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We describe the formation of bulk and edge arcs in the dispersion relation of two-dimensional coupled-
resonator arrays that are topologically trivial in the Hermitian limit. Each resonator provides two asymmetrically
coupled internal modes, as realized in noncircular open geometries, which enables the system to exhibit
non-Hermitian physics. Neighboring resonators are coupled chirally to induce non-Hermitian symmetries. The
bulk dispersion displays Fermi arcs connecting spectral singularities known as exceptional points and can be
tuned to display purely real and imaginary branches. At an interface between resonators of different shape,
one-dimensional edge states form that spectrally align along complex arcs connecting different parts of the bulk
bands. We also describe conditions under which the edge-state arcs are freestanding. These features can be

controlled via anisotropy in the resonator couplings.
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I. INTRODUCTION

Systems exhibiting nontrivial band topology attract intense
attention owing to phenomena such as chiral edge and surface
states supported by boundaries between topologically distinct
gapped phases [1,2]. While the initial focus was on electronic
or superconducting systems, the excitement quickly extended
to other arenas of quantum and classical wave phenomena,
which often display constraints very different from those
of fermionic systems. In particular, the particle number is
typically nonconserved in classical [3,4] and quantum [5]
optical realizations, as well as for analogous emergent bosonic
excitations such as polaritons [6-9], phonons [10-12], and
magnons [13]. This provides a bridge to non-Hermitian sys-
tems that come along with their own complementary set of
symmetries, as pioneered with the realization that parity-time
(PT) symmetric non-Hermitian Hamiltonians can display a
real spectrum [14]. In this and other non-Hermitian settings,
the band-degeneracy points that play a crucial role at sepa-
rating topologically distinct gapped phases are replaced by
exceptional points (EPs) [15-17], where eigenvalues depart
from spectral symmetry lines [18]. Just like their Hermitian
counterparts (known in general as diabolic points; DPs), EPs
carry a topological charge derived from a geometric phase,
which prevents their spontaneous isolated creation or annihi-
lation unless two points of opposite charge collide [15].

In recent years, several mechanisms have been reported to
induce topological phenomena into non-Hermitian systems,
be it based on non-Hermitian time-reversal symmetries (as for
PT) or analogous combinations with chiral symmetry (X)
or charge-conjugation symmetry (C = X7). A main moti-
vation is to obtain topological states with distinct lifetimes,
as encoded in the imaginary part of the energy spectrum. In
many cases, the models are based on topological Hermitian
counterparts, such as the well-studied Su-Schrieffer-Heeger
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model [19], where dissipation can yield quantized displace-
ments of decay and survival processes [20,21], while the
introduction of gain and loss yields a topological mechanism
of zero-mode selection based on a non-Hermitian C [22-26]
or PT [27] symmetry. In these and other examples [28,29]
derived from topological Hermitian systems, the topologi-
cally protected states still obey a bulk-boundary correspon-
dence [30] and their robust properties are directly inherited
from the Hermitian limit.

However, this is not always the case. Protected edge and
interface states can also arise via EPs, even when the Her-
mitian limit is topologically trivial [31-35]. This mechanism
equips a system with robust spatially localized states that
display distinct lifetimes. Furthermore, non-Hermitian effects
can fundamentally change the properties of edge states of a
Hermitian origin, which, for instance, can bifurcate at EPs to
display additional branches with P7 symmetry [36]. These
observations highlight the role that EPs and their topological
charges play in distinguishing conventional topological states
with adopted non-Hermitian properties from genuinely non-
Hermitian symmetry-protected states that do not have a Her-
mitian counterpart [30,37] and in classifying non-Hermitian
topological systems in general [38].

Spectral singularities also play a role in nongapped topo-
logical systems, such as three-dimensional Weyl and Dirac
semimetals where such singularities appear at generic DPs
in momentum space [39,40]. A particularly intriguing phe-
nomenon observed in such systems is the formation of
surface-state Fermi arcs, corresponding to dispersive branches
in the band structure that connect topologically distinct parts
of the bulk bands and are hinged to these spectral singu-
larities [41,42]. In optical systems, hermitian Fermi arcs
have been realized in metamaterials [43] and laser-written
waveguides [44]. This provides again a springboard to explore
non-Hermitian counterparts. EPs occur generically when only
two parameters are varied in a non-Hermitian system [15],
while a non-Hermitian perturbation of a DP in three dimen-
sions results in a one-dimensional exceptional curve [45] and
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higher-dimensional analogues of Fermi arcs [46]. Incorporat-
ing loss into a two-dimensional topological system with a DP
therefore results in the formation of two EPs connected by a
bulk Fermi arc, a scenario that has been realized in a periodic
photonic crystal [47]. Non-Hermiticity can also close the band
gap in the bulk of a system, resulting in the formation of
exceptional points and curves in momentum space that spawn
complex branches in the bulk dispersion [48,49]. Furthermore,
the PT-symmetric edge states branching off conventional
edge states [36] have been found to survive when a band gap
has been closed in such a way.

