0.32 for Trend cpt; 329	

Table 1). On the opposite, for the HadCRUT4 dataset the best model is Trend cpt with a 330	

probability of 0.98, while there is limited evidence for the Trend cpt + AR(1) model 331	

(probability of 0.02).  332	

For most GMST datasets, the best model fit has one change-point in both the trend 333	

and autocorrelation (Trend cpt + AR(1)) in 1962 or 1972 depending on the source of the 334	

GMST data (Fig. 3b-e; Table 1). At that time, the rate of warming increases and is 335	

accompanied by a whitening of the GMST, i.e. the AR(1) weakens. The trend and AR(1) 336	

parameters associated with this fit are presented in Table 2. The competing model (Trend cpt) 337	

exhibits a flat mean until 1906, which was followed by a warming period until 1945, then 338	
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another period of minimal temperature change that lasted until 1977, followed by a warming 339	

trend until now (Fig. 3a-b). It must be noted that all models fitted are valid if their underlying 340	

assumptions of normality and independence of the residuals are met. Overall, these 341	

assumptions are verified under the Trend cpt + AR(1) fit, but not under the Trend cpt model 342	

(Figs A5-A6, Table A2; Appendix E). This further validates a background AR(1) and the 343	

occurrence of one change-point in the GMST in 1962 or 1972, as opposed to several changes. 344	

The GMST has also been suggested to follow an AR(2) model previously (Karl et al. 2000). 345	

We find that while two datasets indicate a potential AR(2) structure in the residuals (Fig. 346	

A6a-b; Appendix E), the fits are valid with an AR(1) (Fig. A5, Table A2; Appendix E). 347	

Furthermore, an AR(2) does not seem to improve the likelihood of the model enough to be 348	

worth including as all models with an AR(2) lead to substantially higher AIC (Table A2; 349	

Appendix E).  350	

The only model detecting a change-point in the late 1990s/early 2000s is the 351	

“staircase” model (Mean cpt), for which there is essentially no evidence (𝑤! = 0), given the 352	

datasets and other models considered (Fig. 3a-e). As such, this result suggests that the most 353	

recent “hiatus” does not emerge as a global signal, but rather indicates that the GMST rate of 354	

change has remained approximately constant (linear) since the 1960s/1970s with some 355	

fluctuations arising from the memory in the system.  356	

As for the PDO, the best fitting model is a constant mean and autocorrelation (Mean + 357	

AR(1)) with a probability of 0.56 (Table 1; Fig. 3f), and has valid underlying assumptions 358	

(Fig. A7; Table A2). None of the models including change-points are considered at play, as 359	

either no change-points are detected (Mean cpt + AR(1) and Trend cpt + AR(1)) or they are 360	

associated with large AIC differences (Table 1). The Trend + AR(1) model is the only 361	

competing model (∆!= 1.1;𝑤! = 0.44), unveiling some uncertainty about the best way to 362	
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characterize PDO behavior. However, models including a trend would be counterintuitive to 363	

represent PDO behavior (Newman et al. 2016).  364	

b. Simulation study 365	

EnvCpt was also applied to the eight different sets of synthetic series generated. To 366	

emphasize the flexibility of the methodology developed, we compare it with two other 367	

approaches both detailed in Methods. It must be noted that EnvCpt is developed to 368	

distinguish all combinations of trends, change-points and autocorrelation, and thus we expect 369	

it to overall outperform BMCpt and STARS, which are both designed for more specific 370	

features. Specifically, BMCpt was developed to detect changes in a linear regression model, 371	

and it should thus perform similarly to EnvCpt in presence of a constant mean or trend, with 372	

or without change-points (cases Mean, Mean cpt, Trend and Trend cpt). Correspondingly, 373	

STARS was developed to detect mean shifts only and should be performing in the simulation 374	

scenario cases Mean and Mean cpt. Neither STARS nor BMCpt were originally designed to 375	

handle a background of autocorrelation. To work around that limitation we also apply the 376	

methods on the synthetic series with AR(1) after pre-whitening, which necessitates some 377	

parameter tuning (see Appendix D). 378	

Fig. 5 presents the number of shifts detected by EnvCpt, STARS and BMCpt in each 379	

simulation case. The results demonstrate that EnvCpt correctly identifies the number of 380	

change-points at a higher frequency than STARS and BMCpt in most synthetic series, 381	

although BMCpt is equivalent in half of the cases. In presence of a trend only, both EnvCpt 382	

and BMCpt succeed at identifying no change (Fig. 5a). However, in presence of three trend 383	

change-points (Fig. 5c) EnvCpt detects the three shifts at the highest frequency while BMCpt 384	

tends to interpret them as two shifts instead. The rate of false detection with BMCpt increases 385	

in presence of autocorrelation (Fig. 5b), illustrating misuse 3. In the simulation case Trend 386	
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cpt + AR(1), EnvCpt and BMCpt are equivalent (Fig. 5d) even though BMCpt is not 387	

designed to handle autocorrelation. We attribute this result to the fact that BMCpt can detect 388	

changes in the variance, thus interpreting the changing AR(1) here as a change in variance. 389	

Finally, in presence of mean shifts (cases Mean cpt and Mean cpt +AR(1) ), BMCpt tends to 390	

detect fewer shifts than the true number of change-points (Fig. 5g-h). Indeed, when using a 391	

change-point approach fitting a piecewise linear regression model in presence of mean shifts 392	

only, consecutive “staircase” mean shifts may be interpreted as a trend as per misuse 1. Pre-393	

whitening reduces the rate of false detection by BMCpt in the Trend + AR(1) scenario, but 394	

also diminishes the power of detection for the Trend cpt + AR(1) and Mean cpt + AR(1) 395	

cases (Fig. A3; Appendix D).  396	

STARS tends to overestimate the number of change-points and frequently 397	

misidentifies an underlying trend as a series of shifts, illustrating misuse 2 (Fig. 5a-d). In the 398	

cases of a constant mean or change-points in the mean, STARS should be equivalent to 399	

EnvCpt, but tends to detect additional spurious shifts (Fig. 5e,g). This is particularly 400	

surprising for the Mean case (Fig. 5e), as the STARS methodology should be able to return a 401	

no change model in this case, but rather detects changes in over 34% of the series. However,  402	

although a 5% critical level is used when multiple shifts are present this does not correspond 403	

to a 5% critical level for the overall segmentation given that the test is applied repetitively. 404	

Approaches based on a maximal type t-test or F-test, which accounts for the fact that the test 405	

statistic is calculated for each potential change-point timing in the time-series, reduce false 406	

alarms to the expected level (Lund and Reeves 2002; Wang et al. 2007). The tendency for 407	

spurious detection with STARS is aggravated in presence of autocorrelation (Fig. 5f), where 408	

