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Highlights 

 We consider a two-stage supply chain model 

 An ARMA(1,1) demand is used in conjunction with an optimal forecasting method 

 We evaluate the impact of temporal aggregation on the supply chain performance 

 We show that temporal aggregation reduces the forecast accuracy at the retailer 

 We show that temporal aggregation reduces the bullwhip effect in the supply chain 
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Abstract.  

Various approaches have been considered in the literature to improve demand forecasting in 

supply chains. Among these approaches, non-overlapping temporal aggregation has been 

shown to be an effective approach that can improve forecast accuracy. However, the benefit of 

this approach has been shown only under single exponential smoothing (when it is a non-

optimal method) and no theoretical analysis has been conducted to look at the impact of this 

approach under optimal forecasting. This paper aims to bridge this gap by analysing the impact 

of temporal aggregation on supply chain demand and orders when optimal forecasting is used. 

To do so, we consider a two-stage supply chain (e.g. a retailer and a manufacturer) where the 

retailer faces an autoregressive moving average demand process of order (1,1) -ARMA(1,1)- 

that is forecasted by using the optimal Minimum Mean Squared Error (MMSE) forecasting 

method. We derive the analytical expressions of the mean squared forecast error (MSE) at the 

retailer and the manufacturer levels as well as the bullwhip ratio when the aggregation 

approach is used. We numerically show that, although the aggregation approach leads to an 

accuracy loss at the retailer’s level, it may result in a reduction of the MSE at the manufacturer 

level up to 90% and a reduction of the bullwhip effect in the supply chain that can reach up to 

84% for high lead-times. 

Keywords: Forecasting, Temporal aggregation, Forecast accuracy, Mean Square Error, 

Bullwhip effect, MMSE forecasting method. 

 

1. Introduction 

Demand uncertainty is among the most important challenges facing modern companies. 

High variability in demand poses considerable difficulties in terms of forecasting and stock 

control. There are many approaches that may be used to reduce demand uncertainty and thus to 

improve the forecasting (and supply chain) performance of a company. An intuitively 

appealing approach that is known to be effective is demand aggregation. 

Aggregation across time or temporal aggregation refers to the process by which a low 

frequency time series (e.g. quarterly) is derived from a high frequency time series (e.g. monthly) 

(Nikolopoulos et al., 2011). This is achieved through the summation (bucketing) of every m 

periods of the high frequency data, where m is called the aggregation level.  

                                                 
1
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There are two types of temporal aggregation: i) overlapping and ii) non-overlapping. 

Overlapping temporal aggregation resembles the mechanism of a moving window technique 

where the window’s size equals the aggregation level. At each period, the window is moved 

one-step ahead, so the oldest observation is dropped and the newest is included. The focus of 

this paper is on non-overlapping temporal aggregation. Therefore, in this paper temporal 

aggregation (TA) refers to the non-overlapping case. Please refer to Boylan and Babai (2016) 

for more information about the overlapping temporal aggregation case. 

In non-overlapping temporal aggregation, the time series are divided into consecutive non-

overlapping buckets of time where the length of the time bucket equals the aggregation level. 

As shown in Figure 1, the non-overlapping aggregated series is created by summing up the 

values inside each bucket. The number of aggregate periods is [N/m], where N is the number of 

the original periods, m the aggregation level and the [x] operator returns the integer part of x. 

We recommend creating time buckets that include the most recent observation, as this is 

needed for auto-regressive forecasts. 

 
 Jan  Feb March April May June July Aug Sep. Oct. Nov. Dec. 

Non-aggregate series 2 1 9 3 1 20 10 1 5 10 2 5 

     

Non-overlapping aggregated 

series 

12 24 16 17 

 Quarter 1 Quarter 2 Quarter 3 Quarter 4 

Figure 1 : Non-overlapping temporal aggregation 

 

Because of using TA, the number of periods of aggregated demand is less than that of the 

original demands. Additionally, temporal aggregation may be used to align decision levels to 

forecast output. An important assumption that is often made in demand forecasting is that the 

level of the required forecasting matches the level of available collected data. However, this is 

not often true. In fact, in many organisations, managers from several departments are involved 

in forecast generation that supports decisions for production, inventory management 

(Argilaguet-Montarelo, 2017), logistics, procurement, finance, and marketing, with each 

function having different decision horizons. For example, budget forecasts are not required at 

the weekly horizon decision that is typical of inventory management, but they are needed at 

much longer horizons (Lapide, 2004). 

Recent advances have shown the benefits associated with TA in terms of forecast accuracy 

and stock control improvements when non-optimal forecasting methods are used (Babai et al., 

2012; Kourentzes et al., 2017; Rostami‐Tabar et al., 2014). However, it should be noted that 

the benefit of this approach has been shown in the literature only under single exponential 

smoothing, which is optimal (minimum Mean Square Error) for an ARIMA(0,1,1) process. No 

analysis has been conducted to look at the impact of this approach under optimal forecasting 

for other processes. This paper aims to bridge this gap by analysing the impact of temporal 

aggregation on demand forecasts and orders in a two-stage supply chain involving a retailer 

and a manufacturer when optimal forecasting is used.  

In this paper, we focus on ARMA(1,1) demand processes, which include AR(1), MA(1) and 

i.i.d. processes as special cases. Of course, this means that our analysis is not fully 

comprehensive and many demand processes are not addressed, such as seasonal processes. 

Nevertheless, the literature does support the applicability of an ARMA(1,1) process in supply 

chain forecasting and inventory management (Alwan et al., 2003; Chen et al., 2000; Lee et al., 

2000; Rostami‐Tabar et al., 2014; Zhang, 2004). Hosoda et al. (2008) show real supply chain 

contexts where retailers and suppliers follow autoregressive order one, AR(1) and ARMA(1,1) 

demand processes. Additionally, Disney et al. (2006) show that the demand processes for 

Procter & Gamble products can be modelled as an ARMA(1,1). Thus, although an ARMA(1,1) 

model is by no means comprehensive, it does represent the demand for a wide variety of 
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industrial products. It should be noted that this research does not focus on the ARIMA(0,1,1) 

demand process, for which the SES method is optimal. However, numerical experimentation 

with an ARIMA(0,1,1) process bring us to similar conclusions as the case of ARMA(1,1) 

process, which is analysed in this paper. 

