
So You Need More Method Level Datasets for Your
Software Defect Prediction? Voilà!

Thomas Shippey, Tracy
Hall and Steve Counsell

Computer Science
Brunel University London
Uxbridge, United Kingdon

{thomas.shippey,tracy.hall,
steve.counsell}@brunel.ac.uk

David Bowes
Science and Technology

Research Institute
University of Hertfordshire
Hatfield, United Kingdom

d.h.bowes@herts.ac.uk

ABSTRACT
Much defect prediction research is based on a small number
of defect datasets. Most datasets are at class not method
level. Consequently our knowledge of defects is limited.
Identifying defect datasets for prediction is not easy and ex-
tracting quality data from identified datasets is even more
difficult. We identify open source Java systems suitable
for defect prediction and extract high quality data from
these datasets. We use the Boa September 2013 SourceForge
dataset to identify candidate open source systems. We used
selection criteria based on the type and quality of both a
software repository and its defect tracking system to reduce
potentially 50,000 open source systems to 23 suitable for de-
fect prediction. We enhance the SZZ algorithm to extract
fault information from these systems and we used JHawk to
produce 138 fault and metrics datasets. The data we pro-
vide enables future studies to proceed with minimal effort.
Our datasets significantly increase the pool of systems cur-
rently being used in defect analysis studies. We make these
datasets (the ELFF datasets) and our data extraction tools
freely available to future researchers.

CCS Concepts
•Software and its engineering→ Software defect anal-
ysis; Search-based software engineering; •Computing method-
ologies → Machine learning algorithms;

Keywords
Defects, Defect Prediction, Boa, Data Mining, Defect linking

1. INTRODUCTION
In this paper, we present defect and source code metrics

data from 23 Java open source systems. We selected systems
using a systematic approach for identifying systems suitable
for defect prediction. We extracted data from these systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEM ’16 Ciudad Real, Spain
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

at method level using a rigorous methodology. Over the last
20 years researchers have dedicated a huge amount of effort
to developing a variety of software defect1 prediction mod-
els. Most defect prediction models are based on open source
systems as commercial source code and defect data is diffi-
cult to obtain. Researchers confine themselves to studying
a small pool of open source systems. This is not surprising
as identifying suitable systems and extracting reliable data
is difficult and time consuming. Consequently many of the
systems analysed in previous studies are those where data
is already available (e.g. from the Promise Repository [2]).

The reasons that collecting usable and reliable defect data
is difficult include: First, projects will often not have enough
defects stored in repositories to enable the building of de-
fect prediction models. Second, knowledge, skill and care
is needed when collecting defect data from project reposito-
ries to ensure reliable defect data is extracted. Third, it is
difficult to collect sufficient good quality defect data at the
method level and so the majority of data sets used in defect
prediction are at class or file level. This high level of pre-
diction granularity is of limited use given that a file or class
might be hundreds of lines long. To address these difficul-
ties, we present the ELFF dataset which contains systems
rich in defect data, with method and class level defect data
collected using a rigorous data extraction process which is
accompanied by a wide range of source code metrics and for
which all source code is available.

Our ELFF dataset was achieved by mining the Boa Source-
Forge September 2013 open source dataset [7]. In total, this
dataset suggested more than 50,000 potential projects; us-
ing our bespoke ChallengerELFF tool, we filtered down the
number of projects to 23. This filtering was done using cri-
teria based on project maturity and commit frequency to
ensure that all 23 systems are mature and contain sufficient
defect fixing commits to be usable in defect prediction. We
then used another bespoke tool, DefectFinderELFF to ex-
tract method and class level defects from multiple versions
of the 23 projects. We combined this fault information with
source code metrics to create the ELFF dataset: a corpus of
new open source datasets for use in defect related research.