STARS detects changes in 96% of the series when none should be detected, illustrating 409	

misuse 4. The rate of false detection is reduced with pre-whitening and the detection power 410	

improved for the Mean + AR(1) and Mean cpt +AR(1) cases (Fig. A3; Appendix D). 411	
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Whilst the number of positive and false-positive changes detected by a given model 412	

provides a picture of the performance, it does not indicate whether the change-points are 413	

correctly localized in the time-series. Fig. 6 presents density estimates of the locations of the 414	

identified change-points for synthetic series that were generated with change-points. This 415	

again demonstrates that EnvCpt outperforms STARS and BMCpt overall. EnvCpt clearly 416	

identifies the location of the trend change-points, while both BMCpt and STARS tend to 417	

detect spurious changes between the true change-points (Fig. 6a), especially towards the end 418	

of the series with STARS (Fig. 6a-b,d). The three methods are equivalent in detecting the 419	

location of the mean change-points (Fig. 6c). It must be noted that the height of the density 420	

peaks may suggest that BMCpt is better performing in the Mean cpt + AR(1) scenario, but 421	

this is due to fewer changes being detected with this approach (Fig. 5h). The density and 422	

number of change-points should be considered together.  423	

 424	

Discussion 425	

Our results suggest that the GMST rate of change has changed once in 1962 or 1972 426	

and has remained approximately constant since then with fluctuations due to the presence of 427	

memory in the system. Furthermore, we find that the GMST is “whitening” around that time, 428	

i.e. the AR(1) parameter weakens. This result is consistent across most datasets with high 429	

evidence (Table 1). Our GMST characterization is different from previous parametric 430	

change-point analysis of the global temperature record (Cahill et al. 2015; Rahmstorf et al. 431	

2017; Ruggieri 2012) that suggested the presence of three change-points in the GMST rate of 432	

warming in the 1900s, 1940s and 1970s. The main difference lies in the treatment of 433	

autocorrelation: our approach formally takes into account the autocorrelation by the means of 434	

an AR(1). Indeed, the optimal fit of the Trend cpt model for the HADCRUT4 dataset (Fig. 435	
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3a), which does not take account of AR(1), detects three change-points as in previous studies. 436	

However, autocorrelation is present in the residuals such that the underlying assumption of 437	

independent residuals is violated under the Trend cpt model. The timings of change-points 438	

under this model setting (Trend cpt) are not consistent across all GMST datasets, signaling 439	

additional uncertainty. If the BIC is used to select the best model instead of the AIC, the 440	

Trend cpt + AR(1) model is selected for all datasets (Table A4). We therefore argue that the 441	

Trend cpt model should not be used without AR(1) to characterize the GMST. The GMST 442	

has also been suggested to follow an AR(2) model previously (Karl et al. 2000). Here we find 443	

that an AR(2) does not improve the likelihood of the model enough to be worth including as 444	

the noise term (Table A2; Appendix E). Previous work has also suggested the presence of 445	

long-term memory in surface temperature records (e.g. Franzke 2012; Løvsletten and Rypdal 446	

2016), as opposed to the short-term memory detected here. In presence of long-term memory, 447	

the autocorrelation function will not decay exponentially as observed here, but rather decays 448	

as a power law such that it does not reach zero (Yuan et al. 2015). While we do not find long-449	

term memory in the residuals of the five GMST records analyzed here, we acknowledge that 450	

its potential presence presents a risk to misinterpret it as a trend or an abrupt change with 451	

EnvCpt, but longer records will be needed to make this distinction (Poppick et al. 2017).  452	

Consequently, our results suggest that the change-points previously detected in the 453	

1900s and 1940s may not be unusual given the background memory. These timings also 454	

coincide with the period of highest uncertainty in SST measurements due to corrections 455	

applied to account for changes of instrumentation (Jones 2016; Kent et al. 2017; Thompson et 456	

al. 2008). Despite different results due to different change-point detection approach, we do 457	

agree with previous studies (Cahill et al. 2015; Rahmstorf et al. 2017; Ruggieri 2012) that the 458	

most recent “hiatus” in GMST does not emerge as a global signal, regardless of whether or 459	

not AR(1) is considered. Hence, the only model fitted that contains a change-point in the late 460	
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1990s/early 2000s is a “staircase” in the GMST (Mean cpt) and that model fit is rendered 461	

unlikely by its large AIC values (Fig. 3).  462	

It must be noted that the five datasets employed in this study are not independent: 463	

they all use in part the same input data for the land and ocean but employ different 464	

methodologies for correcting biases and inhomogeneities and for interpolating (Jones 2016). 465	

As such, the similar results obtained with the five datasets do not provide independent pieces 466	

of evidence that a change-point took place in 1962 or 1972, but rather provides a measure of 467	

the uncertainty arising from the different approaches used to create these datasets.  468	

To our knowledge, the whitening of the GMST has not been described in previous 469	

studies because methodologies able to detect shifts in the autocorrelation, such as EnvCpt, 470	

have not been applied to GMST datasets before. The sudden decrease in memory detected 471	

here could be due to changes in SST measurements, as the timing marks the start of a period 472	

of SST measurements obtained from a more diverse observing fleet and reduced bias (Kent et 473	

al. 2017; Thompson et al. 2008). Future studies should investigate the regions responsible for 474	

the change-point in GMST and investigate the underlying causes.  475	

As for the PDO, we show that a model with a flat mean and first-order autocorrelation 476	

provides the best fit (Fig. 3f), which is in agreement with previous studies (Newman et al. 477	

2016; Rudnick and Davis 2003). Conversely, a previous study has interpreted the PDO as a 478	

series of shifts in the mean in the 1940s and 1970s, superposed to an AR(1) (Rodionov 2006), 479	

which was taken as support for the hypothesis of a bi-stable behavior. When focusing on a 480	

shorter period of time, the 1970s shift was also suggested to emerge from the background of 481	

autocorrelation, although the authors questioned the robustness of this result and emphasized 482	

the need of a methodology such as the one presented here (Beaulieu et al. 2016). Our new 483	

methodology formally compares the two statistical representations (AR(1) process vs bi-484	
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stability with mean shifts) of the PDO by considering them objectively, and we conclude that 485	

it is best modeled as autocorrelation only, without shifts. This result is consistent if the BIC is 486	

used to select the best model instead of the AIC (Table A4). Memory in the PDO can offer 487	

short-term predictability a few years ahead, depending on the strength of the first-order 488	

autocorrelation. Specifically, the first-order autocorrelation of 0.55 in the PDO time-series 489	

analyzed here translates into a decorrelation time of 3.5 years (von Storch and Zwiers 1999) 490	

after which the current PDO value will be “forgotten”. This predictability could be key for 491	

management, as PDO patterns have widespread repercussions and have been suggested to be 492	

responsible for ecosystem regime shifts in the North Pacific and regional droughts (Mantua et 493	

al. 1997; Wang et al. 2014). More recently, it has been suggested that the PDO is “reddening” 494	

at the monthly timescale, i.e. the AR(1) is increasing as a sign of critical slowing down 495	

