
Getting Defect Prediction into Industrial Practice:
The ELFF Tool

David Bowes∗, Steve Counsell†, Tracy Hall†, Jean Petric∗ and Thomas Shippey∗
∗ University of Hertfordshire, Hatfield, United Kingdom

Email: {d.h.bowes,j.petric,t.shippey}@herts.ac.uk
† Brunel University London, London, United Kingdom

Email: {steve.counsell, tracy.hall}@brunel.ac.uk

Abstract—Defect prediction has been the subject of
a great deal of research over the last two decades.
Despite this research it is increasingly clear that defect
prediction has not transferred into industrial practice.
One of the reasons defect prediction remains a largely
academic activity is that there are no defect prediction
tools that developers can use during their day-to-
day development activities. In this paper we describe
the defect prediction tool that we have developed for
industrial use. Our ELFF tool seamlessly plugs into
the IntelliJ IDE and enables developers to perform
regular defect prediction on their Java code.We explain
the state-of-art defect prediction that is encapsulated
within the ELFF tool and describe our evaluation of
ELFF in a large UK telecommunications company.

I. Introduction

A great deal of research has been done over the last 20
years on software defect prediction. Our previous study
identified 204 published papers reporting on defect predic-
tion between the years 2000 and 2012 [3] with subsequent
studies showing a continued growth in the number of
defect prediction studies [5]. Defect prediction is a popular
and thriving area of academic interest. Despite this huge
research effort it is increasingly clear that defect prediction
has not transferred into industrial practice [6, 5]. Conse-
quently companies are not enjoying the benefits that defect
prediction is reported to deliver. These benefits include
being able to identify defects early and therefore repair
more economically [8], as well as enabling the effective
targeting of testing on potentially problematic code. One
of the reasons that defect prediction remains largely an
academic area of interest is that there are no good tools
for defect prediction readily available to developers [5, 7].
In response to this problem we present our Ensemble
Learning for Fault Finding (ELFF) defect prediction tool1.
Lewis et al. [7] has shown that software developers are

enthusiastic about the idea of defect prediction, however
there are a number of issues that have prevented the
adoption of defect prediction. ELFF addresses reported
reasons why developers have not taken up defect predic-
tion, including:

1The tool will be available upon acceptance of the paper at http:
//www.elff.org.uk/data_tools/ELFFDefectPredictionTool

• Developers do not like a high number of false positive
predictions [7], as these false positives waste their
time. ELFF allows the developer to control over the
number of false positives, by allowing the developer
to chose the prediction threshold. For example, de-
velopers can choose to only see predictions with a
probability of at least 95% likely to be defective.

• The granularity of predicting defective code is prob-
lematic for developers [7]. Most defect prediction
models make predictions at the class or file level. This
high level prediction granularity is of limited value
to developers, as it takes developers significant effort
to manually hone in on a predicted defect in a class
that may well contain 20 methods and be hundreds
of lines of code long. Such predictions are not been
practically useful to developers. ELFF predicts at
both the method level and class level.

• The lack of actionable results from defect predictions
hampers the uptake of defect prediction [7]. Our
interactions with our industry collaborators show that
the developers want to understand what code features
have motivated a defective prediction and how they
could potentially solve the problem. ELFF allows the
developer to access full information on the features of
particular code that has been predicted as defective.

ELFF is made up of two parts, a backend that deals with
the entire process of defect prediction, and an an IntelliJ
plugin, which visualises the results to the developer. ELFF
is being used successfully in a real industrial systems and
has been well received by developers from a large UK-
based telecommunication company.
This paper presents background about the research

underpinning the development of ELFF in Section 2. In
Section 3 we describe the main features of ELFF and
provide some screenshots of the tool. Feedback from our
industrial evaluations and how we plan to extend ELFF is
presented in Section 4.