These complex spectral bulk and edge effects in gapless
topological systems provide the backdrop for the present
paper. The key question which we pursue in this work is
whether analogous effects can also be achieved in systems
with a topologically trivial Hermitian limit. To this end, we
show that one can indeed realize bulk Fermi arcs and complex
edge-state arcs in a highly accessible setting, given by a
two-dimensional array of microresonators. Each individual
resonator is taken to be open and deformed into a slightly
noncircular shape, a combination of features that has been
exploited widely in both theory and experiment to induce non-
Hermitian effects akin to P77 symmetry [50]. The array places
these resonators onto a two-dimensional square lattice where
neighboring resonators are coupled evanescently. This gives
rise to a chiral symmetry, as previously employed in photonic
analogues of topological insulators [3,51]. In our setting,
however, the system belongs to a universality class (the chiral
universality class AIIl) which, for Hermitian two-dimensional
systems, is topologically trivial [1,52]. By adjusting a single
parameter, the array can, furthermore, be tuned to jointly
display P7 and C symmetry. In the general classification of
topological systems, this modification places the system into
a different symmetry class (the chiral class with conventional
time-reversal symmetry; BDI), which, however, is again topo-
logically trivial in the Hermitian limit.

(a)

In the symmetry class AIIl, we demonstrate the existence
of bulk Fermi arcs that emanate from EPs in the Brillouin
zone. In the symmetry class BDI, the symmetries combine
to stabilize purely real and imaginary branches of the bulk
dispersion. These bulk effects are described along with the
details of the model in Sec. II.

To induce edge effects into the system we join two arrays
with opposite resonator deformations along an interface. In
one-dimensional coupled-resonator optical waveguides, such
an interface can give rise to defect states, which emerge at
EPs that are passed when the system is sufficiently non-
Hermitian [31]. In the two-dimensional array, this effect takes
place in momentum space, resulting in complex edge-state
arcs. The arcs depart from the bulk bands and provide states
with distinct mode profiles, frequencies, and lifetimes. These
edge effects are described in Sec. II1.

The spectral phenomena described in this work are highly
adaptable via the choice of the resonator geometry and the
resonator placement. In particular, the evanescent coupling
strengths between the resonators can be used to reposition
the exceptional points and, also, control which parts of the
edge-state arcs are physically accessible in the Brillouin zone.
These couplings therefore provide a simple mechanism to tai-
lor and accentuate the predicted spectral features of the array.

II. MODEL AND BULK BAND STRUCTURE

The two-dimensional resonator array is sketched in
Fig. 1(a). It consists of dielectric resonators that confine light
by internal reflection, resulting in resonance states of finite life
captured by complex resonance frequencies 2. We consider
the generic effects of openness and noncircular deformation
of these resonators, in a regime where optical reciprocity
is maintained and the coupling of different resonators is
predominantly evanescent.

(d)
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FIG. 1. Bulk Fermi arcs in a two-dimensional array of evanescently coupled non-Hermitian resonators. (a) Each resonator supports a
clockwise (CW) and a counterclockwise (CCW) internal mode, which are coupled by asymmetric backscattering amplitudes A and B, as
obtained, e.g., from a small nonspherical deformation of open dielectric resonators. The resonators are placed on a square lattice and are
coupled evanescently with coupling coefficients W, and W,, which convert CW waves into CCW waves. This coupling configuration introduces
a chiral symmetry into this non-Hermitian system. (b)—(d) Real part Re @ of the bulk dispersion for B = —2.5 + 0.2i, W, = 1.0 4+ 0.1i,
W, = 1.0+ 0.5i, and the three values A = 1.5+ 0.1 (b), A = 1.5 4+ 0.2i (c), and A = 1.5 + 0.3i (d). In each case, the dispersion consists of
two sheets 2 (yellow, top surface) and Q2_ = —Q, (blue, bottom surface) that are related by the chiral symmetry. White lines indicate Fermi
arcs and lines with Re = 0, corresponding to intersections of the two sheets. The arcs terminate at exceptional points (EPs), which are the
non-Hermitian counterparts of Weyl points in topological insulators. In (b), four EPs are connected by two arcs. In (d), the EPs are reconnected
by two arcs with a different topology, while a closed Fermi line is also present. (c) The reconnection point between these two scenarios, which
is mediated by two smaller closed Fermi lines.
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In circular resonators, one encounters spectrally degenerate
but mutually orthogonal pairs of clockwise (CW) and coun-
terclockwise (CCW) whispering-gallery modes. Even when
the lifetimes of these modes are large, strong non-Hermitian
effects ensue when such resonators are slightly but asymmetri-
cally deformed, be it smoothly or via notches or attachment of
nanoparticles [50,53]. We consider a spectral range in which
only one of these pairs in each resonator is relevant and denote
the amplitude of the CW mode a, , and the amplitude of the
CCW mode as b, ,,, where the resonator location is identified
by the indices n and m, pertaining to the x and y directions.
The amplitudes in the resonator are placed together into a two-
component vector ¥, ,, = (Z;’“ ). The two-mode Hamiltonian

1,m

describing an individual isolated resonator then has the form

Qo A
h— (B szo)' (1)

As detailed in Appendix A, reciprocity dictates that the
whispering-gallery modes retain an identical bare resonance
frequency €2y. The main effect of the deformation is a fi-
nite but asymmetric (directed) backscattering between both
modes, with an amplitude A for CCW-to-CW conversion
that can substantially differ in magnitude and phase from
the amplitude B for CW-to-CCW conversion [50,53]. This
asymmetry is intimately related to the openness of the system
and results in the splitting of CW/CCW hybridized resonance
states, which have complex frequency €2 ++/AB. In the
following, we refer all frequencies to the reference frequency
Qp, thereby effectively setting €29 = 0.

