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The Hulse-Taylor binary provides possibly the best test of GR to date. We find the modified
quadrupole formula for Infinite Derivative Gravity (IDG). We investigate the backreaction formula
for propagation of gravitational waves, found previously for Effective Quantum Gravity (EQG) for
a flat background and extend this calculation to a de Sitter background for both EQG and IDG. We
put tighter constraints on EQG using new LIGO data. We also find the power emitted by a binary
system within the IDG framework for both circular and elliptical orbits and use the example of the
Hulse-Taylor binary to show that IDG is consistent with GR.

General Relativity (GR) has been spectacularly suc-
cessful in experimental tests, notably in the recent detec-
tion of gravitational waves [1]. One of the most renowned
tests is the Hulse-Taylor binary. The way the orbital pe-
riod of these two stars changes over time depends on the
gravitational radiation emitted. This matches the GR
prediction to within 0.2% [2].

However, GR breaks down at short distances where
it produces singularities. The first attempts to modify
gravity by altering the action failed because they gen-
erated ghosts, which are excitations with negative ki-
netic energy [3]. Infinite Derivative Gravity (IDG) [4–32]
avoids this fate while also allowing us the possibility to
not produce singularities.

IDG has the action [6]

L =
√
−g

2

[

M2
P R + RF1(�)R + RμνF2(�)Rμν

+CμνρλF3(�)Cμνρλ

]

, (1)

where MP is the Planck mass, R is the Ricci scalar, Rμν

is the Ricci tensor and Cμνρλ is the Weyl tensor. Each
Fi(�) is an infinite series of the d’Alembertian operator
� = gμν∇μ∇ν i.e. Fi(�) =

∑∞
n=0 fin�

n/M2n, where
the fins are dimensionless coefficients and M is the mass
scale of the theory, which dictates the length scales below
which the additional terms come into play.

The propagator ΠIDG around a flat background in
terms of the spin projection operators is modified as fol-

lows [6]

ΠIDG =
P 2

a(k2)
+

P 0
s

a(k2) − 3c(k2)
=

a=c

ΠGR

a(k2)
(2)

where a and c (given in (4)) are combinations of the
Fi(�)s from (1). In the second equality we have taken
the simplest choice a(k2) = c(k2), giving a clear path
back to GR in the limit a(k2) → 1.

The simplest way to show that there are no ghosts is
to show that there are no poles in the propagator, which
means there can be no zeroes in a(k2). Any function
with no zeroes can be written in the form of the exponen-
tial of an entire function, so we choose a(k2) = c(k2) =
exp

[
γ(k2/M2)

]
, where γ is an entire function.

Any entire function can be written as a polynomial
γ(k2) = c0 + c1k

2 + c2k
4 + ∙ ∙ ∙ , so a priori we have an

infinite number of coefficients to choose. However, it was
shown that only the first few orders will appreciably af-
fect the predictions of the theory, as terms higher than
order ∼ 10 can be described by a rectangle function with
a single unknown parameter [33].

The quadrupole formula tells us the perturbation to a
flat metric caused by a source with quadrupole moment
Iij . Here we use the equations of motion to find the
modified quadrupole formula for IDG.

I. MODIFIED QUADRUPOLE FORMULA

The IDG equations of motion for a perturbation hμν

around a flat background ημν are given by [6]

−κTμν =
1
2

[

a(�)
(
�hμν − ∂σ

(
∂μhσ

ν + ∂νhσ
μ

))
+ c(�) (∂μ∂νh + ημν∂σ∂τhστ − ημν�h) + f(�)∂μ∂ν∂σ∂τhστ

]

, (3)

where κ = M−2
P and

a(�) = 1 + M−2
P (F2(�) + 2F3(�))�,

c(�) = 1 − M−2
P

(

4F1(�) − F2(�) +
2
3
F3(�)

)

�,

f(�) = M−2
P

(

4F1(�) + 2F2(�) +
4
3
F3(�)

)

, (4)

and it should be noted that as a(�) = c(�), then
f(�)� = a(�) − c(�) = 0. If we take the de Donder
gauge ∂μhμν = 1

2∂νh and assume a(�) = c(�), then

−2κTμν = a(�)�h̄μν , (5)
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where we have defined h̄μν ≡ hμν − 1
2gμνh 1. Note that

in the limit a → 1, we return to the GR result. We invert
a(�) and follow the usual GR method [35] where we as-
sume the source is far away, composed of non-relativistic
matter and isolated. In this approximation, the Fourier
transform of hμν with respect to time is

˜̄hμν = 4G
eikr

r

∫
d3y

T̃μν(k, y)
a(k2)

