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We describe the formation of bulk and edge arcs in the dispersion relation of two-dimensional
coupled-resonator arrays that are topologically trivial in the hermitian limit. Each resonator pro-
vides two asymmetrically coupled internal modes, as realized in noncircular open geometries, which
enables the system to exhibit non-hermitian physics. Neighboring resonators are coupled chirally
to induce non-hermitian symmetries. The bulk dispersion displays Fermi arcs connecting spectral
singularities known as exceptional points, and can be tuned to display purely real and imaginary
branches. At an interface between resonators of different shape, one-dimensional edge states form
that spectrally align along complex arcs connecting different parts of the bulk bands. We also de-
scribe conditions under which the edge-state arcs are free standing. These features can be controlled
via anisotropy in the resonator couplings.

I. INTRODUCTION

Systems exhibiting non-trivial band topology attract
intense attention owing to phenomena such as chiral
edge and surface states supported by boundaries between
topologically distinct gapped phases [1, 2]. While the ini-
tial focus was on electronic or superconducting systems,
the excitement quickly extended to other arenas of quan-
tum and classical wave phenomena, which often display
very different constraints than fermionic systems. In par-
ticular, the particle number is typically nonconserved in
classical [3, 4] and quantum [5] optical realizations, as
well as for analogous emergent bosonic excitations such
as polaritons [6–9], phonons [10–12], and magnons [13].
This provides a bridge to non-hermitian systems that
come along with their own complementary set of symme-
tries, as pioneered with the realization that parity-time
(PT ) symmetric non-hermitian Hamiltonians can display
a real spectrum [14]. In this and other non-hermitian set-
tings, the band-degeneracy points that play a crucial role
at separating topologically distinct gapped phases are re-
placed by exceptional points (EPs) [15–17], where eigen-
values depart from spectral symmetry lines [18]. Just as
their hermitian counterpart (known in general as diabolic
points, DPs), EPs carry a topological charge derived from
a geometric phase, which prevents their spontaneous iso-
lated creation or annihilation unless two points of oppo-
site charge collide [15].

In recent years, several mechanisms have been reported
to induce topological phenomena into non-hermitian sys-
tems, be it based on non-hermitian time-reversal sym-
metries (as for PT ) or analogous combinations with chi-
ral symmetry (X ) or charge-conjugation symmetry (C =
XT ). A main motivation is to obtain topological states
with distinct life times, as encoded in the imaginary
part of the energy spectrum. In many cases, the models
are based on topological hermitian counterparts, such as
the well studied Su-Schrieffer-Heeger (SSH) model [19],
where dissipation can yield quantized displacements of
decay and survival processes [20, 21], while the intro-
duction of gain and loss yields a topological mechanism

of zero-mode selection based on a non-hermitian C [22–
26] or PT [27] symmetry. In these and other examples
[28, 29] derived from topological hermitian systems, the
topologically protected states still obey a bulk-boundary
correspondence [30] and their robust properties are di-
rectly inherited from the hermitian limit.

However, this is not always the case. Protected edge
and interface states can also arise via EPs, even when
the hermitian limit is topologically trivial [31–35]. This
mechanism equips a system with robust spatially lo-
calized states that display distinct life times. Further-
more, non-hermitian effects can fundamentally change
the properties of edge states of a hermitian origin, which
for instance can bifurcate at EPs to display additional
branches with PT -symmetry [36]. These observations
highlight the role that EPs and their topological charges
play in distinguishing conventional topological states
with adopted non-hermitian properties from genuinely
non-hermitian symmetry-protected states that do not
have a hermitian counterpart [30, 37], and for classify-
ing non-hermitian topological systems in general [38].

Spectral singularities also play a role in non-gapped
topological systems, such as three-dimensional Weyl and
Dirac semimetals where such singularities appear at
generic DPs in momentum space [39, 40]. A particularly
intriguing phenomenon observed in such systems is the
formation of surface-state Fermi arcs, corresponding to
dispersive branches in the band structure that connect
topologically distinct parts of the bulk bands and are
hinged to these spectral singularities [41, 42]. In optical
systems, hermitian Fermi arcs have been realized in meta-
materials [43] and laser-written waveguides [44]. This
provides again a springboard to explore non-hermitian
counterparts. EPs occur generically when only two pa-
rameters are varied in a non-hermitian system [15], while
a non-hermitian perturbation of a DP in three dimen-
sions results in a one-dimensional exceptional curve [45]
and higher-dimensional analogues of Fermi arcs [46]. In-
corporating loss into a two-dimensional topological sys-
tem with a DP therefore results in the formation of two
EPs connected by a bulk Fermi arc, a scenario that has
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FIG. 1. Bulk Fermi arcs in a two dimensional array of evanescently coupled non-hermitian resonators. (a) Each resonator
supports a clockwise (CW) and a counter-clockwise (CCW) internal mode that are coupled by asymmetric backscattering
amplitudes A and B, as obtained, e.g., from a small nonspherical deformation of open dielectric resonators. The resonators are
placed on a square lattice and are coupled evanescently with coupling coefficients Wx and Wy that convert CW waves into CCW
waves. This coupling configuration introduces a chiral symmetry into this non-hermitian system. (b-d) Real part Re Ω of the
bulk dispersion for B = −2.5+0.2i, Wx = 1.0+0.1i, Wy = 1.0+0.5i, and the three values A = 1.5+0.1i (b), A = 1.5+0.2i (c),
and A = 1.5+0.3i (d). In each case, the dispersion consists of two sheets Ω+ (yellow top surface) and Ω− = −Ω+ (blue bottom
surface) that are related by the chiral symmetry. The white lines indicate Fermi arcs and lines with Re Ω = 0, corresponding
to intersections of the two sheets. The arcs terminate at exceptional points (EPs), which are the non-hermitian counterparts
of Weyl points in topological insulators. In (b), four EPs are connected by two arcs. In (d), the EPs are reconnected by two
arcs with a different topology, while a closed Fermi line is also present. Panel (c) shows the reconnection point between these
two scenarios, which is mediated by two smaller closed Fermi lines.

been realized in a periodic photonic crystal [47]. Non-
hermiticity can also close the band gap in the bulk of a
system, resulting in the formation of exceptional points
and curves in momentum space that spawn complex
branches in the bulk dispersion [48, 49]. Furthermore,
the PT -symmetric edge states branching off conventional
edge states [36] have been found to survive when a band
gap has been closed in such a way.

