
Mutation-Aware Fault Prediction

David Bowes⇤, Tracy Hall† , Mark Harman‡ , Yue Jia‡ , Federica Sarro‡ , and Fan Wu‡

⇤
University of Hertfordshire, Hatfield, UK

†
Brunel University London, Uxbridge, UK

‡
University College London, London, UK

ABSTRACT
We introduce mutation-aware fault prediction, which lever-
ages additional guidance from metrics constructed in terms
of mutants and the test cases that cover and detect them.
We report the results of 12 sets of experiments, applying
4 di↵erent predictive modelling techniques to 3 large real-
world systems (both open and closed source). The results
show that our proposal can significantly (p 0.05) im-
prove fault prediction performance. Moreover, mutation-
based metrics lie in the top 5% most frequently relied upon
fault predictors in 10 of the 12 sets of experiments, and pro-
vide the majority of the top ten fault predictors in 9 of the
12 sets of experiments.

CCS Concepts
•Software and its engineering ! Software testing
and debugging;

Keywords
Software Fault Prediction, Software Defect Prediction, Mu-
tation Testing, Software Metrics, Empirical Study

1. INTRODUCTION
Software fault prediction1 has been an active subject of re-
search since the 1990s [12, 19, 22]. However, despite many
proposals for di↵erent fault prediction techniques [4, 22, 66],
no previous study has used mutation testing to improve the
performance of predictive models.

In this paper we introduce mutation-aware fault predic-
tion where several “mutation metrics” – derived by using
mutation testing – are used as features to build a fault pre-
diction model. We term such a model a ‘mutation-aware’
predictive model.

The key insight motivating the consideration of mutation
awareness is that fault prediction performance must surely

1Please note that both the terms fault and defect have been
used in the literature to refer to prediction models able to
reveal faulty/defective software components.

depend on the ability of the test suite to find faults. This
is because the performance of a prediction is measured as
its ability to predict the faults that will subsequently be
revealed (by testing). Since mutation testing is generally
used to assess the e↵ectiveness of a test suite and previous
work have demonstrated the coupling between real faults
and mutation faults [3, 35], our motivation is to exploit this
coupling: Mutation faults are coupled to real faults, so mu-
tation faults should help predict real faults.
Consider the following scenario: The code has been tested

by running a test suite, which may reveal some bugs. Unfor-
tunately faults remain, we simply do not know where they
reside; the dilemma faced by every tester. Our aim is to
now predict where remaining faults are likely to reside. The
majority of previous fault prediction studies has used static
code metrics for this prediction task, yet there is dynamic
information available resulting from the testing phase. The
significant breakthrough of our study is that it is the first
to use both static and dynamic test information. It is also
the first to seed mutated faults which provides data allowing
improved fault prediction.
In order to assess the e↵ectiveness of mutation-aware fault

prediction we define 40 mutation metrics (either ‘static’ or
‘dynamic’) and collect them using the popular (and pub-
licly available) tool PITest [14]. Then, we empirically com-
pare the performance of mutation-aware prediction models
built using these metrics with respect to those of prediction
models built using 39 traditional (mutation-unaware) static
source code metrics that have been widely used in previ-
ous fault prediction work [46]. We also investigate whether
the combined use of mutation metrics and source code met-
rics improves the accuracy of the resulting prediction model.
Moreover, we analyse the extent to which di↵erent predic-
tion techniques benefit from mutation awareness by using
four di↵erent techniques (i.e., Logistic Regression, Random
Forest, Näıve Bayes and J48), implemented in WEKA [21],
to build both ‘mutation-aware’ and ‘mutation-unaware’ pre-
dictive models. Although we have our own tools for muta-
tion testing and predictive modelling [26, 45, 50], we used
publicly available third-party tools to avoid a source of po-
tential experimenter bias, and to ensure that our results will
have actionable findings for both mutation testing and pre-
dictive modelling.
We studied the impact on predictive performance of all 79

metrics on three large real-world systems. One of these sys-
tems is a closed source industrial system from a large telecom
company (which we call TelCom). The other two, Eclipse
(i.e., JDT Core) and Apache (i.e., DBUtils and NET com-

bined), are open-source systems widely used in fault predic-
tion studies. We use both closed and open-source systems to
increase the potential for generalisability, though of course,
as with all studies of software systems, caution is required
when extrapolating. Taken together, these systems consist
of over 220K Lines of Code, with a total of 263 real world
faultive classes, revealed by over 11K test cases.

To compare the performance of predictive models we use
Matthews’ Correlation Coe�cient (MCC), which has recently
been demonstrated to be one of the most reliable measures
of predictive model performance [70]. For compatibility with
other studies on fault prediction, we also include Precision
and Recall, which are widely used metrics to assess the prop-
erties of predictive models.

The main contribution of this paper is the introduction
of mutation-aware fault prediction, together with a study of
the improvement mutation awareness conveys to fault pre-
diction. The study involves 12 experimental evaluation sce-
narios, consisting of 4 machine learners (predictive modelling
techniques) and 3 real world systems for which ground truth
fault data has been carefully collected.

Our primary finding is that mutation awareness can sig-
nificantly improve predictive performance and with large ef-
fect sizes. This is the first time any kind of mutation has
been used to support fault prediction. Naturally, subsequent
studies can further investigate/exploit this predictive im-
provement, perhaps in combination with other sets of met-
rics (e.g., process metrics). In this first study we present
the empirical evidence that mutation metrics e↵ect size on
prediction outcomes can be large, thereby motivating and
opening up this avenue of research.

In the following we briefly review the primary concepts
underlying mutation testing and software fault prediction
(Section 2). Then we present the research questions we aim
to investigate (Section 3) and the design of the empirical
study we carried out to answer them (Section 4). The re-
sults of the study and threats to its validity are discussed in
Sections 5 and 6, respectively. Section 7 summarises related
work and Section 8 concludes.

2. BACKGROUND

2.1 Mutation Testing and Mutation Metrics
Mutation testing creates a variant of the program, called

a mutant, into which a fault has been deliberately seeded
[34]. Mutants are created by mutation operators, each of
which seeds a particular class of faults, such as replacing
one relational operator with another. A mutant is said to
be ‘killed’ by a test case if the test case causes the original
program and its mutant to behave di↵erently [34, 77].

Originally, mutation testing was introduced in order to
assess test e↵ectiveness [18, 38], but it has also been used as
a technique to guide the generation of test cases [20, 26, 62],
and to improve test oracles [20, 73]. One of the cornerstones
of mutation testing is the hypothesis that at least some of the
mutants will turn out to be coupled to real faults, such that
test cases that are good at killing these mutants will also
prove to be good at detecting real faults. There is empirical
evidence to support this hypothesis [3, 35].

This paper introduces a new application: using mutation
testing to guide fault prediction. We insert mutants into
a program and collect metrics about them, not to assess
or generate test cases or oracles, but in the hope that the

coupling between mutants and real faults will mean that at
least some of these metrics will improve fault prediction.
We classify our mutation metrics as either ‘static’ or ‘dy-

namic’. Static mutation metrics simply record the number
of times a particular mutation operator can be applied, while
dynamic mutation metrics record the number of times a par-
ticular class of mutant is killed by the test suite (the mu-
tation score for this class of mutants), and/or whether the
mutant is executed (covered) by the test suite. Dynamic mu-
tation metrics thus take account of the test suite as well as
the potential faults that can be seeded, while static mutation
metrics merely take account of the kinds of faults that can
be seeded. We distinguish between the two because, should
it turn out that static metrics improve fault prediction, then
this benefit can be exploited even when no testing informa-
tion is available. More details on the metrics collected are
reported in Section 4.4.

