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Abstract—This paper shows how a standard proportional-
integral-plus controller, based on a non-minimal state space
(NMSS) design, can be extended to reduce the effects of
measurement noise and so yield smoother control inputs for
automated drug delivery control applications. Use of a NMSS
model for state variable feedback control design, in which all
the states are based on the directly measured input and output
variables, removes the need for state estimation. Nonetheless,
a stochastic NMSS form, with a Kalman filter, can optionally
be introduced to reduce the effect of measurement noise and
so yield smoother control inputs. In this case, the Kalman
filter attenuates measurement noise but does not address state
disturbances. In this article, we propose a modification to the
stochastic NMSS control system to enable the elimination of
such state disturbances. This involves further extending the
non–minimal state vector to include additional terms based on
the innovations. We compare the deterministic, stochastic and
extended stochastic NMSS controllers via a simulation of the
control of anaesthesia using propofol.

Keywords-Adaptive Treatment; Stochastic control; Kalman
Filter; Non-Minimum State Space (NMSS); Proportional-
Integral-Plus (PIP); Anaesthesia

I. INTRODUCTION

We apply non-minimal state space (NMSS), proportional-
integral-plus (PIP) control to a simulated drug delivery
example, namely the control of anaesthesia using propofol.
During anaesthetic drug delivery, the patient is continually
monitored and the combination of drugs adjusted to ensure
normal vital signs are maintained during loss of conscious-
ness [1]. The advantages of using automatic controllers
in anaesthesia are recognised [2]. However, it remains a
challenging control problem, due to inter-patient variability,
poor understanding of anaesthetic drug mechanisms and
difficulties in sensing. Nonetheless, control theory has been
previously used to develop (mainly proportional-integral (PI)
and proportional integral derivative (PID)) algorithms to
control anaesthesia, with examples including references: [1],
[2], [3], [4].

PIP control provides a flexible and straightforward,
model–based approach for control system design [5], [6],
[7], and can be interpreted as a logical extension of con-
ventional PI or PID control. Such PIP controllers have been
utilised in a range of application areas e.g. [8], [9], [10],

[11] and they also show promise for biomedical control
applications [12]. In the discrete–time case, the non–minimal
state vector consists of the present and past sampled values
of the output, past sampled values of the input and, com-
monly, an integral–of–error term. The length of the state
vector is not constrained, hence NMSS models can be used
to provide more design freedom than minimal forms [8],
[6], [7]. The use of NMSS models also removes the need
for state estimation; see e.g. [13] and the citations above.

State estimation typically forms an integral part of con-
ventional, minimal state space control design [14]. Here,
the system behaviour is described by a set of linearly
independent state variables [15]. In the minimal case, the
state vector is as small as possible and the states are not
necessarily available for direct measurement. Hence, state
estimation is used to access state information for feedback
control. Common methods include, for example, the ubiqui-
tous Kalman Filter (KF) and various extensions [16], [17],
[18], particle filters [19], [20], sliding mode observers [21],
[22] and neural networks [23].

Although there is no requirement for a state reconstructor
with NMSS control, state estimation can still be introduced
to remove measurement noise from the optimal estimate of
the output, and so reduce the effect of this noise on the input.
A smoother input signal can be advantageous for automated
drug delivery, as it results in smaller dose changes at each
instant. Consequently, the KF can be expressed in NMSS
form and, exploiting the separation theorem in the usual
manner [24], a PIP control law applied to the estimated state.

Previous research into such stochastic NMSS–PIP control
has focused on Auto–Regressive, Moving–Average eXoge-
nous variable (ARMAX) models [8], [6], [7]. Here, by
contrast, we consider control of a system that is described
by a full Box–Jenkins (BJ) model. Whilst a recent article
by the present authors considered NMSS representations of
the BJ model from a system identification viewpoint [25],
the present article focuses on the design and performance of
the controller in a simulated biomedical control example.

State estimation addresses measurement noise, with the
state disturbances effectively ‘passed’ by the KF. Hence, a
second contribution of this article is to extend the non–



minimal state vector to include estimates of such distur-
bances. Although these states are uncontrollable in system
design terms, they enable the effect of state disturbances to
be removed from the closed–loop response. Deterministic
PIP control, stochastic PIP control with state estimation,
and the new approach based on an extended state vector,
are all described in section II. We subsequently apply
these controllers to the specific problem of the control of
anasthesia using propofol in section III.