(Boulton and Lenton 2015; Lenton et al. 2017). We do not detect this feature here, but this is 496	

not surprising since our approach is not designed to detect a trend in autocorrelation and has 497	

been applied at the annual timescale.  498	

As the PDO and GMST records become longer, the best fitting model may change. 499	

More precisely, EnvCpt is expected to select the true underlying model and detect changes 500	

more accurately as the number of observations increase (Killick et al. 2012). 501	

The simulation study demonstrates the advantage of a single comprehensive method 502	

to avoid five misuses of statistics in analyzing climate time-series. Our approach reduces the 503	

number of pre-assumptions about the presence of trends, shifts and autocorrelation in the 504	

time-series. In eight cases of synthetic series mimicking features observed in the GMST and 505	

the PDO, our approach shows high skill in selecting the correct number of change-points in 506	

mean and slope, and to locate the change-points correctly when present. A drawback is that 507	

our conclusions are limited to the synthetic series generated for our simulation study. 508	

However, previous simulation studies of change-point detection techniques on synthetic 509	
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series with shifts having a random timing and magnitude have been carried out before, and 510	

revealed expected features that are common to most techniques. First, the signal-to-noise 511	

ratio matters the most, i.e. a shift with a large magnitude compared to the background noise 512	

has a higher hit rate (Beaulieu et al. 2012; Beaulieu et al. 2008; Reeves et al. 2007; Wang et 513	

al. 2010).  Second, false alarms occur more often at the beginning or end of the time-series 514	

(Beaulieu et al. 2012). Third, successive shifts that are near in time tend to be more difficult 515	

to detect, especially if the magnitudes have the same sign (e.g. an increase followed by an 516	

other increase is more difficult to detect than an increase followed by a decrease) (Beaulieu et 517	

al. 2008).  518	

Here we focus on comparing EnvCpt to STARS and BMCpt, which have been used to 519	

investigate changes in PDO and GMST, respectively. Overall, our approach clearly 520	

outperforms these two methods. This result was to be expected as STARS and BMCpt only 521	

consider a subset of the models fitted within EnvCpt. For example, the STARS methodology 522	

is developed to detect shifts in the mean only. In terms of the model fit, it is equivalent to 523	

considering only the Mean and Mean cpt models fitted with EnvCpt, thereby ignoring the 524	

possibility of and misinterpreting underlying trends. BMCpt is more flexible than STARS 525	

and designed to detect changes in the parameters of a regression model, so is also equivalent 526	

to fitting the models Trend and Trend cpt. Since both of these approaches were developed for 527	

independent data, all the models including an AR(1) are excluded from STARS and BMCpt. 528	

While this issue can be mitigated with well-tuned pre-whitening (Appendix C), EnvCpt has 529	

the additional advantage of natively supporting AR(1) detection without any parameter 530	

tuning. In our attempts to tune the pre-whitening for STARS and BMCpt we used a sub-531	

sample size of 20, which is smaller than the length between the shifts inserted in the synthetic 532	

series and shown to be optimal (Appendix C). Knowing a priori the minimum distance 533	

between two shifts is of great benefit for the tuning, but the necessity of tuning is a great 534	
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disadvantage for STARS and BMCpt. That is, when the “truth” is unknown the choice of 535	

parameter values for the pre-whitening is likely to induce errors (Fig. A2; Appendix C).  536	

Several other methods have been proposed in the literature to detect multiple change-537	

points in environmental time-series (e.g. Beaulieu et al. 2012; Gazeaux et al. 2011; Lu et al. 538	

2010; Reeves et al. 2007; Seidou and Ouarda 2007; Tomé and Miranda 2004; Wang 2008) 539	

although these models assume independent errors and thus cannot distinguish signals from 540	

autocorrelation, similar to STARS and BMCpt. To mitigate this issue one can use pre-541	

whitening techniques, although we show that pre-whitening has the disadvantage to 542	

necessitate some parameters tuning. It has also been argued that an approach that forces the 543	

lines of the piecewise linear model to meet assuring continuity between the trends is more 544	

physically plausible in the case of the GMST (Cahill et al. 2015; Rahmstorf et al. 2017). Here, 545	

we do not force the lines of the piecewise linear model to meet, but we find quasi-continuous 546	

trends for the GMST (see Fig. 3). Imposing the continuity condition would restrain our 547	

approach and make it unsuitable for the detection of climate regime shifts, which are 548	

discontinuous and typically represented by abrupt changes in the mean. The main advantage 549	

of the approach suggested here is its flexibility and applicability to a wide-range of climate 550	

time-series, as illustrated through the GMST and PDO. The flexibility and breath of 551	

applicability extends beyond inferring changes in the mean and trend as illustrated with these 552	

two examples. Hence, EnvCpt is designed to detect change-points in all parameters of the 553	

models fitted, including changes in autocorrelation and variance. There may be cases in 554	

which the variability and/or dependence between successive observations are different after 555	

the start of a new regime in the climate system or due to changes in measurements procedures. 556	

Keeping the methodology as general as possible ensures these cases can also be analyzed 557	

with EnvCpt.  558	
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Correctly identifying climate change signals is central to their understanding, as 559	

mechanisms responsible for secular trends and abrupt changes are likely to be different (e.g. 560	

anthropogenic influence vs natural forcings). However, abrupt changes can also be induced in 561	

time-series through gradual increase in anthropogenic forcing when a critical threshold is 562	

crossed (Lenton 2011). Further investigation of the forcing-response relationship can help 563	

identify threshold and nonlinear dynamics, but correctly identifying the timing of an abrupt 564	

change is a crucial first step (Andersen et al. 2009). Our EnvCpt approach is timely, as 565	

increasing anthropogenic pressure on the climate system is expected to lead to more frequent 566	

occurrences of abrupt changes in the physical climate system (Drijfhout et al. 2015). 567	

Our methodology is flexible as it models different types of signals and memory in the 568	

system. However, it assumes that temporal changes in climate time-series are piecewise 569	

linear on a background of white noise or first-order autocorrelation, and that measurement 570	

errors are random. While these assumptions are reasonable in many instances, there may be 571	

cases of climate time-series with additional complexities such as long-term memory. 572	

Departures from these assumptions may cause problems with the model selected as serious as 573	

the five pervasive mistakes we are trying to avoid with EnvCpt. Thus, it is recommended to 574	

combine the model selection with an analysis of the residuals as done here (Appendix E), and 575	

to consider models that are physically plausible. Given that model selection is used with 576	

EnvCpt, it can be easily extended to consider noise terms with additional parameters such as 577	

an autoregressive moving-average (ARMA) models with higher-order and alternative model 578	

forms (e.g. nonlinear). The models could be extended to take into account co-variables that 579	

may explain part of the variability in climate time-series. For example, ENSO could 580	

potentially explain part of the variability both in the GMST and PDO analyzed here, and 581	

contribute to reducing the unexplained variability. When modifying the models used here, 582	

one must keep in mind that the AIC weights are dependent on the subset of models being 583	