In this paper, our objectives are threefold: 

1) To analyse the impact of the use of the TA approach on the forecast accuracy (measured 

through the Mean Square Error) at the retailer level to forecast its lead-time demand.  We 

analyse whether it is beneficial for the retailer to use the non-aggregate demand or the 

aggregated demand to produce the forecasts. 

2) To analyse the impact of the use of the TA approach on the transmission of orders to the 

upstream link and on the bullwhip effect in supply chains. We evaluate whether the 

bullwhip effect in the supply chains can be reduced by the use of aggregated demand. 

3) To examine the impact of the use of the TA approach on the forecast accuracy at the 

manufacturer level. We determine whether a manufacturer should use the orders received 

from the retailer (based on the non-aggregation approach) to generate its lead-time 

demand forecasts or should use the orders generated from the aggregated demand to 

generate the forecasts. 

The rest of the paper is organised as follows. Section 2 briefly reviews the literature that 

deals with temporal aggregation. Section 3 starts with the presentation of our supply chain 

model and presents assumptions and notations. Section 4 focuses on the first objective of the 

paper. We present the analytical derivations of MSEs before and after aggregation at the 

retailer level. In Section 5, we move towards our second objective of focusing on the supply 

chain orders and we derive expressions for the bullwhip effect measure under the aggregation 

and non-aggregation approaches. In Section 6, we derive expressions of the MSEs at the 

manufacturer level under both approaches. The paper concludes in Section 7 with a summary 

of the findings and directions for future research.  

2. Research Background 

The analysis of temporal aggregation started with the work of Amemiya  and Wu (1972) and 

has been the subject of continued research work (e.g. Athanasopoulos et al., 2011; Brewer, 

1973; Stram & Wei, 1986; Tiao, 1972). Most researchers modelled demand as an 

AutoRegressive Integrated Moving Average (ARIMA) process of some form. They have 

analysed the impact of TA on the ARIMA process. They have characterised the aggregated 

process and determined the relationship between process parameters of the original and the 

aggregated process. Moreover, they showed that the aggregation approach results generally in 

an improvement of the forecast accuracy. The main limitations of this literature is that the 

forecasting methods and the performances measures have not been investigated in the supply 

chain context. 

More recently, there has been substantial research to overcome these limitations (Syntetos et 

al., 2016). Nikolopoulos et al. (2011) have empirically analysed the effects of TA on 

forecasting intermittent demand requirements. Their main motivation was to reduce the number 

of zeros present in the original intermittent series and then forecast the series with conventional 

forecasting methods once the intermittency has been reduced substantially. The paper showed 

that the proposed methodology may indeed offer considerable improvements in terms of 

forecast accuracy. These findings have then been confirmed by Babai et al. (2012) and 

Petropoulos & Kourentzes (2015). Spithourakis et al. (2012) extended the application of 

Nikolopoulos et al. (2011) to fast-moving demand data. Results support forecast accuracy 

improvement by temporal aggregation. 
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    Rostami-Tabar et al. (2013; 2014) further explored factors that impact the effect of TA on 

forecast accuracy. Assuming an ARMA (1,1) demand model and Single Exponential 

Smoothing (SES) forecasting method, they analytically show that the benefits of using 

temporal aggregation on the forecast accuracy depend on three factors: i) autoregressive and 

moving average parameters, ii) the aggregation level and iii) the smoothing constant for SES. 

The results show that for high levels of positive autocorrelation in the original series, the 

aggregation approach is outperformed by the non-aggregation approach. Secondly, the 

performance of aggregation was generally found to improve as the aggregation level increases.  

Kourentzes et al. (2017) contrasted the effectiveness of using a multiple aggregation level or 

a single optimal aggregation level in forecast accuracy improvement. They conclude that using 

TA for demand forecasting is beneficial and argue that further research in identifying the 

optimal aggregation level is required. The current study contributes to the literature by 

analytically evaluating the impact of temporal aggregation on the supply chain’s bullwhip 

effect and forecast accuracy when an optimal forecasting approach is used for the underlying 

demand process.  

The necessity of conducting further research on the effect of TA on the bullwhip effect is 

also highlighted in the literature. For example, using real industry-level data, Cachon et al. 

(2007) indicate that the bullwhip effect may be more prevalent with aggregated series. 

Moreover, Bray and Mendelson (2012) mention the need to use temporal aggregation to gain 

further understanding of the bullwhip. Jin et al. (2015) empirically examined the effect of 

aggregation on the bullwhip effect at weekly and monthly levels by using retailer sales and 

order data, at the distribution center level. They demonstrate the masking effect of temporal 

aggregation and the damping effect of seasonality on the measurement of the bullwhip effect. 

3. Supply chain model, notation and assumptions 

For the remainder of the paper, we use the following notations: 

m: Aggregation level, i.e. number of periods used for aggregated demand. 

l : Lead time for the non-aggregate demand at both retailer and manufacturer level. 

l : Lead time for the aggregated demand at both retailer and manufacturer level. 

n: Total number of periods available in the demand history. 

t: Time unit for the non-aggregate demand series, t=1, 2 ,…, n. 

T: Time unit for the aggregated demand series, T=1,2,…,
  n m . 

dt: Non-aggregate demand in period t. 

ot: Order placed by retailer to manufacturer using the non-aggregate demand in period t. 

DT: Aggregated demand in period T, m periods aggregated demand. 

OT: Order placed by retailer to manufacturer using the aggregated demand in period T. 

:t  Independent random variables for non-aggregate demand in period t, normally distributed 

with zero mean and standard deviation .
 

T  : Independent random variables for aggregated demand in period T, normally distributed 

with zero mean and standard deviation   . 
2

M : Variance of the independent random variables for non-aggregate demand at the 

manufacturer in period t. 
2

M  : Variance of the independent random variables for aggregated demand at the 

manufacturer in period T. 

,

R

t lf : Forecast of non-aggregate demand in period t, the forecast produced in period t for the 

demand over lead time l at the retailer. 
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,

R

T lF  : Forecast of aggregated demand in period T, the forecast produced in period T over lead-

time l  at the retailer. 

,

M

t lf : Forecast of non-aggregate demand in period t, the forecast produced in period t for the 

demand over lead time l at the manufacturer. 

