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or some power thereof, is a finite rank operator.

AMS Classification: 47B06, 47B10.

Keywords: Riesz operator, finite rank operator, strictly singular operator, finite

ascent, finite descent.

Introduction

Each infinite dimensional Banach space admits Riesz operators all of whose

powers are infinite rank; see for instance Proposition 2.3, or Examples 2.2

and 4.2 (including the remarks following it) and Theorem 4.5 for examples

of such operators defined on particular spaces. We investigate conditions

that ensure that a Riesz operator, or some power of it, is finite rank.

This line of research originates in a result of Ghahramani [6, Theorem 1],

who proved that a compact homomorphism defined on a C∗-algebra is a

finite rank operator. Mathieu [11] generalised this result by proving that

a weakly compact homomorphism defined on a C∗-algebra with range in a

normed algebra is a finite rank operator. More recently, Koumba and the

second named author [7, Example 3.1] have given an example of a homo-

morphism defined on a C∗-algebra that is a Riesz operator, but not a finite

rank operator. However, if a homomorphism T defined on a C∗-algebra is

a Riesz operator with finite ascent n, then Tn is a finite rank operator [7,

Theorem 3.3]. In the present work, we seek similar results beyond the class

of homomorphisms, that is, we consider Riesz operators defined on general

Banach spaces.
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1 Preliminaries

Let X be a Banach space. Throughout this paper, the Banach algebra of

all bounded linear operators on X will be denoted by L(X) and the closed

twosided ideal of all compact operators in L(X) by K(X). An operator

T ∈ L(X) is called a Riesz operator if the coset T + K(X) is quasinilpo-

tent in the quotient algebra L(X)/K(X). The collection of these operators

will be denoted by R(X). An operator T ∈ L(X) is called an inessential

operator if the coset T + K(X) belongs to the radical of the quotient al-

gebra L(X)/K(X). Hence, every inessential operator is a Riesz operator.

The collection of inessential operators on a Banach space is the largest ideal

consisting of Riesz operators and this ideal will be denoted by I(X). An

operator T ∈ L(X) is called strictly singular if there is no infinite dimen-

sional closed subspace Z of X such that T : Z → T (Z), the restriction of T

to Z, is an isomorphism. The closed ideal of strictly singular operators in

L(X) will be denoted by S(X). An operator T ∈ L(X) is called nuclear if

there are sequences (yn) in X and (fn) in X∗ such that

∞∑
n=1

‖fn‖ ‖yn‖ <∞ and Tx =

∞∑
n=1

fn(x)yn (x ∈ X).

The ideal of nuclear operators in L(X) will be denoted by N (X). If F(X)

denotes the ideal of finite rank operators on X, then it is well known that

F(X) ⊂ N (X) ⊂ K(X) ⊂ S(X) ⊂ I(X) ⊂ R(X). (1.1)

Unlike the other sets in (1.1), R(X) is in general not an ideal. Also, there

are examples to illustrate that the inclusions can be proper. However, there

are Banach spaces for which some of these ideals coincide. For instance, if

H is a Hilbert space then K(H) = S(H) = I(H). We refer the reader to [5]

for basic properties of Riesz operators.

For T ∈ L(X), denote the null space of T by N(T ) and the range of T

by R(T ). The smallest nonnegative integer n such that N(Tn) = N(Tn+1)
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is called the ascent of T and it is denoted by α(T ). If no such n exists,

set α(T ) = ∞. The descent of T , δ(T ), is the smallest nonnegative integer

n such that R(Tn) = R(Tn+1). If no such n exists, set δ(T ) = ∞. The

nullity of T ∈ L(X) is n(T ) = dimN(T ) and the deficiency of T ∈ L(X)

is d(T ) = dimX/R(T ). An operator T ∈ L(X) is called a semi Fredholm

operator if it has closed range and it has finite nullity or finite deficiency. It

is called an upper semi Fredholm operator if it has closed range and finite

nullity. It is called a lower semi Fredholm operator if it has finite deficiency

(in which case R(T ) is automatically closed).