2.2 Software Fault Prediction
A predictive model for software fault-proneness generally

exploits past data about software modules to classify the
software modules as either predicted faulty or predicted non-
faulty. Predictive models infer a single aspect of the data
(dependent variable) from some combination of other as-
pects of the data (independent variables). In the software
fault prediction context, the dependent variable is repre-
sented by the faults contained in a software component while
the independent variables may vary from project to project
and can be related to di↵erent aspects of the software (e.g.,
source code metrics, process metrics).
The performance of the predictive model depends both

on the modelling technique and the independent variables
(i.e., metrics) used. Many predictive models have been in-
vestigated in the literature. Among them, machine learners
and regression algorithms such as Decision Trees, Logistic
Regression and Näıve Bayes are widely used [12, 36, 22].
Recently, also Search-Based approaches have been success-
fully exploited (e.g., [1, 11, 25, 45, 68]). However, according
to recent systematic literature reviews [22, 66], the choice of
a modelling technique seems to have less impact on the clas-
sification accuracy of a model than the choice of a metrics
set. A selection of the most relevant variables (through fea-
ture subset selection) from the set of variables contained in
the original dataset can be performed to eliminate variables
that are irrelevant or of no predictive information value, thus
enhancing learning e�ciency and increasing predictive accu-
racy [22]. As the number of variables increases, finding an
optimal feature subset might become intractable and di↵er-
ent strategies might be needed (e.g., greedy or search-based
algorithms). Feature selection can be carried out by search-
ing the space of variable subsets, evaluating each one [17].
This is usually achieved by combining a machine learning
algorithm – used to evaluate the usefulness of the feature
set – with a search method (i.e., wrappers). The feature
selection can be done also by ranking methods (i.e., filters)
that evaluate the features according to heuristics based on
general characteristics of the data. These methods are based
on statistics, information theory, or on some function of the
classifier’s outputs.
The performance of a classification model is typically eval-

uated based on the confusion matrix. The matrix contains
the following instances: True Positive (TP), faulty com-
ponents correctly classified as faulty; False Negative (FN),

faulty components incorrectly classified as non-faulty; False
Positive (FP), non-faulty components incorrectly classified
as faulty; True Negative (TN), non-faulty components cor-
rectly classified as non-faulty. The confusion matrix values
are used to calculate a set of evaluation measures. Typical
ones are Precision (measuring the proportion of the compo-
nents classified as faulty which are actually faulty), Recall
(measuring the proportion of faulty components classified as
faulty), and F-Measure (which is the harmonic mean of pre-
cision and recall). However, it has been observed that these
measures might be biased in the case of unbalanced data
(i.e., minority and majority classes of very di↵erent sizes),
which is often the case in fault prediction data. Thus, the
use of balanced metrics, such as the Matthews Correlation
Coe�cient (MCC) has been recommended [70].

The MCC represents the correlation coe�cient between
the observed and predicted binary classifications and it is
defined as follows:

MCC = TP⇥TN�FP⇥FNp
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC values range between �1 and +1: +1 represents
a perfect prediction, 0 no better than random prediction,
and �1 indicates total disagreement between the prediction
and the actual value. Contrary to other existing measures
(e.g., Accuracy), MCC takes into account both true and
false positives, and true and false negatives, so it is generally
considered to be a balanced measure which can be used even
if the data is unbalanced [70].

To validate predictive models a cross-validation process is
typically used [4]. This process randomly splits the original
dataset set into k -subsets (i.e., folds) of equal size (typi-
cally, k=10). The model is trained by using the union of k-1
subsets (i.e., a training set) and validated on the remaining
one that represents the test set. The process is repeated k
times, each time with a di↵erent testing set. In order to pre-
vent overfitting an inner k -fold cross-validation can be also
applied to the training set. To guarantee that the distribu-
tion of the faulty and non-faulty instances into training and
test sets is representative of the distribution of the original
dataset, stratification can be also used in the cross-validation
process. Stratification allows us to mitigate cases of unbal-
anced data, such as using a fold with no faulty components,
that might skew the result of the cross-validation process.

3. RESEARCH QUESTIONS
Our first research question investigates whether there is

any e↵ect on the performance of predictive models when
they use mutation metrics. Unless the answer to this ques-
tion is ‘yes’, then there is no point in further investigating
mutation-aware predictive modelling.
RQ1: Is the performance of predictive modelling
techniques improved when they have mutation met-
rics available?

In order to answer this research question we report on the
di↵erence in predictive model performance when the predic-
tive model has all of the 79 metrics available (the ‘with mu-
tation metrics’ version), and when it only has available the
39 traditional metrics and no mutation metrics (the ‘with-
out mutation metrics’ version). A 10-fold cross-validation
is performed 50 times, each time with a di↵erent random
shu✏e of the data, in order to account for the stochastic na-
ture of the overall predictive modelling algorithm. We use a

two-tailed Wilcoxon non-parametric statistical test to check
whether there are significant di↵erences in the means for the
‘with’ and ‘without’ mutation metrics performance. We use
the Wilcoxon test because we have no evidence to suggest
that the performance of the predictive models is normally
distributed over 50 runs. We use a two-tailed test, because
we make no assumptions about which version of the pre-
dictive model will perform better in each case. We use the
Matthews Correlation Coe�cient (MCC), and Precision and
Recall performance metrics to assess the predictive power of
the fault prediction models.
If the answer to RQ1 is ‘yes’, then this motivates a more

in-depth analysis of mutation metrics. However, an a�rma-
tive answer to this question does not provide su�cient sci-
entific evidence, on its own, to motivate the use of mutation-
aware predictive modelling. It could be, for example, that
mutation metrics only very occasionally improve the perfor-
mance of a predictive modelling technique, or that they im-
prove the performance more often, but only by a very slight
amount. If the e↵ect is too infrequent, or the size of e↵ect
too small, then there will still be no point in further study
of mutation-aware predictive modelling. This motivates a
second research question below:
RQ2: What is the e↵ect size of improvements in
predictive model performance due to mutation met-
rics?
We split this overall research question into three sub ques-

tions, which ask about the frequency and size of the e↵ects
of mutation testing on predictive modelling performance.
RQ2.1: What is the frequency with which each pre-
dictive modelling technique uses mutation metrics?
Using the same validation approach as for RQ1, we ex-

plore the results of the nested feature subset selection, for
the four machine learners considered in this study. There-
fore, for each subject and each learner, we obtain 500 di↵er-
ent probabilistic model instances (50 repetitions of 10-fold
cross-validation), each of which has its own set of metrics,
identified by feature subset selection. For each of the 79
metrics, we record which of the metrics occurs in these 500
probabilistic model instances. This frequency gives one in-
dication of the importance of each metric, in terms of how
often it is selected by feature subset selection, for each algo-
rithm on each subject system. If some of the mutation met-
rics occur very frequently, then this strengthens the scientific
evidence for the positive influence of mutation awareness on
fault prediction.
RQ2.2: When a predictive modelling technique uses
a mutation metric, what is the average predictive
performance improvement due to this metric?
A particular metric may be frequently selected, yet with

little e↵ect on each occasion. Therefore, evidence for the
frequent use of mutation metrics is encouraging, but insuf-
ficient on its own, to support strong scientific claims for
mutation-aware predictive modelling. We therefore further
investigate, by complementing the results of RQ2.1 with a
study of the e↵ect size for each of the mutation metrics:
how much does it a↵ect the predictive model performance
on each occasion when it is used?
In order to measure this e↵ect size, we remove the partic-

ular metric so that it is unavailable to the predictive model,
and then measure the di↵erence in predictive model per-
formance with and without the availability of this metric.
This gives us an e↵ect size measurement for the usage of

each metric when this is selected during the feature subset
selection phase of each of the algorithm considered.
RQ2.3: For each mutation metric used on any occa-
sion by a predictive modelling technique, what is the
overall contribution of the metric to performance
improvement?

Some metrics may have a big e↵ect when they are used,
but may, nevertheless, still be infrequent over all predictive
model instances (i.e., such metrics are very useful, but only
on a few occasions). If all the mutation metrics fall into
this category, then that would be interesting, but would not
constitute strong scientific evidence for mutation-aware fault
protection. In order to capture the overall influence of each
metric on the predictive models, we report on the product of
the frequency and the e↵ect size. This measures the average
overall e↵ect of a particular metric over all instances of a
predictive modelling algorithm and subject system.

If we find that mutation metrics are selected frequently by
feature subset selection, and that they can have a big e↵ect
when they are deployed into a predictive model, and that
overall, their e↵ect size is large, then we will have strong
overall scientific evidence for the value and importance of
mutation-aware fault prediction. We can then move on to
study the individual mutation metrics (and classes of met-
rics) in more detail, which we do in RQ3 below.
RQ3: What is the relative performance of static
and dynamic mutation metrics? In order to answer
this question, we twice repeat the experimental procedure
used for RQ1; once for static mutation metrics, and once
for the dynamic mutation metrics. This allows us to inves-
tigate the individual specific advantage conveyed to predic-
tive modelling using each of these sets of mutation metrics
to complement the existing source code metrics.

Static mutation metrics can be computed in the absence of
any test data, while dynamic mutation metrics also require a
test suite. It is therefore interesting to see whether mutation
metrics can benefit predictive modelling performance, even
in the absence of a test suite; are static mutation metrics
useful in their own right? We might expect that dynamic
mutation metrics would convey greater advantage to a pre-
dictive modelling algorithm than static mutation metrics,
because they also imbue the model with information about
the test suite. If this is the case, then it suggests that other
‘test suite aware metrics’ might be investigated for their pos-
itive e↵ects on fault prediction. On the other hand, it will
be surprising and interesting if we find that such test suite
information is not beneficial to fault prediction.

4. EXPERIMENTAL SETUP
In order to support replication2, this section provides de-

tails of the subject systems and their fault data, the source
code and mutation metrics we used and the predictive mod-
elling techniques with which we experimented.

4.1 Subject Systems
Table 1 provides details of the three subject systems used

in this study. We can observe that there is variation in the
size of the systems as well as the proportion of faulty classes

2The data used in this study (except for the
closed source TelCom system which is covered
by a Non-Disclose Agreement) is available at
http://www0.cs.ucl.ac.uk/sta↵/F.Sarro/projects/
faultPrediction/index.html.