II. NON MINIMAL STATE SPACE CONTROL

We consider the control of a generalised BJ system model,
in which the sampled output y(k) is expressed in terms of
the sampled input u(k) and Gaussian noise η(k) in discrete–
time Transfer Function (TF) form, as follows,

y(k) =
B(z−1)

A(z−1)
u(k) +

D(z−1)

C(z−1)
η(k) (1)

where z−1 is the backward shift operator, i.e. z−1u(k) =
u(k − 1), A(z−1) = 1 + a1z

−1 + a2z
−2 + · · · + anz

−n,
B(z−1) = b1z

−1 + b2z
−2 + · · · + bmz

−m, C(z−1) = 1 +
c1z
−1 + c2z

−2 + · · ·+ cpz
−p and D(z−1) = 1 + d1z

−1 +
d2z
−2 + · · · + dqz

−q . Here, ai(i = 1...n), bi(i = 1...m),
ci(i = 1 · · · p) and di(i = 1 · · · q) are constant coefficients.

The full polynomial BJ model, Eq. (1), can be expressed
in stochastic state space form using an extended non–
minimal state vector. The KF representation of this NMSS
system, assuming convergence of the Kalman gain vector L,
was recently considered by [25], building on earlier results
by e.g. [26]. Hence, the KF can be implemented in various
polynomial forms. In the following, we consider three main
control structures: A) standard deterministic PIP control, B)
PIP control with state estimation and C) novel PIP control
with state estimation and innovations in the state vector.

A. Deterministic PIP control

The standard NMSS state vector [5] is given by x(k) =

[y(k) · · · y(k − n+ 1) u(k − 1) · · · u(k −m+ 1) z(k)]
′

where ′ represents the transpose and, in recursive terms, the
integral–of–error state is z(k) = z(k − 1) + (yd(k)− y(k))
in which yd(k) is the command input. For deterministic PIP
control, the state variable feedback control law takes the
usual form u(k) = −kx(k), where k is a n + m control
gain vector,

k =
[
f0 f1 · · · fn−1 g1 · · · gm−1 −kI

]
(2)

These gains are selected by the designer to achieve desired
closed–loop characteristics, for example, by using optimal
linear quadratic (LQ) control or pole placement [7]. In this
article we design a feedback gain vector that minimises the
following LQ cost function using standard methods,

J =

∞∑
k=1

x(k)Qx(k) + qu(u(k)2) (3)

Exploiting the special structure of the NMSS model, com-
mon weighting values are used for the output, input and
integral–of–error states, as follows,

Q = diag(qy · · · qy qu · · · qu qe) (4)

with,

qy =
wy

n
, qu =

wu

m
, qe = we (5)

where wy , wu and we are three scalar weights, selected
by the designer [7]. Figure 1a illustrates the resulting PIP
control system in block diagram form, where,

G(z−1) = 1 + g1 + · · ·+ gm−1z
−m+1 (6)

F (z−1) = f0 + f1z
−1 + · · ·+ fn−1z

−n+1 (7)

B. PIP control with state estimation

Linear Quadratic Gaussian (LQG) control utilises the
estimated state x̂(k) in place of x(k) i.e. u(k) = −kx̂(k).
Using the separation principal [24], the stochastic control
law is simply the vector of control gains from section II-A
applied to the optimal estimate of the states. For the BJ
model (1), the optimal estimate of the output is determined
from the measured input and output signals as follows [25],

ŷ(k) =
B̃(z−1)C̃(z−1)

Ã(z−1)D̃(z−1)
u(k)+

C̃(z−1)− D̃(z−1)

D̃(z−1)
y(k) (8)

where Ã(z−1), B̃(z−1), C̃(z−1), D̃(z−1) represent esti-
mates of the system polynomials. The state vector x̃(k) is
expressed in terms of the estimated output ŷ(k), known input
u(k) and their past values. The stochastic PIP controller,
with the KF implemented in this polynomial form, is shown
in Fig. 1b.