The main contribution of this paper is a freely available
set of 138 source code metrics and defect data, both at class

1There is a distinction between a fault and a defect. A defect
is a direct result of an error by a developer when program-
ming a system. A defect becomes a fault when the error
manifests itself during the use of the software product [13].

and method level, from 23 open source projects and versions
of those projects. This contribution to defect prediction will
significantly increase the current pool of projects. The iden-
tification of new datasets is important for many reasons.
Firstly, the ELFF dataset could be used in replication stud-
ies as there are many reported challenges currently within
software defect prediction [5] that need further work and re-
searchers can apply their new techniques to more projects
and test the stability of their conclusions. Secondly, the
ELFF corpus provides fault information at both method
level and class level and so studies can be replicated at a
lower level of granularity to test the stability of their con-
clusions. The ELFF dataset, ELFF tools and information
to enable the work reported in this paper to be replicated
can be found at www.elff.org.uk/ESEM2016.

2. BACKGROUND
Software defect prediction is a method for determining

potentially defective areas in a particular piece of software
code. The predictions make it possible for the developer to
focus on areas of the software system before release, reduc-
ing both time and effort. Software defect prediction relies
on three main components; dependent variables, indepen-
dent variables and a model. Dependent variables are the
defect data for a particular module. The defect data can
be binary (faulty or non faulty), or continuous (number of
faults). Independent variables are the metrics which de-
scribe the software code, how it has changed or who changed
it. Independent variables come in two forms, software code
metrics: those that can be derived from the software code
itself and process metrics: metrics that measure the change
of software code or software practices over time. The mod-
els often use machine learning approaches which contain the
rule(s) or algorithm(s) that predict the dependent variable
from the independent variables. These rules can be as sim-
ple as the number of independent variables in the model, or
as complicated as decision trees2 and regression3 techniques.
Our previous work Hall et al. [12] identified over 200 papers
and the models/metrics used to carry out defect prediction.

Dependent variable information is extracted from software
repositories. One way to identify defective software code
is to analyse the code’s respective software version control
system (VCS) and defect tracking system. When a fault is
fixed, it is good practice to reference this fault fix in the VCS
commit message. Normally, this fault will correspond to a
fault that has been reported and logged in a fault tracking
system. A defect tracking system is needed to identify where
a fault has been fixed because sometimes the commit does
not always include the information on why a change was
made [29]. When the defect tracking information and the
VCS information is combined, the reliability of discovering
defect links is increased. If the defect tracking system was
used alone, the commit that caused the change would not
be known, only the time that the defect report was updated.
Similarity, if just the VCS was used, the defect fix numbers
reported in a commit message may not actually be defect
numbers. One method to identify defective code is to match
a particular commit where the defect has been fixed from

2A decision tree algorithm is one that creates a graph of
decisions based on the chance of an event happening.
3Regression analysis seeks to determine best fit of indepen-
dent value(s) based on a dependent value(s).

the VCS to the correct defect number in a defect tracking
system. This will give a defect-link and will tell us where
a particular fault has been fixed; it is used subsequently
to find the defect insertion point by tracking the historical
changes to the fixed code. The defect insertion point is an
important piece of information. If the insertion point and
the fix point (the defect-link) is identified for known defects,
then it is possible to know where there is a defect at any
point in the history of the code. Many different algorithms
have been proposed to find defects from these two software
repositories. These algorithms include: SZZ by Śliwerski
et al. [29], including its improvements by Kim et al. [16],
Bird et al. [3] and Williams and Spacco [31], LINKSTER
by Bird et al. [4], BugInfo by Jureczko [14], ReLink by Wu
et al. [32], MLink by Nguyen et al. [26], RCLinker by Le
et al. [21] and HyLok by Lam et al. [19].

A variety of open source and closed source projects have
previously been used in defect prediction. The NASA datasets
[23] are an example of closed source projects that have been
used extensively in software defect prediction (in approxi-
mately 30% of software prediction studies from 2000 to 2010
[12]). However, the code for these datasets is not avail-
able and many inconsistencies have been reported with the
data contained [28, 10, 11, 27]. Other close source systems
have been less used. For example, Microsoft systems have
been used by Kim et al. [17], Layman et al. [20], Nagap-
pan and Ball [24], Nagappan et al. [25]. Defect prediction
studies mainly use open source systems due to the ease with
which researchers can gather the data. Open source code
and defect information is freely available and therefore eas-
ily mined. There are many different open source projects
available, but Eclipse and Apache projects are two of the
most frequently used [12]. Researchers can also obtain de-
fect data from the Promise repository [2]. This repository
holds around 60 defect datasets, and the datasets held are
used frequently by defect prediction studies. Some of the
more frequently used Promise datasets are those curated by
Jureczko [14], which have been cited five times this year
alone [33, 30, 15, 1, 22].