In the array, adjacent resonators are coupled together
evanescently, such that CW modes from one resonator couple
to the CCW modes of an adjacent resonator. We can safely
assume that interresonator backscattering (CW to CW and
CCW to CCW) is suppressed, which is well fulfilled if the
approaching resonator boundaries are smooth on the scale
of the wavelength [3,51,54]. However, we allow that the
coupling strengths for resonators adjacent along the x direc-
tion are different from the coupling strengths for resonators
adjacent along the y direction. This corresponds to coupling
matrices (for a detailed justification and generalizations see
Appendix A)

(0 W, (0w,
tx_(wx 0)’ ty_(wy 0)' )

With these definitions, the coupled-mode equations for a
uniform two-dimensional array are given by

an,m = h'ﬁn,m + tJC("ﬁanl,m + "ﬁnfl,m)
+ty('/’n,m+1 + '/fn,m—l)' (3)

Stipulating that the solutions are of the form ¥, , =
etkentikym (4 we obtain the corresponding Bloch Hamiltonian

Hl)= 0 A +2W,C, +2W,C,
“\B+2w.C, +2w,C, 0 ’

“4)

where kK = (:‘ ), Cx = cosky, and Cy = cos k. The eigenval-
ues of H (k) provide the dispersion relation
Q(k)
= :I:\/(A +2W,Cy +2W,Cy)(B +2W.C, 4+ 2W,C,).
4)

In general, the parameters A, B, W,, and W, are com-
plex, so that time-reversal symmetry is broken. In this
case, the Bloch Hamiltonian still displays a chiral symmetry
o, H(k)o, = —H (k) with Pauli matrix o, according to which
the two eigenvalues are constrained to 2_ = — as indeed
observed above. In the general classification of Hermitian
topological systems, this places the systems into symmetry
class AIIl, which is topologically trivial in two dimensions.

As shown in the examples in Figs. 1(b)-1(d), representa-
tive band structures in this class AIIl combine regions with
predominantly real and predominantly imaginary resonance
frequencies. In all cases, one can clearly make out bulk Fermi
arcs with Re Q24 = 0. These arcs emanate from EPs, which
arise when

A+2W,C, +2W,C, =0 or
B +2W,C, 4+ 2W,C, = 0.

(6a)
(6b)

Each of these conditions can be met by varying two real
parameters such as k, and k,, so that the EPs appear gener-
ically at isolated positions in the two-dimensional Brillouin
zone. The arcs can occur on their own [see Fig. 1(b)] or be
complemented by closed Fermi lines [Fig. 1(d)]. The topology
of these lines and arcs can change at parameters for which
they intersect [Fig. (c)], which occurs when an arc crosses a
stationary point O, 4ix, 2|k, —ik, = 0 or Ok, —ix, 2+ |k, +ik, = 0.

In order to better understand these features, we tune the
array further to display a non-Hermitian P77 symmetry. This
is obtained when in a suitable basis all parameters A, B,
W,, and W, are real; the P7 symmetry is then realized by
simple complex conjugation [55]. Real values of W, and W,
are realized when the evanescent coupling is lossless [56].
To obtain real but distinct values of A and B, we need to
keep the resonators open but only need to tune a single pa-
rameter [54], as the relative phase of these amplitudes can be
adjusted by the choice of the whispering-gallery mode basis
(see Appendix A). The hybridized resonance modes in each
isolated resonator then have complex frequencies Q & +/AB,
so that the resonance splitting is either purely real (if AB > 0)
or purely imaginary (if AB < 0). In the general classification
of Hermitian topological systems, the case of real couplings
represents the chiral class BDI with a conventional time-
reversal symmetry (here obtained from (P7)? = 1), which
for two-dimensional systems is again topologically trivial.

Under these conditions, the band structure, (5), of the res-
onator array is real and gapped if |A|, | B| > 2(W, + W,) and
AB > 0, or imaginary and gapped if, for the same conditions,
AB < 0. In all other cases, the dispersion contains purely real
and purely imaginary branches in ranges of k, and k. These
branches are joined at lines of EPs with Q21 = 0, which are
again determined by condition (6).
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(a)

FIG. 2. (a) Real and (b) imaginary parts of the bulk dispersion
for A=1.0, B=—-1.0, and W, = W, = 1, representing the PT -
symmetric case (symmetry class BDI) where the band structure
displays purely real and imaginary branches, and the exceptional
points degenerate into lines.