These complex spectral bulk and edge effects in gapless
topological systems provide the backdrop for the present
paper. The key question which we pursue in this work is
whether analogous effects can also be achieved in systems
with a topologically trivial hermitian limit. To this end,
we show that one can indeed realize bulk Fermi arcs and
complex edge-state arcs in a highly accessible setting,
given by a two-dimensional array of microresonators.
Each individual resonator is taken to be open and de-
formed into a slightly non-circular shape, a combination
of features that has been exploited widely both in theory
and experiment to induce non-hermitian effects akin to
PT symmetry [50]. The array places these resonators
onto a two-dimensional square lattice where neighboring
resonators are coupled evanescently. This gives rise to
a chiral symmetry, as previously employed in photonic
analogues of topological insulators [3, 51]. In our setting,
however, the system belongs to a universality class (the
chiral universality class AIII) which for hermitian two-
dimensional systems is topologically trivial [1, 52]. By
adjusting a single parameter, the array can furthermore
be tuned to jointly display PT and C symmetry. In the
general classification of topological systems, this modifi-
cation places the system into a different symmetry class
(the chiral class with conventional time-reversal symme-

try, BDI), which however is again topologically trivial in
the hermitian limit.

In the symmetry class AIII, we demonstrate the exis-
tence of bulk Fermi arcs that emanate from EPs in the
Brillouin zone. In the symmetry class BDI, the sym-
metries combine to stabilize purely real and imaginary
branches of the bulk dispersion. These bulk effects are
described along with the details of the model in Section
II.

To induce edge effects into the system we join two
arrays with opposite resonator deformations along an
interface. In one-dimensional coupled-resonator optical
waveguides, such an interface can give rise to defect
states, which emerge at EPs that are passed when the
system is sufficiently non-hermitian [31]. In the two-
dimensional array, this effect takes place in momentum
space, resulting in complex edge-state arcs. The arcs
depart from the bulk bands, and provide states with dis-
tinct mode profiles, frequencies and life times. These
edge effects are described in Section III.

The spectral phenomena described in this work are
highly adaptable via the choice of the resonator geometry
and the resonator placement. In particular, the evanes-
cent coupling strengths between the resonators can be
used to reposition the exceptional points, and also con-
trol which parts of the edge-state arcs are physically ac-
cessible in the Brillouin zone. These couplings therefore
provide a simple mechanism to tailor and accentuate the
predicted spectral features of the array.
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II. MODEL AND BULK BAND STRUCTURE

The two-dimensional resonator array is sketched in
Fig. 1(a). It consists of dielectric resonators that con-
fine light by internal reflection, resulting in resonance
states of finite life captured by complex resonance fre-
quencies Ω. We consider the generic effects of openness
and noncircular deformation of these resonators, in a
regime where optical reciprocity is maintained and the
coupling of different resonators is predominantly evanes-
cent.

In circular resonators, one encounters spectrally degen-
erate but mutually orthogonal pairs of clockwise (CW)
and counter-clockwise (CCW) whispering-gallery modes.
Even when the life times of these modes are large, strong
non-hermitian effects ensue when such resonators are
slightly but asymmetrically deformed, be it smoothly or
via notches or attachment of nanoparticles [50, 53]. We
consider a spectral range in which only one of these pairs
in each resonator is relevant, and denote the amplitude
of the CW mode an,m and the amplitude of the CCW
mode as bn,m, where the resonator location is identified
by the indices n,m pertaining to the x, y directions. The
amplitudes in the resonator are placed together into a
two-component vector ψn,m =

(
an,m

bn,m

)
. The two-mode

Hamiltonian describing an individual isolated resonator
then has the form

h =

(
Ω0 A
B Ω0

)
. (1)

As detailed in Appendix A, reciprocity dictates that the
whispering-gallery modes retain an identical bare reso-
nance frequency Ω0. The main effect of the deformation
is a finite but asymmetric (directed) backscattering be-
tween both modes, with an amplitude A for CCW to CW
conversion that can substantially differ in magnitude and
phase from the amplitude B for CW to CCW conversion
[50, 53]. This asymmetry is intimately related to the
openness of the system, and results in the splitting of
CW/CCW hybridized resonance states, which have com-

plex frequency Ω0 ±
√
AB. In the following, we refer all

frequencies to the references frequency Ω0, thereby effec-
tively setting Ω0 = 0.

In the array, adjacent resonators are coupled together
evanescently, such that CW modes from one resonator
couple to the CCW modes of an adjacent resonator.
We can safely assume that inter-resonator backscatter-
ing (CW to CW and CCW to CCW) is suppressed, which
is well fulfilled if the approaching resonator boundaries
are smooth on the scale of the wavelength [3, 51, 54].
However, we allow that the coupling strengths for res-
onators adjacent along the x direction is different from
the coupling strengths for resonators adjacent along the
y direction. This corresponds to coupling matrices (for
a detailed justification and generalizations see Appendix

A)

tx =

(
0 Wx

Wx 0

)
, ty =

(
0 Wy

Wy 0

)
. (2)

With these definitions, the coupled-mode equations for a
uniform two-dimensional array are given by

Ωψn,m = hψn,m+tx(ψn+1,m +ψn−1,m)

+ty(ψn,m+1 +ψn,m−1). (3)

Stipulating that the solutions are of the form ψn,m =
eikxn+ikym

(
a
b

)
, we obtain the corresponding Bloch Hamil-

tonian

H(k) =

(
0 A+ 2WxCx + 2WyCy

B + 2WxCx + 2WyCy 0

)
,

(4)

where k =
(
kx
ky

)
, Cx = cos kx and Cy = cos ky. The

eigenvalues of H(k) provide the dispersion relation

Ω±(k) = ±
√

(A+ 2WxCx + 2WyCy)(B + 2WxCx + 2WyCy).

