
Interaction-awareness for self-adaptive volunteer

computing

Abdessalam Elhabbash, Rami Bahsoon, Peter Tino

School of Computer Science

University of Birmingham

United Kingdom

{a.elhabbash, r.bahsoon, p.tino}@cs.bham.ac.uk

Abstract— In this paper, we contribute to a self-adaptive

approach, namely interaction-awareness which adopts self-aware

principles to dynamically manage and maintain the knowledge

on the interactions between volunteer services in the volunteer

computing paradigm. Such knowledge can inform the adaptation

decisions; leading to increase in the precision of selecting and

composing services. We evaluate the approaches using a

volunteer storage composition scenario. The evaluation results

show the advantages of dynamic knowledge management in self-

adaptive VC in selecting dependable services and satisfying

higher number of requests.

Keywords—dependability; service composition; self-adaptive;

self-aware

I. INTRODUCTION

Volunteer Computing (VC) is an emerging distributed
computing paradigm in which users make their own resources
available to others enabling them to do distributed
computations and/or storage. In the literature, many VC
approaches have been proposed, e.g. [1], to enable cost-
effective large scale computation and sharing for storage,
leveraging on spare resources that can be available and idle on
the users’ edge computing devices. Volunteered resources can
be composed together to satisfy users’ requests in many
service-oriented applications, a practice which we term as
volunteer service composition (VSC). Engineering Volunteer
Services (VSs) calls for novel self-adaptive approach for
adaptively managing the processes of selecting, composing,
and allocating VSs and underlying resources. The approach
shall address the following fundamental requirements [2]:

 Resources-awareness: the contributed resources should be
composed and/or allocated to users, achieving both
maximum utilization and minimum waste with minimum
computation time.

 Availability-awareness: Resources availability tends to be
uncertain in VC because the publishers contribute their
resources during the time intervals in which they do not
need those resources.

 Dilution of control: VSs can be offered and withdrawn at
any time, which makes the Service Level Agreements less
stringent as when compared to commercial services.

 Dependability-awareness: Because of the dilution of
control requirement, dependability information of the

services, in terms of the level of providing the promised
resources, should be collected and used in VS
composition/allocation approaches.

In [3] the authors have reported that the independence
assumption on hosts’ performance is not always valid. That is,
hosts performance can be correlated. Based on that, the
awareness of such correlation enables reasoning on selecting
hosts that exhibit satisfying performance in case when the
hosted services need to interact with each other when
composed to satisfy a certain request.

Recently, self-awareness concept has been receiving more
attention in computing systems [4]. Self-awareness can provide
self-adaptive systems with primitives for proactive
management and behavioral control at runtime. It can also
improve both the accuracy and quality of adaptation. This may
in turn converge the system towards more stable states.

In [5], we proposed a self-aware framework to enable self-
adaptation in VC. As part of the framework, a self-adaptive
approach, namely stimulus-awareness, has been proposed to
enable basic self-adaptation capabilities. In this paper we take
this work further. We propose the interaction-awareness
approach which considers the knowledge on the previous
interactions between the services. The approach treats
knowledge as “moving target” that can change and evolve over
time and use this information to better inform the adaptation.
For this purpose, we make novel use of dynamic histograms,
which are constructs that dynamically approximate data
distributions at runtime [6], to capture the evolving knowledge
on the services’ interactions. This can consequently improve
the quality and precision of adaptation in dynamic and
uncertain environment.

II. INTERACTION-AWARE VSC

A. Basic Definitions

Def 1. (Volunteer Service). A volunteer service 𝑉𝑆𝑖, is a 3-tuple
(𝑠𝑡𝑔𝑖, 𝑇𝑖, 𝑠𝑒𝑐𝑖) where 𝑠𝑡𝑔𝑖 is the volunteered storage space, 𝑇𝑖 is
the time interval [𝑎𝑖 , 𝑏𝑖] in which the 𝑉𝑆𝑖 is available, and 𝑠𝑒𝑐𝑖 is
the security level promised by the service.

Def 2. (Subscriber’s Request). A subscriber’s request 𝑅 is a 3-
tuple (𝑠𝑡𝑔𝑅, 𝑇𝑅, 𝑠𝑒𝑐𝑅), where 𝑠𝑡𝑔𝑅 denotes the required storage,
𝑇𝑅 = [𝑎𝑅, 𝑏𝑅] is the required time interval in which 𝑠𝑡𝑔𝑅 is
required, and 𝑠𝑒𝑐𝑅 is the required security level where 0 ≤
 𝑠𝑒𝑐𝑅 ≤ 𝑠𝑒𝑐𝑚𝑎𝑥 and 𝑠𝑒𝑐𝑅, 𝑠𝑒𝑐𝑚𝑎𝑥 ∈ ℕ.

Def 3. (Composite Service). Given a subscriber’s request 𝑅, a
Composite Service 𝐶𝑆 is a set of VSs, {𝑉𝑆1, 𝑉𝑆2, . . . , 𝑉𝑆𝑘} that
satisfy the subscriber’s requirements.

Def 4. (Storage utility 𝑈𝑠𝑡𝑔
𝑃). A measure of the promised storage

space contributed by a service to satisfy a certain request.

Def 5. (Availability-Time utility 𝑈𝑡𝑖𝑚𝑒
𝑃). A measure of the time

period in which a service promises to be available.

Def 6. (Security utility 𝑈𝑠𝑒𝑐
𝑃). A measure of the promised

security level contributed to satisfy a certain request.

Def 7. (VS dependabilities). A service 𝑉𝑆𝑖 is considered to be
dependable if 𝑉𝑆𝑖 provides the storage, availability, and
security it promises. Mathematically, the storage dependability
is expressed as in (1).

