
Assert Use and Defectiveness in Industrial Code

 S. Counsell, T. Hall T. Shippey, D. Bowes A. Tahir S. MacDonell
 Dept. of Computer Science Dept. of Computer Science School of Eng. & Advanced Tech. Dept. of Inf. Science
 Brunel University University of Hertfordshire Massey University University of Otago
 London, UK Hertfordshire, UK New Zealand New Zealand
 steve.counsell@brunel.ac.uk t.shippey@herts.ac.uk a.tahir@massey.ac.nz stephen.macdonell@otago.ac.nz

Abstract—The use of asserts in code has been a recognized

programming construct for many decades. In theory, liberal use

of asserts should be encouraged and the physical position of

asserts in the class should make no difference to their

effectiveness. A previous empirical study by Casalnuovo et al.,

showed that methods containing asserts had fewer defects than

those that did not. In this paper, we analyze the test classes of two

industrial telecom Java systems to lend support to, or refute that

finding. We also analyze the position of asserts in methods to

determine if there is a relationship between assert placement and

method defect-proneness. Finally, we explore the role of test

method size and the relationship it has with asserts. In terms of

the previous study by Casalnuovo et al., we found only limited

evidence to support the earlier results. We did, however, find that

defective methods with one assert tended to be located at

significantly lower levels of the class position-wise than non-

defective methods. Finally, method size seemed to correlate

strongly with asserts, but surprisingly less so when we excluded

methods with just one assert. Methods with just a single assert

appear to be different in terms of their link with defects than

methods with multiple asserts.

Keywords—defect, assert, empirical, industry

I. INTRODUCTION AND MOTIVATION

Asserts are widely acknowledged as a powerful automated tool
for detecting and localizing faults in programs [3]. They are
used as a checking and verification mechanism for what the
program “should do”, and for assisting during the debugging,
deployment and testing stages of development. Using asserts
can also improve the reliability of the program, since they
provide a means of systematic error-checking and making
explicit what code is trying to do. A number of recent studies
[1, 4, 5, 9] have explored the role of asserts in code. The work
described in this paper is motivated partly by previous work of
Casalnuovo et al., [1]. In that study, the use of asserts in a large
set of C and C++ projects on GitHub were studied. Results
showed that programs using asserts had fewer defects
compared to programs with no asserts. The study underlined
the important role that asserts played in the quality of software
and the connection with defects. These findings were in-line
with the previous results of Kudrjavets et al., [9]. But is it true
to say that the more asserts used in a class, the better (in terms
of defect-proneness)? And is the position of asserts in the class
relevant to how effective they may be? Does either of these
questions really matter?

In this paper, we also investigate the issue of asserts and
defect-proneness in test classes with that further motivation in
mind. We explore the physical positioning of asserts and
whether test method size has a role in their number. In terms of
reflecting the previous study by Casalnuovo, et al., only limited
evidence to support earlier results was found. We did, however,
find evidence that defective methods with a single assert tended
to be located at lower levels of the class “position-wise”;
Finally, we found a positive, significant relationship between
number of asserts and method size, but to varying degrees,
depending on whether the method was defective or not. The
remainder of the paper is organized as follows. In the next
section, we describe other related work and the data collected.
In Section III, we analyze the data collected on four themes
before discussing the results and the threats to validity (Section
IV). Finally, we conclude and point to future work (Section V).

II. RELATED WORK/PRELIMINARIES

A. Related work

Asserts in programming languages have been the subject of
significant previous interest especially in the areas of error-
checking (e.g., [12]) and program verification ([e.g., [2]). The
idea of using asserts as a means of program verification can be
traced back to Floyd [7]. Later, Yau and Cheung [15] used
asserts for automatic run-time checking. The use of asserts has
been advocated by many authors and researchers; McConnell
[10] advises developers to implement the use of asserts in their
programming practices to promote automatic checking for
program failures. Fowler et al., [6] suggests ‘introduce
assertion’ as one the 72 refactorings when assumptions need to
be made explicit in the code. Meyer in “applying design by
contract” [11] advocated the use of asserts as a correction
methodology and for establishing contract pre- and post-
conditions. The approach of contracts and asserts was
implemented in the Eiffel programming language and the
Turing language was one of the earliest languages to support
the use of asserts [8]. The history of asserts usage in
programming languages was detailed by Clarke and
Rosenblum [3] and several studies have investigated the use of
asserts (or more generally the use of contracts) in both open-
and closed-source software. The work of Kudrjavets et al., [9],
based on two Microsoft projects, showed that the density of
bugs decreased when the density of asserts increased (in this
paper, we challenge that notion). Estler et al., [5] studied the
use of pre- and post-conditions in twenty-one OO projects
(written in Java, C# and Eiffel). The study found that the

mailto:steve.counsell@brunel.ac.uk
mailto:a.tahir@massey.ac.nz

percentage of program elements that included contracts/asserts
was above 33% for most projects and tended to be stable over
time. Clearly, some insightful work has been done in the area
of asserts. However, our knowledge of their characteristics and
influence is still largely unknown and leaves many open
research questions.