(5)

In general, the parameters A, B, Wx, and Wy are com-
plex, so that time-reversal symmetry is broken. In this
case, the Bloch Hamiltonian still displays a chiral sym-
metry σzH(k)σz = −H(k) with Pauli matrix σz, ac-
cording to which the two eigenvalues are constrained to
Ω− = −Ω+ as indeed observed above. In the general clas-
sification of hermitian topological systems, this places the
systems into symmetry class AIII, which is topologically
trivial in two dimensions.

As shown in the examples of Fig. 1(b-d), representative
band structures in this class AIII combine regions with
predominantly real and predominantly imaginary reso-
nance frequencies. In all cases, one can clearly make out
bulk Fermi arcs with Re Ω± = 0. These arcs emanate
from EPs, which arise when

A+ 2WxCx + 2WyCy = 0 or (6a)

B + 2WxCx + 2WyCy = 0. (6b)

Each of these conditions can be met by varying two real
parameters such as kx and ky, so that the EPs appear
generically at isolated positions in the two-dimensional
Brillouin zone. The arcs can occur on their own [see
panel (b)] or be complemented by closed Fermi lines (d).
The topology of these lines and arcs can change at pa-
rameters for which they intersect (c), which occurs when
an arc crosses a stationary point ∂kx+ikyΩ±|kx−iky = 0
or ∂kx−ikyΩ±|kx+iky = 0.

In order to better understand these features, we tune
the array further to display a non-hermitian PT symme-
try. This is obtained when in a suitable basis all parame-
ters A, B, Wx and Wy are real; the PT symmetry is then
realized by simple complex conjugation [55]. Real values
of Wx and Wy are realized when the evanescent coupling
is lossless [56]. To obtain real but distinct values of A and
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FIG. 2. (a) Real and (b) imaginary parts of the bulk disper-
sion for A = 1.0, B = −1.0 and Wx = Wy = 1, represent-
ing the PT -symmetric case (symmetry class BDI) where the
band structure displays purely real and imaginary branches,
and the exceptional points degenerate into lines.

B, we need to keep the resonators open but only need to
tune a single parameter [54], as the relative phase of these
amplitudes can be adjusted by choice of the whispering-
gallery mode basis (see Appendix A). The hybridized res-
onance modes in each isolated resonator then have com-
plex frequencies Ω0 ±

√
AB, so that the resonance split-

ting is either purely real (if AB > 0) or purely imaginary
(if AB < 0). In the general classification of hermitian
topological systems, the case of real couplings represents
the chiral class BDI with a conventional time-reversal
symmetry (here obtained from (PT )2 = 1), which for
two-dimensional systems is again topologically trivial.

Under these conditions, the band structure (5) of the
resonator array is real and gapped if |A|, |B| > 2(Wx +
Wy) and AB > 0, or imaginary and gapped if for the
same conditions AB < 0. In all other cases, the disper-
sion contains purely real and purely imaginary branches
in ranges of kx and ky. These branches are joined at lines
of EPs with Ω± = 0, which are again determined by the
condition (6).

These additional spectral constraints are consequences
of the manifest symmetries of the system in the
CW/CCW basis. The non-hermitian PT symmetry
makes the Bloch Hamiltonian (4) real, H(k) = H∗(k),
so that its eigenvalues are either real or form a complex-
conjugated pair. The combination with the chiral sym-
metry σzH(k)σz = −H(k) yields the C symmetry
σzH(k)σz = −H∗(k). From this we find that the com-
plex eigenvalues in a conjugate pair must both obey
Ω± = −Ω∗±, hence must both be purely imaginary.

A representative example of a band structures in sym-
metry class BDI is shown in Fig. 2. The purely imaginary
branches define flat patches with Re Ω± = 0, which are
bounded by lines of EPs. The Fermi arcs in symmetry
class AIII can be interpreted as remnants of these regions
when the PT -symmetry is explicitly broken by complex
coupling values.

While this exhausts all possibilities for the two-
component Bloch Hamiltonian, the spectral constraints
from PT symmetry can also, e.g., be fulfilled by quadru-
plets of eigenvalues Ω1 = −Ω2 = Ω∗3 = −Ω∗4, which are
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FIG. 3. Edge-state arcs in an array with an interface joining
resonator arrays with opposite backscattering. (a) Horizontal
slice through the array, where the dotted line indicates the
interface between resonators with backscattering amplitudes
A and B as in Fig. 1 (blue resonators to the left), and res-
onators where the values of these backscattering amplitudes
are interchanged (green resonators to the right). (b) Density
plot of the intensity of a representative edge state in a finite
square array of 40×40 resonators, with A = −B = Wx = Wy.
(c) Quasi-one dimensional band structure in the infinite ver-
sion of this array, where ky is a good quantum number. In
this representation, the bulk bands form sheets, which here
lie in the real and imaginary plane as all parameters are real
(PT -symmetric symmetry class BDI, see Fig. 2). The thick
black curves are the edge-state arcs, which connect the differ-
ent sheets.

arranged in a four-fold symmetric pattern with respect
to the real and imaginary axis. As we will see in the next
section, this much richer picture unfolds in systems with
suitable interfaces, where it provides the avenue to the
formation of complex edge-state arcs.