Apache Eclipse TelCom
LOC Total 22,430 113,106 84,731
No. Classes 74 727 1295
No. Faulty Classes 30 191 42
% Faulty Classes 40.54% 26.27% 3.24%
No. Tests 245 8,393 2,846

Table 1: Contextual Information for the Subject Systems.

in each. The TelCom system has a very low proportion
of faulty classes (3.24%) making it a di�cult subject for
which to build good fault prediction models. Apache has
the highest proportion of faulty classes at 40.54%. Table 1
also shows that the number of tests used varies across the
three systems. Apache has the lowest number of tests at 245
which may explain the relatively high faultiness in Apache.

4.2 Fault Data
We collected fault data from each of the three subject

systems using the Śliwerski, Zimmerman and Zeller (SZZ)
algorithm [71]. The SZZ algorithm matches the fault fix de-
scribed in the bug tracking system with corresponding com-
mits in the version control system that fixed that fault. This
means that we were able to identify the fault insertion and
fix points for every class in each of the subject systems and
to label each class as either faulty or not-faulty for a given
point in time. The data we collected has already been used
in our previous work [23], where more details are provided.

4.3 Source Code Metrics
We collected 39 source code metrics (see Table 2) from

each of the three subject systems. These metrics are wide-
ranging and are frequently used in fault prediction studies
[22]. We collected these metrics using the default settings
of JHawk 1.8 [74], a tool previously identified as robust for
collecting source code metrics from Java systems [46].

4.4 Mutation Metrics
As explained in Section 2.1 we classify our mutation met-

rics as either ‘static’ or ‘dynamic’. In total five types of
mutation metrics are collected as shown in Table 3. We
used PITest [14] to perform mutation testing on each sub-
ject system. We chose this tool for mutation testing be-
cause we want to perform our analysis on large subjects and
PITest is the most scalable mutation testing tool for Java
programs. There are 7 mutation operators in PITest, which
makes 8 mutation metrics of each type (with names end-
ing ‘1’ to ‘7’ or ‘A’ for All). The numbered descriptions
of the mutation operators are listed in Table 4. The num-
ber of mutants that can be generated using each of these
operators yields a count. This count is a static mutation
metric (i.e., MuNOM), because it is independent of any test
suite. For each of the 8 static mutation metrics, we addi-
tionally compute 4 corresponding dynamic metrics. These
count the number of times a mutant is covered (MuNOC),
the number of times it is not covered (MuNNC), the mu-
tation score for all mutants of this type (MuMS), and the
score for only those which are covered (MuMSC). This gives
us 32 (4 ⇥ 8) dynamic metrics, each of which draws into
the predictive modelling framework information about the
test suite; whether or not it can exercise a particular simu-
lated fault (covered mutant), and whether it can detect this
simulated fault (captured by mutation scores).

Index Mutation Operator Description
1 Return Value Mutator Mutates the return values of method calls.
2 Negate Conditionals Mutator Mutates conditionals between == and !=, < and >=, > and <=.
3 Increments Mutator Replaces increments (++) with decrements (--) and vice versa.
4 Void Method Calls Mutator Removes void method calls.
5 Conditionals Boundary Mutator Replaces the relational operators between < and <=, > and >=.
6 Invert Negatives Mutator Inverts negation of integer and floating point numbers.
7 Math Mutator Swaps operations within groups: {+,-}, {*, /, %}, {&, |, ^}, {<<, >>, >>>}.
A All of the above Used to denote mutation metrics that count all the above metric instances.

Table 4: Mutation Operators

Coding Meaning Origin
AVCC Average Cyclomatic Complexity [47]
CBO Coupling Between Object Classes [13]
CCML Cumulative Number of Comment Lines [74]
CCOM Cumulative Number of Comments [74]
COH Cohesion [13]
DIT Depth of Inheritance Tree [13]
EXT External Method Calls [74]
F-IN Fan In [29]
FOUT Fan Out [29]
HBUG Halstead Cumulative Bugs [24]
HEFF Halstead E↵ort [24]
HIER Hierarchy Method Calls [15]
HLTH Halstead Cumulative Length [24]
HVOL Halstead Cumulative Volume [24]
INST Instance Variables [74]
INTR Number of Interfaces [74]
LCOM Lack of Cohesion of Methods [13]
LCOM2 Lack of Cohesion of Methods version 2 [13]
LMC Local Method Calls [74]
MAXCC Max Complexity [74]
MI Maintainability Index [61]
MINC Maintainability Index (No Comments) [61]
MOD Number of Modifiers [47]
MPC Message Passing Coupling [42]
NCO Number of Commands [74]
NLOC Lines Of Code
NOM Number of Methods [74]
NOS Number of Statements [74]
NQU Number of Queries [74]
NSUB Number of Subclasses [13]
NSUP Number of Superclasses [74]
PACK Number of Imported Packages [74]
R-R Reuse Ratio [69]
RFC Response For class [13]
S-R Specialization ratio [69]
SIX Specialization index [44]
Superclass SuperClass Name [74]
TCC Total Complexity [47]
UWCS UnWeighted Class Size [74]

Table 2: JHawk[74] Source Code Metrics Used
(www.virtualmachinery.com/jhawkmetricslist.htm).

4.5 Machine Learning Techniques
In this study we used four di↵erent classifiers (i.e., Näıve

Bayes, Logistic Regression, J48, Random Forest) which cover
a range of di↵erent techniques. Näıve Bayes (NB) [76] is a
statistical technique which uses the combined probabilities
of the di↵erent attributes to predict faultiness. Logistic Re-
gression (LR) [16] is a regression technique which identifies
the best set of weights for each attribute to predict the bi-
nary class. J48 is a Java implementation of the C4.5 [65]
decision tree algorithm which uses entropy information to
determine which attribute to use as decision nodes. Random
Forest (RF) [9] is an ensemble technique which aggregates
the predictions made by a collection of decision trees (each
with a subset of the original set of attributes).

For each of these techniques we used the WEKA Wrapper
Subset Selection Filter [40, 21] which performs a best first

Metric Description Type
MuNOMS Number of generated mutants Static
MuNOC Number of mutants covered by tests Dynamic
MuNNC Number of mutants not covered by tests Dynamic
MuMS Mutation score of generated mutants Dynamic
MuMSC Mutation score of covered mutants Dynamic

Table 3: Mutation metrics considered in our study.
Key to colours/shading: Metrics in blue (dark grey for
those reading a b/w copy) are static mutation metrics,
while those in boldface are dynamic mutation metrics.

search algorithm to identify the subset of attributes that
generalise best on the training set.
In order to validate the approaches we performed a 10-

fold cross validation with an inner 5-fold cross-validation on
the training set, and evaluated the results using MCC (see
Section 2).

5. RESULTS
Our base results using only static code metrics are com-

parable if not better than results from other studies. Previ-
ous fault prediction work on Eclipse data, using static code
metrics reported an average MCC of 0.412 with a standard
deviation of 0.150 [22]. Our Eclipse results with static code
metrics have an average MCC of 0.447 indicating that any
improvement using mutation metrics improves even further
than the majority of previous studies.
RQ1: Do Mutation Metrics Improve Performance?
Figure 1 contains three rows, each of which corresponds

to one of the three subjects systems. Within each row, each
of the four sets of box plots corresponds to one of the four
di↵erent learning algorithms. Within each set there are box
plots, labelled C, S, D, and A, which correspond to the MCC
values obtained by the predictive models built using source
code metrics alone, source code metrics augmented by static
mutation metrics, source code metrics augmented by dy-
namic mutation metrics, all metrics (source code metrics
augmented by static and dynamic mutation metrics)
In order to answer RQ1, consider the box plots labelled

C and A within each row (we will return to the box plots
S and D in our answer to RQ3). These give the overall
performance (in terms of MCC) of the predictive modelling
algorithms using the source code metrics alone compared to
the performance using source code and mutation metrics.
As these box plots reveal, for the TelCom and Apache sys-
tems, there is an improvement in performance for three of
the four learners using mutation-aware predictive modelling.
The e↵ect is particularly pronounced for the Apache system,
where performance is dramatically improved. As for Eclipse,
there appears to be very little di↵erence in the performances

MC
C

0.0

0.2

0.4

0.6

C S D A

●
● ●

●

●

●
●

●

j48
Apache

C S D A

●
●

●

●

●

●

●●

●

●

●●

●

lr
Apache

C S D A

●
● ●

●

●

nb
Apache

C S D A

● ●
●

●

●
●● ●●

●

●

●
●

rf
Apache

● ● ● ●

j48
Eclipse

● ● ● ●
●

●

lr
Eclipse

● ●
● ●

●

●
●

nb
Eclipse

0.0

0.2

0.4

0.6
● ● ● ●

●
●

rf
Eclipse

0.0

0.2

0.4

0.6

●
● ● ●

●

j48
TelCom

● ● ● ●

● ●

lr
TelCom

●
● ● ●

●● ●

●

●

●

nb
TelCom

● ● ●
●

●●

rf
TelCom

Figure 1: RQ1 and RQ3: MCC values for di↵erent predic-
tive modelling algorithms on each of the three subjects. Key:
nb=Näıve Bayes, lr=Logistic Regression, rf=Random For-
est, j48=J48; C: source code metrics alone, S: source code
metrics augmented by static mutation metrics, D: source
code metrics augmented by dynamic mutation metrics, A:
all metrics (source code metrics augmented by static and
dynamic mutation metrics).

of any of the four algorithms, whether with or without mu-
tation awareness. Furthermore, for Eclipse, all approaches
to predictive modelling appear to show very little variance.