Defect prediction is performed at different levels of gran-
ularity, with the majority being at a high level of granu-
larity, e.g. file and class level. All 60 defect datasets on
the Promise repository [2] are at this high level. Hall et al.
[12] show that only 12% (22/182) of defect prediction mod-
els from 2000 to 2012 are performed at method, function or
procedure level and the performance range of these models is
much wider than models at higher levels of granularity per-
formed. Method level predictions are much more valuable
to developers than predictions at file or class level. Files and
classes can be very large, whilst defects can be very small,
meaning greater additional effort to find the defect.

3. METHODOLOGY

3.1 SourceForge project extraction
We systematically generated a list of open source projects

from which defect data can be extracted. To do this we
used Boa which is a domain-specific programming language
for analysing ultra-large-scale software repositories [7]. We
chose Boa as it substantially decreases the effort required to
mine software repositories and experiments are easily repli-
cable. Boa allows you to mine several datasets, for our study
we chose the September 2013 SourceForge dataset [7]. We

Criteria Reason
Is a Java project Our implementation of

SZZ works with Java code
An SVN project Our current implementa-

tion of the SZZ algorithm
is currently set up to use
SVN.

Have defect linking com-
mits

To perform defect linking,
we need defect linking com-
mits.

SourceForge defect Track-
ing system

Defect id’s are needed to
run defect linking.

At least 100 fixed defects Needs to be lots of fault in-
formation to combat data
imbalance.

Table 1: The criteria with which the final projects
will be chosen

chose this dataset as it was the most recent repository that
has information stored about possible SVN projects. We
applied criteria to establish the project’s suitability for in-
clusion in the ELFF dataset provided in Table 1.

We focus on SVN and Java projects because we have cre-
ated a tool that extracts defects from projects with these
two sources of information, we intend to extend this tool to
extract information from other repositories in the future. A
potential project had to have a SourceForge defect tracker
because to perform this analysis systematically and auto-
matically, we extract defect information from the Source-
Forge Rest API4. Other projects could have different defect
tracking systems, but this would be time-consuming to man-
ually check. The projects have to be rich in fixed defects. If
there are not enough fixed defects, then we could encounter
data imbalance problems when running our defect prediction
due to the lack of defective modules and this would impair
the results of our prediction algorithms.

To identify SVN projects on SourceForge we ran a Boa
script5 on the September 2013 dataset to extract all SVN
projects and the number of defect fixing commits that fix
Java files. To determined if the project had a defect tracking
system in SourceForge, we created ChallengerELFF, which
examined the SourceForge Rest API. ChallengerELFF was
developed in Java and extracts information from the JSON
representation of a SourceForge project. Each SourceForge
project’s JSON representation was parsed to determine if a
project had a defect tracker. This was determined by exam-
ining if the project had a ticket system called “Bug” or “Is-
sue”. ChallengerELFF then extracted fixed defects tracker
JSON. For SourceForge projects with defect trackers, we
analysed the commits of the SVN to determine if they had
defect-linking commits. A defect-linking commit was deter-
mined by using the SZZ algorithm [29]. This would give
us the total number of commits that fixed defects reported.
This coverage statistic is vital, since projects that have low
defect coverage could contain many false positive faults when
we applied our defect-linking technique.