These additional spectral constraints are consequences of
the manifest symmetries of the system in the CW/CCW basis.
The non-Hermitian P77 symmetry makes the Bloch Hamilto-
nian, (4), real, H(k) = H*(k), so that its eigenvalues either
are real or form a complex-conjugated pair. The combination
with the chiral symmetry o, H(k)o, = —H (k) yields the C
symmetry o, H(k)o, = —H*(k). From this we find that the
complex eigenvalues in a conjugate pair must both obey Q4 =
—Q%, hence must both be purely imaginary.

A representative example of a band structure in symmetry
class BDI is shown in Fig. 2. The purely imaginary branches
define flat patches with Re Q24 = 0, which are bounded by
lines of EPs. The Fermi arcs in symmetry class AIIl can
be interpreted as remnants of these regions when the P7T
symmetry is explicitly broken by complex coupling values.

While this exhausts all possibilities for the two-component
Bloch Hamiltonian, the spectral constraints from P77 symme-
try can also, e.g., be fulfilled by quadruplets of eigenvalues
Q) = —Qp = Q] = —Qj, which are arranged in a fourfold
symmetric pattern with respect to the real and imaginary
axis. As we see in the next section, this much richer picture
unfolds in systems with suitable interfaces, where it provides
the avenue to the formation of complex edge-state arcs.

III. EDGE-STATE ARCS

To create edge states in the array we modify the bulk
configuration and create an interface between two regions
representing opposite deformations of the resonators [see
Fig. 3(a)]. The interface is placed along the y axis and
separates a region of resonators with internal coupling coef-
ficients A and B (n < 0; resonators depicted in blue) from a
region of reflected resonators for which these two values are
swapped (n > 0; resonators depicted in green). Figure 3(b)
shows an example of an edge state in an array of 40 x 40
resonators with parameters A = -2, B=2, W, =W, =1,
demonstrating that such states can indeed be formed. The
states are exponentially confined in the direction away from
the interface and display a standing-wave pattern along the
interface. As we show in the following, the complex frequen-
cies of these states form arcs that connect different points on
the bulk dispersion relation. This is illustrated for the given
set of parameters in Fig. 3(c), where the complex frequencies

(Wl

[s3tun -qre]

(=]

FIG. 3. Edge-state arcs in an array with an interface joining
resonator arrays with opposite backscattering. (a) Horizontal slice
through the array, where the dotted line indicates the interface
between resonators with backscattering amplitudes A and B as in
Fig. 1 (blue resonators at the left) and resonators where the values of
these backscattering amplitudes are interchanged (green resonators
at the right). (b) Density plot of the intensity of a representative edge
state in a finite square array of 40 x 40 resonators, with A = —B =
W, = W,. (c) Quasi-one-dimensional band structure in the infinite
version of this array, where k, is a good quantum number. In this
representation, the bulk bands form sheets, which here lie in the
real and imaginary plane as all parameters are real (P7 -symmetric
symmetry class BDI; see Fig. 2). Thick black curves are the edge-
state arcs, which connect the different sheets.

are shown as a function of the conserved quantum number &,
assuming an infinite size of the array. In this representation,
the extended states form continuous two-dimensional sheets,
which represent the projection of the bulk dispersion, (5). The
edge states align along one-dimensional curves that terminate
on the sheets and represent the arcs in question. We now
unfold the general picture behind these observations.

The translation symmetry along the y axis allows us to
separate variables according to ¥, , = 0,e"™m, where the
permitted values of k, are determined by the width of the
array. The wave equation (3) then takes the form

Qp, =h,@, +1:(@, 1 +0,_), (7
where
/
(5 o) @<
B 0
hy, = , (®)
0 B 1> 0)
(A/ O) n = 1)

with the effective coupling coefficients

A= A+2W,cosk,, (9a)
B’ = B + 2W, cosk,. (9b)

For fixed parameters A’ and B’, Egs. (7) and (8) define a
quasi-one-dimensional set of coupled-mode equations, which
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for ky, = /2 recover the case of a one-dimensional array
that admits complex defect states at sufficiently strong non-
Hermiticity [31]. In this parameter space, the edge states can
be obtained by wave matching, which is carried out in detail
in Appendix B. Translated back into k space, we obtain con-
ditions determining the edge states, which are conveniently
expressed in terms of the scaled frequency
Q

0= (10)

and the effective parameters

_ A+ B +4W, cosk,
B 2W,

A (arc parameter), (11a)

B = W (backscattering asymmetry).

Edge states with a symmetric mode profile about the inter-
face then obey the equation

(11b)

—oA2+ 2+ 0)B*+ w2 —w)? =0, (12)

while edge states with an antisymmetric mode profile obey the
equation

oA+ (2 — w)B — w2+ w)’* =0. (13)

The symmetric and antisymmetric solutions are connected
by chiral symmetry and, thus, remain paired as @ and —w
even when all parameters are complex (corresponding to
symmetry class AIII). In the P7 -symmetric case where the
parameters A, B, W,,and W, are real (symmetry class BDI),
the solutions of Egs. (12) and (13) are further constrained to
be real or to occur in complex-conjugated pairs, leading to
quadruplets (v, —w, ®*, —®*).