To further analyse these results, we performed an infer-
ential statistical analysis of the di↵erences between the me-
dian MCC values observed for each technique, the results of
which are presented in Table 5a. These results confirm that
fault prediction for the Apache system significantly benefits
from mutation awareness. The industrial TelCom system
also benefits from it, however the improvement is less pro-
nounced. For the Eclipse system, there is a small reduc-
tion in performance, using mutation aware metrics. After
performing the Benjamini-Hochberg correction for multiple
statistical testing [5], only p-values < 0.001 remain signifi-
cant.

Tables 5b and 5c provide a comparison of the di↵erences
(and their statistical significance) for the Precision and Re-
call values obtained using source code metrics alone, and
using source code metrics augmented by mutation metrics
(both static and dynamic). The results are consistent with
those for the MCC performance metric. The Precision and
Recall values give a more detailed explanation of the dra-
matic improvement achieved in MCC for the Apache system.
Figure 2 shows the box plots of Precision and Recall values
for this system. We can observe that mutation awareness
improves the Recall of the predictive models, while retain-
ing their Precision. As a result, more faulty classes are cor-
rectly identified using mutation metrics, without introduc-
ing any extra false positives (false alarms). The improve-
ment in Recall for di↵erent systems results in being able

to correctly predict additional faults: Apache with Näıve
Bayes +7 (50%), Eclipse with Random Forest +2 (2%) and
TelCom with Näıve Bayes +1 (9%).

(a) MCC

Apache Eclipse TelCom

Näıve Bayes <0.001
(0.182)

<0.001
(-0.030)

0.018
(0.022)

Logistic Regression <0.001
(0.164)

<0.001
(-0.020)

0.338
(0.005)

Random Forest 0.858
(-0.008)

0.005
(0.013)

0.920
(0.000)

J48 <0.001
(0.070)

<0.001
(-0.019)

0.007
(0.057)

(b) Precision

Apache Eclipse TelCom

Näıve Bayes 0.049
(0.032)

0.020
(-0.009)

0.195
(0.009)

Logistic Regression <0.001
(0.085)

<0.001
(-0.019)

0.871
(0.000)

Random Forest <0.001
(-0.028)

0.009
(0.012)

0.768
(-0.013)

J48 0.008
(0.026)

<0.001
(-0.025)

<0.001
(0.143)

(c) Recall

Apache Eclipse TelCom

Näıve Bayes <0.001
(0.267)

<0.001
(-0.039)

<0.001
(0.024)

Logistic Regression <0.001
(0.167)

<0.001
(-0.016)

0.033
(0.000)

Random Forest <0.001
(0.067)

0.023
(0.010)

0.317
(0.000)

J48 <0.001
(0.100)

0.681
(-0.008)

<0.001
(0.024)

Table 5: Two-tailed Wilcoxon test results are p-values that
show the probability that we would obtain the di↵erence in
medians we observe, if the mutation metrics were to have no
significant e↵ect on predictive performance measured using
MCC (a), Precision (b), and Recall (c). The number in
brackets is the di↵erence between the median values; where
it is positive, it indicates that mutation metrics can improve
predictive performance.

In conclusion, we find evidence that mutation awareness
can improve the performance of predictive modelling, and
that improvement is not restricted to only one technique,
but can improve multiple techniques. There is also evidence
that, where it does provide an improvement, the e↵ect is
highly significant. We therefore find evidence that mutation
awareness is beneficial to predictive modelling.
RQ2: What is the e↵ect size of improvements in
predictive model performance due to mutation met-
rics? Having found evidence that mutation awareness can
benefit predictive modelling, we now turn to a more detailed
analysis of the frequency and (local and global) e↵ect sizes
of this benefit.
RQ2.1: What is the frequency with which each pre-
dictive modelling technique uses mutation metrics?
Table 6 shows the top 10 most frequently used metrics for
each of the 12 experiments (4 predictive models applied to 3

0.3
0.4
0.5
0.6
0.7
0.8
0.9

C S D A

● ● ●
●

●●

j48
Precision

C S D A

●
●

●

●

●

●
●

lr
Precision

C S D A

● ●
●

●

●

●

nb
Precision

C S D A

● ●
● ●

●
●

rf
Precision

●

●
●

●

●●●
●●

●

●

●
●

●
●

j48
Recall

●

●

●

●

●

●

●
●
●
●●●

lr
Recall

● ●

●

●

●

●

●●

nb
Recall

0.3
0.4
0.5
0.6
0.7
0.8
0.9

● ●
●

●

●

●

●
●

rf
Recall

Figure 2: RQ1.Precision and Recall for Apache.

software systems). The number in brackets after each muta-
tion name indicates the number of times (out of 500 folds in
the cross fold validation) that the metric was used (for ex-
ample, a number above 250 indicates that the corresponding
metric is more likely to be used than not). We can observe
that mutation metrics are very prevalent in every one of the
12 experiments, indicating that they are frequently useful in
all of the predictive modelling scenarios considered. Table 7
gives a count of the number of mutation metrics that occur
in the top 10 for each of the 12 experiments. As can be
seen, the mutation metrics make up 50% or more of the top
ten fault-predicting metrics for most cases and occur in the
top 5% (4/79) fault predictors in 10 of the 12 sets of experi-
ments. Also, in every case (except 3: Random Forests (RF)
applied to TelCom and J48 applied to Eclipse and TelCom)
there is at least one mutation metric that is more likely to
be used than not.

The results are also revealing for the traditional source
code metrics: For example, our results provide evidence
to suggest that di↵erent systems and di↵erent algorithms
require di↵erent source code metrics for best performance.
Clearly, the ‘Fan Out’ metric (FOUT) is highly applicable
in many cases, being the most popular of all 79 metrics in
3 of the 12 experiments. Nevertheless, even this apparently
useful metric, plays no role in the top 10 results for the J48
algorithm for any of the three systems studied. This find-
ing, for traditional metrics, underscores the di�culty of fault
prediction in general, and the impossibility of finding uni-
versally applicable techniques that always improve all fault
predictions [72]. This observation tends to suggest that the
scientific evidence for mutation awareness is all the more
compelling, since it is so consistently beneficial to so many
instances of the predictive modelling algorithms.
RQ2.2: When a predictive modelling technique uses
a mutation metric, what is the average predictive
performance improvement due to this metric? From
RQ 2.1, we know that mutation metrics frequently provide
benefit to all the predictive modelling algorithms and for
all the programs studied. However, Table 7 simply consid-
ered the frequency with which a metric was used; this says
nothing about the size of the e↵ect, to which we now turn.
Table 8 shows the e↵ect size of the top ten (out of 79) met-

Apache Eclipse TelCom

N
äı
ve

B
ay
es

HEFF(492) FOUT(500) FOUT(465)
MuMS2(488) MINC(500) MuMS7(458)
MuMSA(340) NOM(500) MuMS4(427)
R-R(306) MuMSC4(471) MuNOMS7(418)
MI(266) MuNOC2(342) MuNNC3(416)
LCOM(155) MuMSC3(309) MuMSA(398)
MuNOMS3(120) MuMS1(226) MI(373)
SIX(117) MAXCC(210) MuNNC7(317)
MuMSC3(85) MuMSA(209) SIX(268)
MuNOC7(71) MuMSC5(206) MuMSC7(259)

L
og

is
ti
c
R
eg
re
ss
io
n

MuMSA(289) NOM(500) CBO(494)
SIX(285) FOUT(418) MuNOMS7(443)
MuMS2(284) MuMSC3(378) MuNNC4(314)
FOUT(233) LCOM(303) SIX(277)
MuNOC2(224) HEFF(296) MuNNC5(147)
MuNOMS3(204) MAXCC(263) MuNOMS4(58)
HEFF(195) R-R(257) MuNNC7(49)
MuNOC1(172) NLOC(254) MuNNC3(45)
R-R(136) RFC(248) MuMS7(43)
MuMS4(128) TCC(237) FOUT(41)