II. Background

There are many tools being used by developers in a
commercial setting to identify where defects may be,



for example static analysis tools FindBugs2, PMD3 or
SonarQube4. These tools look for known suspicious code
and have rules to detect these violations [1, 9]. Software
defect prediction is different to static analysis, as it does
not have any pre-defined violations, instead it uses the
systems defect history to develop models that predict
based on defects the system has had in the past. This
creates a tailored prediction for each system individually.
The reasoning being, that if this problem has occurred in
the past during the development of the system, then it
could happen again in the future.

There are tools available that allow the use of defect
prediction, e.g. DePress, AgenaRisk, Prest and Dione. De-
Press, developed by Hryszko and Madeyski [4], is a frame-
work which allows for software measurement. Hryszko and
Madeyski [4] have used their framework in the Volvo
Group and estimated that DePress could reduce quality
assurance costs by around 30%. Another defect prediction
tool is Agena5. Agena uses Bayesian networks to model
where defects may be inserted at the module (method)
level. These results are displayed in various risk maps or
tables. Dione is a web application which automatically
collects software code metrics and then performs defect
prediction on the collected metrics [2]. Our ELFF tool
is different to DePress, Agena and Dione as it an out
of the box software defect prediction tool that requires
little setup. These tools require extensive set up and show
the results of defect prediction in a separate window or
separate program, a known deterrent to the wider use of
software defect prediction [7]. Our ELFF tool highlights
potential defects to a developer in their coding environ-
ment, during development.

III. The ELFF Tool
The ELFF tool is made up of two main parts - a

back end that conducts the software defect prediction,
and a front end that deals with the visualisation of the
results from the back end within a developer’s integrated
development environment (IDE).

A. The back end
The back end of the ELFF tool gathers previous defect

information, collects source code metrics, combines these
two pieces of information and then performs defect pre-
diction.

The back end has three main parts. The first two parts
gather the historical defects and collect the source code
metrics. These two parts are explained in more detail in
Shippey et al. [10]. The third part manages the defect
prediction on the metrics collected in parts one and two.

1. The first part collects historical defect information.
To do this, we created our own implementation of the

2http://findbugs.sourceforge.net/
3https://pmd.github.io/
4https://www.sonarqube.org/
5http://www.agenarisk.com/agenarisk/

popular SZZ algorithm [11]. The process involves matching
commit messages from software versioning systems to bugs
reported in bug tracking systems. This process allows the
identification of defect insertion points and fault fix points.
This information allows us to identify at what point in
time there was a defect in a particular class or method.
The ELFF tool provides support for both Git and SVN
software repositories and a wide range of bug databases
(Bugzilla, Jira, SourceForge issues and GitHub issues).

2. Currently we collect the source code metrics using
the JHawk6 tool. The JHawk output is parsed to collect
metrics at both class and method level7. The tool can
extract metrics from various sources, and is not limited
to using JHawk output. The metrics are combined with
the defect information gathered in part one to form the
datasets to be used in our defect prediction models.

3. The final part performs the defect prediction. Using
the metrics gathered above (or other datasets if preferred)
we can create defect prediction models. Currently we have
support for four different machine learning algorithms -
J48, Random Forest, Logistic Regression and Naive Bayes,
but more can be added easily in the future. To perform
the defect prediction on the current code, we create models
using a previous snapshot. A snapshot is a specific commit
or date during the lifetime of the software product where
we have identified which methods are defective. The mod-
els are saved and can be used again and again. Each model
predicts on the current code base, giving a probability of
between 0 and 1 as to how likely the class or method is
to contain a defect. In the visualisation of the tool, these
probabilities of the four models are aggregated to give an
average defective probability of a method.