,

M

T lF  : Forecast of aggregated demand in period T, the forecast produced in period T over lead-

time l   at the manufacturer. 
R

BAMSE : Theoretical Mean Squared Error (MSE) resulted from non-aggregate demand by the 

MMSE forecasting method at the retailer. 
R

AAMSE : Theoretical Mean Squared Error (MSE) resulted from aggregated demand by the 

MMSE forecasting method at the retailer. 
M

BAMSE : Theoretical Mean Squared Error (MSE) resulted from non-aggregate demand by the 

MMSE forecasting method at the manufacturer. 
M

AAMSE : Theoretical Mean Squared Error (MSE) resulted from aggregated demand by the 

MMSE forecasting method at the manufacturer. 

k : Covariance of lag k of non-aggregate demand,  kttk ddCov  , . 

k  : Covariance of lag k of aggregated demand,  kTTk DDCov  , . 

 : Autoregressive parameter of non-aggregate demand process at the retailer, 1 . 

M : Autoregressive parameter of non-aggregate demand process at the manufacturer, 1M  .
 

  : Autoregressive parameter of aggregated demand process at the retailer, 1 . 

M : Autoregressive parameter of aggregated demand process at the manufacturer, 1M  . 

 : Moving average parameter of non-aggregate demand process at the retailer, 1 .
 

M : Moving average parameter of non-aggregate demand process at the manufacturer, 1M  . 

 : Moving average parameter of aggregated demand process at the retailer, 1 . 

M : Moving average parameter of aggregated demand process at the manufacturer, 1M   . 

C : Constant parameter of non-aggregate demand in any time period. 

C : Constant parameter of aggregated demand in any time period. 

 , , :B l   Bullwhip effect for the non-aggregate demand. 

 , , :B l     Bullwhip effect for the aggregated demand. 

 

We consider a two-stage supply chain, with one player at each level. For simplicity, we call 

the first level player the retailer and the second level player the manufacturer. Both players use 

the conditional expectation to provide optimal (MMSE) forecasts and exploit a periodic review 

system, and the replenishment lead-time is constant and known. We assume the retailer knows 

its own demand process, which is reflected in its orders on the manufacturer. The Order Up To 

(OUT) policy is used to place replenishment orders. The OUT level is adjusted in each time 

period according to the latest demand forecast. Both players have access to the original demand 

and the aggregated demand process. This is shown in Figure 2. Figure 2 (top) indicates the use 

of a non-aggregate demand process in the model. The retailer receives demands following an 

ARMA(1, 1) process and then calculates forecasts using a conditional expectation. The OUT 

policy is used to generate an order to the manufacturer stage. The order received by the 

manufacturer also follows an ARMA(1,1) process (Lee et al., 2000). The manufacturer uses the 

same forecasting method and inventory policy as the retailer to calculate forecast and orders.  
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The retailer and manufacturer may use an aggregated demand process instead of using the 

original demand to calculate forecasts and orders. Amemiya and Wu (1972) show that using 

TA transforms an ARMA(1,1) process into another ARMA(1,1) process with different 

parameters (please refer to Amemiya  and Wu (1972); Rostami-Tabar et al. (2013) for details). 

Figure 2 (bottom), illustrates the supply chain model when the aggregated demand process is 

used. In this situation, the retailer (manufacturer) has the option either to: (i) calculate the 

forecast and the OUT level and order to the upper stage based on non-aggregate demand (order) 

data (i.e. using daily or weekly data), or (ii) calculate the aggregated forecast and the OUT 

level and order based on aggregated demand (order) data (monthly or lead-time level demand 

data). 

Additionally, it has been shown that the OUT policy transforms an ARMA(1, 1) demand 

process at the retailer level into another ARMA(1, 1) process at manufacturer level, which is 

valid for both non-aggregate demand and aggregated demand process; those processes are 

represented by ot and OT respectively (Hosoda & Disney, 2006). Therefore, ot and OT follow an 

ARMA(1,1) process as well. The manufacturer also has the same options either to calculate the 

forecast and the OUT level and order to the upper stage based on non-aggregate orders or 

aggregated orders. 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Demand propagation in a two-stage supply chain with temporal aggregation 

 

We assume that the non-aggregate demand series, td  follows a mixed autoregressive 

moving average demand process of order (1, 1) - ARMA(1,1) - that can be mathematically 

written in period t by (1). 

.11   tttt dCd   (1) 

Constraining  and  to lie between -1 and 1 in (1), means that the process is stationary and 

invertible. 

The forecasting method considered in this study is the conditional expectation that provides 

the Minimum Mean Squared Error (MMSE) unbiased forecast. Using the Auto-Regressive 

Integrated Moving Average (ARIMA) methodology, we can mathematically specify the 

optimal MMSE forecasting method for any demand process. This optimality holds only on the 

basis of minimising the MSE. 

 

Temporal Aggregation 

  ARMA(1,1) 
 

 

 

 

, ,  

dt ot  :  ARMA(1,1) 

 

Demand  
Retailer Manufacturer 

l 

ARMA(1,1)
 

 

DT 

  

OT  : ARMA(1,1) 

 

Retailer Manufacturer 

 

l 

 1l 

Flow of information 

Flow of material 

TA 

transformation 
Inventory 
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The modelling assumes that the forecaster has knowledge of the demand process and its 

parameters. This is an ideal case, and future research is needed to relax these assumptions. 

Using MMSE, the forecast of demand over horizon l for the retailer and the manufacturer, 

calculated at time t, knowing the demands dt-1, dt-2 ,…, for the retailer and orders ot-1, ot-2 ,…, for 

the manufacturer is: 

 
,

1

1 2

0

, ,...
t l

l
R

t i t t

i

f E d d d


  



  (2) 

 
,

1

1 2

0

, ,...
t l

l
M

t i t t

i

f E o o o


  



  (3) 

The demand over horizon l at the retailer level, ,t l Td D  can be expressed as a function of 

the non-aggregate demand series as follows 

1

,

0

.
l

t l T t i

i

d D d






   (4) 

The demand over horizon l at the manufacturer level (same as orders received from the 

retailer), 
,t l To O  can be expressed as a function of the non-aggregate order series as follows 

1

,

0

.
l

t l T t i

i

o O o






   (5) 

Using MMSE, the forecast of aggregated demand at period T over horizon l , knowing the 

demands DT-1, DT-2 ,…, and orders OT-1, OT-2 ,…, is: 

 
, 1 2, ,...

T l

R

T l T TF E D D D
     (6) 

 
, 1 2, ,...