	 26	

compared. As such, if additional models were being considered, the probabilities of the eight 584	

models compared here may change. Finally, another advantage of an approach based on 585	

model selection is that it can be easily modified to use a different information criterion such 586	

as the BIC, but the results may vary. We illustrate this in Appendix F and show that using the 587	

BIC instead of the AIC in the simulation study can slightly improve the results for most cases 588	

of synthetic series, except for the Mean cpt + AR(1) case, for which the results are worst 589	

(Figure A8). We refrain from making a universal recommendation here, as there are many 590	

factors affecting the performance of AIC and BIC (Burnham and Anderson 2002) with 591	

considerations that are going beyond our simulation study. This aspect should be the focus of 592	

future work. 593	

  594	
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APPENDIX A 601	

Technical detail on the EnvCpt approach and simulations 602	

The EnvCpt approach fits eight different models to the data and returns the fit and 603	

number of parameters for each model.  The pseudo-code for the algorithm is as follows: 604	

EnvCpt Pseudo Algorithm 605	

Inputs:  Time series 𝑦!  606	

msl = Minimum number of time points between changes (default 5) 607	

pen = Penalty for changepoint algorithms (default MBIC) 608	

Initialize: Let n  = length of time series 609	

Fit:  1. Constant mean with independent errors via maximum likelihood 610	

2. Constant mean with AR(1) errors via maximum likelihood  611	

3. Linear trend with independent errors via maximum likelihood  612	

4. Linear trend with AR(1) errors via maximum likelihood 613	

5. Constant mean changepoint model with independent errors via PELT  614	

algorithm with msl and pen options. 615	

6. Linear trend changepoint model with independent errors via PELT  616	

algorithm with msl and pen options. 617	

7. Constant mean changepoint model with AR(1) errors via PELT algorithm 618	

with msl and pen options. 619	

8. Linear trend changepoint model with AR(1) errors via PELT algorithm with  620	

msl and pen options. 621	

Output:  A matrix of likelihood values and number of parameters for each model fit.  A  622	

list containing the fit for each of the eight models. 623	
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Using the output, one can compute an information criterion to determine the model that best 624	

fits the data – in this study we use the AIC. See Appendix E for a sensitivity study to the 625	

choice of criterion. 626	

The PELT algorithm used in the EnvCpt procedure is described mathematically in 627	

(Killick et al. 2012). Contrary to binary searches, where the most likely change is identified 628	

and the time-series is split at that point, the PELT algorithm solves the segmentation problem 629	

exactly by performing a search considering all options for any possible number of changes 630	

(varying from 1 to the maximum number of change-points given the set minimum segment 631	

length). This search is completed efficiently using a combination of dynamic programming 632	

and pruning. Dynamic programming allows us to consider the data sequentially from the start 633	

to the end and monitor the location of the last change-point only, which reduces the 634	

computational time significantly. However, as the size of the data grows it remains time 635	

consuming to monitor all potential last change-point locations. Thus, pruning is used to solve 636	

this issue. For example, if there is an obvious change-point at, say time point 57, then the 637	

probability of the last change being before that (e.g. time point 15) is zero. The definition of 638	

“obvious” is controlled by the penalty parameter – a larger value means that a change has to 639	

be larger to be considered “obvious”.  If “obvious” changes occur throughout the data then 640	

this dramatically reduces the computational time.  641	

To evaluate the approach, we generate synthetic series from each one of the eight 642	

models considered with parameters mimicking the GMST and PDO. For reproducibility, the 643	

parameters used are presented in Table A1.  644	

  645	
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APPENDIX B 646	

Choice of parameters for BMCpt 647	

Hyper-parameters for the prior distributions of the regression parameters and variance 648	

used with BMCpt are set following previous recommendations (Ruggieri 2012). We set the 649	

variance scaling hyper-parameter for the multivariate Normal prior on the regression 650	

parameters to 0.01. The hyper-parameters for the variance prior, i.e. the prior variance (𝜎!!), 651	

is set to the variance of the data set being used. As for the pseudo data point of variance (𝜈!), 652	

which is recommended to be <25% of the minimum segment length (Ruggieri 2012), we vary 653	

this parameter between 0 and 2.5 to find the value that optimizes the number of change-654	

points detected (Fig. A1). We focus on the number of change-points here, as these parameters 655	

can affect the number of change-points detected, but not the distribution of their positions 656	

(Ruggieri 2012). Tuning for 𝜈! is performed for the four cases without AR(1) for which 657	

BMCpt should perform well at identifying the true underlying model. For the cases scenario 658	

with no change-points (i.e. Mean and Trend), the value of 𝜈! does not have any impact on the 659	

number of changes detected as none are detected for all values of 𝜈!, thus these results are 660	

not shown here. As illustrated in Fig. A1a, all values of 𝜈! in the simulation scenario of a 661	

trend with change-points (Trend cpt) lead to a low detection of the correct number of change-662	

points, but the most substantial improvement is obtained with a value of 0.25. In the case 663	

scenario of mean change-points (Mean cpt), the correct number of change-points is obtained 664	

at a highest frequency for any values of 𝜈! (Fig. A1b). Setting 𝜈! to 0 leads to no change-665	

points. Therefore, a value of 0.25 has been used subsequently in all simulations. Finally, the 666	

maximum number of change-points is set to 10.   667	
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APPENDIX C 668	

Tuning of parameters for pre-whitening 669	

To reduce false alarms due to the presence of autocorrelation, pre-whitening of the 670	

time-series was used with STARS and BMCpt (Rodionov 2006). This consists of removing 671	

the first-order autocorrelation in the time-series such as: 672	

𝑥!! = 𝑥! − 𝜌!𝑥!!!    𝑡 = 2,… ,𝑛        (1) 673	

where 𝑥! and 𝑥!! represent the raw and pre-whitened variable at time t respectively, n is the 674	

length of the raw time-series and 𝜌! represents the bias-corrected first-order autocorrelation 675	

estimate. In a practical situation, the first-order autocorrelation used in pre-whitening is 676	

unknown (and may also change over time). To obtain an estimate we used two approaches 677	

developed by Marriott and Pope (1954) and Orcutt and Winokur Jr (1969), referred to as MP 678	

and INV respectively. The MP estimate is given by: 679	

𝜌! = !!! !!!
(!!!)

         (2) 680	

where 𝜌 is the median of the first-order autocorrelation calculated in each subsample of size 681	

m. The INV estimate uses four iterative corrections: 682	

 𝜌!,! = 𝜌 + !
!

         (3) 683	

𝜌!,! = 𝜌!,!!! + !!,!!!