3.2 Fault data extraction
For each of the SourceForge projects we compiled a dataset

of faulty methods. We found which methods were faulty at

4https://sourceforge.net/p/forge/documentation/Allura\
%20API/
5Our script can be found at www.elff.org.uk/ESEM2016.

the time of release by finding the fault insertion and fix
points. To identify faulty methods we used the SZZ ap-
proach as it has been used in many previous studies [6, 8,
16, 17, 31, 34]. SZZ is a fault linking algorithm described

by Śliwerski, Zimmermann, and Zeller [29]. SZZ was based
on work by Cubranic and Murphy [6] and Fischer et al.
[8, 9], who inferred links between Bugzilla defect reports
with CVS commit messages. We have created our own SZZ
implementation called DefectFinderELFF6. The SZZ algo-
rithm matches the fault fix described in a defect tracking
system with the corresponding commit in a version control
system that ‘removed’ the fault. By backtracking through
the version control records, it is possible to identify earlier
code changes which ended up being ‘fixed’. It is assumed
that the earlier code changes inserted the fault. The mod-
ule of code is therefore labeled as faulty between the time
the fault was inserted and the time it was fixed. Using this
technique it is possible to identify for a particular snapshot
of the code base, which modules are faulty and which are
not. Obviously there will be defective modules which have
not yet been reported. It is therefore important to carry out
the fault mapping after sufficient time has passed for users
to report most faults. It is unlikely that all defects will be
reported and therefore there will be false negatives. Kim
suggests that as long as the number of false negatives and
false positives is less than 20% in total, defect prediction can
be carried out [18]. This is an important point, early work by
Zimmermann et al. [34] only managed to map about 50% of
faults reported in the defect tracking systems to changes in
the code base. Later Bird et al. [3] improved the mapping by
removing some of the constraints that Zimmermann had in-
troduced, for example the requirement to have matching de-
fect IDs in a predefined format. The implementation of SZZ
used in this paper was improved slightly from the original.
It has a higher weighting for those numbers found in commit
messages that are in the defect database and takes into ac-
count the “Fix for” prefix. The implementation was verified
by us, independently of this study, by manually checking
ALL defect links found for Eclipse JDT 3.0.

When ran DefectFinderELFF over different versions of
each of the SourceForge projects to create a corpus of faulty
methods. We combined this fault information with both
class and method level metrics extracted using JHawk7, to
create datasets of fault information for each version of a
SourceForge project. The metrics and faults can be found
at www.elff.org.uk/ESEM2016/.

4. RESULTS
Using our Boa script, we extracted around 50,000 possible

Java systems using SVN. Using the information gathered
from this initial extraction, we were then able to analyse
each of the possible systems further to determine if they
were good candidates for defect prediction studies using the
SourceForge Rest API. Table 2 shows the final 23 possible
systems that could be used to extract fault information using
the subversion and defect tracking systems from Sourceforge,
selected using our criteria. The tables are sorted by the level
of fixed defect coverage. The defect coverage of the system is
important to the SZZ algorithm as it relies on the defect id’s
to have been mentioned in the commit message. Without

6Available at www.elff.org.uk/ESEM2016
7Version 5.0

the defect id, the algorithm may not be as accurate since it
has to rely on commits that have certain keywords.

Table 2 gives the context and defect information for each
project. There is a lot of variation between the projects.
The average age of the projects is 12 years. The oldest
project is jEdit, which started in 1999. Autopilot is the
youngest project at eight years old. The domain for each of
the projects, ranges from 3D modelling to simple integrated
development environments. The projects vary in size from
large projects like JMRI, with 549 KLOC to smaller projects
like Autopilot, which has 16 KLOC. The average size of the
projects is around 180 KLOC.

BRL-CAD has the best defect linkage of the projects ex-
tracted from the SourceForge dataset with nearly 100% de-
fect linkage. The worst project linkage is jEdit with only
around 8%. The selected 23 projects have approximately
41% defect linkage on average. The defects in the commit
messages ranges between 106 (jTDS) and 484 (RunaWFE).
BRL-CAD in its latest release had no Java files, but in its
history there have been files changed due to a defect fix so
we include it as it does fit our criteria.