T l

M

T l T TF E O O O
     (7) 

The forecast of one period ahead at both retailer and manufacturer levels using aggregated 

data, 
,1T

RF  and 
,1T

MF  are the equivalent of the forecast over horizon l in using non-aggregate 

demand series 
,t l

Rf  and 
,t l

Mf . Therefore, in order to compare the demand forecasts over 

horizon/lead time l resulting from the non-aggregate and the aggregated demand at both retailer 

and manufacturer levels, we set 1l   and l  and m are used interchangeably, l=m. 

4. Impact of the temporal aggregation approach on the forecast accuracy at the retailer 

Section 4 is focused on the first objective of our paper, namely the evaluation of the effect of 

TA on a retailer’s forecast accuracy when an MMSE forecasting method is used and a forecast 

over lead-time l, is required. 

In this section, we derive the expression of the MSE for the forecast made at the retailer 

stage for non-aggregate and aggregated demand. The original data series is used in the case of 

non-aggregate demand and comparisons are to be performed at the aggregate level. The 

following approach is used for the aggregated demand: firstly buckets of aggregated series are 

created based on the aggregation level; then the MMSE method is applied to these aggregated 

series to produce the aggregate forecasts. In sub-sections 4.1 and 4.2, we derive the expressions 

of the MSE before and after aggregation at the retailer level. We present the numerical results 

in sub-section 4.3. 
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4.1. MSE before aggregation 

We begin the analysis by deriving the MSE of an aggregate forecast for the ARMA(1,1) 

process at the retailer level by using the non-aggregate demand series. It is known that when 

demand follows an ARMA(1, 1) process, the auto-covariance is (Box et al., 2015): 

 

 

  
,

1

1
1

1

0
1

21

,

1

1

2

2

2

2

2

,

































k

k

k

ddCov

k

ktitk














 

(8) 

Now we derive the MSE of the aggregate forecast resulting from the non-aggregate demand, 

using for the optimal –MMSE- method: 

   
, ,

1

,

0

,
t l t m

m
R R R

BA t l t i

i

MSE var Forecast Error var d f var d f






 
     

 


 
(9) 

The aggregate forecast at retailer stage when the non-aggregate demand follows an 

ARMA(1,1) process is: 

 
1

, 1 2

0

, , ,
m

R

t m t i t t

i

f E d d d


  




 

(10) 

Considering (1) and through the recursive substitution of dt+i we get: 

     

   

2 1

1 1 2 1

1
1

1 1 2 1

1

1
,

1

i i i

t i t t i t i t i t

i
i i

t t i t i t i t

d C d

C d

             


          





       




      

             

 
        

 

 (11) 

By substituting (11) into (10) , we get: 

   
,

11
1

1 1 2 1 1 2

0

11
1

1 1 1 1

0

1
, ,

1

1 1 1 1

1 1 1 1 1

t m

im
R i i

t t i t i t i t t t

i

i m m mm
i i

t t t t

i

f E C d d d

C
C d m d


          



   
     

    




        






   



  
              

           
             

            



 ,
 
 
 

 

(12) 

By substituting (11) and (12) into (9) and simplifying, we obtain the R

BAMSE : 

 
   

 
 

,

11
1

1 1 2 1

0

,

1 1

2

0

2

1

1

1 1 1

1 1 1 1

1
1 1

1 2

t m

im
i i

t t i t i t i t

i
R R

BA t m
m m m

t t

j

C d

MSE var d f var
C

m d


          



  
  

   

 
  

 




      



 

   
           

   
    

                            


   

 



 

2 2
2 2 2 2

2

0 0 0 0

1 1 .
m m i m m i

j

i j i j

   
     

   

      
         
         

   
 

(13) 

4.2. MSE after aggregation 

In this section, we proceed with the derivation of the MSE of the aggregate forecasts at the 

retailer level resulting from the aggregated demand: 
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       ,1 ,1 ,12 , ,R R R R

AA T T T T T TMSE var D F var D var F cov D F      (14) 

Demand is first aggregated and then we provide the aggregate forecasts based on MMSE 

method. The aggregate forecast for period T is defined as: 

 ,1 1 2, , ,R

T T T TF E D D D   (15) 

If the non-aggregate demand follows an ARMA(1, 1) process then the aggregated series 

follows an ARMA(1, 1) process (Amemiya & Wu, 1972). It can be shown that the following 

properties hold when the aggregated process is ARMA(1, 1): 

  1 11 , 1, 1 ,T T T TD D where        
               (16) 

   

2
2

2

2

2

1

1 1

1 2
0

1

1
1 ,

1

1

k

k

k

k

k

k

  




   
 



   

    
  


     

  


     



 (17) 

The relations between the aggregated and the initial parameters can be represented as follows 

(Rostami-Tabar et al., 2014): 

  







 






1

1

1

100 2
m

k

kkmm   (18) 

  







  

 


m

k

m

k

kmk kk
1 2

21

11 1  (19) 

m  , (20) 

The aggregate forecast resulting for the aggregated demand at the retailer stage for period T 

by using the MMSE method is: 

   ,1 1 2 1 1, ,... 1 ,R

T T T T T TF E D D D D       
          (21) 

By substituting (16) and (21) into (14) we have: 

     
 

1 1 1 1

2

,1

1 1

,

R

AA T T T T T

T

MSE var D D

var

          

 

   
                  

  
 (22) 

By considering 0  in (18) and substituting (17) into it, we get: 

   

  

1
2 1

0 1

2 1

2

1 2

,
1 2

m
m k

k

m

m m k   


  






 
   

  
  


 (23) 

Therefore, by substituting (23) into (22) we have: 
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   

  

1
2 1

0 1

1

2

1 2

,
1 2

AA

m
m k

R k

m

m m k

MSE

   

  






 
   

 
  


 (24) 

From (A9) and (A10) in Appendix A, the moving average parameters of the aggregated 

process are as follows: 

     
 





 




 ,

12

1422
2222

1 m

mmmmm

 
(25) 

 

     
 





 




 ,

12

1422
2222

2 m

mmmmm

 (26) 

where 
 






































1

1

2

1

1

1

2

m

k

km
m

k

k

m

k

k

kk

kmm




 

By substituting (25) and (26) into (24) we get: 

 

 

2

2
2 2 2 2

2

2

2
2 2 2 2

1
       

4 4
1 2

2 2

.
1

        

4 4
1 2

2 2

AA

m

m

R

m

m

MSE

 
 

     


 


 

 

     


 

 


                  
           

  



                              

 (27) 

where  
1

1

0 1

1

2
m

k

k

m m k   






 
   
 

 ,  2 2m m       ,  1 m    . 