B. The IDE plugin
To make the output from the backend of the tool more

accessible to developers, we developed an IntelliJ IDEA8

plugin. To start, the developer only has to select a small
amount of options to start the defect prediction process.
A commit tag, where the repository is and the source files
on which to perform predictions. The prediction model
created in this process can be used on future versions of
the code, or at each time defect prediction is performed,
the models can be recreated. If the project is a relatively
new project and has no/limited amount of previous faults,
then the developer can use models that have been created
using open source project metrics available from Shippey
et al. [10].
The developer has a choice of viewing the defect pre-

dictions in two ways - a file view or a system overview.
The file view will put a marker in the gutter of the code
(where the line numbers are or other warnings) as seen
in Figure 1 next to each method that has a probability of

6http://www.virtualmachinery.com/jhawkprod.htm
7For a full list of the metrics created see here - http://www.

virtualmachinery.com/Jhawkmetricslist.htm
8https://www.jetbrains.com/idea/



over 50% being defective. At this level, the marker is quite
small and not intrusive, however as the probability of the
method being defective increases, the size of the marker
increases, until it goes over a set threshold when the
method code is highlighted yellow, seen also in the Figure
1. This threshold has a default defectiveness probability
of 95% but this threshold can be changed to reduce the
number of false positives to a level that the developer is
happy with.

The system overview shows the developer the packages,
classes or methods that contain the most probable defects
quickly and easily. When the system view is opened, it
lists the packages with the highest number of methods that
are over the chosen probability threshold (this threshold is
changed by moving the slider at the bottom of the system
view). The developer can drill down into the package
and find the classes with the most probable defects, and
then drill down again to see the most probable defective
methods. Once the developer has found the method they
want to potentially want to look at, the system view can
display the code of this method below the search list or
open the methods file in the code editor pane.

In both the developer and system views, there is a
chance for the developer to gain deeper insight into why
that particular method may be predicted as being de-
fective over the other methods, by viewing the metrics
used to determine the probability of defectiveness. Figure
2 shows an example of the metrics for a method. Each
metric has its own normalised bar with three pieces of
information. A black bar that displays the acceptable value
ranges determined by JHawk, a green bar that displays the
company’s normal range as calculated by ELFF on the
metrics provided and a dot to show that methods actual
metric value. The dot is coloured red, if it falls outside
the normal range for the company, or blue if it is inside
the normal range. Hovering the mouse over the metric
name offers a chance for the developer to discover what
that metric is and what a potential step is to correct a
metric value that is outside the normal range 3. As you
can see in Figure 2 the dot for HDIF or Halstead difficulty
is coloured red as it is out of range of both the system
and JHawk normal range. If we hovered over the HDIF
button, it will tell us what HDIF is, and that to fix this
value, the developer may want to reduce the number of
unique operators.

An important feature of the tool, similar to online
discussion forums like StackOverflow, allows developers to
vote on predictions. Whilst using the tool, developers are
able, by interacting with the marker in the gutter, or in
the system view, to vote up if they think that method does
actually contain a defect, or vote down, if they believe that
the method does not contain a defect. The developer can
also get rid of warnings they do not want to see again
by clicking on an option that will hide the prediction
for ever, or they can say that this method does contain
a defect, which raises the probability instantly to 100%.

All the interaction and votes are kept in a log specific
for that particular software project and can be used in
future defect prediction as metrics. The voting up and
down helps reduce the amount of warnings, and over time,
if the developers are good at voting, may improve future
predictions.

IV. Evaluation
ELFF is being used by four developers in a large UK

telecommunications company. The developers are using
ELFF as part of their everyday development. ELFF was
introduced to the whole team in an introduction session
and volunteers invited to use and evaluate the tool. The
four volunteers had ELFF installed on their machines
and were given a short training session. We have started
the evaluation by emailing weekly questionnaires to the
four volunteers. These questionnaires are very simple and
include only three multiple choice questions. The questions
are:
1) Have you used the ELFF tool this week? - Every day,

A few times, Never
2) Has it found any defective methods? - Lots of them,

A few, Just one, None
3) How usable is the ELFF tool? - Not at all, Enough,

A lot.
Overall the developers have welcomed the information

provided by ELFF. They particularly liked having data
about the features of code predicted to be defective, i.e.
the metric values for that code. The main feedback from
developers was that they wanted more information on
what to do about the code predicted to be defective. In
response to this we are now extending the tool to provide
suggestions on how to fix the code that is being predicted
defective.