We ran DefectFinderELFF on multiple versions for each of
the 23 projects. We have fault information for 69 versions of
the projects discovered using Boa. Table 3 shows a sample of
the fault information for randomly selected projects. Some
of the projects did not have easily identifiable releases, in
this instance, we chose a particular date as the snapshot. For
example, 1st January 2008 would have a version number of
01012008. Jmol 6 has the highest level of faults with around
13% of methods and around 42% of classes defective. The
results show that a high linkage of defect-fixing commits
does not always translate into a high number of faults in a
particular version of a project. This could be due to a couple
of reasons. The found defect-links might not actually be
around the time of the versions identified, the projects could
have picked up the defect links in later releases or became lax
in reporting defect fixes properly. Another reason could be
that even though the defect was fixed, but as SZZ traces the
fix to its insertion point, the method may have not actually
been defective at the time of the release.

5. CONCLUSION
Good defect data is hard to obtain, especially at the method

level. Of the defect data on the Promise repository, none
have method level defects. Method level defect prediction is
important as developers do not have time to search through
files to find potentially defective code. Finding appropriate
open source projects that have rich defect repositories and
accompanying subversions is hard and labourious. Conse-
quently, researchers have repeatedly used the same projects
in defect prediction. We applied a systematic approach to
determine open source projects on which defect prediction
could be performed. These projects were extracted from
the SourceForge September 2013 dataset [7] and then further
analysed with the SourceForge Rest API. We narrowed down
50,000 potential projects, to 23. These 23 projects were cho-
sen as they have the best potential for extracting good defect
information due to the defect linking in their SVN reposito-
ries. With these 23 projects, we extracted fault data for 69
versions. This fault data showed that a high defect-linkage
in the commits, does not always correlate well to having a
high number of faults in a particular version. The datasets
that we have curated in this paper, the ELFF dataset, is

freely available for other researchers to use. The corpus
significantly increases the amount of method level datasets
available. The ELFF dataset will help increase the diversity
of datasets being used, so that researchers in defect pre-
diction can make better global conclusions, perform study
replications and test the stability of their conclusions on a
larger set of systems.

Acknowledgements
This work was partly funded by a grant from the UK’s Engi-
neering and Physical Sciences Research Council under grant
number: EP/L011751/1.

References
[1] Defect prediction: Accomplishments and future chal-

lenges.

[2] The promise repository of empirical software engineer-
ing data, 2015.

[3] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu. Fair and balanced?: bias
in bug-fix datasets. In Proceedings of the the 7th joint
meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foun-
dations of software engineering, ESEC/FSE ’09, pages
121–130, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-001-2.

[4] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein.
Linkster: Enabling efficient manual inspection and an-
notation of mined data. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE ’10, pages 369–370,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
791-2. . URL http://doi.acm.org/10.1145/1882291.
1882352.

[5] D. Bowes, T. Hall, and D. Gray. Dconfusion: A tech-
nique to allow cross study performance evaluation of
fault prediction studies. Automated Software Engineer-
ing, 21(2):287–13, 4 2014. ISSN 0928-8910. .

[6] D. Cubranic and G. Murphy. Hipikat: recommend-
ing pertinent software development artifacts. In Soft-
ware Engineering, 2003. Proceedings. 25th Interna-
tional Conference on, pages 408 – 418, may 2003.

[7] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: Ultra-large-scale software repository and source-
code mining. ACM Trans. Softw. Eng. Methodol., 25
(1):7:1–7:34, Dec. 2015. ISSN 1049-331X. . URL http:
//doi.acm.org/10.1145/2803171.

[8] M. Fischer, M. Pinzger, and H. Gall. Populating
a release history database from version control and
bug tracking systems. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on,
pages 23 – 32, sept. 2003.

[9] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In Proceedings of the International
Conference on Software Maintenance, ICSM ’03, pages
23–, Washington, DC, USA, 2003. IEEE Computer So-
ciety. ISBN 0-7695-1905-9.