2 Riesz operators with finite ascent

This section is motivated by the following result from [7].

Theorem 2.1 ([7], Theorem 2.2) Let X be a Banach space and let T ∈

L(X) be a Riesz operator with α(T ) = k < ∞. If R(T k) + N(T k) is closed

in X, then T k is a finite rank operator.

Our next example illustrates that there exist Riesz operators with finite

ascent such that no power of T is finite rank. This shows in particular that

the hypothesis that R(T k)+N(T k) be closed cannot be omitted in Theorem

2.1. One such example is the Volterra operator.

Example 2.2 Let X = C[0, 1] be the Banach space of all complex valued

continuous functions defined on the interval [0, 1] and let T ∈ L(X) be the

Volterra operator given by

(Tf)(x) =

∫ x

0
f(t)dt

for all f ∈ X and x ∈ [0, 1]. Then T is compact, quasinilpotent and injective,

and T k is not finite rank for all k ∈ N.

In view of [3, Theorem 2.2.5], since T k is injective and compact for each

k ∈ N, it cannot have closed range.
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In fact, any infinite dimensional Banach space admits a nuclear operator T

with finite ascent such that no power of T is finite rank, as we shall now

show.

Proposition 2.3 Let X be an infinite dimensional Banach space. Then

there exists a nuclear operator T on X such that T has finite ascent and Tn

has infinite dimensional range for each n ∈ N.

Proof. Since X is infinite dimensional it contains a basic sequence (bn)n∈N,

[10, Theorem 1.a.5]. We may suppose that ‖bn‖ = 1 for all n ∈ N. By the

Hahn-Banach extension theorem, we may extend the coordinate functionals

from the closed span of {bn : n ∈ N} toX without increasing their norms; let

fn ∈ X∗ be the extended nth coordinate functional, so that supn∈N ‖fn‖ <∞

and fn(bm) = δm,n for all m,n ∈ N. We can now define a nuclear operator

T : X → X by

Tx =
∞∑
n=1

fn(x)

2n
bn.

Then Tm has infinite dimensional range for each m ∈ N because Tmbn =

2−mnbn for each n ∈ N.

We claim that N(T ) = N(T 2). Only ⊇ requires a proof. Suppose that

x ∈ N(T 2). Then

0 = T (Tx) =
∞∑
n=1

fn(x)

2n
Tbn =

∞∑
n=1

fn(x)

4n
bn.

Since (bn) is a basic sequence, this implies that fn(x)
4n = 0 for each n and

hence fn(x) = 0 for each n ∈ N. Consequently we have Tx = 0, so that

x ∈ N(T ), which proves the claim. Hence, T has finite ascent; in fact, it is

either 0 (if and only if T is injective) or 1. 2

3 Riesz operators with finite descent

The purpose of this section is to show that having finite descent is a much

stronger condition than having finite ascent for Riesz operators. It follows
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from the definition of a Riesz operator that every quasinilpotent operator

T ∈ L(X) is a Riesz operator. However, if T is quasinilpotent and δ(T ) =

p <∞, then T p = 0 [1, Exercise V.6.6], and so T p is a finite rank operator.

Our main result is as follows and it illustrates that the previous statement

holds in general for Riesz operators.

Theorem 3.1 Let T be a Riesz operator on a Banach space X. Then the

following three conditions are equivalent:

(a) T has finite descent;

(b) T has finite ascent and finite descent;

(c) Some power of T is finite rank.

To prove this result we need two lemmas. The first of these is probably

well known, but for convenience we outline a proof.

Lemma 3.2 Let X be a vector space and let T : X → X be a linear mapping

with finite dimensional range. Then T has finite ascent and finite descent.

Proof. Since R(T ) is finite dimensional, it cannot contain an infinite, strict-

ly decreasing sequence of subspaces, so T must have finite descent. Likewise,

as N(T ) has finite codimension in X, it cannot be contained in an infinite,

strictly increasing sequence of subspaces, and therefore T has finite ascent. 2

The following result is essentially due to Oudghiri and Zohry [13].