V. Conclusion
In this paper we have presented our defect prediction

tool - ELFF. We believe that our tool helps solve some
of the problems that have limited the impact of software
defect prediction in industry. ELFF has been developed
alongside our industrial partner, who are using the tool
to predict defects on their systems. We have plans to
improve this tool further by implementing new features
which are desired by industry, such as fix suggestions and
show instances where similar code has been fixed in the
past.

Acknowledgements
This work was partly funded by a grant from the UK’s

Engineering and Physical Sciences Research Council under
grant number: EP/L011751/1.

References
[1] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,

J. Penix, and W. Pugh. Using static analysis to find
bugs. IEEE software, 25(5), 2008.



Fig. 1. Preview of the code turning yellow due to the high probability of that method being defective.

Fig. 2. Visualisation of the metrics of a method

Fig. 3. Example of the help text when a developer will hover over a
metric in the metric view

[2] B. Caglayan, A. T. Misirli, G. Calikli, A. Bener,
T. Aytac, and B. Turhan. Dione: An integrated
measurement and defect prediction solution. In Pro-
ceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engi-
neering, FSE ’12, pages 20:1–20:2, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1614-9. doi:
10.1145/2393596.2393619. URL http://doi.acm.org/
10.1145/2393596.2393619.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Coun-
sell. A systematic literature review on fault predic-
tion performance in software engineering. Software
Engineering, IEEE Transactions on, 38(6):1276–1304,
2012. ISSN 0098-5589.

[4] J. Hryszko and L. Madeyski. Assessment of the
Software Defect Prediction Cost Effectiveness in an
Industrial Project, pages 77–90. Springer Interna-
tional Publishing, Cham, 2017. ISBN 978-3-319-

43606-7. doi: 10.1007/978-3-319-43606-7_6. URL
http://dx.doi.org/10.1007/978-3-319-43606-7_6.

[5] Y. Kamei and E. Shihab. Defect prediction: Accom-
plishments and future challenges. In 2016 IEEE 23rd
International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), volume 5, pages
33–45, March 2016. doi: 10.1109/SANER.2016.56.

[6] M. Lanza, A. Mocci, and L. Ponzanelli. The tragedy
of defect prediction, prince of empirical software engi-
neering research. IEEE Software, 33(6):102–105, Nov
2016. ISSN 0740-7459. doi: 10.1109/MS.2016.156.

[7] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and
E. J. Whitehead Jr. Does bug prediction support
human developers? findings from a google case study.
In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 372–381,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-
1-4673-3076-3. URL http://dl.acm.org/citation.cfm?
id=2486788.2486838.

[8] R. S. Pressman. Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill Higher Education,
5th edition, 2001. ISBN 0072496681.

[9] N. Rutar, C. B. Almazan, and J. S. Foster. A compar-
ison of bug finding tools for java. In Proceedings of the
15th International Symposium on Software Reliability
Engineering, ISSRE ’04, pages 245–256, Washington,
DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2215-7. doi: 10.1109/ISSRE.2004.1. URL
http://dx.doi.org/10.1109/ISSRE.2004.1.

[10] T. Shippey, T. Hall, S. Counsell, and D. Bowes. So
you need more method level datasets for your software
defect prediction?: Voilà! In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2016,
Ciudad Real, Spain, September 8-9, 2016, pages 12:1–
12:6, 2016. doi: 10.1145/2961111.2962620. URL http:
//doi.acm.org/10.1145/2961111.2962620.

[11] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? SIGSOFT Softw. Eng. Notes,
30(4):1–5, May 2005. ISSN 0163-5948.