!
   𝑘 = 2,3,4      (4) 684	

 In order to find an optimal value for the subsample size used in pre-whitening we conduct 685	

simulations over a range of subsample sizes using the Mean cpt + AR(1) scenario. This is 686	

done with both MP and INV approaches for pre-whitening using subsample sizes of 5, 10, 20, 687	

30, 50 and 75 and illustrated in Figure A2. With both pre-whitening approaches, very large 688	
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(75) and very small (5) subsample size lead to a reduced rate of true positives and increased 689	

false negatives towards the end of the time-series. A subsample size of approximately 20 is 690	

shown optimal here, which is smaller than the distance between the two shifts (28 years). 691	

When the number and location of changes is unknown, the choice of this parameter is rather 692	

arbitrary and can have substantial effect on the results (Fig. A2).  693	

 694	

APPENDIX D 695	

Results obtained after pre-whitening the synthetic data 696	

For comparison, we apply pre-whitening using both MP and INV in all simulations 697	

with both STARS and BMCpt, and with a sub-sample size of 20, as chosen after optimization 698	

(Fig. A2). Fig. A3 presents the number of shifts detected for the four simulation cases with 699	

AR(1). For the two cases with no shifts: Trend + AR(1) and Mean + AR(1), BMCpt with pre-700	

whitening and EnvCpt are equivalent. The number of shifts detected is reduced for STARS, 701	

but there is still a substantial rate of false detection. This is surprising, as STARS should be 702	

able to return a no change model for the Mean + AR(1) case, but detects changes in over 34% 703	

of the series. Nevertheless, the rate of false detection is reduced with pre-whitening, but 704	

remains substantial with STARS. In presence of change-points (cases Trend cpt + AR(1) and 705	

Mean cpt + AR(1) ), the pre-whitening deteriorates BMCpt performance while it significantly 706	

improves STARS ability to detect shifts in the mean.  707	

Fig. A4 presents density estimates of the locations of the identified change-points for 708	

synthetic series that were generated with change-points and AR(1). For the case Trend cpt + 709	

AR(1), whilst the peaks of the true changes have a similar density to the EnvCpt method, 710	

STARS and BMCpt tend to detect spurious changes towards the end of the series. In presence 711	

of mean change-points, EnvCpt and both STARS and BMCpt applied with pre-whitening 712	
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succeed at identifying the correct timing of the change-points. While the densities in Fig. A4b 713	

give the impression that BMCpt is performing better than STARS and EnvCpt with higher 714	

peaks, this is due to fewer changes being detected with this approach (see Fig. A3d). 715	

 716	

APPENDIX E 717	

Goodness-of-fit of the GMST and PDO best models  718	

To validate the models selected, we also verify their underlying assumptions of 719	

normality and independence of the residuals with additional testing (Table A2). In all cases, 720	

the normality assumption of the residuals is respected, but not the independence for all Trend 721	

cpt fits on the GMST and the MLOST Trend cpt + AR(1) fits. To further investigate the 722	

autocorrelation structure of the residuals for both the Trend cpt and Trend cpt +AR(1) fits, 723	

the autocorrelation and partial autocorrelation functions are presented in Figs. A5-A6, 724	

respectively. The autocorrelation and partial autocorrelation functions are consistent with the 725	

tests of independence presented in Table A2: the residuals of the Trend cpt + AR(1) fits are 726	

independent overall (except for the MLOST dataset) (Fig. A5), while the residuals of the 727	

Trend cpt fit are not (Fig. A6). The autocorrelation and partial autocorrelation functions for 728	

the HadCRUT4 and HadCRUT4krig datasets (Fig. A6a-b) reveals potential presence of a 729	

second-order autocorrelation process (AR(2)) in the residuals. Therefore, our models were 730	

also fitted with an AR(2) in the background such as : Mean + AR(2), Trend + AR(2), Mean 731	

cpt + AR(2) and Trend cpt + AR(2). Table A3 presents the AIC differences of the models 732	

fitted with a background AR(2) as opposed to the previously selected models (Trend cpt and 733	

Trend cpt + AR(1); Table 1). These results show that despite a potential AR(2) structure in 734	

the residuals, there is no benefit from adding an extra parameter to explain the autocorrelation 735	

structure. The AIC differences for the models including an AR(2) are substantially larger 736	
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than those of the best models selected, i.e mostly larger than 10 indicating essentially no 737	

evidence for choosing these models instead. There is one exception for the GISTEMP dataset, 738	

for which the Trend cpt +AR(2) model has a ∆ of 2.5, which suggests some evidence for this 739	

model being the best, but not enough to be at play. Overall, for the five GMST datasets, the 740	

Trend cpt + AR(1) fit provides the smallest AIC and meet the underlying assumptions of the 741	

model. As for the PDO, the model with the smallest AIC (Mean + AR(1)) respects the 742	

underlying assumptions of normality and independence (Fig. A7; Table A2).  743	

 744	

APPENDIX F  745	

Sensitivity to the model selection criterion 746	

To evaluate the sensitivity to the choice of model selection criterion, we compare the 747	

results obtained on all sets of synthetic series with EnvCpt using the Bayesian Information 748	

Criterion (BIC) (Figure A8). In most cases, the EnvCpt performance is slightly improved 749	

when using the BIC, except for the Mean cpt + AR(1) case for which the BIC detects no 750	

change-points in strong majority while there are two.  751	

We also calculate the BIC for the eight models fitted within EnvCpt to the GMST and 752	

PDO datasets (Table A4), For all GMST datasets the model with the smallest BIC is Trend 753	

cpt + AR(1). This result is slightly different than the results obtained using the AIC for the 754	

HADCRUT4 dataset for which the Trend cpt model has the smallest AIC (Table 1). However, 755	

we discarded the Trend cpt model for the HADCRUT4 dataset due to the presence of 756	

autocorrelation in the residuals (Table A2; Figs A5-A6) and concluded that the second best 757	

model, Trend cpt + AR(1), was more appropriate. Thus, the best models identified using the 758	

BIC are consistent with the results obtained with the AIC (Figure 3).   759	
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Tables 966	

Table 1: Comparison of the eight EnvCpt models on the GMST and PDO datasets. AIC 967	

differences (∆) between the model with the smallest AIC and the seven other models, as well 968	

as their Akaike weights (w) representing the probabilities of each model being the best model 969	

given the data and the set of models considered. The model with the smallest AIC has a ∆ of 0 970	

and is indicated in bold along with its associated probability. Blanks are left for change-point 971	

models that did not detect change-points, as the model fit is the same as the equivalent model 972	

without change-points. 973	

Model Data 
HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO 
∆ w ∆ w ∆ w ∆ w ∆ w ∆ w 