Lemma 3.3 Let X be a Banach space which admits a semi Fredholm oper-

ator that is also a Riesz operator. Then X is finite dimensional.

Proof. If X admits an upper semi Fredholm operator that is also a Riesz

operator, then this is [13, Proposition 2.4].

Otherwise X admits a lower semi Fredholm operator. The dual of this

operator is then an upper semi Fredholm operator and Riesz by [12, Theorem
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16.4] and [5, Theorem 3.22]. By the first part of the proof X∗ is finite

dimensional and therefore X is finite dimensional. 2

We are now ready to prove Theorem 3.1.

Proof. (a)⇒(c): Suppose that δ(T ) < ∞. Set m = max{δ(T ), 1} ∈ N and

N = N(Tm), and observe that X = N + R(Tm) by [2, Lemma 3.2]. Since

T is a Riesz operator, Tm is also a Riesz operator. This together with N

being Tm-invariant, implies that the induced operator S : X/N → X/N

defined by S(x+N) = Tmx+N is a Riesz operator, see [5, Theorem 3.23].

Moreover, S is surjective. Indeed, each element of X/N has the form y+N

for some y ∈ X. Since X = N +R(Tm), y = w+ Tmx for some w ∈ N and

x ∈ X. Then y − Tmx ∈ N , so that S(x + N) = Tmx + N = y + N , as

desired. This implies that S is a lower semi Fredholm operator. In view of

Lemma 3.3, X/N is finite dimensional. Since Tm factors through X/N by

the Fundamental isomorphism theorem, we conclude that R(Tm) is finite

dimensional.

(b)⇒(a): trivial.

(c)⇒(b): this follows from Lemma 3.2. 2

It follows from Theorem 3.1 that the quasinilpotent operator in Exam-

ple 2.2 and the nuclear operator in Proposition 2.3 do not have finite descent.

4 Riesz operators with closed range

Unlike compact operators with closed range, noncompact Riesz operators

with closed range need not be finite rank operators. A simple example to

illustrate this is the following.

Example 4.1 If X is an infinite dimensional Banach space, then the oper-

ator T : X ⊕X → X ⊕X defined by T (x1, x2) = (0, x1) is a Riesz operator

with closed range and T is not finite rank. In particular, if X is a Hilbert
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space, then X ⊕X is a Hilbert space and T is a Riesz operator with closed

range that is not finite rank.

The following much more sophisticated example is due to Burlando [4, Ex-

ample 5.4].

Example 4.2 Let H be an infinite dimensional Hilbert space. Then there

exists a nonnilpotent, quasinilpotent operator T : H → H such that T k has

closed range for all k ∈ N.

We observe that the quasinilpotent, nonnilpotent operator T in Example 4.2

has the property that T k is not finite rank for all k ∈ N: indeed, if T k is finite

rank for some k ∈ N, then Lemma 3.2 implies that T k has finite descent p

(say), and so T kp = 0 by [1, Exercise V.6.6]. Our next result provides a

condition under which a Riesz operator defined on a Hilbert space and with

closed range must be a finite rank operator. Recall that an operator T on a

Hilbert space is called normal if TT ∗ = T ∗T .

Proposition 4.3 Let H be a Hilbert space and let T ∈ L(H) be a Riesz

operator with closed range. If T is normal, then T is a finite rank operator.

Proof. Recall that the spectral radius and norm of a normal element in

a C∗-algebra are equal. Since T is Riesz, T + K(H) ∈ L(H)/K(H) is

quasinilpotent. It is also normal (because T is), and therefore T is com-

pact. This forces T to be finite rank because it has closed range. 2

Recall that an operator T ∈ L(X) has a pseudoinverse if there exists an

operator S ∈ L(X) with T = TST and S = STS. It is well known that

if T ∈ L(X) has a pseudoinverse, then R(T ) is closed and both N(T ) and

R(T ) are complemented subspaces of X [12, Proposition 31.1].