For a solution w of Eq. (12) to define a normalizable, phys-
ical edge state it, furthermore, has to fulfill the consistency
condition

1
2 A —— =2 14
the = o w, (14)

while the solutions of Eq. (13) are subject to the consistency
condition

|
1
Here
A VB2
M=CiEyCi-1 0 ==T+ % (16a)
A 62 2
ha=Crxy[C-1 G =-T - —;“’ (16b)

are propagation factors, where the signs of the square roots
have to be chosen such that |A;| > 1 and |A,| > 1. If, for a
solution of Eq. (12) or (13), a propagation factor is |A;| =
1, we instead obtain a scattering state. If the consistency
equation, (14) or (15), can only be fulfilled by combining a
decaying and an increasing propagation factor A;, the state
cannot be normalized and is unphysical. Therefore, in both
cases edge states change from physical to unphysical at points

at which one of the propagation factors attains |A;| = 1.
This corresponds to propagating waves in the bulk system
and, therefore, occurs when an edge-state arc meets the bulk
dispersion relation, where it then terminates. In the P7T-
symmetric case (symmetry class BDI), the termination points
coincide with degeneracies in edge-state quadruplets at real or
imaginary frequencies, thus constituting EPs.

Figure 4(a) illustrates the traces of the edge-state arcs in
the real section of effective parameter space (A, B), where
PT symmetry holds. Solid and dashed curves in the diagram
denote the locations of the real and imaginary energy bands
in this space (for analytical expressions see Appendix B) and,
thereby, confine regions in which the solutions of Egs. (12)
and (13) represent genuine edge states (green region), scatter-
ing states (red region), or nonnormalizable unphysical states
(blue region). The edge states trace out a horizontal line A(k,)
in the arc parameter, which according to definition (11) has a
length 4W, / W, determined by the coupling anisotropy, while
its horizontal center is given by A(7/2) = (A + B)/2W, and
its vertical position is given by the non-Hermiticity parameter
B = (A — B)/2W,.

The three labeled horizontal lines are the traces of
edge states for representative systems with A = —B. In the
complex energy dispersion these traces correspond to the
arcs shown by the green curves in Figs. 4(b)-4(d). These
arcs can connect the real and imaginary branches of the
bulk dispersion relation [Fig. 4(b)], can loop back to the real
branch [Fig. 4(c)], or can be disconnected from the bulk bands
[Fig. 4(d)]. Blue arcs in Fig. 4(b) looping back to the imagi-
nary branches represent unphysical states, arising in Fig. 4(a)
from segments of the trace across the dashed line. The red arcs
in Figs. 4(b) and 4(c) represent scattering states within the real
branch of the bulk dispersion, which occur in Fig. 4(a) when
the traces cross the corresponding solid line. The disconnected
arcs as shown in Fig. 4(d) occur for traces that are confined to
the interior of the edge-state region, so that they do not cross
the phase boundaries defined by the bulk bands.

As shown in Fig. 5, the edge-state arcs persist for complex
coupling parameters, for which the P77 symmetry is broken
so that different arcs are only related by the chiral symme-
try (corresponding to symmetry class AIIl). In this figure,
the chosen parameters are almost real, which allows us to
identify the most important qualitative effects. As shown in
Fig. 5(a), the arcs still emerge from the bulk dispersion, but
the degeneracy of the termination points is lifted, which is
particularly visible on the formerly real sheets. Figures 5(b)
and (c) compare the propagation factors A; and 1/A; along the
arc for real and complex couplings. This comparison reveals
two distinct effects. The propagation factors of the former
scattering states acquire moduli |A;| # 1 and hence turn into
weakly confined edge states or nonnormalizable, unphysical
states. Furthermore, the formerly degenerate transitions at
which edge states from previously symmetry-paired arcs be-
come unphysical occur at independent values of &, as shown
in Fig. 5(d) close to the formerly imaginary sheet and in
Fig. 5(e) close to the formerly real sheet. All these features
remain dictated by the general quantization conditions (12)
and (13) subject to the consistency equations, (14) and (15),
which hold for general complex values of all coupling
parameters.
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FIG. 4. (a) Traces of the edge-state arcs in the real section of their
effective parameter space (A, B) [defined in Eq. (11)]. Traces are
horizontal lines of length 4W, / W,, which are centered at A = (A +
B)/2W,, B = (A — B)/2W,. The solid and dashed curves denote
the termination conditions at the real and imaginary branches of the
bulk bands, where the edge states (green region) turn into extended
scattering states (red region) or into nonnormalizable, unphysical
states (blue region). The three representative traces correspond to the
quasi-one-dimensional band structures shown in (b)—(d), which dis-
play edge-state arcs (thick green curves), their scattering predeces-
sors (red curves in the real bands), and unphysical states [blue curves
connecting the imaginary bands in (b)]. (b) A/ W, = 0.55, B/ W, =
—0.55, W, /W, = 1.175, for which the trace crosses both termina-
tion lines and the arcs connect the real and imaginary branches of
the bulk bands. (c) A/W, =-09, B/W, =09, W,/W, =1, for
which the trace only reaches the real termination line so that the arcs
loop back to the real branches. (d), A/ W, = —-2.0, B/W, =2.0,
W, /W, = 1, for which the trace remains confined in the edge-state
region so that the arcs are freestanding.