III. EDGE-STATE ARCS

To create edge states in the array we modify the bulk
configuration and create an interface between two regions
representing opposite deformations of the resonators [see
Fig. 3(a)]. The interface is placed along the y axis and
separates a region of resonators with internal coupling
coefficients A and B (n < 0, resonators depicted in blue)
from a region of reflected resonators for which these two
values are swapped around (n ≥ 0, resonators depicted in
green). Figure 3(b) shows an example of an edge state in
an array of 40× 40 resonators with parameters A = −2,
B = 2, Wx = Wy = 1, demonstrating that such states
can indeed be formed. The states are exponentially con-
fined in the direction away from the interface, and dis-
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play a standing-wave pattern along the interface. As we
show in the following, the complex frequencies of these
states form arcs that connect different points on the bulk
dispersion relation. This is illustrated for the given set
of parameters in Fig. 3(c), where the complex frequen-
cies are shown as a function of the conserved quantum
number ky, assuming an infinite size of the array. In
this representation, the extended states form continuous
two-dimensional sheets, which represent the projection
of the bulk dispersion (5). The edge states align along
one-dimensional curves that terminate on the sheets and
represent the arcs in question. We now unfold the general
picture behind these observations.

The translation symmetry along the y axis allows us to
separate variables according to ψn,m = ϕne

ikym, where
the permitted values of ky are determined by the width
of the array. The wave equation (3) then takes the form

Ωϕn = hnϕn + tx(ϕn+1 +ϕn−1), (7)

where

hn =


(

0 A′

B′ 0

)
(n < 0)(

0 B′

A′ 0

)
(n ≥ 0)

, (8)

with the effective coupling coefficients

A′ = A+ 2Wy cos ky, (9a)

B′ = B + 2Wy cos ky. (9b)

For fixed parameters A′, B′, Eqs. (7) and (8) define
a quasi-one-dimensional set of coupled-mode equations,
which for ky = π/2 recover the case of a one-dimensional
array that admits complex defect states at sufficiently
strong non-hermiticity [31]. In this parameter space, the
edge states can be obtained by wave matching, which is
carried out in detail in Appendix B. Translated back
into k space, we obtain conditions determining the edge
states which are conveniently expressed in terms of the
scaled frequency

ω =
Ω

Wx
(10)

and the effective parameters

A =
A+B + 4Wy cos ky

2Wx
(arc parameter), (11a)

B =
A−B
2Wx

(backscattering asymmetry). (11b)

Edge states with a symmetric mode profile about the
interface then obey the equation

−ωA2 + (2 + ω)B2 + ω(2− ω)2 = 0, (12)

while edge states with an antisymmetric mode profile
obey the equation

ωA2 + (2− ω)B2 − ω(2 + ω)2 = 0. (13)
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FIG. 4. (a) Traces of the edge-state arcs in the real section
of their effective parameter space (A,B) [defined in Eq. (11)].
The traces are horizontal lines of length 4Wy/Wx, which are
centred at A = (A + B)/2Wx, B = (A − B)/2Wx. The solid
and dashed curves denote the termination conditions at the
real and imaginary branches of the bulk bands, where the edge
states (green region) turn into extended scattering states (red)
or into non-normalizable, unphysical states (blue). The three
representative traces correspond to the quasi-one-dimensional
band structures shown in (b-d), which display edge-state arcs
(thick green curves), their scattering predecessors (red curves
in the real bands) and unphysical states [blue curves con-
necting the imaginary bands in (b)]. In (b), A/Wx = 0.55,
B/Wx = −0.55, Wy/Wx = 1.175, for which the trace crosses
both termination lines and the arcs connect the real and imag-
inary branches of the bulk bands. In (c), A/Wx = −0.9,
B/Wx = 0.9, Wy/Wx = 1, for which the trace only reaches
the real termination line so that the arcs loop back to the real
branches. In (d), A/Wx = −2.0, B/Wx = 2.0, Wy/Wx = 1,
for which the trace remains confined in the edge-state region
so that the arc are free-standing.

The symmetric and antisymmetric solutions are con-
nected by chiral symmetry, thus remain paired as ω
and −ω even when all parameters are complex (corre-
sponding to symmetry class AIII). In the PT -symmetric
case where the parameters A, B, Wx and Wy are real
(symmetry class BDI), the solutions of Eqs. (12) and
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Eqs. (13) are further constrained to be real or to oc-
cur in complex-conjugated pairs, leading to quadruplets
(ω,−ω, ω∗,−ω∗).

For a solution ω of Eq. (12) to define a normalizable,
physical edge state it furthermore has to fulfill the con-
sistency condition

2− λ1λ2 −
1

λ1λ2
= 2ω, (14)

while the solutions of Eq. (13) are subject to the consis-
tency condition

2− λ1λ2 −
1

λ1λ2
= −2ω. (15)

Here

λ1 = C1 ±
√
C2

1 − 1, C1 = −A
2

+

√
B2 + ω2

2
, (16a)

λ2 = C2 ±
√
C2

2 − 1, C2 = −A
2
−
√
B2 + ω2

2
, (16b)

are propagation factors, where the signs of the square
roots have to be chosen such that |λ1| > 1 and |λ2| > 1.
If for a solution of Eqs. (12) or (13) a propagation factor
is |λl| = 1, we instead obtain a scattering state. If the
consistency equations (14) or (15) can only be fulfilled by
combining a decaying and an increasing propagation fac-
tor λl, the state cannot be normalized and is unphysical.
Therefore, in both cases edge states change from physical
to unphysical at points at which one of the propagation
factors attains |λl| = 1. This corresponds to propagating
waves in the bulk system, and therefore occurs when an
edge-state arc meets the bulk dispersion relation, where
it then terminates. In the PT -symmetric case (symme-
try class BDI), the termination points coincide with de-
generacies in edge-state quadruplets at real or imaginary
frequencies, thus constituting EPs.