R
an

d
om

F
or
es
t

MuNOC2(463) NOM(500) AVCC(500)
HEFF(371) FOUT(479) CBO(321)
MuNNC7(285) HBUG(311) FOUT(234)
CBO(270) MuNNC1(309) HLTH(221)
F-IN(266) MuNOMS1(295) MINC(157)
MuNNC3(263) AVCC(288) MI(149)
MuNOMS4(246) HEFF(238) MuNNCA(110)
AVCC(222) MuNNC2(238) NLOC(80)
SIX(212) MuMSA(182) LCOM(79)
MuNOMS3(200) HVOL(134) MAXCC(75)

J4
8

MuNOC2(265) NOM(500) HEFF(226)
MuMS2(227) HLTH(223) CBO(209)
AVCC(138) AVCC(151) MuNOMSA(202)
MuNOMSA(136) FOUT(131) LCOM(147)
MuNNC7(117) MuMSCA(122) MI(142)
MuNOMS7(115) MuMSC4(119) HBUG(135)
NLOC(92) CBO(106) AVCC(129)
HEFF(89) MuNOMS2(105) NOS(116)
MuNNC3(86) MuMSC7(99) MuMSC1(105)
F-IN(81) MuNOMS6(96) MuMSC4(105)

Table 6: RQ2.1. Top 10 most frequently used metrics for
di↵erent datasets and classifiers.

rics in terms of their ‘local’ contribution to the performance
of the algorithm. This e↵ect size is ‘local’ in the sense that
we measure the e↵ect on the MCC performance assessment,
only when the particular metric concerned is used.
Since MCC values lie between minus one and one, any

improvement above 0.1 can be considered to be large and
anything above 0.2 to be very large. For example, an im-
provement above 0.2 would be larger than the improvement
that could be gained by any of the four algorithms on any of
three systems studied, using the traditional source code met-
rics. As Table 8 reveals, when a mutation metric is used, its
e↵ect on the performance of the predictive model that uses
it can be extremely large. In all but 1 of the 12 experiments,
the e↵ect size of at least one mutation metric is above 0.1.

Technique Apache Eclipse TelCom
Näıve Bayes 5 6 7
Logistic Regression 6 1 7
Random Forest 5 4 1
J48 6 5 3

Table 7: Frequency of mutation metrics in the top 10 metrics
for di↵erent learners and datasets.

Apache Eclipse TelCom
N
äı
ve

B
ay
es

MINC(0.507,5) MuMSC7(0.138,7) S-R(0.394,1)
HVOL(0.437,4) HVOL(0.127,4) NSUB(0.349,1)
CBO(0.342,2) FOUT(0.104,500) RFC(0.155,4)
MuNOC2(0.317,4) TCC(0.102,11) MuMSC1(0.143,2)
MuMSC7(0.316,49) MuNOMS5(0.094,3) MuNOC4(0.126,45)
MuNOMS7(0.311,1) MuMS2(0.086,28) MuNOMS5(0.121,5)
MuNOC1(0.303,1) MAXCC(0.082,210) Coh(0.118,6)
HEFF(0.297,492) MuMS4(0.078,11) HLTH(0.111,152)
MuMSC1(0.292,21) MuNOMS2(0.074,20) NCO(0.107,2)
MuNNC7(0.287,5) MINC(0.074,500) NOM(0.107,5)

L
og

is
ti
c
R
eg
re
ss
io
n

MuMSC7(0.482,16) MuMSC2(0.124,29) MuNNC2(0.384,2)
MuMSCA(0.428,94) FOUT(0.124,418) Coh(0.379,1)
MAXCC(0.404,24) MuMS4(0.123,21) MuMSC2(0.371,1)
NOM(0.403,16) F-IN(0.121,29) HVOL(0.352,1)
CBO(0.400,33) MuMS2(0.120,27) MuNOMSA(0.316,2)
F-IN(0.400,13) MuNOMS6(0.113,15) MuNNC1(0.287,7)
HLTH(0.399,12) MuNNC6(0.110,7) MuMSC1(0.281,6)
MuMSC2(0.393,12) MuNNC2(0.100,46) MuNOC5(0.275,4)
MuMSC1(0.382,17) MuMSA(0.099,40) HLTH(0.273,9)
MuMSA(0.380,289) AVCC(0.097,83) MuNOMS5(0.272,8)

R
an

d
om

F
or
es
t

LCOM(1.067,2) MuNOMS7(0.687,1) MuNNC6(1.006,8)
MuNOMS2(0.701,3) MI(0.581,25) HVOL(1.004,4)
MuNOCA(0.686,13) MINC(0.576,5) MuNOMS2(1.002,8)
MuNNC1(0.638,4) MuNOMSA(0.576,12) MuMSC7(1.002,9)
HLTH(0.583,2) MuNOMS2(0.572,11) LCOM2(0.978,11)
MI(0.583,1) SIX(0.564,7) MuMS2(0.975,42)
FOUT(0.543,10) F-IN(0.549,13) MuNOMS5(0.971,17)
MuNNCA(0.540,26) MuNOC3(0.547,12) MuMS5(0.971,33)
NLOC(0.515,13) MuNNC6(0.543,21) MuNOC6(0.968,3)
TCC(0.514,11) CBO(0.543,80) MuMS7(0.961,14)

J4
8

MuNOC2(0.518,265) NLOC(0.238,54) HVOL(0.449,17)
NSUP(0.481,14) MuNOMSA(0.218,32) TCC(0.407,28)
RFC(0.479,21) HLTH(0.218,223) MuNOC3(0.396,22)
MuMS2(0.462,227) MAXCC(0.201,28) MuNNC7(0.393,22)
MuMS5(0.451,27) AVCC(0.194,151) MINC(0.383,30)
MuNOMS1(0.438,43) MuNOCA(0.194,48) NSUB(0.383,32)
MuNOMS3(0.437,24) FOUT(0.193,131) MuNNC1(0.372,63)
HBUG(0.435,32) MuMSC3(0.187,75) HBUG(0.367,135)
CBO(0.435,45) MuNOC5(0.185,32) CCOM(0.363,53)
MINC(0.429,55) MuMS3(0.183,60) MuNOMS7(0.356,74)

Table 8: RQ2.2. Contribution of metric towards
MCC(training) when using Näıve Bayes, Logistic Regression
and J48.

These results suggest that where a mutation metric is used,
its e↵ect on the performance of a predictive model is large.
However, these results cover only the local e↵ect size, so we
now study the global e↵ect sizes in RQ2.3.

RQ2.3: For each mutation metric used on any oc-
casion by a predictive modelling technique, what
is the overall contribution of the metric to perfor-
mance improvement? Table 9 shows the e↵ect size of the
top ten (out of 79) metrics in terms of their ‘global’ con-
tribution to the performance of the algorithm. This e↵ect
size is ‘global’ in the sense that we measure the e↵ect on
the MCC performance assessment, across every use of the
metric, counting its e↵ect as 0.0 for all folds that fail to use
it. As can be seen from the table, mutation metrics have
a high global e↵ect size in many cases. In 9 out of the 12
experiments, more than half of the top 10 global e↵ect size
metrics are mutation metrics. For the Apache system, there
is a mutation metric that has a large e↵ect size (� 0.2) for
all four algorithms studied. For the other two systems, the
e↵ect sizes are lower for the mutation metrics, but they are
also lower for all metrics overall, indicating that, for these
systems, there is seldom a single metric that can have a big
impact on its own.

RQ3: What is the relative performance of static and
dynamic mutation metrics?

Consider again, Figures 1 and 2, which we used to answer
RQ1. Each figure also reports results for the separate ef-
fect on predictive model performance of static and dynamic

Apache Eclipse TelCom

N
äı
ve

B
ay
es

HEFF(0.292,492) FOUT(0.104,500) FOUT(0.094,465)
MuMS2(0.252,488) MINC(0.074,500) MuNNC3(0.056,416)
MuMSA(0.152,340) MuMSC4(0.046,471) MuMS7(0.055,458)
MI(0.073,266) MAXCC(0.034,210) MuMSA(0.055,398)
R-R(0.063,306) MuNOC2(0.029,342) MuMS4(0.054,427)
LCOM(0.042,155) NOM(0.025,500) SIX(0.051,268)
MuNOMS3(0.036,120) MuMS1(0.023,226) MuNOMS7(0.049,418)
MuMSCA(0.033,66) MuMSC3(0.021,309) MI(0.047,373)
MuMSC7(0.031,49) MuMS6(0.018,254) MuNNC4(0.042,225)
MuMSC3(0.021,85) MuMSC5(0.018,206) CBO(0.036,238)

