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ABSTRACT

This report outlines our finding that existing compilers are not aware of the pattern semantics and thus miss massive optimisation
opportunities.

Introduction
Programming heterogeneous multicore systems is extremely challenging, but increasingly important. Without a solution we
cannot use these devices efficiently – energy and time will be wasted, and progress in program efficiency will slow or stop.
Parallel patterns, where programmers write algorithmic intents that abstract away parallelisation, heterogeneity, and reliability
concerns, offer a partial solution1. Non-expert programmers can now write parallel code, but to achieve good performance is
still challenge.

One of the main reasons that existing toolchains fail to optimise parallel-pattern based programs is that the optimizing tool,
such as a compiler, simply treats patterns as it would call to any other library. Optimisations it could do on the sequential
version are prevented by intervening library calls and data flow analysis fails. The library cannot make optimisations since it
cannot inspect the muscle functions or retranslate them. Nor does the library feed information back to the compiler to improve
the code.

Example
Here we provide two simple examples showing what will happen when the compiler fails to optimise across pipeline boundaries
using Intel TBB/ICC and Google Golang. Our implementation can be downloaded from https://goo.gl/y7bBdN. The
results were obtained by running the examples on a server with a 40-core Intel Xeon E5-2650 CPU @ 2.30 GHz, 64 of RAM,
running CentOS 7 with Linux kernel 3.10. We used Intel ICC v18.02 and TBB v4.4 (compiled with -O3), and go v1.1.0.

Figure 1. Experimental results showing Go and Intel TBB/ICC fails to analyze and optimise a simple pipeline program,
leading to massive slowdown compared to a hand-optimised version.

In the examples, we create a pipeline of 100K stages. Each pipeline stage just adds one to its input. We compare the parallel
version against a sequential version that just uses a simple for loop to carry out the same task. If the compiler is aware of
the parallel patterns and can optimise across pattern boundaries, it could generate an optimised version to compute a single
statement of 1 + 100000 = 100001.

https://goo.gl/y7bBdN


However, the current implementation of Intel TBB/ICC and Golang fail to do so, leading to a slowdown of more than
3,000x over the sequential version as shown in the Figure 1.

Potential Opportunities
The issue arises from the fact that current compilers are oblivious to parallel patterns. A parallel construct encodes the sequential
semantics of the program, but this is lost to the compiler. If the compiler knew the sequential semantics, it could e.g. do
data-flow analysis and transformations across muscle functions, and dynamically merge pipeline elements that are too small to
pay for their communication overhead. If we can do these, the primary barrier to adopting pattern-based programming would
be torn down and heterogeneous multi-cores would be both easier to program and more efficient.

Aware of pattern semantics will permit us to perform optimisations like merging or splitting pipelines. One of the key
challenges here is that the new set of pattern parameters, in combination of the existing optimisation options, will result in a
massive optimisation space where finding the optimal parameters is non-trivial. Experience even with sequential programs
has shown that the compiler optimisation space contains a huge number of possible options2, which together define the
design space. Within the design spaces will reside good solutions and bad – the task of finding the best compiler solutions is
fundamentally infeasible in a traditional manual design process based on empirical know-how. A key enabling technology
for tackling the parallel compilation problem is Machine Learning. Rather than hand-craft a set of optimisation heuristics
based on compiler expert insight, learning techniques automatically determine how to apply optimisations based on statistical
modelling and learning. This provide a rigorous methodology to search and extract structure that can be transferred and reused
in unseen settings. Its great advantage is that it can adapt to changing platforms as it has no a priori. assumptions about their
behaviour. There are many studies showing it outperforms human based approaches3. Recent work shows that it is effective in
performing parellel code optimisation4–16, task scheduling17–20, model selection21, etc. Therefore, machine learning can be an
design methodology that provides a rigorous, automatic way to guide the search for the optimal compiler options for parallel
pattern-based programs.
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