Figure 4(a) illustrates the traces of the edge-state arcs
in the real section of effective parameter space (A,B),
where PT symmetry holds. The solid and dashed curves
in the diagram denote the locations of the real and imag-
inary energy bands in this space (for analytical expres-
sions see Appendix B), and thereby confine regions in
which the solutions of Eqs. (12) and (13) represent gen-
uine edge states (green region), scattering states (red)
or non-normalizable unphysical states (blue). The edge
states trace out a horizontal line A(ky) in the arc param-
eter, which according to the definition (11) has a length
4Wy/Wx determined by the coupling anisotropy, while
its horizontal center is given by A(π/2) = (A+B)/2Wx

and its vertical position given by the non-hermiticity pa-
rameter B = (A−B)/2Wx.

The three labeled horizontal lines are the traces of edge
states for representative systems with A = −B. In the
complex energy dispersion these traces correspond to the
arcs shown by the green curves in panels (b-d). These
arcs can connect the real and imaginary branches of the
bulk dispersion relation (b), can loop back to the real
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FIG. 5. (a) Edge-state arcs for complex backscattering am-
plitudes A/Wx = 0.55 + 0.02i, B/Wx = −0.55 + 0.02i and
Wy = 1.175 [close to the real values in Fig. 4(b)]. All arcs
still terminate on the bulk bands, which now no longer are
real or imaginary. (b-d) Propagation factors |λl|, 1/|λl| of
potential edge states as determined by Eq. (16). In (b),
A = −B = 0.55/Wx, Wy/Wx = 1.175, corresponding to the
real values of Fig. 4(b). In (c,d), the parameters take the
complex values given above. For complex parameters the re-
gion of scattering states is replaced by regions of physical and
unphysical states. Furthermore, the termination points of dif-
ferent arcs now appear at separate values of ky, as shown in
detail in panels (d) and (e) which zoom into the termination
region at the formerly purely imaginary and real branches of
the bulk dispersion, respectively.

branch (c), or can be disconnected from the bulk bands
(d). The blue arcs in panel (b) looping back to the
imaginary branches represent unphysical states, arising
in panel (a) from segments of the trace across the dashed
line. The red arcs in panels (b,c) represent scattering
states within the real branch of the bulk dispersion, which
occur in panel (a) when the traces cross the correspond-
ing solid line. The disconnected arcs as shown in panel
(d) occur for traces that are confined to the interior of
the edge-state region, so that they do not cross the phase
boundaries defined by the bulk bands.
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As shown in Fig. 5, the edge-state arcs persist for com-
plex coupling parameters, for which the PT symmetry is
broken so that different arcs are only related by the chi-
ral symmetry (corresponding to symmetry class AIII). In
this figure, the chosen parameters are almost real, which
allows us to identify the most important qualitative ef-
fects. As seen in panel (a), the arcs still emerge from the
bulk dispersion, but the degeneracy of the termination
points is lifted, which is particularly visible on the for-
merly real sheets. Panels (b) and (c) compare the prop-
agation factors λl and 1/λ1 along the arc for real and
complex couplings. This comparison reveals two distinct
effects. The propagation factors of the former scatter-
ing states acquire moduli |λ1| 6= 1 and hence turn into
weakly confined edge states or non-normalizable, unphys-
ical states. Furthermore, the formerly degenerate tran-
sitions at which edge states from previously symmetry-
paired arcs become unphysical occur at independent val-
ues of ky, as shown in panel (d) close to the formerly
imaginary sheet and in panel (e) close to the formerly
real sheet. All these features remain dictated by the gen-
eral quantization conditions (12) and (13) subject to
the consistency equations (14) and (15), which hold for
general complex values of all coupling parameters.

IV. CONCLUSIONS

In summary, two-dimensional resonator arrays with
non-hermitian internal backscattering and chiral cou-
pling are capable of displaying a broad range of complex
spectral phenomena in the bulk and at interfaces. In
particular, the bulk dispersion relation of these systems
can feature complex bulk Fermi arcs and flat patches (see
Section II and Figs. 1, 2), while the dispersion along an
interface can exhibit complex edge-state arcs (see Section
III and Figs. 3-5). The described effects replicate the
behaviour previously predicted for systems whose hermi-
tian limit is topologically nontrivial. However, the arrays
studied here belong to universality classes that in the
hermitian limit are topologically trivial. The described
set-up is highly flexible, so that the spectral effects are
widely adaptable, where we here focussed on the main
phenomenology.

The key feature from non-hermitian physics that en-
ables these effects are exceptional points, which replace
the spectral singularities in hermitian topological sys-
tems. These exceptional points can appear generically
even in universality classes with a topologically trivial
hermitian limit, as utilized here for two-dimensional re-
ciprocal systems from class AIII (chiral symmetry) and
BDI (chiral symmetry with a conventional time-reversal
symmetry). These properties further expand the scope
of nontrivial physics that arises from non-hermiticity, as
previously seen in the context of isolated topological de-
fect states.

From a practical perspective, these findings imply that
nontrivial dispersion effects can be achieved without

needing to resort to carefully engineered systems that
replicate the intricate symmetries required for hermitian
topological physics. For instance, we assumed through-
out that reciprocity is preserved. Therefore, the de-
scribed effects can occur in conventional optical settings.
The main requirement are chiral symmetry, as previously
employed in photonic analogues of topological insulators
[3, 51], and asymmetric backscattering, which can be re-
alized in a wide range of resonator geometries [50, 53].

In such optical settings, bulk Fermi arcs are directly
observable in momentum space [47]. Focussing on signa-
tures in the local and total density of states, they should
also be observable, e.g., in microwave setups. The edge-
state arcs provide spatially localized states that do not
exist in their hermitian counterpart. Besides this char-
acteristic spatial confinement, a key feature that distin-
guishes these states are their distinct life times. There-
fore, an attractive approach to probe a system for edge-
state arcs would be to excite a state locally near the in-
terface, and observe the dynamical evolution of this state
along the arc towards long life times. In this way, these
resonator arrays provide promising mechanisms for state
engineering that deserve further investigation.