L
og

is
ti
c
R
eg
re
ss
io
n

MuMSA(0.220,289) FOUT(0.103,418) MuNNC4(0.085,314)
MuMS2(0.212,284) NOM(0.069,500) CBO(0.078,494)
SIX(0.189,285) MuMSC3(0.047,378) MuNOMS7(0.074,443)
MuNOC2(0.142,224) MAXCC(0.046,263) SIX(0.057,277)
HEFF(0.132,195) HEFF(0.045,296) MuNOC6(0.050,292)
FOUT(0.128,233) TCC(0.038,237) MuNNC5(0.022,147)
MuNOMS3(0.118,204) LCOM(0.036,303) FOUT(0.020,41)
MuNOC1(0.092,172) NLOC(0.035,254) CCML(0.014,31)
MuMS4(0.086,128) R-R(0.033,257) LCOM2(0.014,67)
MuMSCA(0.080,94) RFC(0.028,248) CCOM(0.013,64)

R
an

d
om

F
or
es
t

MuNOC2(0.400,463) NOM(0.521,500) AVCC(0.910,500)
HEFF(0.280,371) FOUT(0.488,479) CBO(0.554,321)
F-IN(0.217,266) HBUG(0.335,311) FOUT(0.430,234)
MuNNC7(0.213,285) MuNNC1(0.319,309) HLTH(0.397,221)
MuNNC3(0.196,263) MuNOMS1(0.304,295) MINC(0.283,157)
CBO(0.190,270) AVCC(0.291,288) MI(0.277,149)
MuNOMS4(0.183,246) MuNNC2(0.243,238) NOS(0.238,133)
AVCC(0.168,222) HEFF(0.243,238) MuNNCA(0.204,110)
SIX(0.165,212) MuMSA(0.181,182) NCO(0.180,97)
MuNOMS7(0.144,196) HVOL(0.140,134) NLOC(0.144,80)

J4
8

MuNOC2(0.274,265) NOM(0.160,500) HEFF(0.150,226)
MuMS2(0.210,227) HLTH(0.097,223) CBO(0.140,209)
AVCC(0.104,138) AVCC(0.059,151) MuNOMSA(0.133,202)
MuNOMSA(0.102,136) FOUT(0.051,131) HBUG(0.099,135)
MuNOMS7(0.090,115) MuMSCA(0.040,122) LCOM(0.099,147)
MuNNC7(0.089,117) CBO(0.036,106) MI(0.095,142)
NLOC(0.068,92) MuMSC4(0.036,119) AVCC(0.082,129)
MuNNC3(0.063,86) MuNOMS2(0.033,105) NOS(0.080,116)
F-IN(0.062,81) MuMSC2(0.033,94) Coh(0.069,105)
MuMS1(0.058,70) MuMSC7(0.032,99) MuMSC1(0.069,105)

Table 9: RQ2.3. Average Contribution of metric towards
MCC(training) when using Näıve Bayes, Logistic Regression
and J48.

mutation metrics. The box plots labelled ‘S’ give the MCC
values (Figure 1) and precision and recall values (Figure 2)
for predictive models that use source code metrics and static
mutation metrics. The box plots labelled ‘D’ give MCC val-
ues and precision and recall values for predictive models that
use source code metrics and dynamic mutation metrics. As
can be seen from the figures, neither of the MCC values,
nor the precision and recall values are noticeably improved
for either S or D. Indeed, if anything, these box plots tend
to suggest that either S or D on their own are unhelpful to
predictive modelling performance. Nevertheless, when com-
bined, the box plots labelled ‘A’ (All), indicate significant
potential benefit as observed in answer to RQ1.
The results of the inferential statistical analysis of the

performance improvement due to static (Table 10a) and dy-
namic (Table 10b) mutation metrics confirm this finding.
Table 10a reports the reduction (S-C) in the median MCC
value when source code metrics (C) alone are used, rather
than source code metrics augmented by static mutation met-
rics (S). Where this di↵erence is negative, it means that
static mutation metrics alone reduce the performance of the
predictive model, and where it is positive, static mutation
metrics alone improve performance. Similarly for Table 10b,
except that this table concerns dynamic mutation metrics
(D) alone. As can be seen, the beneficial e↵ect of mutation
metrics, in general, is lost when only static or only dynamic
mutation metrics are used. This suggests that both static
and dynamic mutation metrics are needed, and that their
benefit comes from an interaction between the two. Static

(a) Static

Apache Eclipse TelCom

Na

¨

ıve Bayes

0.008

(-0.028)

0.450

(0.003)

<0.001

(0.027)

Logistic Regression

<0.001

(-0.055)

<0.001

(-0.010)

0.259

(-0.009)

Random Forest

0.036

(0.025)

0.010

(0.012)

0.427

(0.013)

J48

<0.001

(-0.055)

0.030

(-0.009)

0.044

(0.044)

(b) Dynamic

Apache Eclipse TelCom

Na

¨

ıve Bayes

0.569

(-0.014)

<0.001

(-0.033)

<0.001

(0.039)

Logistic Regression

0.555

(0.017)

<0.001

(-0.019)

0.368

(-0.009)

Random Forest

0.036

(-0.052)

0.101

(0.012)

0.048

(0.036)

J48

<0.001

(-0.088)

0.429

(-0.005)

0.012

(0.050)

Table 10: RQ3. Two-tailed Wilcoxon test results are p val-
ues that show the probability that we would obtain the dif-
ference in medians we observe, if (a) static or (b) dynamic
mutation metrics were to have no significant e↵ect on pre-
dictive performance (measured using MCC). The number in
brackets is the di↵erence between the median values; where
positive it indicates static mutation metrics can improve pre-
dictive performance.

mutation metrics measure the number of simulated faults
that a program may contain, while dynamic mutation met-
rics reflect the ability of the existing test suite to detect these
simulated faults. In order to improve the performance of a
predictive model, it seems intuitive that information will be
needed on both the kind of faults the program may contain,
and the ability of the test suite to detect them. The results
for RQ3 support this observation; while static and dynamic
mutation metrics alone are unhelpful, they are highly bene-
ficial when combined.

6. THREATS TO VALIDITY
Our empirical study can be biased by three types of va-

lidity threats: construct validity, related to the agreement
between a theoretical concept and a specific measuring de-
vice or procedure; conclusion validity, related to the ability
to draw statistically correct conclusions; external validity,
related to the ability to generalise the achieved results.

In order to satisfy construct validity a study has “to es-
tablish correct operational measures for the concepts being
studied” [39]. Thus, the choice of the measures and how to
collect them are crucial. We mitigated such a threat by us-
ing fault data that has been carefully collected (see Section
4.2) and used in previous empirical studies [23]. The source
code metrics have been collected using JHawk [74], a robust
tool for collecting these kind of metrics in Java systems [46].
To collect the mutation information we used the PITtest [14]
tool since we want to perform our analysis on large subjects
and it is the most scalable mutation testing tool. Since the
results indicate that mutation can be helpful, they provide
a lower bound on the performance of mutation testing, but
further experimentation with di↵erent sets of mutation op-
erators would be advisable; the lower bound can only be

raised, because any mutation operators found to be univer-
sally unhelpful can simply be discarded for approaches to
mutation-aware fault prediction.
In relation to conclusion validity, we carefully calculated

the employed performance measures and applied statistical
tests, verifying all the required assumptions.
The external validity of our study can be biased by the

subjects we considered. Despite using both open source and
industrial projects, we cannot claim that the conclusions
reported apply to other software. The only way to miti-
gate this threat is to replicate the present study on other
datasets. Moreover our analysis was performed on data be-
longing to the same software version, thus it is possible that
these results might be valid only for the current version.
To mitigate this threat we plan to investigate in our future
work mutation based metrics both for next-releases [25] and
cross-project fault predictions [48, 63].

7. RELATED WORK
Fault prediction is an active research field within Software

Engineering. In 1971 Akiyama [2] proposed the earliest fault
predictive model based on Lines of Code (LOC) for a soft-
ware system developed at Fujitsu, estimating that a 1KLOC
module was expected to contain approximatively 23 faults.
Since then many predictive models and metrics have been
investigated. Some recent literature reviews are available on
both fault prediction models and metrics [4, 22, 66]. For the
sake of space in the following we focus on work that inves-
tigated and compared the use of di↵erent sets of metrics as
independent variables to build predictive models.
Besides LOC, other source code metrics (e.g., CK met-

rics [13]) and complexity metrics (e.g., Halsted metrics [24],
McCabe’s cyclomatic complexity [47], entropy metrics [28])
have been widely used and yield reasonable fault prediction
performance [36, 49]. All these metrics are based on software
code, however other metrics can be obtained from di↵erent
software artefacts. Ohlsson and Alberg reported on an em-
pirical study carried out at Ericsson where metrics derived
automatically from design documents were used to predict
fault-prone modules [60]. Process metrics (e.g., number of
commits, number of files changed, lines added/deleted) can
be collected from versioning systems and have been shown to
be e↵ective in improving the accuracy of predictive models
(see e.g., [31, 37, 52, 54, 58, 67]). Nagappan et al. [55] pro-
posed a metric scheme to quantify organisational complexity,
in relation to the product development process and investi-
gated the merits of these metrics in building fault predic-
tion models. The investigation carried out on data collected
from Windows Vista revealed that organisational metrics
were statistically significant predictors of failure-proneness,
and the precision and recall measures for identifying failure-
prone binaries, using the organisational metrics, was signifi-
cantly higher than using traditional metrics like churn, com-
plexity, coverage, dependencies, and pre-release bug mea-
sures. Caglayan et al. [10] recently replicated the study of
Nagappan et al. [55] on di↵erent large scale enterprise soft-
ware. The results revealed that models based on organiza-
tional metrics performed better than models based on churn
metrics but were outperformed by pre-release metric models.
Thus, they concluded that the performance of di↵erent met-
ric sets in building fault prediction models depends on the
project’s characteristics and the targeted prediction level.
Recently the use of metrics based on technical dependen-