Project Domain KLOC
Age

(Years) Committers Releases
Defects

Reported

Fixed
in

Commits
Coverage

BRL-CAD 3d Modelling 12 9 42 276 259 93.84
JPPF Distributed Computing 45 11 77 120 235 208 88.51
EclEmma Quality Assurance 55 9 26 35 138 109 78.99
GenoViz Data Visualisation 193 11 9 57 245 165 67.35
Jikes RVM Compilers 179 11 47 35 648 430 66.36
Jmol 3D Rendering 255 15 4 15 535 286 53.46
TANGO Human machine interfaces 288 13 21 6 684 335 48.98
RunaWFE Business Management 584 11 9 49 994 484 48.69
CMU Sphinx Speech Recognition 68 16 189 26 333 151 45.35
JUMP GIS 182 11 17 24 392 144 36.73
DrJava IDE 161 14 7 62 825 299 36.24
JMRI Gaming 550 15 30 49 502 181 36.06
UNICORE Security 47 12 48 32 773 239 30.92
XAware Development 104 8 11 16 702 209 29.77
ControlTier Config Management 127 10 6 18 612 177 28.92
Autoplot Visualisation 16 8 18 60 715 200 27.97
Saros Agile development tool 88 9 55 29 766 202 26.37
OmegaT Text Processing (CAT) 64 13 13 11 673 173 25.71
Jitterbit Integration Tool 458 10 57 11 1110 202 18.2
CDK 3D Rendering 140 15 77 38 1225 204 16.65
HtmlUnit HTML Manipulation 249 14 11 38 1637 265 16.19
jTDS Database 133 14 75 37 658 106 16.11
jEdit Text Editor 115 16 25 39 3727 283 7.59

Table 2: The contextual information for the 23 SourceForge projects identified as being suitable to apply the
SZZ algorithm. N.B. BRL-CAD has been included as it fixed Java files in the past, however its suitability is
impaired as currently it has no Java files.

Project Version Classes
Classes
Faulty

% Classes
Faulty Methods

Methods
Faulty

% Methods
Faulty

jmol 6 170 72 42.35 2,217 294 13.26
htmlunit 01012008 280 45 16.07 2,979 343 11.51
genoviz 6.1 687 197 28.68 7,815 800 10.24
jmol 7 187 50 26.74 2,432 248 10.2
genoviz 6 708 202 28.53 8,131 824 10.13
genoviz 5.4 722 205 28.39 8,489 807 9.51
drjava 01012008 918 153 16.67 14,123 919 6.51
jmol 4 134 28 20.9 1,367 81 5.93
saros 1.0.6 135 18 13.33 1,293 69 5.34
drjava 01012009 1,033 169 16.36 16,617 724 4.36
unicore 1.2 346 39 11.27 2,108 90 4.27
eclemma 2.1 117 9 7.69 919 37 4.03
jikesrvm 3 1,399 117 8.36 17,007 440 2.59
jmol 3 122 21 17.21 1,393 35 2.51
unicore 1.3 392 32 8.16 2,422 54 2.23
drjava 01012010 1,099 73 6.64 18,482 385 2.08
htmlunit 01012009 606 30 4.95 8,018 72 0.9
controltier 3.1 1,323 42 3.17 13,534 117 0.86
jitterbit 1.2 6,351 44 0.69 49,885 143 0.29
cmusphinx 3.6 416 4 0.96 4,751 13 0.27
jedit 5.2 556 8 1.44 7,524 13 0.17
cmusphinx 3.7 415 3 0.72 4,758 8 0.17
runawfe 3.6 3,325 5 0.15 32,221 5 0.02
cdk 1.2 696 0 7,317 0 0
cdk 1 1,016 0 10,195 0 0
controltier 3.2 1,344 0 13,723 0 0

Table 3: The fault information for a random selection of 69 versions the selected SourceForge projects. The
full list is available at http://www.elff.org.uk/ESEM2016

[10] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Chris-
tianson. The misuse of the nasa metrics data program
data sets for automated software defect prediction. In
Evaluation Assessment in Software Engineering (EASE
2011), 15th Annual Conference on, pages 96 –103, april
2011.

[11] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christian-
son. Reflections on the nasa mdp data sets. Software,
IET, 6(6):549 –558, dec. 2012. ISSN 1751-8806.

[12] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Coun-
sell. A systematic literature review on fault prediction
performance in software engineering. Software Engi-
neering, IEEE Transactions on, 38(6):1276–1304, 2012.
ISSN 0098-5589.