1.Mean 355.5 0.00 372.7 0.00 386.5 0.00 340.6 0.00 326.7 0.00 42.5 0.00 
2.Mean + AR(1) 46.0 0.00 40.7 0.00 40.0 0.00 35.8 0.00 38.5 0.00 0.0 0.56 
3.Trend 165.2 0.00 162.2 0.00 150.3 0.00 152.1 0.00 136.9 0.00 44.5 0.00 
4.Trend +AR(1) 31.3 0.00 25.9 0.00 23.3 0.00 23.2 0.00 24.6 0.00 1.1 0.44 
5.Mean cpt 40.7 0.00 45.7 0.00 25.3 0.00 61.3 0.00 43.2 0.00 25.8 0.00 
6.Mean cpt +AR(1)             
7.Trend cpt 0.0 0.98 1.5 0.32 16.8 0.00 26.0 0.00 13.4 0.00 23.4 0.00 
8.Trend cpt +AR(1) 7.8 0.02 0.0 0.68 0.0 1.00 0.0 1.00 0.0 1.00   
 975	

976	
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Table 2: Trend and first-order autocorrelation (AR(1)) parameter estimates for the model 977	

with trend change-points and AR(1) (Trend cpt + AR(1)) in the five GMST datasets. 978	

Dataset Cpt 
timing 

Trend AR(1) 

  Before cpt After cpt Before cpt After cpt 
HadCRUT4 1962 0.001 0.013 0.653 0.195 

HadCRUT4krig 1972 0.001 0.018 0.635 0.083 
BEST 1962 0.001 0.015 0.656 0.148 

MLOST 1962 0.001 0.015 0.706 0.144 
GISTEMP 1962 0.002 0.016 0.644 0.112 

  979	
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Table A1: List of parameters used to simulate the sets of synthetic series. 980	
 981	
Variable Model Parameters 

PDO 
(n=116 years) 

Mean 𝜇 = 0.028, 𝜎 = 0.8 
Mean + AR(1) 𝜇 = 0.049, 𝜑 = 0.522, 𝜎 = 0.8 
Mean cpt 𝜇! = 0.222, 𝜇! = −0.652, 𝜇! = 0.271  

𝑐! = 49, 𝑐! = 77, 𝑚 = 3, 𝜎 = 0.3 
Mean cpt + AR(1) 𝜇! = 0.222, 𝜇! = −0.652, 𝜇! = 0.271 𝜑! = 𝜑! =

𝜑! = 0.402 
𝑐! = 49, 𝑐! = 77, 𝑚 = 3, 𝜎 = 0.3 

GMST  
(n=166 years) 

Trend 𝜆 = −0.513, 𝛽 = 0.005, 𝜎 = 0.1 
Trend + AR(1) 𝜆 = −0.128, 𝛽 = 0.001, 𝜑 = 0.756,𝜎 = 0.3 
Trend cpt 𝜆! = −0.299, 𝜆! = −1.327, 𝜆! = 0.171, 𝜆! =

−2.124, 𝛽! = −0.001, 𝛽! = 0.014, 𝛽! = −0.002, 
𝛽! = 0.016, 𝑐! = 57, 𝑐! = 96, 𝑐! = 127, 𝑚 = 4, 
𝜎 = 0.4 

Trend cpt + AR(1) 𝜆! = −0.112, 𝜆! = −1.707, 𝛽! = −0.001, 
𝛽! = 0.013, 𝜑! = 0.659, 𝜑! = 0.153, 𝑐! = 113, 
𝑚 = 2,  𝜎 = 0.1 

   
  982	
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Table A2: Results (p-value) of the Lilliefors (L) and Durbin-Watson (DW) tests applied to 983	

the residuals of the best models fitted to the GMST (Trend cpt and Trend cpt + AR(1) and 984	

PDO datasets (Mean + AR(1).  985	

Model Test Data  

  HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO 

Trend cpt L 0.50 0.50 0.29 0.39 0.12  

DW <0.001* <0.001* <0.001* <0.001* <0.001*  

Trend cpt + 
AR(1) 

L 0.39 0.50 0.33 0.50 0.08  

DW 0.53 0.25 0.19 <0.001* 0.66  

Mean + 
AR(1) 

L      0.50 

DW      0.68 

*Significant at the 1% critical level.   986	
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Table A3: Comparison of the best EnvCpt models (Trend cpt and Trend cpt + AR(1)) with 987	

models including a second-order autocorrelation process (AR(2)) on the GMST and PDO 988	

datasets. AIC differences (∆) between the model with the smallest AIC and the other models 989	

are presented. The model with the smallest AIC has a ∆ of 0 and is indicated in bold.  990	

991	
Model Data 

HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP 

Trend cpt 0.0 1.5 16.8 26.0 13.5 

Trend cpt + AR(1) 7.8 0.0 0.0 0.0 0.0 

Mean + AR(2) 41.6 37.1 37.5 34.4 35.5 

Trend + AR(2) 30.5 25.0 24.8 25.4 25.2 

Mean cpt + AR(2) 48.0 47.7 42.1 37.8 40.5 

Trend cpt + AR(2) 42.5 37.0 36.8 37.4 2.5 

  992	
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Table A4: Bayesian Information Criterion (BIC) differences for the eight models within 993	

EnvCpt fitted to the GMST and PDO datasets. The model with the smallest BIC has a ∆ of 0 994	

and is indicated in bold. Blanks are left for change-point models that did not detect change-995	

points, as the model fit is the same as the equivalent model without change-points. 996	

Model Data 
HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO 

1.Mean 325.8 350.9 364.7 320.2 307.4 39.1 
2.Mean + AR(1) 19.5 22.0 21.3 18.3 24.1 0.0 
3.Trend 138.6 143.6 131.6 134.6 -122.6 43.9 
4.Trend +AR(1) 7.8 10.3 7.7 8.6 13.0 3.3 
5.Mean cpt 39.1 51.9 40.9 67.1 44.8 30.7 
6.Mean cpt +AR(1)       
7.Trend cpt 10.8 20.2 23.0 51.5 23.3 33.8 
8.Trend cpt +AR(1) 0.0 0.0 0.0 0.0 0.0  

  998	



	 48	

Figure Captions 999	
 1000	

Figure 1: Five possible misuses of statistics when inferring changes in climate time-series 1001	

exhibiting a long-term linear trend, shifts or memory: a) fitting a linear trend in presence of 1002	

shifts in the mean or shifts in trend; b) fitting shifts in the mean in presence of a trend; c) 1003	

fitting a linear trend assuming independent errors (i.e. white noise) in presence of 1004	

autocorrelation; d) fitting shifts in the mean assuming white noise in presence of 1005	

autocorrelation; e) fitting a first-order autocorrelation model in presence of mean shifts. 1006	

Figure 2: Datasets used in this study a) global mean surface temperature (GMST) from the  1007	

Met Office Hadley Centre surface temperature (HadCRUT4), HadCRUT4 infilled by kriging 1008	

(HadCRUT4krig), Berkeley Earth Surface Temperature (BEST), Merged Land–Ocean 1009	

Surface Temperature Analysis (MLOST), and Goddard Institute of Space Studies Surface 1010	

Temperature Analysis (GISTEMP) and b) the Pacific Decadal Oscillation (PDO). 1011	