A major drawback of this control strategy is that the
stochastic model (1) does not account for non–stationary
(time–varying) disturbance inputs to the system. Therefore,
if the control structure in Fig. 1b is used on a system subject
to load disturbances (which arise when the estimated model
is incorrect), steady state errors occur. This issue can be
rectified using one of the following methods:

1) Use of the measured output: A somewhat ad hoc
but straightforward and practically useful approach is to
utilise the measured output in place of the estimate in the
definition of the integral–of–error state z(k) (similar to the
deterministic PIP controller). This yields the control system
illustrated by Fig. 1c. The steady state gain of the stochastic
component is zero, as required for elimination of steady state
errors.

2) Random walk state: To address the problem of non-
stationary disturbances, a random walk state can be in-
troduced into the NMSS form. The corresponding control
system is given by Fig. 1d. The associated state equations



Figure 1. PIP control of a plant with stochastic disturbances: a) deterministic control; b) state estimation and integral action operating on the estimated
output; c) state estimation and integral action operating on the measured output; d) state estimation and a random walk state to ensure integral action, in
which ∆ = 1−z−1 and D̃1(z−1) = D̃(z−1)∆+ ln+1C̃(z−1); e) state estimation and use of the innovations in the state vector, with the integral action
operating on the measured output; f) state estimation and use of the innovations in the state vector, and a random walk state to ensure integral action.

are,[
x̂(k)
r(k)

]
=

[
F 0
0′ 1

] [
x̂(k− 1)
r(k − 1)

]
+

[
g
0

]
u(k) +

[
L
ln+1

]
η(k)

y(k) =
[
h 1

] [x̂(k)
r(k)

]
+ η(k)

where F and h are the NMSS transition matrix and obser-
vation vector respectively [7] (the full state space model
is omitted for brevity), 0 is a column vector of zeros
with length equal to the length of F and ln+1 is the gain

associated with the new state r(k). Hence, the random walk
state is expressed in terms of the disturbance as follows
r(k) = (1 − z−1)−1ln+1η(k) and the optimal estimate of
the output becomes,

ŷ(k) =
D̃1(z−1)−∆C̃(z−1)

D̃1(z−1)
y(k)+

∆C̃(z−1)B̃(z−1)

Ã(z−1)D̃1(z−1)
u(k)

where ∆ = 1 − z−1 and D̃1(z−1) = D̃(z−1)∆ +
ln+1C̃(z−1).



C. PIP control with state estimation and extended state

A new way to introduce stochastic disturbances into the
NMSS formulation is proposed in this article. Here, the state
vector is extended to explicitly include the KF innovations
sequence, e(k) = y(k)− ŷ(k), as follows,

x(k) = [y(k) · · · y(k − n+ 1) u(k − 1)

· · · u(k −m+ 1) z(k) e(k) e(k − 1) · · · e(k −R+ 1)]′

where, for the BJ model (1), R = n+max(p, q) is the order
of A(z−1)(D(z−1)−C(z−1)). In polynomial form, the new
control element is R(z−1) = r0+r1z

−1+· · ·+rR−1z−R+1

and the associated control structures are illustrated by Fig. 1e
or Fig. 1f, where P (z−1) depends on the chosen method for
determining R(z−1), as described below.

1) LQ optimisation: Although the innovation states are
not controllable from the input, they are introduced into
the NMSS model to provide extra information for state
variable feedback. In the case of LQ design, P (z−1) =
R(z−1) = r0 + · · ·+ rR−1z

−R+1 (in Fig. 1e–f) is used to
exploit information on the estimated disturbance, in order
to predict and correct for this disturbance. In a similar
manner to deterministic feed-forward control [8] and com-
mand anticipation [6], the NMSS model is uncontrollable
by standard definitions. Hence, the choice of cost function
weights associated with the innovation states have no effect
on the control gains and are set to zero.

2) Exact cancellation: Alternatively, the extra control
gains are chosen to explicitly eliminate stochastic distur-
bances by cancellation. If the system model is assumed
correct, then the innovations e(k) have the same statistical
properties as the disturbance η(k). The corresponding input
and output variables, expressed in Transfer Function form
as functions of the command input yd(k) and noise η(k),
are,

u(k) =
AkI

AG∆ +B(∆F + kI)
yd(k)

+
A(C −D)(∆F + kI)− CA∆P

C(AG∆ +B(∆F + kI))
η(k) (9)

y(k) =
BkI

AG∆ +B(∆F + kI)
yd(k)

+
DAG∆ + CB(∆F + kI)− CB∆P

C(AG∆ +B(∆F + kI))
η(k) (10)

where the operator notation z−1 has been omitted for clarity.
From Eq. (9), the input has zero stochastic component when
C(z−1)∆P (z−1) = (C(z−1) − D(z−1))(∆F (z−1) + kI).
Therefore, if in Fig. 1e–f, P (z−1) = R(z−1)/(C(z−1)∆)
where R(z−1) = (C̃(z−1) − D̃(z−1))(∆F (z−1) + kI)
to determine the gains, the input will have no stochastic
component.
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Figure 2. Impulse response of each model given in Table I, showing a)
noise free case and b) with additive white noise η.