[13] IEEE. IEEE standard classification for software anoma-
lies. IEEE Std 1044-2009 (Revision of IEEE Std 1044-
1993), pages 1–23, 2010.

[14] M. Jureczko. Significance of different software metrics
in defect prediction. Software Engineering: An Inter-
national Journal, 1(1):86–95, 2011.

[15] K. Kawata, S. Amasaki, and T. Yokogawa. Improving
relevancy filter methods for cross-project defect predic-
tion. In Applied Computing & Information Technology,
pages 1–12. Springer, 2016.

[16] S. Kim, T. Zimmermann, K. Pan, and E. J. J. White-
head. Automatic identification of bug-introducing
changes. In Proceedings of the 21st IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, ASE ’06, pages 81–90, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-2579-2.

[17] S. Kim, T. Zimmermann, E. Whitehead, and A. Zeller.
Predicting faults from cached history. In Software En-
gineering, 2007. ICSE 2007. 29th International Confer-
ence on, pages 489 –498, may 2007.

[18] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing
with noise in defect prediction. In Software Engineering
(ICSE), 2011 33rd International Conference on, pages
481 –490, may 2011.

[19] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and
T. Nguyen. Combining deep learning with informa-
tion retrieval to localize buggy files for bug reports (n).
In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 476–
481, Nov 2015. .

[20] L. Layman, N. Nagappan, S. Guckenheimer, J. Beehler,
and A. Begel. Mining software effort data: preliminary
analysis of visual studio team system data. In Proceed-
ings of the 2008 international working conference on
Mining software repositories, pages 43–46. ACM, 2008.

[21] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshy-
vanyk. Rclinker: Automated linking of issue reports
and commits leveraging rich contextual information. In
Proceedings of the 2015 IEEE 23rd International Con-
ference on Program Comprehension, ICPC ’15, pages
36–47, Piscataway, NJ, USA, 2015. IEEE Press. URL
http://dl.acm.org/citation.cfm?id=2820282.2820290.

[22] W. Ma, L. Chen, Y. Yang, Y. Zhou, and B. Xu. Empir-
ical analysis of network measures for effort-aware fault-
proneness prediction. Information and Software Tech-
nology, 69:50–70, 2016.

[23] T. Menzies and J. Di Stefano. How good is your blind
spot sampling policy. In High Assurance Systems Engi-
neering, 2004. Proceedings. Eighth IEEE International
Symposium on, pages 129–138, March 2004. .

[24] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Software
Engineering, 2005. ICSE 2005. Proceedings. 27th Inter-
national Conference on, pages 284–292. IEEE, 2005.

[25] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change bursts as defect predictors. In
Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on, pages 309–318. ac-
cept, 2010.

[26] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen. Multi-layered approach for recovering links
between bug reports and fixes. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages
63:1–63:11, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1614-9. . URL http://doi.acm.org/10.1145/
2393596.2393671.

[27] J. Petrić, D. Bowes, T. Hall, B. Christianson, and
N. Baddoo. The jinx on the nasa software defect
data sets. In The 20th International Conference on
Evaluation and Assessment in Software Engineering
(EASE’16), 2016.

[28] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data
quality: Some comments on the nasa software defect
datasets. Software Engineering, IEEE Transactions on,
39(9):1208–1215, Sept 2013. ISSN 0098-5589. .

[29] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? SIGSOFT Softw. Eng. Notes, 30
(4):1–5, May 2005. ISSN 0163-5948.

[30] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto. Automated parameter optimization of
classification techniques for defect prediction models. In
The International Conference on Software Engineering
(ICSE), page To appear, 2016.

[31] C. C. Williams and J. Spacco. Szz revisited: verifying
when changes induce fixes. In DEFECTS, pages 32–36,
2008.

[32] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink:
recovering links between bugs and changes. In Proceed-
ings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software
engineering, pages 15–25. ACM, 2011.

[33] F. Zhang. Towards generalizing defect prediction mod-
els. 2016.

[34] T. Zimmermann, R. Premraj, and A. Zeller. Predict-
ing defects for eclipse. In Proceedings of the Third In-
ternational Workshop on Predictor Models in Software
Engineering, May 2007.