Our investigations rested on a scalar coupled-mode
theory. It is therefore of interest to explore situations
beyond such a description. Examples are the strong-
coupling regime between resonators where new topologi-
cal effect can emerge beyond a tight-binding model [51],
and for which the role of asymmetric internal backscat-
tering has not yet been conceptualized, as well as three-
dimensional systems where the polarization degree of
freedom becomes important. From a fundamental point
of view, it is useful to consider whether the interface ef-
fects described in Sec. III can also be understood from
the bulk properties of the system. It has been pointed
out that non-hermitian systems can display topological
effects settings without a conventional bulk-boundary
principle [30, 57, 58]. The results presented here, and
those earlier established for the one-dimensional variant
[31] and for the examples in [32–35], indicate that while
protected by the overall symmetry of the system, the
reported edge states may indeed not derive from bulk
quantum numbers. Under these circumstances it would
be attractive to develop global characterizations, as al-
ready required in disordered hermitian systems and PT-
symmetric systems. Notably, global invariants can be
formulated by scattering theory for both of these exam-
ples [59–61].

Appendix A: Symmetry constraints

Time-reversal symmetry, reciprocity and chiral sym-
metries take different forms in different bases. Here
we elucidate the resulting constraints in the standing-
wave basis of appropriately normalized sine and cosine
waves |s〉, |c〉 around the perimeter of the resonators, and
the whispering-gallery basis of clock-wise and counter-
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clockwise circulating modes

|CW〉 =

√
1

2
(|c〉−i|s〉)eiχ, |CCW〉 =

√
1

2
(|c〉+i|s〉)e−iχ.

(A1)
The angle χ originates from the freedom to choose the
nominal origin around the perimeter of the resonators.
We initially set χ = 0 and discuss this freedom at the
end of this Appendix.

Optical reciprocity requires that the non-hermitian ef-
fective Hamiltonian is symmetric in the standing-wave
basis. For an isolated resonator, this implies

ĥ =α|c〉〈c|+ β(|c〉〈s|+ |s〉〈c|) + γ|s〉〈s| (A2)

=
α+ γ

2
(|CW〉〈CW|+ |CCW〉〈CCW|)

+ (
α− γ

2
+ iβ)|CW〉〈CCW|

+ (
α− γ

2
− iβ)|CCW〉〈CW|, (A3)

which justifies the form Eq. (1) of the resonator Hamil-
tonian h with Ω0 = (α + γ)/2, A = iβ + (α − γ)/2 and
B = −iβ + (α− γ)/2.

Let us now consider the coupling of two resonators,
with the states in the second resonator denoted by a dash.
The coupling operator then takes the form

t̂ =Wcc(|c〉〈c′|+ |c′〉〈c|) +Wss(|s〉〈s′|+ |s′〉〈s|)
+Wcs(|c〉〈s′|+ |s′〉〈c|) +Wsc(|s〉〈c′|+ |c′〉〈s|) (A4)

=W+(|CW〉〈CW′|+ |CCW′〉〈CCW|)
+W−(|CCW〉〈CCW′|+ |CW′〉〈CW|)
+W ′+(|CW〉〈CCW′|+ |CW′〉〈CCW|)
+W ′−(|CCW〉〈CW′|+ |CCW′〉〈CW|), (A5)

with

W± =
Wcc +Wss ± i(Wsc −Wcs)

2
,

W ′± =
Wcc −Wss ± i(Wsc +Wcs)

2
. (A6)

In the regime of evanescent coupling, backscattering is
suppressed, which corresponds to Wcc +Wss ≈ 0, Wcs −
Wsc ≈ 0. This then leads to a coupling matrix

t =

(
0 W ′+
W ′− 0

)
(A7)

with W ′+ = Wcc+iWcs, W
′
− = Wcc−iWcs. Furthermore,

evanescent coupling usually involves smooth, locally sym-
metric geometries where also Wcs,Wsc ≈ 0, so that we
set W ′+ = W ′− ≡W . In the expressions (2) for tx and ty,
these coefficients are evaluated at the appropriate posi-
tions of adjacent resonators in the horizontal or vertical
direction.

These conditions deliver the general model studied in
our work, which always displays a chiral symmetry. The

additional PT -symmetry emerges when we can find a ba-
sis in which all coupling coefficients are real [55]. For the
coefficients Wx and Wy, this is fulfilled when the evanes-
cent coupling does not induce any losses [56]. For the
internal couplings A, B, we argue that they can be made
real by tuning a single generic parameter. To realize this,
we exploit as mentioned above that in all these consid-
erations we have a freedom to choose the nominal origin
of the standing or propagating waves along the perime-
ter of each resonator. For instance, rotating the origin in
each resonator by an angle φ0, we can consider CW waves
∼ exp(−im(φ−φ0)) and CCW waves ∼ exp(im(φ−φ0))
with modes index m. In Eq. (A1), this corresponds
to an additional phase χ = mφ0. The coupling am-
plitudes A and B then pick up opposite phase factors
A → A exp(−2iχ), B → B exp(2iχ). Thus, to achieve
PT symmetry we only require to tune a single parameter
to achieve that A and B have an opposite phase. This
phase can then be transformed to 0 by an appropriate
choice of the propagating-wave basis. As a key indicator,
one can consider the resonances Ω0±

√
AB in the isolated

resonators, which are split either in frequency (AB > 0)
or in life time (AB < 0), but not in both. For a numer-
ical example of coupled resonators with real A, B and
W see Ref. [54], where this situation was realized in a
coupled-resonator chain of circular disks with attached
nanoparticles.