Given expressions of 
BA

RMSE  and 
AA

RMSE  by Equation (13) and (27), we can analyse the 

conditions under which temporal aggregation provides more accurate forecasts. However, these 

equations are too mathematically complex to derive exact proofs. Therefore, they require a 

numerical investigation to provide insights that will be presented in sub-section 4.3.  

4.3. Numerical analysis 

In this section, the effect of TA on forecast accuracy at the retailer level is evaluated when an 

MMSE forecasting method is used. We numerically analyse the ratio of R R

AA BAMSE MSE for 

different values of the aggregation level m and the process parameters ϕ and θ. We are 

interested to determine under which conditions, if any, the ratio of MSE after aggregation to 

MSE before aggregation is less than one, meaning that TA improves the forecast accuracy of 

the retailer. Figure 3 shows the ratio R R

AA BAMSE MSE  for m = 2 to 12 and various combinations 

of  and  between -1 and +1.  

 

 
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Figure 3: Ratio of MSEs after aggregation to before aggregation, ϕ>θ (top) and ϕ<θ (bottom) 

Figure 3 presents the impact of the process parameters, ϕ and θ, and the aggregation level, m 

on the ratio of R R

AA BAMSE MSE . If the ratio is greater than one, then TA does not improve the 

forecast accuracy at the retailer level. Although we only present some values of the 

autoregressive and moving average parameters and 2 ≤  m  ≤ 12, in Figure 3, it has been 

checked that the ratio is always greater than one regardless of the aggregation level and the 

process parameters. This means that TA does not improve the forecast accuracy at the retailer 

and the aggregation approach is outperformed by the non-aggregation one when an MMSE 

forecasting method is used by the retailer. The underperformance of the MMSE forecasting 

method with the aggregated series can be attributed to the fact that by applying the temporal 

aggregation to the original data series we increase the uncertainty of the underlying model and 

process parameter estimations. Hence, using the MMSE forecasting method with higher 

uncertainty of aggregated demand series, in comparison to the original, will increase the 

variance of the noise and consequently the variance of forecast error. We observe in Figure 3 

(bottom), when the autoregressive parameter is negative, the effect of the aggregation approach 

depends on whether the aggregation level is odd or even. Clearly, there is a greater 

amplification of MSEs when the aggregation level is odd. 
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5. Impact of the temporal aggregation on bullwhip effect in supply chains 

In this section, we move towards the second objective of the paper, namely of analysing the 

effect of the TA approach on the supply chain dynamics (i.e. transmission of orders) and the 

bullwhip effect. 

In this section, the bullwhip ratio at the retailer is expressed based on both the aggregated 

and the non-aggregate demand. One approach to measure the bullwhip effect at the retailer is to 

calculate the ratio of the variance of the orders made by the retailer to the manufacturer to the 

variance of the demand faced by the retailer. This measure has been used in previous studies 

(e.g. Chen  et al., 2000; Duc et al., 2008). According to Duc et al. (2008), the variance of orders 

and the measure of the bullwhip effect for an ARMA(1, 1) demand process are calculated as 

follows, considering : 

 
     

  

1 1

02

2 1 1 1
1

1 1 2

l l l

tvar o
     


  

      
  
   
 

 (28) 

 

 
     

  

1 1

2

2 1 1 1
, , 1 ,

1 1 2

l l l

B l
     

 
  

     
 

  
 (29) 

We evaluate the bullwhip effect when the retailer demand comes from an aggregated 

demand compared to that of non-aggregate demand, i.e. we compare the bullwhip ratios of the 

two cases. Because we are interested in evaluating the impact of TA on the bullwhip effect, we 

first aggregate the original demand series at the retailer level to obtain an aggregated series. 

Then, the bullwhip effect is calculated for the aggregated series. As discussed earlier in sub-

section 4.2, if the non-aggregate series follows an ARMA(1, 1) process, then the aggregated 

series also follows an ARMA(1, 1) process (Amemiya & Wu, 1972). 

Similarly to (28), the variance of the order quantity for an aggregated demand is calculated as: 

 
  
 

2

0 2

2 1
1

1 2
Tvar O

  


  

    
   
    
 

 (30) 

By substituting (18), (20) into (30) and considering (25) and (26) we get: 

 

 
   
 

 
   
 

21
11

0 1 2
1 1 1

21
21

0 1 2
1 2 2

2 1
2 1

1 2

2 1
2 1

1 2

m mm
k

m
k

T
m mm

k

m
k

m m k

var O

m m k

  
    

  

  
    

  











     
                

 
    
               





 (31) 

The bullwhip ratio is calculated for the aggregated series similarly to (29), as the aggregated 

series also follows an ARMA(1, 1) process and the same forecasting method- MMSE- is used. 

The bullwhip of the aggregated series is: 

 
     

  

1 1

2

2 1 1 1
, , 1 ,

1 1 2

l l l

B l
     

 
   

             
    

     
 (32) 

By dividing (32) by (29), we obtain the ratio of the bullwhip effect after aggregation divided by 

the bullwhip effect before aggregation: 

 tdVar0
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 
 

     
  

      
   

1 1

2

1 1

2

2 1 1 1
1

1 1 2, ,
,

, , 2 1 1 1
1

1 1 2

l l l

l l l

B l
RBW

B l

      

    

       

  

   

 

          


       
 

    


  

 (33) 

The ratio in (33) helps us to analyse the effect of temporal aggregation on the bullwhip effect. 

A ratio smaller than one means that the aggregation approach reduces the bullwhip effect. A 

ratio greater than one means that aggregation increases the bullwhi effect. 

By substituting (20) into (33) and considering and  defined in (25) and (26), we get: 

 

 

(34) 

It should be noted that, to make a comparison between the bullwhip effect of the non-aggregate 

demand series and the aggregated series, we set  and .  

Due to the complexity of Equation (34) and in order to analyse the impact of the process 

parameters and lead time/aggregation level on the bullwhip effect, we conduct a numerical 

analysis in sub-section 5.1. 

5.1. Numerical Results 

Previous research has shown that the bullwhip effect does not always occur, but its existence 

depends on the values of the autoregressive and moving average parameters of the ARMA 

model. Duc et al (2008) show that for an ARMA (1, 1) process, the bullwhip effect occurs 

when ; however when  the supply chain system faces an anti-bullwhip effect. In 

this sub-section, the effect of the aggregation level m, and the process parameters θ and ϕ, on 

the bullwhip effect is numerically examined when using both the aggregated and the non-

aggregate series. We are interested to determine under which conditions TA reduces the 

bullwhip effect. 