Figure 3: Fit of the eight models in EnvCpt to five global mean surface temperature (GMST) 1012	

datasets: a) Met Office Hadley Centre surface temperature (HadCRUT4), b) HadCRUT4 1013	

infilled by kriging (HadCRUT4krig), c) Berkeley Earth Surface Temperature (BEST), d) 1014	

Merged Land–Ocean Surface Temperature Analysis (MLOST), e) Goddard Institute of Space 1015	

Studies Surface Temperature Analysis (GISTEMP) and f) the Pacific Decadal Oscillation 1016	

(PDO). The tick marks indicate where change-points were detected. For each dataset, the 1017	

Akaike Information Criterion differences (Δ) between each model and the best model 1018	

(smallest AIC) are also shown on a logarithmic scale adjusted so that the best model has a log 1019	

difference of zero, and is indicated by a star. The dotted vertical lines indicate cutoffs of 1020	

models evidence: there is substantial support for models with a difference below the red line 1021	

and essentially no support for models with differences above the black line.  1022	
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Figure 4: Synthetic time-series example from each simulation scenario case a) a linear trend, 1023	

b) a linear trend with first-order autocorrelation, c) a trend with three change-points in the 1024	

regression parameters, d) a trend with a change-point in the regression parameters and first-1025	

order autocorrelation, e) a constant mean, f) a constant mean with first-order autocorrelation, 1026	

g) two change-points in the mean and h) two change-points in the mean with first-order 1027	

autocorrelation. For each case, a total number of 1,000 random replications are simulated. 1028	

Figure 5: Number of change-points detected with EnvCpt, STARS and BMCpt for each 1029	

simulated scenario across 1,000 replications a) a linear trend, b) a linear trend with first-order 1030	

autocorrelation, c) a trend with three change-points in the regression parameters, d) a trend 1031	

with a change-point in the regression parameters and first-order autocorrelation, e) a constant 1032	

mean, f) a constant mean with first-order autocorrelation, g) two change-points in the mean 1033	

and h) two change-points in the mean with first-order autocorrelation. Overall, EnvCpt is 1034	

closer to the true number of change-points than STARS and BMCpt. 1035	

Figure 6: Density of change-point timings detected using EnvCpt, STARS and BMCpt for 1036	

the four simulated scenarios with change-points across 1,000 replications a) a trend with 1037	

three change-points in the regression parameters, b) a trend with a change-point in the 1038	

regression parameters and first-order autocorrelation, c) two change-points in the mean and 1039	

d) two change-points in the mean with first-order autocorrelation. Overall, EnvCpt identifies 1040	

correctly the true change-point locations while STARS and BMCpt may detect change-points 1041	

at timings when none were introduced in the synthetic series in presence of trend change-1042	

points. 1043	

Figure A1: Number of change-points detected with BMCpt for the a) Trend cpt and b) Mean 1044	

cpt scenario across 1,000 replications. Change-points were detected using a range of values 1045	

for the pseudo data point of variance parameter ( ). A value of 0.25 is shown optimal here. 1046	 v0
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Figure A2: Density of change-point locations for the change-points in the mean and a 1047	

background AR(1) (Mean cpt + AR(1)) scenario across 1,000 replications. Change-points 1048	

were detected with a) STARS and b) BMCpt methodologies using a range of subsample sizes 1049	

for pre-whitening using the MP and INV approaches. A subsample size of 20 is shown 1050	

optimal here for both methods. For STARS, very large or very small subsample sizes lead to 1051	

false detections at the end of the time-series. For BMCpt, very large or very small sample 1052	

sizes lead to improved detection of one shift to the detriment of the other. 1053	

Figure A3: Number of change-points detected with EnvCpt, and STARS and BMCpt with 1054	

pre-whitening for each simulated scenario across 1,000 replications a) a linear trend, b) a 1055	

linear trend with first-order autocorrelation, c) a trend with three change-points in the 1056	

regression parameters, d) a trend with a change-point in the regression parameters and first-1057	

order autocorrelation, e) a constant mean, f) a constant mean with first-order autocorrelation, 1058	

g) two change-points in the mean and h) two change-points in the mean with first-order 1059	

autocorrelation. The pre-whitening is performed using the using the MP and INV approaches 1060	

with a subsample size of 20.  1061	

Figure A4: Density of change-point timings detected using EnvCpt, STARS and BMCpt 1062	

with pre-whitening for the two simulated scenarios with change-points and AR(1) across 1063	

1,000 replications a) a trend with a change-point in the regression parameters and first-order 1064	

autocorrelation and b) two change-points in the mean with first-order autocorrelation. The 1065	

pre-whitening is performed using the using the MP and INV approaches with a subsample 1066	

size of 20. 1067	

Figure A5: Autocorrelation and partial autocorrelation function of the residuals from the 1068	

Trend cpt + AR(1) model fitted to the global mean surface temperature datasets a) 1069	

HadCRUT4, b) HadCRUT4krig, c) BEST, d) MLOST and e) GISTEMP. Dashed lines 1070	
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represent the 95% confidence intervals on the partial autocorrelation. 1071	

Figure A6: Autocorrelation and partial autocorrelation function of the residuals from the 1072	

Trend cpt model fitted to the global mean surface temperature datasets a) HadCRUT4, b) 1073	

HadCRUT4krig, c) BEST, d) MLOST and e) GISTEMP. Dashed lines represent the 95% 1074	

confidence intervals on the partial autocorrelation. 1075	

Figure A7: Autocorrelation and partial autocorrelation function of the residuals from the 1076	

Mean + AR(1) model fitted to the PDO. Dashed lines represent the 95% confidence intervals 1077	

on the partial autocorrelation. 1078	

Figure A8: Number of change-points detected with EnvCpt with either the Akaike 1079	

Information Criterion (AIC) vs the Bayesian Information Criterion (BIC) for each simulated 1080	

scenario across 1,000 replications a) a linear trend, b) a linear trend with first-order 1081	

autocorrelation, c) a trend with three change-points in the regression parameters, d) a trend 1082	

with a change-point in the regression parameters and first-order autocorrelation, e) a constant 1083	

mean, f) a constant mean with first-order autocorrelation, g) two change-points in the mean 1084	

and h) two change-points in the mean with first-order autocorrelation.   1085	
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Figures 1086	

 1087	

Figure 1: Five possible misuses of statistics when inferring changes in climate time-series 1088	

exhibiting a long-term linear trend, shifts or memory: a) fitting a linear trend in presence of 1089	

shifts in the mean or shifts in trend; b) fitting shifts in the mean in presence of a trend; c) 1090	

fitting a linear trend assuming independent errors (i.e. white noise) in presence of 1091	

autocorrelation; d) fitting shifts in the mean assuming white noise in presence of 1092	

autocorrelation; e) fitting a first-order autocorrelation model in presence of mean shifts.   1093	
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 1094	
Figure 2: Datasets used in this study a) global mean surface temperature (GMST) from the  1095	