FIG. 5. (a) Edge-state arcs for complex backscattering ampli-
tudes A/ W, =0.5540.02i, B/W, =—0.55+0.02i, and W, =
1.175 [close to the real values in Fig. 4(b)]. All arcs still terminate
on the bulk bands, which now are no longer real or imaginary.
(b, d) Propagation factors |A;|, 1/|x;] of potential edge states as
determined by Eq. (16). In (b), A=—-B =0.55/W,, W,/W, =
1.175, corresponding to the real values of Fig. 4(b). In (c) and (d),
the parameters take the complex values given above. For complex
parameters the region of scattering states is replaced by regions of
physical and unphysical states. Furthermore, the termination points
of different arcs now appear at separate values of k,, as shown in
detail in (d) and (e), which zoom in on the termination region at the
formerly purely imaginary and real branches of the bulk dispersion,
respectively.

IV. CONCLUSIONS

In summary, two-dimensional resonator arrays with non-
Hermitian internal backscattering and chiral coupling are
capable of displaying a broad range of complex spectral
phenomena in the bulk and at interfaces. In particular, the
bulk dispersion relation of these systems can feature complex
bulk Fermi arcs and flat patches (see Sec. II and Figs. 1
and 2), while the dispersion along an interface can exhibit
complex edge-state arcs (see Sec. III and Figs. 3-5). The
described effects replicate the behavior previously predicted
for systems whose Hermitian limit is topologically nontrivial.
However, the arrays studied here belong to universality classes
that in the Hermitian limit are topologically trivial. The de-
scribed setup is highly flexible, so that the spectral effects
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are widely adaptable, where we here focused on the main
phenomenology.

The key feature from non-Hermitian physics that enables
these effects are exceptional points, which replace the spec-
tral singularities in Hermitian topological systems. These
exceptional points can appear generically even in universality
classes with a topologically trivial Hermitian limit, as utilized
here for two-dimensional reciprocal systems from classes
AIIl (chiral symmetry) and BDI (chiral symmetry with a
conventional time-reversal symmetry). These properties fur-
ther expand the scope of nontrivial physics that arises from
non-Hermiticity, as previously seen in the context of isolated
topological defect states.

From a practical perspective, these findings imply that
nontrivial dispersion effects can be achieved without need-
ing to resort to carefully engineered systems that replicate
the intricate symmetries required for Hermitian topological
physics. For instance, we assumed throughout that reciprocity
is preserved. Therefore, the described effects can occur in
conventional optical settings. The main requirements are chi-
ral symmetry, as previously employed in photonic analogs of
topological insulators [3,51], and asymmetric backscattering,
which can be realized in a wide range of resonator geome-
tries [50,53].

In such optical settings, bulk Fermi arcs are directly ob-
servable in momentum space [47]. Focusing on signatures
in the local and total density of states, they should also be
observable, e.g., in microwave setups. The edge-state arcs
provide spatially localized states that do not exist in their
Hermitian counterpart. Besides this characteristic spatial con-
finement, a key feature that distinguishes these states is their
distinct lifetimes. Therefore, an attractive approach to probe a
system for edge-state arcs would be to excite a state locally
near the interface and observe the dynamical evolution of
this state along the arc towards long lifetimes. In this way,
these resonator arrays provide promising mechanisms for state
engineering that deserve further investigation.

Our investigations rested on a scalar coupled-mode theory.
It is therefore of interest to explore situations beyond such
a description. Examples are the strong-coupling regime be-
tween resonators where new topological effect can emerge
beyond a tight-binding model [51] and for which the role
of asymmetric internal backscattering has not yet been con-
ceptualized, as well as three-dimensional systems where the
polarization degree of freedom becomes important. From a
fundamental point of view, it is useful to consider whether
the interface effects described in Sec. III can also be under-
stood from the bulk properties of the system. It has been
pointed out that non-Hermitian systems can display topo-
logical effects settings without a conventional bulk-boundary
principle [30,57,58]. The results presented here, and those
established earlier for the one-dimensional variant [31] and
for the examples in [32-35], indicate that while protected
by the overall symmetry of the system, the reported edge
states may indeed not derive from bulk quantum numbers. In
these circumstances it would be attractive to develop global
characterizations, as already required in disordered Hermitian
systems and P7T-symmetric systems. Notably, global invari-
ants can be formulated by scattering theory for both of these
examples [59-61].

The numerical research data in this work are openly avail-
able at Lancaster University [62].
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APPENDIX A: SYMMETRY CONSTRAINTS

Time-reversal symmetry, reciprocity, and chiral symme-
tries take different forms in different bases. Here we eluci-
date the resulting constraints in the standing-wave basis of
appropriately normalized sine and cosine waves |s), |c)
around the perimeter of the resonators and the whispering-
gallery basis of clockwise and counterclockwise circulating
modes

1 o 1 o
ICW) = \/;(IC) —ils))e'*, |CCW) = \/;(IC) +ils))e "%,

(AD)

The angle yx originates from the freedom to choose the
nominal origin around the perimeter of the resonators. We
initially set x = 0 and discuss this freedom at the end of this
Appendix.