 Figure 4 (based on Equation (32)) shows the impact of the aggregation level m, 

autoregressive ϕ and moving average θ parameters on the bullwhip effect using the aggregated 

demand series. The two regions are shown in Figure 4 with white colour representing the area 

with bullwhip effect (ϕ > θ) and grey colour representing the area with anti-bullwhip effect (ϕ 

< θ).  

 

 

 

1  2 

 
 

         
   

      
   

      
   

      
   

1 1

1 1

2

1 1

1 1

2

1

2 2

2

2 2

1 1

2

2 1 1 1
1

1 1 2

2 1 1 1
1

1 1 2
, ,

, ,
2 1 1

1
1 1 2

2 1 1 1
1

1 1 2

m l lm ml m m

m m

l l l

l mm m m

m m

l l l

B l
RBW

B l

      

   

     

    
 

 
      

   

     

  

  

 



 

      
 
    
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Figure 4 : The impact of m,  and  on the bullwhip effect of aggregated demand 

We find that aggregation does not have an effect on the region where the bullwhip and anti-

bullwhip exist for the original ARMA(1,1) demand series. After using temporal aggregation, 

we still find bullwhip when ϕ > θ and anti-bullwhip effects when ϕ < θ. As one of the 

objectives of this paper is to consider the effect of TA and MMSE on the reduction of bullwhip 

effect, we only consider the parameter values of ARMA (1, 1) where the bullwhip effect occurs. 

We analyse the effect of TA on the reduction of the bullwhip effect by evaluating the ratio of 

the bullwhip effect after aggregation and before aggregation (equation (34) from the previous 

sub-section). Detailed analysis of the numerical results shows that the bullwhip effect of the 

aggregated series generally decreases as the aggregation level increases with few exceptions 

given an odd aggregation level, m, and highly positive values of the autoregressive parameter ϕ 

and highly negative moving average parameter, θ, which represents highly positive 

autocorrelation.  

It should be noted that, the range of the bullwhip effect corresponding to the original series is 

higher that the aggregated series and we observe a tremendous reduction in the range for the 

 
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aggregated series. Considering 2≤ l ≤ 12 and  in the non-

aggregate series, the range is [1.02, 10.9]. For the aggregated series considering the same range 

of process parameters and the aggregation level 2 ≤ m ≤ 12, the range is [1.002, 1.9]. The 

retailer can consider using the non-aggregate or aggregated demand to calculate the OUT level 

and order to the upper level, but which option is more suitable and will lead to performance 

improvement? We can answer this question by analysing the bullwhip reduction if the retailer 

uses the aggregated demand series. 

 
Table 1 : Values of the ratio of the aggregated bullwhip effect into the non-aggregate one in the case of m = 2 

θ 

ϕ 

-0.80 -0.50 -0.20 -0.10 0.10 0.20 0.50 0.80 0.90 

-0.90 0.97 0.87 0.73 0.69 0.65 0.64 0.67 0.79 0.86 

-0.80 - 0.87 0.73 0.70 0.65 0.64 0.67 0.78 0.85 

-0.70 - 0.89 0.75 0.71 0.65 0.64 0.67 0.78 0.85 

-0.40 - - 0.85 0.79 0.70 0.68 0.67 0.75 0.82 

-0.10 - - - - 0.83 0.78 0.70 0.73 0.79 

0.10 - - - - - 0.91 0.75 0.73 0.78 

0.40 - - - - - - 0.92 0.78 0.78 

0.70 - - - - - - - 0.94 0.88 

0.80 - - - - - - - - 0.95 

 

  
Table 2 : Values of the ratio of the aggregated bullwhip effect into the non-aggregate one in the case of m = 7 

θ 

ϕ 

-0.80 -0.50 -0.20 -0.10 0.10 0.20 0.50 0.80 0.90 

-0.90 0.90 0.77 0.63 0.58 0.49 0.44 0.32 0.26 0.30 

-0.80 - 0.79 0.64 0.59 0.49 0.45 0.32 0.26 0.29 

-0.70 - 0.83 0.65 0.60 0.50 0.45 0.32 0.26 0.29 

-0.40 - - 0.78 0.70 0.56 0.49 0.33 0.26 0.29 

-0.10 - - - - 0.73 0.62 0.38 0.26 0.29 

0.10 - - - - - 0.82 0.45 0.28 0.29 

0.40 - - - - - - 0.76 0.35 0.32 

0.70 - - - - - - - 0.70 0.49 

0.80 - - - - - - - - 0.69 

 

 
Table 3 : Values of the ratio of the aggregated bullwhip effect into the non-aggregate one in the case of m = 12 

θ 

ϕ 

-0.80 -0.50 -0.20 -0.10 0.10 0.20 0.50 0.80 0.90 

-0.90 0.93 0.76 0.61 0.57 0.47 0.42 0.28 0.16 0.16 

-0.80 - 0.78 0.62 0.57 0.47 0.43 0.28 0.16 0.16 

-0.70 - 0.82 0.64 0.59 0.48 0.43 0.28 0.16 0.16 

-0.40 - - 0.77 0.69 0.54 0.47 0.30 0.17 0.16 

-0.10 - - - - 0.71 0.60 0.34 0.17 0.16 

0.10 - - - - - 0.81 0.41 0.19 0.17 

0.40 - - - - - - 0.74 0.25 0.19 

0.70 - - - - - - - 0.59 0.34 

0.80 - - - - - - - - 0.54 

 

9.09.0,9.09.0  
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Despite the existence of the bullwhip effect when using the aggregated series, it is important 

to investigate whether the bullwhip effect reduces using TA and what the reduction percentage 

is for different values of the aggregation level (lead-time) and process parameters.  

To that end, we divide the bullwhip effect calculated for the aggregate series into the non-

aggregate one as shown in Eq. (34). We are primarily interested in the range of parameters 

where the bullwhip effect exists, i.e. ϕ > θ. If the ratio is less than one, it means that using 

temporal aggregation reduces the bullwhip effect compared to the non-aggregate series and the 

retailer should consider using the aggregated demand series to calculate the OUT level and 

place orders based on that. The analysis has been conducted for the whole range of ϕ, θ, and 

aggregation level 2 ≤ m ≤ 12. The results are presented in Table 1, Table 2 and Table 3. 