 B. Preliminaries

The two industrial systems used in the study were written using
an Agile approach and had been in production for several
years. Pair programming, TDD and daily stand-ups were all
features of the development practice at the company, based in
London. In terms of data collected, the number of asserts and
lines of code (LOC) in each of the methods were extracted
using the JHawk tool [14]. To identify defective methods, we
used the SZZ approach since it has been used in many seminal
previous studies [13]. SZZ is a fault linking algorithm
described by Sliwerski et al., [13] and matches a fault fix
described in a defect tracking system with the corresponding
commit in a version control system that 'removed' the defect.
By backtracking through the version control records, it is
possible to identify earlier code changes which ended up being
'fixed'. It is assumed that the earlier code changes inserted the
defect. The module of code (in our case a method) is labelled
as defective between the time the defect was inserted and the
time it was fixed. Using this technique it is possible to identify,
for a particular snapshot of the code base, which modules
(methods) are defective and which are not. Finally, for each
method we indicate a defective method on a binary (yes/no)
basis, in contrast to collecting number of defects per method.

III. DATA ANALYSIS

In the next sections, we examine asserts in the two systems

from four perspectives. Firstly, for the propensity of methods

with asserts to be defective; secondly, a comparison of

methods with one assert versus those with more than one (in

terms of defect-proneness). Thirdly, the role that the position

of a method containing asserts plays in defect-proneness and,

finally, the size of method and its relationship with asserts.

A. Defect propensity (asserts vs. methods)
We explore firstly whether test methods containing at least one
assert were less likely to be defective (than those that contained
no asserts). This is a partial replication of the work by
Casalnuovo et al., [1] which showed that methods containing
asserts had fewer defects than those that did not. For System
one, 1,232 methods of the 10,504 (11.73%) contained at least
one assert (9,272 methods therefore contained zero asserts).
Table 1 shows the distribution of those 1,232 asserts in five
separate numerical intervals. So, for example, 23 methods
contained between 10 and 19 assert statements (inclusive);
methods with a single assert numbered 788.

Table 1. Distribution of asserts (System one)

>=20 <= 24 >=10 <=19 >=5<=9 >=2<=4 =1 Total

8 23 64 349 788 1,232

Of the 9272 methods in System one with zero asserts, 810 were
defective (8.74%). In the five categories shown in Table 1 from
a total of 1,232 methods, 107 were defective, representing
8.69%. Comparison of these values does not support the view
that methods with asserts are less defective than those with
asserts; an almost identical proportion of each category is
defective. Carrying out the test for defective methods (zero
asserts versus one or more asserts) returned a Z value of -
30.20, significant at the 1% level; For System two, 1,589 of the
12,038 (13.20%) methods in total contained at least one assert
(10,449 methods did not contain a single assert). Table 2 shows
the distribution of asserts for System two in the same format as
Table 1. Of the 10,449 methods that did not include an assert
statement, 1,173 were defective (11.23%). Of the 1,589
methods with at least one asset, 219 were defective (13.78%).

Table 2. Distribution of asserts (System two)

>=20 <= 37 >=10 <=19 >=5<=9 >=2<=4 =1 Total

4 7 55 326 1,197 1,589

For System two, there is, again, only limited support for the

claim that methods with at least one assert are more defect-

prone than those without asserts - the difference between the

two groups is less than 3%. Overall, we cannot conclude that

methods containing asserts were and more or less defective

than methods without asserts, for the two systems studied.

B. One assert versus many
The values in Tables 1 and 2 show that the vast majority of
methods contained just a single assert. For System one, 85.47%
of all asserts were single asserts in the method. For System
two, the corresponding value was 75.33%. One question that
arises from the preceding analysis is whether a single assert in
a method is as “effective” as one with many asserts in a method
(i.e., >1). In other words, does the number of asserts in a
method make any difference to the likelihood of that method
being defective? We therefore analyzed the data to determine if
the defect profile of the former set of methods (i.e., those in
column 5 in Tables 1 and 2) was different to that of methods
with more than one assert (obtained by summing columns 1-4
in Tables 1 and 2). For System one, of the 788 methods with a
single assert, 59 were defective (7.49%). Of the 444 remaining
methods (in columns 1-4 of Table 1), 48 were defective
(10.81%). For System 2, of the 1197 with a single assert, 171
were defective (14.29%). For all remaining methods with more
than one assert (392), the number of defective methods was
also 48 (12.24%). These results therefore suggest that for the
two systems, there is no evidence that a method containing
more than one assert is any less (or more) defective than one
with just a single assert. We do not necessarily find support for
the earlier work of Casalnuovo et al., [1]. This is an interesting
observation from the perspective of assertion use generally.
Casalnuovo states that: “The effect of asserts on bugs in the
count model is almost insignificant, and the magnitude of the
effect is negligible overall. Both models together indicate that
adding the first assert to a file has a significant and sizable
effect on bugs, but after the first, on average for all developers,