In summary, the general model presented in this work
requires reciprocity and evanescent coupling at smooth
interfaces. The variant with an additional PT -symmetry
requires to tune a single parameter, which aligns the res-
onances of an isolated resonator either in frequency or
life time.

Appendix B: Wave matching

Here, we present the details of the derivation of the
edge-state conditions (12)-(16). These are obtained by
wave matching from the quasi-one-dimensional tight-
binding equations (7) with the interface defined by
Eq. (8), which we first carry out in (A′, B′) parameter
space. The edge-state arcs in k space and in (A,B) space
then follow from the parameterizations (9) and (11).

To carry out this wavematching, we first determine the
Bloch solutions

ϕn = λnΦ (B1)

in the regions on both sides of the interface for a given
value of Ω, where we utilize propagation factors λ =
exp(ikx). According to Eq. (7), the Bloch states in the
region n < 0 are given by the condition

ΩΦ =

(
0 A′

B′ 0

)
Φ + (λ+ λ−1)Wx

(
0 1
1 0

)
Φ. (B2)

This permits nontrivial solutions if∣∣∣∣∣∣∣∣ −Ω A′ + 2WxC
B′ + 2WxC −Ω

∣∣∣∣∣∣∣∣ = 0, (B3)



9

where we introduced λ + λ−1 = 2C. The two solutions
of the resulting quadratic equation are

2WxC1 = −A
′ +B′

2
+

√
(A′ −B′)2

4
+ Ω2, (B4a)

2WxC2 = −A
′ +B′

2
−
√

(A′ −B′)2
4

+ Ω2, (B4b)

which corresponds to four propagation factors

λ
(±)
1 = C1 ±

√
C2

1 − 1 ≡ C1 ± S1, (B5a)

λ
(±)
2 = C2 ±

√
C2

2 − 1 ≡ C2 ± S2. (B5b)

We note that the associated Bloch vectors

Φ
(L)
l ∝

(
A′ + 2WxCl

Ω

)
(B6)

are the same for each pair λ
(+)
l and λ

(−)
l , and that

λ
(+)
l λ

(−)
l = 1, which are both consequences of reciprocity.

The same construction can be carried out on the right
side of the interface, where one obtains the same propa-
gation factors but associated with the Bloch vectors

Φ
(R)
l = σxΦ

(L)
l ∝

(
Ω

A′ + 2WxCl

)
. (B7)

Superpositions of these Bloch waves form the general
solutions to the left and right of the interface. Edge states
are obtained when we can match solutions that decay to
both sides of the interface. This requires to depart from
the bands, hence to study values of Ω where the propaga-
tion factors are no longer unimodular. To be specific, we

select from each pair λ
(+)
l , λ

(−)
l the propagation factor λl

fulfilling

|λl| > 1, (B8)

and from here on work with the propagation factors
λl, 1/λl. (By a proper choice of the branch of the square
roots in Eq. (B5), we could alternative enforce that al-

ways |λ(+)
1 |, |λ

(+)
2 | > 1.) The assumption (B8) will be

revisited below to confirm the consistency of a potential
edge state.

We first deal with the case of solutions that are sym-
metric about the interface (the antisymmetric case will
follow from chiral symmetry). These are of the form

ψn<0 = a1λ
n+1
1 Φ

(L)
1 + a2λ

n+1
2 Φ

(L)
2 , (B9)

ψn≥0 = a1λ
−n
1 Φ

(R)
1 + a2λ

−n
2 Φ

(R)
2 . (B10)

The consistency of these expressions across the inter-
face can be read off by comparing the expressions at
n = 0, or equivalently those at n = −1, which in both
cases delivers the wave-matching condition

a1λ1Φ
(L)
1 + a2λ2Φ

(L)
2 = a1Φ

(R)
1 + a2Φ

(R)
2 . (B11)

This has nontrivial solutions if∣∣∣∣∣∣∣∣ A′ + 2WxC1 − λ1Ω A′ + 2WxC2 − λ2Ω
Ω− λ1(A′ + 2WxC1) Ω− λ2(A′ + 2WxC2)

∣∣∣∣∣∣∣∣ = 0

(B12)

⇒Wx(1− λ1λ2)(C1 − C2) = Ω(λ1 − λ2) (B13)

⇒2− λ1λ2 −
1

λ1λ2
=

2Ω

Wx
, (B14)

where in the first step we used (A′ + 2WxC1)(A′ +
2WxC2) = −Ω2 and in the second step we multiplied
through by 1− 1/(λ1λ2).

Using the definitions introduced in Eq. (B5), condition
(B14) can be rewritten as

1− C1C2 − Ω/Wx = ±S1S2, (B15)

where the sign depends on which of the propagation
factors fulfill the condition (B8). Squaring both sides
and using the identities W 2

xC1C2 = (A′B′ − Ω2)/4,
W 2
x (C1 − C2)2 = Ω2 + (A′ − B′)2/4, we find the con-

dition

Ω(Ω− 2Wx)2 −A′B′Ω + (A′ −B′)2Wx

2
= 0, (B16)

which must be fulfilled for any edge state with a sym-
metric mode profile.

The corresponding condition for edge states with an
antisymmetric mode profile can be constructed by evok-
ing the chiral symmetry operation σz, which transforms
the Bloch vectors given in Eqs. (B6) and (B7) according
to

σzΦ
(R)
l = σzσxΦ

(L)
l = −σxσzΦ(L)

l . (B17)

As the chiral symmetry inverts the sign of the complex
frequency Ω, this gives

2− λ1λ2 −
1

λ1λ2
= − 2Ω

Wx
(B18)

⇒− Ω(Ω + 2Wx)2 +A′B′Ω + (A′ −B′)2Wx

2
= 0,

(B19)

which must be fulfilled for any edge state with an anti-
symmetric mode profile.