III. CONTROL OF CLINICAL ANASTHESIA

A basic PK-PD pharmacological model can be used to
model the relationship between the administered aesthetic
dose and the effect of the patient in terms of hypnosis and
analgesia [2]. The PK-PD model consists of a pharmacoki-
netic (PK) model that is used to describe the evolution of
the drug plasma concentration following the administration
of a drug, and a pharmacodynamic (PD) model that is used
to express the observed effect of a drug as a function of the
plasma concentration. In this contribution, we just consider
the PK part of the model and hence the control of the
drug plasma concentration via administered doses in the
presence of measurement noise. A three compartment model,
expressed as a third order TF is used [2]. The parameters of
the discrete–time propofol TF model, based on equation (1)
with n = m = 3, are presented in Table I (various
options for the noise model component are discussed later).
These parameters were converted from the continuous–time
equivalents given by [2] using the Matlab function c2d.
The impulse response of each model with and without white
noise, for example, is shown in Fig. 2.

A. White Noise Inputs

The controlled response in the presence of white noise
inputs is first considered i.e. based on equation (1) with
C(z−1) = D(z−1). The nominal plant was simulated using
the model from study II) in Table I, with plant model
inaccuracies represented by designing controllers based on
models from each of the other studies (I, III, IV, V, VI,
VII). In these simulations, the command input yd(k) is a
step change from zero to 0.1, whilst the noise η(k) is a zero
mean, Gaussian signal with variance 0.005. LQ controllers
are designed as described in section II-A, with weights of
wy = wu = 1, we = 0.01 in all cases. For the relevant
control structures, the gain of the random walk ln+1 = 0.1.

The results for each control strategy (i.e. the strategies
shown by Fig. 1) are illustrated in Fig. 3. When the model is
accurate, state estimation (SE) is successfully used to reduce
the variance of the input signal, as shown by comparing
Fig. 3a and 3b. However, the effect of an incorrect system
model is demonstrated in Fig 3c, which highlights steady
state errors for all but the nominal (ideal model) response.
As discussed in section II-B, integral action is lost when



Label Study
[
b1 b2 b3

] [
a1 a2 a3

]
I) Schnider et al. [27] 30yrs, 50kg, 1.7m

[
1.9094 −3.4713 1.5631

] [
−2.2994 1.6505 −0.3510

]
II) Schnider et al. [27] 30yrs, 70kg, 1.7m

[
1.3427 −2.4410 1.0992

] [
−2.2826 1.6213 −0.3386

]
III) Schnider et al. [27] 30yrs, 110kg, 1.7m

[
0.7744 −1.4079 0.6340

] [
−2.1903 1.4584 −0.2679

]
IV) Schnider et al. [27] 70yrs, 70kg, 1.7m

[
1.4693 −2.6705 1.2020

] [
−2.3621 1.7850 −0.4228

]
V) Schüttler et al. [28] 30yrs, 50kg

[
6.4508 −12.5810 6.1310

] [
−2.5597 2.1304 −0.5707

]
VI) Schüttler et al. [28] 30yrs, 70kg

[
5.0902 −9.9244 4.8350

] [
−2.5658 2.1429 −0.5770

]
VII) Schüttler et al. [28] 30yrs, 110kg

[
3.7180 −7.2455 3.5282

] [
−2.5717 2.1550 −0.5833

]
Table I

DISCRETE–TIME PROPOFOL MODELS THAT HAVE BEEN ESTIMATED FROM THE CONTINUOUS–TIME MODELS GIVEN BY [2].
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Figure 3. Output (top) and control input (bottom) with white measurement noise: a) No state estimation (SE) (Fig 1a), model correct; b) Just SE (Fig
1b), model correct; c) Just SE (Fig 1b), model incorrect; d) SE and random walk state (Fig 1d), model incorrect; e) SE and feedback y (Fig 1c), model
incorrect.