adding additional asserts has no appreciable difference”. We
accept that we study asserts on a binary (yes/no) defect basis
where the actual number of defects may have been more useful
in this instance; however, we feel that the result is still
revealing and provides an insight into the relative effectiveness
of asserts. One carefully placed assert might be as effective as a
liberal amount of asserts.

C. Position of an assert
One issue which may be relevant to our understanding of assert
usage and inform the previous result is whether the physical
placement of asserts in a class (i.e., its position in a class) is
related to method defectiveness or not. Table 3 shows the data
of start line of a method (i.e., where the method starts
physically in the class) for all methods (for both Systems one
and two) where there was just one assert and where the method
was defective or non-defective. For example, in System one,
the mean start line of a method with one assert in it and which
was defective was 139.56 (with median 111); 59 methods fell
into this category. We also include the standard deviation
values (SD). For non-defective methods with at least one
assert, the corresponding mean start line was 79.52 (median
52). In other words, defective methods with asserts are placed
far lower down in the class in terms of physical lines of code
than methods with asserts and which are non-defective.

 Table 3. Start-line analysis of asserts

Category Mean SD Median # Methods

System one

Defective 139.56 84.55 111 59

Non-defective 79.25 94.36 52 729

System two

Defective 147.04 53.55 68 171

Non-defective 62.79 183.67 47 1,026

The Mann Whitney U test is a non-parametric test and
determines the likelihood of a value taken from one sample
being the same as or greater than a value taken from a different
independent sample. Carrying out a Mann Whitney U test
(defective versus non-defective for methods with a single
assert) gave a Z value of -6.53 (significant at the 1% (0.01)
level) for System one and a Z value of -5.45 for System two,
also significant at the 1% level. We conclude that there is a
negative significant difference in the positions in a class
between defective and non-defective methods (in the case
where methods had a single assert). To try and understand this
result, we asked one of the project lead developers at the
company about this effect and why it was that methods at the
end of the class were shown to be more defective. One
explanation offered was that new methods were usually added
at the end of the class during maintenance in response to new
functionality being added to the system, as we might expect.
The systems they maintained, however, were becoming more
defective over time and requirements were getting harder to
implement correctly because of issues such as technical debt
and changing team members. More recent tests at the end of a
file were therefore more likely to be defective than the older

tests at the top of the class and this might go some way to
explaining our result.

 D. Asserts and size

The final aspect of asserts that we explore is the extent to
which they are related to method size. The study by Estler et
al., using Java, Eiffel and C# systems found that the number of
asserts correlated positively with project size. Figure 1 shows
the correlation between the numbers of asserts and the size of
methods for System one excluding all methods where there
were zero asserts. The largest number of asserts in any single
method for this systems was 24.

Figure 1. System one correlation (no. of asserts vs. method size)

The correlation values for all asserts were all found to be
significant at the 1% level (Kendall’s (0.41) and Spearman’s
rank correlation coefficient (0.50)). Both Kendall’s and
Spearman’s correlations are non-parametric tests and make no
assumption about the normality of the data (a Kolmogorov-
Smirnov test for large samples was carried out on the
distribution of asserts to verify that the data was indeed non-
parametric). Interestingly, if we then decompose the data into
defective and non-defective, these correlation values change to
just 0.42 (Kendall’s) and 0.51 (Spearman’s) for the set of
defective methods and 0.31 (Kendall’s) and 0.38 (Spearman’s)
for the non-defective methods, a far weaker set of correlation
values. This implies that there may well be a positive effect of
using more asserts in identification of defective methods.
Figure 2 shows the corresponding scatter plot for System two
(method size versus number of asserts). The largest number of
asserts in any single method for this system was 37 (234 LOC).

Figure 2. System two correlation (no. of asserts vs. method size)

The correlation values for this scatter plot are 0.34 (Kendall’s),
and 0.39 Spearman’s) both of which are significant at the 1%

level. If we then decompose the data into defective and non-
defective categories, we get correlation values of 0.34
(Kendall’s) and 0.41 (Spearman’s) for the set of defective
methods, all significant at the 1% level and 0.34 and 0.39 for
the set of non-defective methods, all of which are significant at
the 1% level. We did not therefore find overwhelming evidence
in support of the view that use of asserts is directly related to
method size.