Equations (12) and (13) follow by first expressing
Eqs. (B16) and (B19) according to the definitions (9)
as

(A+ 2Wy cos ky)(B + 2Wy cos ky)Ω

= Ω(Ω− 2Wx)2 + (A−B)2
Wx

2
(B20)

and

(A+ 2Wy cos ky)(B + 2Wy cos ky)Ω

= Ω(Ω + 2Wx)2 − (A−B)2
Wx

2
, (B21)
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and then converting these to the effective parameters
introduced in Eq. (11), which amount to A = (A′ +
B′)/2Wx, B = (A′ − B′)/2Wx. The propagation factors
(16) follow analogously from Eqs. (B4) and (B5) with
the proper branch of the square root, and the consis-
tency conditions (14) and (15) follow from Eqs. (B14)
and (B18).

The physical interpretation of these consistency condi-
tions is as follows. In order for a solution Ω of Eqs. (B16)
or Eqs. (B19) to define an actual edge state, the corre-
sponding wave function must decay away from the inter-
face. This requires that Ω inserted into Eq. (B4) gives
propagation factors |λ1|, |λ2| > 1 according to our choice
in Eq. (B8), but the information about this choice is
lost when one squares Eq. (B15). If for one of the two
propagation factors we find |λl| = 1, we instead obtain
a scattering state. If the consistency equations (B14)
and (B18) can only be fulfilled by combining a decaying

and an increasing branch of λ
(±)
l , the state is unphysical.

Therefore, in (A′, B′) parameter space, solutions change
from physical to unphysical when for one pair of propaga-

tion factors |λ(±)l | = 1. This corresponds to propagating
waves in the bulk system, and therefore occurs when an
edge-state arc meets the bulk dispersion relation.

In the PT -symmetric case, the conditions where the
arcs meet the bands can be determined analytically from
the realization that they coincide with exceptional points
where the frequencies Ω of two edge states become degen-
erate, with an either real or imaginary value. Demanding
degeneracy of solutions in the cubic equations Eq. (B16)
and (B19), we find the condition

27

8
(A′+B′)4 = 2A′2B′2(1+

A′B′

W 2
x

)+(8W 2
x+9A′B′)(A′+B′)2

(B22)
for the termination points of the arcs on the real branches
of the band structure, and the condition

A′2 + 6A′B′ +B′2 = 32W 2
x (B23)

for their termination points on the imaginary branches
of the band structure. In Fig. 4(a), these conditions are
again translated from (A′, B′) space into (A,B) space.
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[10] R. Süsstrunk and S. D. Huber, Science 349, 47 (2015).
[11] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and

B. Zhang, Phys. Rev. Lett. 114, 114301 (2015).
[12] V. Peano, C. Brendel, M. Schmidt, and F. Marquardt,

Phys. Rev. X 5, 031011 (2015).
[13] R. Shindou, R. Matsumoto, S. Murakami, and J.-I. Ohe,

Phys. Rev. B 87, 174427 (2013).
[14] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243

(1998).
[15] M. V. Berry, Czech. J. Phys. 54, 1039 (2004).
[16] W. D. Heiss, J. Phys. A 45, 444016 (2012).
[17] I. Rotter, J. Phys. A 42, 153001 (2009).
[18] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).

[19] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.
Lett. 42, 1698 (1979).

[20] M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 102,
065703 (2009).

[21] M. S. Rudner, M. Levin, and L. S. Levitov,
arXiv:1605.07652 (2016).

[22] H. Schomerus, Opt. Lett. 38, 1912 (2013).
[23] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and

H. Schomerus, Nat. Commun. 6, 6710 (2015).
[24] L. Ge, Phys. Rev. A 95, 023812 (2017).
[25] H. Zhao, P. Miao, M. H. Teimourpour, S. Malzard, R. El-

Ganainy, H. Schomerus, and L. Feng, Nat. Commun. 9,
981 (2018).

[26] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A.
Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N.
Christodoulides, and M. Khajavikhan, Phys. Rev. Lett.
120, 113901 (2018).

[27] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte,
K. G. Makris, M. Segev, M. C. Rechtsman, and A. Sza-
meit, Nat. Mater. 16, 433 (2016).

[28] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys.
Rev. B 84, 205128 (2011).

[29] H. Zhao, S. Longhi, and L. Feng, Scientific Reports 5,
17022 (2015).

[30] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and
F. Nori, Phys. Rev. Lett. 118, 040401 (2017).

[31] S. Malzard, C. Poli, and H. Schomerus, Phys. Rev. Lett.
115, 200402 (2015).

[32] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[33] S. Yao and Z. Wang, arXiv:1803.01876 (2018).
[34] M. Pan, H. Zhao, P. Miao, S. Longhi, and L. Feng, Nat.

Commun. 9, 1308 (2018).
[35] L. J. Lang, Y. Wang, H. Wang, and Y. D. Chong,

arXiv:1807.07776 (2018).
[36] X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong,

and A. B. Khanikaev, arXiv:1801.04689 (2018).



11

[37] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120,
146402 (2018).

[38] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Hi-
gashikawa, and M. Ueda, arXiv:1802.07964 (2018).

[39] H. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389
(1983).

[40] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107,
127205 (2011).

[41] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Phys. Rev. B 83, 205101 (2011).

[42] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane,
G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-
C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez,
B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin,
S. Jia, and M. Z. Hasan, Science 349, 613 (2015).

[43] B. Yang, Q. Guo, B. Tremain, L. E. Barr, W. Gao, H. Liu,
B. Béri, Y. Xiang, D. Fan, A. P. Hibbins, and S. Zhang,
Nat. Commun. 8, 97 (2017).

[44] J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen,
and M. C. Rechtsman, Nat. Phys. 13, 611 (2017).

[45] A. Cerjan, M. Xiao, L. Yuan, and S. Fan, Phys. Rev. B
97, 075128 (2018).

[46] J. Carlström and E. J. Bergholtz, arXiv:1807.03330
(2018).

[47] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson,
L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen,
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