The results indicate that the ratio is always smaller than one when the autoregressive process 

parameter is greater than the moving average one, ϕ > θ, regardless of the aggregation level. 

This shows that TA reduces the bullwhip effect. The amount of bullwhip effect reduction may 

reach 84% when the lead-time (aggregation level) is high and the autocorrelation is highly 

positive. This corresponds to the case where m = 12, 0.8 ≤ ϕ and θ ≤ -0.4. This is very 

interesting from the perspective of practitioners as using temporally aggregated series leads to 

less bullwhip effect in the system comparing to non-aggregate series. As the lead-time becomes 

longer, we observe more variabilities in upper stages when using the non-aggregate series to 

calculate OUT levels and orders, while variability is substantially lower in using the aggregated 

series.  

From Section 4, we know that TA increases the variance of the forecast error at the retailer 

level and that may have negative consequences on the safety stock. However, this does not 

affect the bullwhip ratio since due to the stationarity assumption of the process, the safety stock 

is constant over time and the orders to the manufacturers are independent of the safety stock. 

Hence, the process parameters and the lead time/aggregation level only affect the bullwhip 

ratio. In addition, the bullwhip effect is reduced using the aggregated series because TA 

decreases the values of moving average and autoregressive process parameters towards zero 

and subsequently pushes the ARMA process towards an i.i.d process and the bullwhip effect 

for such a process is reduced. Our results in this section show that the application of a TA 

approach results in the reduction of the bullwhip effect in supply chains. Various previous 

studies have focussed on the issue of reduction of the bullwhip effect and have done so by the 

evaluation of strategies such as improving the forecasting method or sharing information 

(Chatfield et al., 2004, Mason-Jones et al., 2015, Tesfay, 2016, Wang & Disney, 2016). 

However, this is the first study of which we are aware, that considers the effect of TA on the 

reduction of the bullwhip effect. 

6. Impact of the temporal aggregation approach on the forecast accuracy at the 

manufacturer level 

In this section, we focus on the third objective of the paper, namely the evaluation of the 

effect of the TA on the manufacturer’s forecast accuracy. We are interested in determining 

whether it is beneficial to the manufacturer to generate its forecasts when the demand 

aggregation approach is considered. To do so, we derive the MSE of the forecasts at the 

manufacturer level by considering the non-aggregate and the aggregated demand. For the 

process under consideration, we calculate the MSE based on non-aggregate and aggregated 

demand at the manufacturer level by using the MMSE forecasting method and then we 

compare the forecast accuracy. 

We start by deriving the MSE of the forecasts resulting from the non-aggregate demand. 

From Hosoda and Disney (2006), the demand process faced by the manufacturer (i.e. orders 

made by the retailer to the manufacturer) is also an ARMA(1, 1) process with the parameters 

given as follows: 
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 
  

 
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 
 

 

 
   

 



     
     

     
     
     

     

     
      

     

 

(35) 

By considering an aggregation level m - equals to the lead-time l - the MSE of forecast at the 

manufacturer level can be calculated as follows: 

     
, ,, , ,

BA t l t m

M M M

t l t mMSE var Forecast Error var o f var o f      (36) 

Similar to sub-section 4.1, the MSE of forecast over lead-time l, using non-aggregate data 

can be calculated as follows: 

 

2
2 2

2

0 0

1 1 .
BA

m m i
M j

M M M M

i j

MSE    
  

 

  
     
   

   (37) 

By substituting (35) into (37), the MSE of forecast at manufacturer level using the non-

aggregate demand results as: 

2

2
2 2

2

0 0

1 1

1 1 1 1
1 1 1 .

1 11 1
1

1 1

BA

l l

l lm m i
M j

l l
i j

MSE

 
  

   
    

  
 

 

  

 

                                                                         

 
 

(38) 

We now proceed with the derivation of the MSE of the aggregate forecasts made by the 

manufacturer when aggregated demand data are used. 

       
,1 ,1 ,1,1 ,12 , ,

AA T T T

M M M M

T T TMSE var O F var O var F cov O F      (39) 

Similar to the case of the non-aggregate case, the relationship between the aggregated 

process parameters at retailer and manufacturer levels can be obtained (Hosoda & Disney, 

2006):  

 
22 2

,
1

1

M

M

M

 




 

   

 


 

  

     

 (40) 

Because at the manufacturer level, OT follows an ARMA(1, 1) process,  we follow the same 

procedure as described in Section 4.2 to derive the MSE using the aggregated demand at the 

manufacturer level. This results in: 

  2( ) ,
AA M

M

MMSE var T     (41) 

By substituting (40) into (41) we have: 
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   
2 2( ) 1 ,

AA M

MMSE var T           (42) 

By substituting (23) into (42) we have: 

 
   

  

1
2 1

0 1
2 1

2

1 2

1 ,
1 2

AA

m
m k

M k

m

m m k

MSE

   

 
  






  
    

     
   
 
 


 (43) 

Finally, by substituting (20) into (43) and simplifying, we get: 

 
   

  

 
   
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1 2

1
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,
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1
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m
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m

M
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m

m m k
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m m k
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   
  

   

  
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

  
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   
 
 


  

    
    

   
 
 





 (44) 

where 1   and  2    are defined in (25) and (26) respectively. 

6.1. Numerical Results 

In this section, the effect of temporal aggregation on the forecast accuracy at the 

manufacturer level is evaluated when an MMSE forecasting method is used. We numerically 

analyse the ratio M M

AA BAMSE MSE  for different values of the lead-time/aggregation level and the 

process parameters . 

Figure 5 presents the impact of the process parameters, ϕ and θ, and the aggregation level, m 

on the ratio of M M

AA BAMSE MSE . We are interested to determine under which conditions the ratio 

of MSE after aggregation to MSE before aggregation is less than one, meaning that TA 

improves the forecast accuracy at the manufacturer level. If the ratio is greater than one, then 

TA does not improve the forecast accuracy.  

The results presented in Figure 5 show that TA generally improves the forecast accuracy at 

the manufacturer level and the TA approach outperforms the non-aggregation approach. 

This is an interesting result, as TA does not improve the forecast accuracy at the retailer 

level. However, improvement can be achieved at the manufacturer level by using the 

aggregated demand and the rate of improvement can be as high as 90% for long lead 

times/forecast horizons.  