cies among software modules and social information about
developers’ behaviour and interactions has also been inves-
tigated since these aspects may a↵ect software quality [6, 7,
78, 64, 79, 41]. Static test code metrics can be also cap-
tured by computing the same set of static code metrics that
have been previously described from the source code of test
cases. Nagappan [53] introduced a test metric suite called
Software Testing and Reliability Early Warning metric suite
(STREW) for estimating software quality. Further studies
conducted by Nagappan et al. [56, 57] indicated that the
STREW for Java metric suite can e↵ectively predict soft-
ware quality. Successively, Liljeson and Mohlin [43] assessed
the e↵ectiveness of the STREW suite in predicting faults
contained in a large industrial software project developed
by Ericsson. Their results showed that the combination of
source code metrics and test metrics do not outperform us-
ing only source code metrics.

To the best of our knowledge only one study has been
carried out to relate test executions during development
with fault likelihood [30]. In his work, Herzig investigated
whether metrics based on test failure bursts can be used
to build pre- and post-release faults prediction models [30].
The results showed that test metrics collected during Win-
dows 8 development outperform pre-release fault counts when
predicting post-release faults. There has been previous work
that used mutation testing in fault localisation [51][75] and
various metrics (including test-based metrics) have been used
to predict mutation scores [33]. These studies are the clos-
est related previous work to the mutation-aware fault pre-
diction approach introduced in the present paper. However,
despite much work on di↵erent proposed metrics for fault
prediction, the present paper is the first to use mutation
metrics for fault prediction and to use fault prediction in-
formation related to the testing phase (i.e., mutation cov-
erage and scores). The positive results we have found for
this mutation-aware approach to predictive modelling are
encouraging (both for related and for future work), suggest-
ing that other such metrics may profitably be explored and
could further improve the performance of fault prediction.

8. CONCLUSIONS, IMPLICATIONS & FU-
TURE WORK

We find that mutation-aware fault prediction can outper-
form traditional fault prediction, for a range of predictive
modelling machine learning algorithms. Naturally, the ef-
fects vary, from system to system and from algorithm to
algorithm, with di↵erent subsets of mutants contributing to
the overall improvement. Nevertheless, in all cases, muta-
tion metrics feature highly in the top 10 most influential
metrics across all systems and algorithms, providing consis-
tent evidence that mutation awareness is beneficial to predic-
tive modelling performance. Our results also indicate that
the best performance is obtained using a combination of
both static and dynamic mutation metrics.

Naturally, we believe the primary implication of our find-
ings lies in the potential benefit for fault prediction. How-
ever, we also believe that mutation-aware fault prediction
could be valuable for mutation testing too: one critical prob-
lem for mutation testing lies in the selecting of a suitable set
of mutation operators [8, 27, 59]. Since mutation awareness
benefits fault prediction, the most desirable mutation oper-
ator set, m, for a given system under test, s, would include

those that tend to improve fault prediction for s. That is,
the set m will be the most closely coupled to (detectable)
real faults in s, by virtue of m’s ability to predict the sub-
sequent detection of real faults in s. This could allow us
to tailor mutation operator selection to the likely detectable
faults in the program under test. In this way our findings
may have actionable implications for both mutation test-
ing and for fault prediction. We hope that mutation-aware
fault prediction will stimulate the creation of a symbiotic
relationship between the two fields of study.
Finally, since we find that di↵erent systems benefit from

di↵erent subsets of mutation metrics (and, indeed, di↵erent
sets of source code metrics more generally), and that test
awareness is important for best results, future work might
consider other sets of mutants, mutation-aware metrics, and
traditional metrics. Future work may also investigate other
predictive modelling approaches and software systems to
widen the generalisability of the results presented here.

Acknowledgement
This work was partly funded by the UK’s Engineering and
Physical Sciences Research Council (EPSRC) under grant
numbers EP/L011751/1 and EP/J017515.

9. REFERENCES
[1] W. Afzal, R. Torkar, R. Feldt, and T. Gorschek.

Prediction of faults-slip-through in large software
projects: an empirical evaluation. Softw. Quality J.,
22(1):51–86, 2014.

[2] F. Akiyama. An example of software system
debugging. In Proc. of the IFIP Congress, p 353–359,
1971.

[3] J. Andrews, L. Briand, and Y. Labiche. Is mutation
an appropriate tool for testing experiments? In 27th
Int’l Conf. on Softw. Eng., p 402–411, 2005.

[4] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of
methods to build and evaluate fault prediction models.
J. Syst. Softw., 83(1):2–17, 2010.

[5] Y. Bejamini and Y. Hochberg. Controlling the false
discovery rate: A practical and powerful approach to
multiple testing. J. of the Royal statistical Soc. (Series
B), 57(1):289–300, 1995.

[6] N. Bettenburg and A. E. Hassan. Studying the impact
of social interactions on software quality. Empirical
Softw. Engg., 18(2):375–431, 2013.

[7] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and
B. Murphy. Putting it all together: Using
socio-technical networks to predict failures. In Int’l
Symp. on Softw. Reliability Eng.. 2009.

[8] L. Bottaci and E. S. Mresa. E�ciency of mutation
operators and selective mutation strategies: An
empirical study. STVR, 9(4):205–232, Dec. 1999.

[9] L. Breiman. Random forests. Machine Learning,
45:5–32, 2001.

[10] B. Caglayan, B. Turhan, A. Bener, M. Habayeb,
A. Miransky, and E. Cialini. Merits of organizational
metrics in defect prediction: An industrial replication.
In IEEE Int’l Conf. on Softw. Eng., 2, 89–98, 2015.

[11] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto,
A. Panichella, and S. Panichella. Defect prediction as

a multiobjective optimization problem. Softw. Test.,
Verif. Reliab., 25(4):426–459, 2015.

[12] C. Catal and B. Diri. A systematic review of software
fault prediction studies. Expert systems with
applications, 36(4):7346–7354, 2009.

[13] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. IEEE Trans. on Softw. Eng., p
476–493, 1994.

[14] H. Coles. http://pitest.org/, 2015.
[15] S. Counsell and E. Nasseri. Java method calls in the

hierarchy–uncovering yet another inheritance foible.
CIT. J. of Computing and Information Technology,
18(2):159–165, 2010.

[16] D. R. Cox. The regression analysis of binary
sequences. J. of the Royal Statistical Soc. Series B
(Methodological), p 215–242, 1958.

[17] M. Dash and H. Liu. Feature selection for
classification. Intelligent Data Analysis, 1(1–4):131 –
156, 1997.

[18] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practical
programmer. IEEE Computer, 11:31–41, 1978.

[19] N. E. Fenton and M. Neil. A critique of software
defect prediction models. Softw. Eng., IEEE Trans.
on, 25(5):675–689, 1999.

[20] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. In Int’l Symp. on Softw. Testing
and Analysis, p 147–158, Trento, Italy, 2010. ACM.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. In SIGKDD
Explorations, 11(1), 2009.

[22] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic literature review on fault
prediction performance in software engineering. IEEE
Trans. Softw. Eng., 38(6):1276–1304, 2012.

[23] T. Hall, M. Zhang, D. Bowes, and Y. Sun. Some code
smells have a significant but small e↵ect on faults.
ACM Trans. on Softw. Eng. and Methodology,
23(4):33, 2014.

[24] M. H. Halstead. Elements of Softw. Science
(Operating and programming systems series). Elsevier
Science Inc., NY, USA, 1977.

[25] M. Harman, S. S. Islam, Y. Jia, L. L. Minku, F. Sarro,
and K. Srivisut. Less is more: Temporal fault
predictive performance over multiple hadoop releases.
In Search-Based Softw. Eng. - 6th Int’l Symp., p
240–246, 2014.

[26] M. Harman, Y. Jia, and W. B. Langdon. Strong
higher order mutation-based test data generation. In
8th European Softw. Eng. Conf. and the ACM
SIGSOFT Symp. on the Foundations of Softw. Eng., p
212–222, 2011.

[27] M. Harman, Y. Jia, P. R. Mateo, and M. Polo. Angels
and monsters: an empirical investigation of potential
test e↵ectiveness and e�ciency improvement from
strongly subsuming higher order mutation. In
ACM/IEEE Int’l Conf. on Automated Softw. Eng., p
397–408. ACM, 2014.