𝐷𝑠𝑡𝑔(𝑉𝑆𝑖) = {

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖) − 𝑈𝑠𝑡𝑔

𝐴 (𝑉𝑆𝑖)

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑠𝑡𝑔
𝐴 (𝑉𝑆𝑖) < 𝑈𝑠𝑡𝑔

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where 𝑈𝑠𝑡𝑔
𝐴 is the actual utility. The availability time

dependability, 𝐷𝑡𝑖𝑚𝑒, and the security dependability, 𝐷𝑠𝑒𝑐(𝑉𝑆𝑖),
are expressed similarly.

B. Composition approach

The aim of the interaction-aware approach is to consider
the past interactions between the services in order to capture
the correlation that exist between services. In other words, the
interaction-aware approach aims to predict which services are
most appropriate to be composed together to satisfy a request.
To achieve that, we maintain a matrix of dynamic histograms
for the services which has the form:

𝐷𝐻𝑀𝑠𝑡𝑔 =
 𝑉𝑆1

𝑉𝑆2

⋮
𝑉𝑆𝑛

𝑉𝑆1 𝑉𝑆2 … 𝑉𝑆𝑛

(

− 𝑑ℎ12 … 𝑑ℎ1𝑛

𝑑ℎ21 − … 𝑑ℎ2𝑛

⋮ ⋮ ⋱ ⋮
𝑑ℎ𝑛1 𝑑ℎ𝑛2 … −

)

where 𝑉𝑆1 , 𝑉𝑆2 , … , 𝑉𝑆𝑛 are the available services, 𝑑ℎ𝑖𝑗 is the

dynamic histogram that maintains the dependabilities of
𝑉𝑆𝑖 when composed with 𝑉𝑆𝑗 . Similarly, two matrices are

maintained for the time availability (𝐷𝐻𝑀𝑡𝑖𝑚𝑒) and security
(𝐷𝐻𝑀𝑠𝑒𝑐) attributes. Initially each dynamic histogram contains
one bucket, then the dynamic histogram evolves by
dividing/merging buckets as the dependabilities’ data points
arrive, where buckets represents the time intervals during
which the service has been used. Now, when a request is
submitted, the dynamic histograms will be used to estimate the
interaction dependabilities between services. To do so, the
dependability in each bucket is estimated by finding buckets
that intersect with the request time interval and averaging the
values of the data points in those buckets. After that, the system
applies a greedy approach to select one service per iteration
using (2) until the request is satisfied. The output of the greedy
selection is a 𝐶𝑆 that satisfies the requests or an empty 𝐶𝑆 is
case when the request cannot be satisfied.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{𝑈𝑆𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖)

 𝐷𝑠𝑡𝑔, 𝐷𝑡𝑖𝑚𝑒 , 𝐷𝑠𝑒𝑐}

𝑠. 𝑡. 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖) > 0

(2)

C. Interaction-aware adaptation

The self-adaptability in the interaction-aware approach is
two-fold (1) Reactive adaptation and (2) Proactive adaptation.
The former is applied when a change in the promised utilities is
reported while the latter is applied when a violation of the
promised utilities is predicted, using the dependabilities
information stored in the dynamic histograms.

III. EXPERIMENTAL EVALUATION

We conduct experiments in order to evaluate the
performance of the interaction-aware approach and compare it
with the baseline approach, the stimulus-awareness. Fig. 1(a)
shows that the average throughput is almost the same in the
initial period of time. After a while of accumulating the
knowledge, the average throughput in the interaction-aware
case gets higher than the stimulus-aware. Fig. 1(b) shows that
the stimulus-aware approach has the least time cost and that the
interaction-aware approach increases linearly over time.

T
h

ro
u
g

h
p
u

t

T
im

e
co

st

(m
s)

 (a) (b)

Simulation Time (Days)

Requests = 9, Services = 100

Fig. 1. Comparison in throughput and time cost.

IV. CONCLUSION

We have contributed to a self-adaptive approach, which
make novel use of the principles of self-awareness and
dynamic histograms to dynamically manage knowledge in self-
adaptive VC. The approach is able to capture the evolving
knowledge on the services interactions to reason about the
reactive and proactive adaptation decisions. The experimental
results show that the interaction-aware approach can bring to a
self-adaptive application the advantages of satisfying more
requests but accompanied with overhead.

REFERENCES

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,

"SETI@ home: an experiment in public-resource computing,"
Communications of the ACM, vol. 45, pp. 56-61, 2002.

[2] S. Sebastio, M. Amoretti, and A. L. Lafuente, "AVOCLOUDY: a

simulator of volunteer clouds," Software: Practice and Experience, 2015.
[3] M. Bakkaloglu, J. J. Wylie, C. Wang, and G. R. Ganger, "On correlated

failures in survivable storage systems," DTIC Document2002.

[4] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska, "Model-driven
algorithms and architectures for self-aware computing systems (Dagstuhl

Seminar 15041)," Dagstuhl Reports, vol. 5, 2015.

[5] A. Elhabbash, R. Bahsoon, P. Tino, and P. R. Lewis, "Self-Adaptive
Volunteered Services Composition through Stimulus-and Time-

Awareness," in Web Services (ICWS), 2015 IEEE International

Conference on, 2015, pp. 57-64.
[6] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan, "Dynamic

Histograms: Capturing Evolving Data Sets," in Data Engineering, 2000.
Proceedings. 16th International Conference on, 2000, pp. 86-86.

0

0.2

0.4

0.6

0.8

0 100 200
0

15

30

45

60

75

90

0 100 200