Figure 5 (graph at the top) shows that when the autoregressive parameter ϕ is greater than 

the moving average parameter θ, TA improves forecast accuracy at the manufacturer level for 

all lead times. The rate of improvement varies from 50% to 90% depending on the value of the 

lead time/aggregation level. The manufacturer can benefit more from TA when dealing with 

longer lead-times. 

 

,
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Figure 5: Ratio of MSEs after aggregation to before aggregation at the manufacturer level, ϕ>θ (top) and ϕ<θ 

(bottom) 

 

On the other hand, when the autoregressive parameter is smaller than the moving average 

parameter, the ratio is less than one for most of the cases except for the few instances where the 

autoregressive parameter is highly negative and the moving average parameter is positive and 

only for lower odd values of m as shown in the Figure 5 (graph at the bottom).  

Our results in this section show that the manufacturer can achieve up to 90% forecast 

accuracy improvement when the demand TA approach is used. Additionally, when the forecast 

horizon/lead time is longer, the forecast improvement gain for the manufacturer is substantial, 

regardless of the process parameter. In Section 5, we show that the bullwhip effect is reduced 

when the supply chain uses TA. As expected this reduction of the bullwhip effect in the supply 

chain results in an improved forecast for the manufacturer.  
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We have also conducted a simulation study based on the work of Graves(1999), when the retailer 

faces a non-stationary ARIMA(0,1,1) demand process (with a moving average parameter  θ where 0 < θ 

= 1-α < 1) for which the SES method is optimal. All the other settings are kept the same as in the case 

of the ARMA(1,1) process. The conclusion is similar to that of ARMA(1, 1), i.e. the ratio of MSE after 

aggregation into before aggregation at retailer is always higher than one which means aggregation does 

not improve the forecast accuracy at the retailer, whereas the bullwhip effect reduces when using 

temporally aggregated demand process especially when the aggregation level increases.  

7. Conclusions 

Previous studies have considered the effect of temporal aggregation on forecast accuracy 

using non-optimal forecasting methods. We extend this area of research by looking at the 

impact of TA using an optimal forecasting method. We also broaden the scope of the research 

by evaluating the effect of TA on the upstream supply chain link (via the forecast accuracy at 

the manufacturer) and on the overall dynamics of the supply chain (via the bullwhip effect). 

In this paper, we have considered a two-stage supply chain and we have analytically 

evaluated the impact of temporal aggregation approach on the forecasting performance and the 

bullwhip when non-aggregate series follows an autoregressive moving average process of 

order (1, 1),  [ARMA(1, 1)]. Forecasting is assumed to be relying upon an optimal MMSE 

procedure and the analytical results were complemented with a simulation experiment on 

artificial data. Analytical developments are based on the consideration of the Mean Squared 

Error and comparisons are undertaken when forecasting over lead-time is considered. 

The main findings can be summarised as follows: 

1. We found that at the retailer level combining two well-proven approaches does not 

necessarily lead to an improvement in the performance. We show that by combining an 

optimal forecasting method and temporal aggregation, the forecast accuracy at the 

retailer level may not be improved. However, there is a reduction of the bullwhip effect 

and an improvement of the forecast accuracy at the manufacturer level. 

2. In terms of the reduction of forecast accuracy at the retailer level, the temporal 

aggregation approach is outperformed by the non-aggregation approach. By applying 

temporal aggregation, the uncertainty of the process is increased which results in the 

increase in the forecast error at the aggregated level. This result is valid in any time 

series forecasting context. If the series follows an ARMA(1,1) process and the MMSE 

forecasting method is used, it is not recommended to use temporal aggregation to 

produce cumulative forecast over the whole horizons. 

3. We observe that when there is bullwhip effect in the original series, it still exists with 

the aggregated series. The range (the difference between the lowest and the highest 

value) of the bullwhip effect for the aggregated series is 0.9 while this is 9.9 for the 

non-aggregate series for the lead-time between 2 and 12 and the whole range of process 

parameters which were investigated. 

4. We show that temporal aggregation reduces the bullwhip effect when it exists using the 

original series. The reduction rate varies depending on the characteristics of the demand 

series and the lead-time (set to be equal to the aggregation level). The reduction can 

reach up to 84% for a highly positive autocorrelation and long lead times. This is a very 

important insight for practitioners since managers know that by using temporally 

aggregated series to calculate the OUT level and the order to the upper stage, the 

bullwhip can be reduced. This is an important finding as previous literature has shown 

benefits to supply chain links to the reduction of the bullwhip effect (Hosoda et al., 

2006). 
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5. We find that the temporal aggregation approach will result in improving the forecast 

accuracy at the manufacturer level. The accuracy improvements can be as high as 90% 

for longer lead-times. This is also an important result for the upstream supply chain 

members to devise strategies for improvements of their forecasting process. 

6. Although our research shows no benefits of using temporal aggregation approach at the 

retailer level based on forecast accuracy, the reduction of bullwhip effect and an 

increase of the forecast accuracy have been observed at the upstream level. 

It is important to note that, as the relationship between the forecast accuracy and the utility 

measures, especially in an inventory management setting, is not straightforward (Ali et al., 

2011), future extensions of this work should evaluate the effect of the aggregation approach on 

utility measures such as inventory, production costs and service levels. Additionally, the 

analytical work discussed in this paper can be extended to consider higher order stationary 

demand processes and more importantly non-stationary demand processes, since this is a very 

important issue both from an academic and practitioner perspective. Another avenue for further 

research would be to evaluate the approaches considered in this paper at different levels of 

aggregation, and hierarchical approaches, when the demand process and its parameters are not 

known. A further useful investigation would be to conduct an empirical analysis for the supply 

chain model discussed in this paper. 
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By dividing (18) into (19)  and then substituting (17) into it, we have: 
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We get a quadratic equation 
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By solving (A4), we obtain 21   and . 

   2
22 142    (A5) 
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 
 









1*2

22

2,1  (A6) 

 
 





 




 ,

12

22

1  (A7) 

 
 





 




 ,

12

22

2  (A8) 

By substituting (A5) and (20) into (A7) and (A8), we get: 

 

     
 





 




 ,

12

1422
2222

1 m

mmmmm

 (A9) 

 

     
 

2 2
2 2

2

2 2 4 1
,

2 1

m m m m m

m

    
  



            
  

 
 (A10) 
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