[28] A. E. Hassan. Predicting faults using the complexity
of code changes. In Proc. of the 31st Int’l Conf. on
Softw. Eng., p 78–88, 2009.

[29] S. Henry and D. Kafura. Softw. structure metrics
based on information flow. Softw. Eng., IEEE Trans.
on, (5):510–518, 1981.

[30] K. Herzig. Using pre-release test failures to build early
post-release defect prediction models. In Int’l Symp.
on Softw. Reliability Eng., 300–311. IEEE, 2014.

[31] K. Herzig, S. Just, A. Rau, and A. Zeller. Predicting
defects using change genealogies. In IEEE Int’l Symp.
on Softw. Reliability Eng., 118–127, 2013.

[32] W. E. Howden. Weak mutation testing and
completeness of test sets. Trans. on Softw. Eng.,
8:371–379, 1982.

[33] K. Jalbert and J. Bradbury. Predicting mutation score
using source code and test suite metrics. In Realizing
Artificial Intelligence Synergies in Software
Engineering (RAISE), 2012 First International
Workshop on, pages 42–46, 2012.

[34] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Trans. on
Softw. Eng., 37(5):649 – 678, 2011.

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In Proc.
of the SIGSOFT Int’l Symp. on Foundations of Softw.
Eng. ACM, 2014.

[36] S. Kim. Defect, defect, defect: Defect prediction 2.0.
In 8th Int’l Conf. on Predictive Models in Softw. Eng.,
p 1–2, 2012.

[37] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller.
Predicting faults from cached history. In Int’l Conf. on
Softw. Eng. , 489–498, 2007.

[38] K. N. King and A. J. O↵utt. A FORTRAN language
system for mutation-based software testing. Software
Practice and Experience, 21:686–718, 1991.

[39] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case
studies for method and tool evaluation. IEEE Softw.,
12(4):52–62, 1995.

[40] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artificial Intelligence,
97(1-2):273–324, 1997. Special issue on relevance.

[41] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro
interaction metrics for defect prediction. In ACM
SIGSOFT Symp. and the European Conf. on
Foundations of Softw. Eng., 311–321, 2011.

[42] W. Li and S. Henry. Maintenance metrics for the
object oriented paradigm. In Softw. Metrics Symp.,
Proc.., First Int’l, p 52–60. IEEE, 1993.

[43] M. Liljeson and A. Mohlin. Softw. defect prediction
using machine learning on test and source code
metrics. Thesis no: MECS-2014-06, 2006.

[44] M. Lorenz and J. Kidd. Object-oriented Softw.
Metrics: A Practical Guide. Prentice-Hall, USA, 1994.

[45] S. D. Martino, F. Ferrucci, C. Gravino, and F. Sarro.
A genetic algorithm to configure support vector
machines for predicting fault-prone components. In
Product-Focused Softw. Process Improvement - 12th
Int’l Conf., p 247–261, 2011.

[46] G. Mauša, T. Galinac Grbac, and D. Dalbelo Bašić.
Data collection for software defect prediction – an
exploratory case study of open source software
projects. In Proc. of MIPRO CTI, p 513–519, 2015.

[47] T. McCabe. A complexity measure. Softw. Eng., IEEE
Trans. on, SE-2(4):308 – 320, dec. 1976.

[48] T. Menzies, A. Butcher, D. R. Cok, A. Marcus,
L. Layman, F. Shull, B. Turhan, and T. Zimmermann.
Local versus global lessons for defect prediction and
e↵ort estimation. IEEE Trans. Softw. Eng.,
39(6):822–834, 2013.

[49] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang,
and A. B. Bener. Defect prediction from static code
features: current results, limitations, new approaches.
Autom. Softw. Eng., 17(4):375–407, 2010.

[50] Y. Jia and M. Harman. Milu: A customizable,
runtime-optimized higher order mutation testing tool
for the full C language. In Testing Academia and
Industry Conf. - Practice and Research Techniques,
94–98, 2008.

[51] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the
mutants: Mutating faulty programs for fault
localization. In IEEE Int’l Conf. on Softw. Testing,
Verification and Validation, 153–162, 2014.

[52] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the e�ciency of change metrics and static
code attributes for defect prediction. In Proc. Int’l
Conf. on Softw. Eng., 181–190, 2008.

[53] N. Nagappan. A software testing and reliability early
warning (STREW) metric suite. PhD thesis, 2005.

[54] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc.
Int’l Conf. on Softw. Eng., 284–292, 2005.

[55] N. Nagappan, B. Murphy, and V. Basili. The influence
of organizational structure on software quality: An
empirical case study. In Proc. of the 30th Int’l Conf.
on Softw. Eng., p 521–530, 2008.

[56] N. Nagappan, L. Williams, M. Vouk, and J. Osborne.
Early estimation of software quality using in-process
testing metrics: A controlled case study. SIGSOFT
Softw. Eng. Notes, 30(4):1–7, May 2005.

[57] N. Nagappan, L. Williams, M. Vouk, and J. Osborne.
Using in-process testing metrics to estimate
post-release field quality. In Softw. Reliability. IEEE
Int’l Symp. on, p 209–214, 2007.

[58] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change bursts as defect predictors. In
Softw. Reliability Eng., IEEE 21st Int’l Symp. on, p
309–318, 2010.

[59] A. J. O↵utt, G. Rothermel, and C. Zapf. An
experimental evaluation of selective mutation. In Int’l
Conf. on Softw. Eng., p 100–107. IEEE, 1993.

[60] N. Ohlsson and H. Alberg. Predicting fault-prone
software modules in telephone switches. IEEE Trans.
Softw. Eng., 22(12):886–894, Dec. 1996.

[61] P. Oman, J. Hagemeister, and A. Ash, D. Definition
and taxonomy for software maintainability. Technical
Report 91-08-TR, University of Idaho, 1991.

[62] M. Papadakis and N. Malevris. Automatic mutation
test case generation via dynamic symbolic execution.
In Int’l Symp. on Softw. Reliability Eng., 2010.

[63] F. Peters, T. Menzies, and A. Marcus. Better cross

company defect prediction. In Proc. of the 10th
Working Conf. on Mining Softw. Repositories, p
409–418, 2013.

[64] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In Proc.
ACM SIGSOFT Int’l Symp. on Foundations of Softw.
Eng., 2–12, 2008.

[65] J. Quinlan. C4. 5: programs for machine learning,
volume 1. Morgan kaufmann, 1993.

[66] D. Radjenović, M. Heric̆ko, R. Torkar, and
A. Z̆ivkovic̆. Softw. fault prediction metrics: A
systematic literature review. Information and Softw.
Technology, 55(8):1397–1418, 2013.

[67] F. Rahman and P. T. Devanbu. How, and why,
process metrics are better. In 35th Int’l Conf. on
Softw. Eng., p 432–441, 2013.

[68] F. Sarro, S. D. Martino, F. Ferrucci, and C. Gravino.
A further analysis on the use of genetic algorithm to
configure support vector machines for inter-release
fault prediction. In Proc. of the ACM Symp. on
Applied Computing,, p 1215–1220, 2012.

[69] B. H. Sellers. Object-Oriented Metrics. Measures of
Complexity. Prentice Hall, 1996.

[70] M. Shepperd, D. Bowes, and T. Hall. Researcher bias:
The use of machine learning in software defect
prediction. Softw. Eng., IEEE Trans. on,
40(6):603–616, 2014.

[71] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? ACM sigsoft software
engineering notes, 30(4):1–5, 2005.

[72] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A
general software defect-proneness prediction
framework. Softw. Eng., IEEE Trans. on,
37(3):356–370, May 2011.

[73] M. Staats, G. Gay, and M. P. E. Heimdahl. Automated
oracle creation support, or: How I learned to stop
worrying about fault propagation and love mutation
testing. In Int’l Conf. on Softw. Eng., 870–880, 2012.

[74] Virtualmachinery. JHawk the Java metrics tool, 2015.
[75] J. M. Voas. Pie: a dynamic failure-based technique.

IEEE Trans. on Softw. Eng., 18(8):717–727, 1992.
[76] I. H. Witten and E. Frank. Data Mining: Practical

machine learning tools and techniques. Morgan
Kaufmann, 2005.

[77] M. R. Woodward and K. Halewood. From weak to
strong, dead or alive? an analysis of some mutation
testing issues. In 2nd Workshop on Softw. Testing,
Verification, and Analysis, 1988.

[78] T. Zimmermann and N. Nagappan. Predicting
subsystem failures using dependency graph
complexities. In Proc. of the The 18th IEEE Int’l
Symp. on Softw. Reliability, p 227–236, 2007.

[79] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In Proc.
of the Int’l Conf. on Softw. Eng., 531–540, 2008.

[80] T. Zimmermann and N. Nagappan. Predicting defects
with program dependencies. In Empirical Softw. Eng.
and Measurement, Int’l Symp. on, 435–438, 2009.