IV. STUDY IMPLICATIONS AND VALIDITY THREATS

The preceding analysis reflects on previous studies in the area

and raises the question as to the implications for the

tester/developer. The weight of evidence does seem to point to

methods with just a single assert being different in their link

with defects than methods with multiple asserts. In some

ways, it may be the case that a carefully chosen single assert is

as useful and effective as a methods liberally spread with

asserts. This is the view that Casalnuovo et al., expressed

when emphasizing the value of the first assert and is an issue

that needs further study. We also have to consider the result of

assertion positioning and the view of the developer. Clearly,

evolution is a factor in the deterioration of test code just as it

for production code. The result suggests that more refactoring

of test code and reversal of code decay might prove

worthwhile. Finally, the link between asserts and size was

interesting – it again suggests that a single assert has a

stronger correlation with size than if we include methods with

multiple asserts. The analysis in the paper raises a number of

threats to validity. Firstly, we only studied two systems from

an industrial partner and we cannot therefore easily extend the

results to other industrial or open-source systems. Secondly,

the two systems we used in this study were both telecoms

systems; this might restrict the extent to which we could

generalize our conclusions to other application domains.

Thirdly, the number of asserts in the methods of the systems

was quite low (between 10% and 14%) – so our sample sizes

were quite low taking the ‘wider’ picture. However, this might

have been expected: the company reported very few low-level

coding defects; many of the problems they faced were less to

do with unit testing and more due to the interfaces with

supplier systems. Fourthly, we only flagged a method as

defective or non-defective without including the number of

defects. However, the original purpose of the study was to try

and link asserts with a coarse view of defect-proneness.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the use of asserts in two industrial

telecoms systems. We explored four aspects of asserts. Firstly,

for the propensity for methods with asserts to be defective –

we found no evidence that methods containing asserts were

more defective than methods without for the two systems

studied. Secondly, we compared methods with one assert

versus those with more than one (in terms of defect-

proneness). We found no evidence that a method containing

more than one assert was any less (or more) defective than

one with just a single assert. Thirdly, the role that the position

of a method containing asserts plays in defect-proneness. We

found a statistically significant difference in the positions in a

class between defective and non-defective methods where

methods had a single assert). Finally, the size of method and

its relationship with asserts. No overwhelming support for a

link between asserts and method size was found. In terms of

direct future work, we will explore more systems both

industrial/open-source (the company has ~100 similar

systems). We will also extract actual numbers of defects from

those systems. One aspect we haven’t explored in this paper is

test quality versus quantity and whether an optimum level of

asserts exists; this will also be a subject of further work.

REFERENCES

[1] C. Casalnuovo, P., Devanbu, A., Oliveira, V., Filkov and B. Ray, Assert

use in GitHub projects. International Conference on Software

Engineering, Florence, Italy (pp. 755-766). IEEE Press, 2015
[2] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond asserts:

Advanced specification and verification with jml and esc/java2. In

Formal methods for components and objects, 342–363. Springer, 2006.
[3] L. Clarke, D. Rosenblum, 2006. A historical perspective on runtime

assertion checking in software development. ACM SIGSOFT Software

Engineering Notes, 31(3), pp.25-37.
[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz and C. Xiao. The Daikon system for dynamic detection of

likely invariants. Sci. Comput. Programming, 69(1–3):35–45, 2007.

[5] H. Estler, C. Furia, M. Nordio, M. Piccioni and B. Meyer, 2014, May.

Contracts in practice. In International Symposium on Formal Methods

(pp. 230-246). Springer International Publishing.
[6] M. Fowler, Refactoring: Improving the design of existing code, 1999,

Addison-Wesley.

[7] R. Floyd. Assigning meanings to programs. Mathematical aspects of
computer science, 19(19-32):1, 1967.

[8] R. Holt, J. Cordy, The Turing programming language, Communications

of the ACM. 31 (12): 1410–1423.
[9] G. Kudrjavets, N. Nagappan, and T. Ball. Assessing the relationship

between software asserts and faults: An empirical investigation. In

International Symposium on Software Reliability Engineering, ISSRE
’06, pages 204–212, Washington, DC, USA, 2006.

[10] S. McConnell, 2004. Code complete. Pearson Education.

[11] B. Meyer, 1992. Applying 'design by contract'. Computer, 25(10):40-51.
[12] D. Rosenblum, 1995. A practical approach to programming with asserts.

IEEE transactions on Software Engineering, 21(1), pp.19-31.
[13] J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes induce

fixes? SIGSOFT Softw. Eng. Notes, 30 (4):1-5, May 2005.

[14] http://www.virtualmachinery.com/jhawkprod.htm
[15] S. Yau and R. Cheung. Design of self-checking software. In ACM

SIGPLAN Notices, volume 10, pages 450–455. ACM, 1975.