Proposition 4.4 Let X be a Banach space and let T ∈ L(X) be an inessen-

tial operator. If T has a pseudoinverse, then T is a finite rank operator.
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Proof. Suppose T is inessential and T has a pseudoinverse S ∈ L(X) say,

with T = TST and S = STS. Since ST is a projection that is also an

inessential operator, it is a finite rank operator and so T is a finite rank

operator. 2

Note that we cannot replace ‘inessential’ operator in Proposition 4.4 with

‘Riesz’ operator: Let T be as in Example 4.1 and define an operator S by

S(x1, x2) = (x2, 0). Then S is a pseudoinverse for T , but T does not have

finite rank.

We have repeatedly used the elementary fact that a compact operator

with closed range must be finite rank. It is natural to ask if something

similar may be true for any of the larger ideals in the chain (1.1). The

following result shows that this is not the case.

Theorem 4.5 The Banach space C[0, 1] admits a strictly singular operator

S with closed range and such that no power of S is finite rank. Moreover,

S has finite ascent α(S) = 1.

Proof. Since C[0, 1] is isomorphic to the Banach space X = C[0, 1]⊕C[0, 1]

endowed with the norm ‖(x1, x2)‖ = max{‖x1‖∞, ‖x2‖∞}, it suffices to con-

struct an operator S ∈ L(X) with the specified properties. For j = 1, 2, let

Pj ∈ L(X,C[0, 1]) denote the jth coordinate projection given by

Pj(x1, x2) = xj (x1, x2) ∈ C[0, 1].

It is a standard fact that the Hilbert space `2 is a quotient of C[0, 1] (see [9,

Theorem 1.1] or [8, Corollary of Proposition 4]), so we can take a bounded

linear surjection U : C[0, 1] → `2. Then UP1 : X → `2 is also surjective.

Since the set of bounded linear surjections from one Banach space onto an-

other is open (see for instance [1, Theorem 2.10]), we can find ε > 0 such

that every operator T ∈ L(X, `2) with ‖T − UP1‖ < ε is surjective.

Every separable Banach space embeds isometrically into C[0, 1], so we can
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choose a linear isometry V : `2 → C[0, 1]. Set bn = V en for each n ∈ N,

where (en) denotes the standard orthonormal basis of `2, and let fn ∈ C[0, 1]∗

be a norm preserving extension of the nth coordinate functional of the basic

sequence (bm), so that ‖fn‖ = 1 and fn(bm) = δm,n for all m,n ∈ N. We

can now define a nuclear operator R : X → `2 of norm at most ε/2 by

Rx =

∞∑
n=1

εfn(P2x)

2n+1
en.

Then T = UP1 + R is surjective, and hence S = J2V T ∈ L(X) has closed

range, where J2 : C[0, 1] → X is given by J2x = (0, x) for each x ∈ C[0, 1].

Since S factors through the reflexive space `2, it is weakly compact and

therefore strictly singular by a theorem of Pe lczyński [14, Theorem 1].

For each x ∈ X, we have Sx =
∑∞

n=1 αnJ2bn for

αn = (UP1x | en) +
εfn(P2x)

2n+1
(n ∈ N),

where (· | ·) denotes the inner product on `2. By iteration, we obtain

Skx =
∞∑
n=1

αn

( ε

2n+1

)k−1
J2bn (k ∈ N).

First, this shows that SkJ2bn = (ε/2n+1)kJ2bn for each k, n ∈ N, so that Sk

has infinite dimensional range for each k ∈ N. Second, we see that

S2x = 0 ⇐⇒ αn
ε

2n+1
= 0 (n ∈ N)

⇐⇒ αn = 0 (n ∈ N) ⇐⇒ Sx = 0,

so that S has finite ascent and α(S) ≤ 1. We cannot have α(S) = 0 because

S is not injective; indeed, the surjection T cannot be injective (because X

is not isomorphic to `2), and N(T ) = N(S). 2

Question 4.6 Does there exist a strictly singular (or inessential) operator

S on a Banach space such that S has finite ascent and Sk has closed, infinite

dimensional range for each k ∈ N?
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We remark that the quasinilpotent operator in Burlando’s example 4.2 can-

not be inessential or strictly singular because K(H) = S(H) = I(H) for a

Hilbert space H.
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