Optical reciprocity requires that the non-Hermitian effec-
tive Hamiltonian is symmetric in the standing-wave basis. For
an isolated resonator, this implies

h = ale)(cl+ B(le)(s| + Is)c) + yIs)is|  (A2)
_ %ch (CW| + |CCW)(CCW))
+ (% + iﬂ)ICWMCCWI
oa—-y .
+ <—2 - zﬁ>|CCW) (CW], (A3)

which justifies the form, Eq. (1), of the resonator Hamilto-
nian & with Qy = (¢ +y)/2, A=if+ (o —y)/2 and B =
—if+(x—y)/2

Let us now consider the coupling of two resonators, with
the states in the second resonator denoted by a prime. The
coupling operator then takes the form

i = Wee(le)(c'| 4 1) (e]) + Wis(Is) (s + 1s") (s])
+ Wes([e) (| + Is") (c]) + Wee(Is) ('] + ') (s])
= W, (JCW)(CW'| + [CCW')(CCW|)
+ W_(JCCW){CCW'| + [CW')(CW|)
+ W, (JCW)(CCW'| + |CW')(CCW|)
+ WL (JCCW)(CW'| 4 |CCW')(CW)),

(A4)

(AS)

with

_ch + Wss + l(W_SL - Wcs)

= > s

ch - Wss + i(Wsc + Wcs)
3 .

In the regime of evanescent coupling, backscattering is
suppressed, which corresponds to W, + Wy, =0, W, —

+

Wi = (A6)
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W, = 0. This then leads to a coupling matrix

e w

with W, = W, +iW,, W = W, —iW,. Furthermore,
evanescent coupling usually involves smooth, locally sym-
metric geometries where also W, Wy, =~ 0, so that we set
Wj_ = W’ = W. In the expressions, (2), for #, and ty, these
coefficients are evaluated at the appropriate positions of adja-
cent resonators in the horizontal or vertical direction.

These conditions deliver the general model studied in
our work, which always displays a chiral symmetry. The
additional P77 symmetry emerges when we can find a basis
in which all coupling coefficients are real [55]. For the co-
efficients W, and W,, this is fulfilled when the evanescent
coupling does not induce any losses [56]. For the internal
couplings A and B, we argue that they can be made real
by tuning a single generic parameter. To realize this, we
exploit as mentioned above that in all these considerations
we have the freedom to choose the nominal origin of the
standing or propagating waves along the perimeter of each
resonator. For instance, rotating the origin in each resonator by
an angle ¢, we can consider CW waves ~ exp(—im(¢ — ¢p))
and CCW waves ~ exp(im(¢ — ¢o)) with modes index m. In
Eq. (A1), this corresponds to an additional phase x = may.
The coupling amplitudes A and B then pick up opposite
phase factors A — Aexp(—2ix), B — Bexp(2iy). Thus, to
achieve P77 symmetry we are only required to tune a single
parameter to achieve that A and B have an opposite phase.
This phase can then be transformed to 0 by an appropriate
choice of the propagating-wave basis. As a key indicator,
one can consider the resonances ¢ =+ V/AB in the isolated
resonators, which are split either in frequency (AB > 0) or in
lifetime (AB < 0), but not in both. For a numerical example
of coupled resonators with real A, B, and W, see Ref. [54],
where this situation was realized in a coupled-resonator chain
of circular disks with attached nanoparticles.

In summary, the general model presented in this work
requires reciprocity and evanescent coupling at smooth inter-
faces. The variant with an additional P77 symmetry requires
the tuning of only a single parameter, which aligns the reso-
nances of an isolated resonator in either frequency or lifetime.

APPENDIX B: WAVE MATCHING

Here, we present the details of the derivation of the
edge-state conditions, (12)—-(16). These are obtained by wave
matching from the quasi-one-dimensional tight-binding equa-
tions, (7), with the interface defined by Eq. (8), which we first
carry out in (A’, B") parameter space. The edge-state arcs in
k space and in (A, B) space then follow from parameteriza-
tions (9) and (11).

To carry out this wave matching, we first determine the
Bloch solutions

9, =\'® (B1)

in the regions on both sides of the interface for a given value
of Q, where we utilize propagation factors A = exp(ik,).
According to Eq. (7), the Bloch states in the region n < 0 are

given by the condition

(0 A gy (01
sz<1>_(B, 0)¢+(A+A )WX<1 0)‘1" (B2)

This permits nontrivial solutions if

—-Q A +2W.C||
B +2W,C —Q H =0, (B3)
where we have introduced A + A~! = 2C. The two solutions
of the resulting quadratic equation are
A"+ B’ A’ — B’)?
2W,.C) = — + ( ) + Q% (B4a)
2 4
A"+ B’ A’ — B’)?
2W,Cy = — er i 2 ) +Q2,  (B4b)

which corresponds to four propagation factors:

B =+ \/ﬁ =C %5, (B5a)
WP =, £ m =G5, (B5b)
‘We note that the associated Bloch vectors
/
(I)I(L) x <A +522ch1) (B6)

are the same for each pair )»}H and )»,H and that A;H)\f) =1,
which are both consequences of reciprocity. The same con-
struction can be carried out on the right side of the interface,
where one obtains the same propagation factors but associated
with the Bloch vectors,

esta(ydc)  ®
Superpositions of these Bloch waves form the general
solutions to the left and right of the interface. Edge states are
obtained when we can match solutions that decay to both sides
of the interface. This requires departing from the bands and,
hence, studying values of €2 where the propagation factors are
no longer unimodular. To be specific, we select from each pair

)»l(ﬂ, )»f) the propagation factor A; fulfilling
Al > 1, (B3)

and henceforth we work with the propagation factors
A1, 1/A;. [By proper choice of the branch of the square
roots in Eq. (BS), we could alternative enforce that always
|A(1+)|, |A(2+)| > 1.] Assumption (B8) is revisited below to
confirm the consistency of a potential edge state.

We first deal with the case of solutions that are symmetric
about the interface (the antisymmetric case will follow from
chiral symmetry). These are of the form

Yaco = i O +anit @), (BY)

Yuso = ai A" O + a0, @, (B10)

The consistency of these expressions across the interface
can be read off by comparing the expressions at n = 0, or,
equivalently, those at n = —1, which in both cases delivers
the wave-matching condition

a @ + an,®V = a0 + 0,0, (BI11)
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This has nontrivial solutions if

AFIWC -0 A2 - ||,
Q—M(A" +2W,C) Q— (A +2W.Cr)||
(B12)
SW (1 — AA)(C — C2) = QA — A2) (B13)
0 g 2 (B14)
A2 )\‘1)\'2 - Wx’

where in the first step we used (A 4+2W,Ci)(A"+
2W,C,) = —Q? and in the second step we multiplied through

Using the definitions introduced in Eq. (BS5), condi-
tion (B14) can be rewritten as

1 -CiC, —Q/W, ==%£85,, (B15)

where the sign depends on which of the propagation fac-
tors fulfills condition (B8). Squaring both sides and using
the identities W2C1Cy, = (A’B’ — Q%)/4, W2(C) — C2)* =
Q? 4+ (A’ — B’)?/4, we find the condition

Wy
QQ—2W, ) —A'BQ+ (A — B/)Z7 =0, (B16)

which must be fulfilled for any edge state with a symmetric
mode profile.

The corresponding condition for edge states with an an-
tisymmetric mode profile can be constructed by evoking the
chiral symmetry operation o,, which transforms the Bloch
vectors given in Egs. (B6) and (B7) according to

0. 8" =0.0,0" = —0,0.0". (B17)

As the chiral symmetry inverts the sign of the complex fre-
quency €2, this gives

1 2Q

2— Ay — —
2 W,

(B18)

Wy
= —QQ+2W ) +ABQ+ (A — B/)Z7 =0, (B19)

which must be fulfilled for any edge state with an antisym-
metric mode profile.

Equations (12) and (13) follow by first expressing
Egs. (B16) and (B19) according to the definitions (9) as

(A+2W,cosk,)(B +2W, cosk,)Q2

=Q(Q—2W,)> + (A — 3)2% (B20)

and

(A+2W,cosk,)(B +2W, cosk,)Q2

= Q(Q+2Wx)2—(A—B)2% (B21)
and then converting these to the effective parameters intro-
duced in Eq. (11), which amount to A = (A" + B')/2W,, B =
(A’ — B’)/2W,. The propagation factors, (16), follow analo-
gously from Egs. (B4) and (BS) with the proper branch of
the square root, and the consistency conditions (14) and (15)
follow from Eqgs. (B14) and (B18).

The physical interpretation of these consistency conditions
is as follows. In order for a solution 2 of Egs. (B16) or
Egs. (B19) to define an actual edge state, the corresponding
wave function must decay away from the interface. This
requires that 2 inserted into Eq. (B4) gives propagation
factors |A1], |A2] > 1 according to our choice in Eq. (B8), but
the information about this choice is lost when one squares
Eq. (B15). If, for one of the two propagation factors, we
find |X;| =1, we instead obtain a scattering state. If the
consistency equations, (B14) and (B18), can only be fulfilled
by combining a decaying and an increasing branch of )\.l(i),
the state is unphysical. Therefore, in (A’, B') parameter space,
solutions change from physical to unphysical when for one
pair of propagation factors |Afi)| = 1. This corresponds to
propagating waves in the bulk system and, therefore, occurs
when an edge-state arc meets the bulk dispersion relation.

In the P7T -symmetric case, the conditions where the arcs
meet the bands can be determined analytically from the real-
ization that they coincide with exceptional points where the
frequencies 2 of two edge states become degenerate, with
either a real or an imaginary value. Demanding degeneracy
of solutions in the cubic equations, (B16) and (B19), we find
the condition

A/B/)
w3
+ (8W?+9A'B')(A’ + B')?

27
S+ B) = 2A/2B/2(1 +

(B22)

for the termination points of the arcs on the real branches of
the band structure and the condition

A? +6A'B' + B* = 32W? (B23)

for their termination points on the imaginary branches of
the band structure. In Fig. 4(a), these conditions are again
translated from (A’, B’) space into (A, 3) space.
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