Control Correct model Incorrect model
structure MSE uvar MSE uvar

1e−3× 1e−3× 1e−3× 1e−3×
Fig. 1a 0.194 0.177 0.172 0.083
Fig. 1b 0.028 0.005 3.458 0.004
Fig. 1c 0.067 0.039 0.056 0.029
Fig. 1d 0.080 0.050 0.074 0.046

Fig. 1f with LQ optimisation 0.030 0.009 0.032 0.007
Fig. 1f with exact cancellation 0.030 0.001 0.034 0.001

Table II
MEAN SQUARE ERROR (MSE) AND INPUT VARIANCE (UVAR) FOR

DIFFERENT CONTROL STRATEGIES WITH COLOURED NOISE INPUTS.

including basic state estimation, hence the very poor results
associated with this control structure (Fig. 1b). These steady
state tracking errors are successfully eliminated by including
a random walk state (Fig. 1d) or by feeding back the actual
output (Fig. 1c), as demonstrated by the simulation results
in Fig. 3d,e.

B. Coloured Noise Inputs

The controlled response in the presence of coloured noise
inputs is next considered. Noise polynomials C(z−1) =
1− 0.4z−1 and D(z−1) = 1 + 0.1z−1 are chosen for illus-
trative purposes. Selected simulation results are illustrated in
Fig. 4, with the performance metrics summarised in Table II.
Performance was evaluated as the variance of the control
input u(k) and the mean squared error (MSE) of yd(k)−y(k)
at steady state (values taken between 10 to 20 minutes into
the simulation). Experiments that yield an unstable response
(because of modelling errors) are omitted from the metrics.

For non-white noise inputs, even if the system model is
accurate, state estimation alone does not result in smooth
input signals; see Fig. 4b. The KF is designed to atten-
uate ‘measurement’ noise (estimated as e(k)), however, it
passes state disturbances (Le(k − 1) in the innovations
representation). Therefore, if the noise is not white, i.e.
D(z−1) 6= C(z−1), the estimated output still contains
coloured noise (D(z−1) − C(z−1))/C(z−1). The noise
on the output naturally yields an associated noisy input
signal. This applies even in the ideal case when the model
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Figure 4. Output (top) and control input (bottom) with coloured measurement noise: a) No state estimation (SE) (Fig 1a), model correct; b) Just SE (Fig
1b), model correct; c) SE with random walk and innovations in state vector (Fig 1f), using LQ optimisation for the extra terms; d) SE with random walk
and innovations in state vector (Fig 1f), using exact cancellation for the extra terms.

coefficients are exactly known. In the context of system
identification, such issues are discussed in more detail by
Young [29].

To address this problem, the proposal in section II-C is
to extend the state vector with the estimated innovations.
For the present model, R = 4, hence these states are [e(k),
e(k−1), e(k−2), e(k−3)]. Gains corresponding to the extra
terms are estimated using both LQ optimisation and the exact
cancellation approach. For an exactly known model, the
latter approach reduces the variance of the input to almost
zero as would be expected: see Fig. 4d. LQ optimisation
can also be used to reduce the input variance, as shown by
Fig. 4c; however, for certain models these reductions are not
very significant. A generalised matrix for Q in equation (3)
could help to address this problem and is the subject of on–
going research by the authors.

IV. CONCLUSIONS

A state observer is not required for state variable feedback
when using NMSS models but can optionally be introduced
to help smooth the input signals. The use of smoothly
varying input signals is important in many biological control
applications. In stochastic NMSS control, a KF addresses
the effects of measurement noise. However, if the system
is described using a noise model D(z−1)/C(z−1) and
D(z−1) 6= C(z−1) then there is a filtered component to the
noise, which appears as state noise and cannot be removed
using the KF alone. Using the NMSS modelling and control
framework, we have proposed extending the state vector
to include estimates of the disturbance signal and have
evaluated the new approach via simulation for anasthesia

control using propofol. The approach is applicable to other
biomedical and conventional engineering control applica-
tions. The method is shown to be potentially very effective
at reducing input variance but relies upon the system model
and so potentially reduces the robustness of the closed–loop
system. As a result, the authors are also investigating robust
control and uncertainty in this context [30], [31].
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