Met Office Hadley Centre surface temperature (HadCRUT4), HadCRUT4 infilled by kriging 1096	

(HadCRUT4krig), Berkeley Earth Surface Temperature (BEST), Merged Land–Ocean 1097	

Surface Temperature Analysis (MLOST), and Goddard Institute of Space Studies Surface 1098	

Temperature Analysis (GISTEMP) and b) the Pacific Decadal Oscillation (PDO).  1099	
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 1100	

Figure 3: Fit of the eight models in EnvCpt to five global mean surface temperature (GMST) 1101	

datasets: a) Met Office Hadley Centre surface temperature (HadCRUT4), b) HadCRUT4 1102	

infilled by kriging (HadCRUT4krig), c) Berkeley Earth Surface Temperature (BEST), d) 1103	

Merged Land–Ocean Surface Temperature Analysis (MLOST), e) Goddard Institute of Space 1104	

Studies Surface Temperature Analysis (GISTEMP) and f) the Pacific Decadal Oscillation 1105	

(PDO). The tick marks indicate where change-points were detected. For each dataset, the 1106	

Akaike Information Criterion differences (Δ) between each model and the best model 1107	

(smallest AIC) are also shown on a logarithmic scale adjusted so that the best model has a log 1108	

difference of zero, and is indicated by a star. The dotted vertical lines indicate cutoffs of 1109	
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models evidence: there is substantial support for models with a difference below the red line 1110	

and essentially no support for models with differences above the black line.   1111	
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  1112	

Figure 4: Synthetic time-series example from each simulation scenario case a) a linear trend, 1113	

b) a linear trend with first-order autocorrelation, c) a trend with three change-points in the 1114	

regression parameters, d) a trend with a change-point in the regression parameters and first-1115	

order autocorrelation, e) a constant mean, f) a constant mean with first-order autocorrelation, 1116	

g) two change-points in the mean and h) two change-points in the mean with first-order 1117	

autocorrelation. For each case, a total number of 1,000 random replications are simulated.  1118	
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 1119	

Figure 5: Number of change-points detected with EnvCpt, STARS and BMCpt for each 1120	

simulated scenario across 1,000 replications a) a linear trend, b) a linear trend with first-order 1121	

autocorrelation, c) a trend with three change-points in the regression parameters, d) a trend 1122	

with a change-point in the regression parameters and first-order autocorrelation, e) a constant 1123	

mean, f) a constant mean with first-order autocorrelation, g) two change-points in the mean 1124	

and h) two change-points in the mean with first-order autocorrelation. Overall, EnvCpt is 1125	

closer to the true number of change-points than STARS and BMCpt. 1126	
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 1128	

Figure 6: Density of change-point timings detected using EnvCpt, STARS and BMCpt for 1129	

the four simulated scenarios with change-points across 1,000 replications a) a trend with 1130	

three change-points in the regression parameters, b) a trend with a change-point in the 1131	

regression parameters and first-order autocorrelation, c) two change-points in the mean and 1132	

d) two change-points in the mean with first-order autocorrelation. Overall, EnvCpt identifies 1133	

correctly the true change-point locations while STARS and BMCpt may detect change-points 1134	

at timings when none were introduced in the synthetic series in presence of trend change-1135	

points.  1136	
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 1137	

Figure A1: Number of change-points detected with BMCpt for the a) Trend cpt and b) Mean 1138	

cpt scenario across 1,000 replications. Change-points were detected using a range of values 1139	

for the pseudo data point of variance parameter ( v0 ). A value of 0.25 is shown optimal here.  1140	
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 1141	

Figure A2: Density of change-point locations for the change-points in the mean and a 1142	

background AR(1) (Mean cpt + AR(1)) scenario across 1,000 replications. Change-points 1143	

were detected with a) STARS and b) BMCpt methodologies using a range of subsample sizes 1144	

for pre-whitening using the MP and INV approaches. A subsample size of 20 is shown 1145	

optimal here for both methods. For STARS, very large or very small subsample sizes lead to 1146	

false detections at the end of the time-series. For BMCpt, very large or very small sample 1147	

sizes lead to improved detection of one shift to the detriment of the other.  1148	
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 1149	

Figure A3: Number of change-points detected with EnvCpt, and STARS and BMCpt with 1150	

pre-whitening for each simulated scenario across 1,000 replications a) a linear trend, b) a 1151	

linear trend with first-order autocorrelation, c) a trend with three change-points in the 1152	

regression parameters, d) a trend with a change-point in the regression parameters and first-1153	

order autocorrelation, e) a constant mean, f) a constant mean with first-order autocorrelation, 1154	

g) two change-points in the mean and h) two change-points in the mean with first-order 1155	

autocorrelation. The pre-whitening is performed using the using the MP and INV approaches 1156	

with a subsample size of 20.  1157	
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 1158	

Figure A4: Density of change-point timings detected using EnvCpt, STARS and BMCpt 1159	

with pre-whitening for the two simulated scenarios with change-points and AR(1) across 1160	

1,000 replications a) a trend with a change-point in the regression parameters and first-order 1161	

autocorrelation and b) two change-points in the mean with first-order autocorrelation. The 1162	

pre-whitening is performed using the using the MP and INV approaches with a subsample 1163	

size of 20. 1164	
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 1165	

Figure A5: Autocorrelation and partial autocorrelation function of the residuals from the 1166	

Trend cpt + AR(1) model fitted to the global mean surface temperature datasets a) 1167	

HadCRUT4, b) HadCRUT4krig, c) BEST, d) MLOST and e) GISTEMP. Dashed lines 1168	

represent the 95% confidence intervals on the partial autocorrelation. 1169	
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 1170	

Figure A6: Autocorrelation and partial autocorrelation function of the residuals from the 1171	

Trend cpt model fitted to the global mean surface temperature datasets a) HadCRUT4, b) 1172	

HadCRUT4krig, c) BEST, d) MLOST and e) GISTEMP. Dashed lines represent the 95% 1173	

confidence intervals on the partial autocorrelation. 1174	
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 1175	

Figure A7: Autocorrelation and partial autocorrelation function of the residuals from the 1176	

Mean + AR(1) model fitted to the PDO. Dashed lines represent the 95% confidence intervals 1177	

on the partial autocorrelation.   1178	
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 1179	

Figure A8: Number of change-points detected with EnvCpt with either the Akaike 1180	

Information Criterion (AIC) vs the Bayesian Information Criterion (BIC) for each simulated 1181	

scenario across 1,000 replications a) a linear trend, b) a linear trend with first-order 1182	

autocorrelation, c) a trend with three change-points in the regression parameters, d) a trend 1183	

with a change-point in the regression parameters and first-order autocorrelation, e) a constant 1184	

mean, f) a constant mean with first-order autocorrelation, g) two change-points in the mean 1185	

and h) two change-points in the mean with first-order autocorrelation.  1186	
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