. (6)

When we insert the definition of the quadrupole moment,
Iij =

∫
d3y T 00(y)yiyj , write out the full expression for

Ĩij and define the retarded time tr = t − r, we obtain

h̄ij =
−G

π

1
r

d2

dt2

∫
dkdt′r

eik(tr−t′r)

a(k2)
Iij(t

′
r). (7)

II. SIMPLEST CHOICE OF a(�)

We choose a(k2) to avoid ghosts, by ensuring there are
no poles in the propagator. If we choose a(k2) = ek2/M2

and use the formula for the inverse Fourier transform of
a Gaussian, we find

h̄ij =
−G

r

M
√

π

d2

dt2

∫
dt′re

−M2(tr−t′r)2/4Iij(t
′
r). (8)

This is the modified quadrupole formula for the simplest
case of IDG. We now need to specify Iij . For example,
when we look at the radiation emitted by a binary system
of stars of mass Ms in a circular orbit, the 11 component

of Iij is I11(t) = MsR
2 (1 + cos(2ωt)), where R is the

distance between the stars and ω is their angular velocity.
Therefore

h̄11 =
4GM2

s R2

r

(
1 + e−

4ω2

M2 cos(2ωtr)
)

, (9)

Comparing to the GR case, we see that this matches
the GR prediction at large M , but at small M there
is a reduction in the magnitude of the oscillating term
compared to GR.

III. BACKREACTION EQUATION

There is a second order effect where gravity couples to
itself and produces a backreaction. In [36], the backre-
action was found for Effective Quantum Gravity (EQG).
EQG has a similar action to IDG (the Fi(�) in (1) are
replaced by ai + bi log(�/μ2) where μ is a mass scale
[37–39].

In this section we generalise the result of [36] (see also
[40–42]) and also extend it to a de Sitter background.
Using the Gauss-Bonnet identity and a similar expres-
sion for the higher-order terms [43] we can focus on (1)
without the Weyl term.

Far away from the source, we use the gauge ∇μhν
μ = 0

and h = 0, to simplify the linearised and quadratic (in
hμν) curvatures around a de Sitter background, given in
(A1) and (A2).

The linear vacuum equations of motion around a dS
background in this gauge [44, 45] are

(�− 2H2)2F2(�)hμ
ν = −

(
1 + 24M−2

P H2f10

) (
�− 2H2

)
hμ

ν , (10)

where f10 is the zeroeth order coefficient of F1(�) and the
background Ricci curvature scalar is R̄ = 12H2, where
H is the Hubble constant. Upon inserting (10) into the
averaged second order equations of motion for the non-
GR terms (A3),

κtμν
IDG =

(
1 + 24M−2

P H2f10

)
[

−
1
2
〈hμ

σ

(
�− 2H2

)
hσ

ν 〉

+
1
8
δμ
ν 〈hτ

σ

(
�− 2H2

)
hσ

τ 〉

]

, (11)

where f10 corresponds to b1 in the EQG formalism and
〈X〉 represents the spacetime average of X using the same
definition as [36].

1 Alternatively, we can follow the method of [34] and define the
gauge ∂μγμν = 0,where
γμν = a(�)hμν − 1

2
ημνc(�)h − 1

2
ημνf(�)∂α∂βhαβ . This pro-

duces the result −2κTμν = �γμν .

(11) is the full backreaction equation for any action
with higher derivative terms which is quadratic in the
curvature; we have not used the fact that IDG contains
an infinite series of the d’Alembertian and so this method
can be applied to finite higher derivative actions, for ex-
ample [46, 47].

So the energy density ρ = t00 is given by

ρIDG
dS =

(
M2

P + 24H2f10

)
[
1
2
〈h0σ

(
�− 2H2

)
hσ

0 〉

+
1
8
〈hτ

σ

(
�− 2H2

)
hσ

τ 〉

]

. (12)

For a plane wave2 solution hμν = εμν cos(ωt − kz), we

2 There are extra terms due to the de Sitter background H2 [48,
49], but to linear order in, these produce only terms which are
linear is cos or sin. The spacetime average therefore vanishes and
there is no extra contribution to (13) from these terms.
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find (including the GR term)

ρdS =
1
4
M2

P

(
1 + 24M−2

P H2f10

)
{

ω2ε2

+2
(
4εσ

0 ε0σ + ε2
) (

8H2 + ω2 − k2
)
}

, (13)

where ε2 = εμεμ. Given the current value of the Hubble
constant H0 =, H2

0M−2
P ≈ 10−119. Therefore f10 would

have to be of the order of 10115 for the de Sitter back-
ground in the present day to have a noticeable impact.
Thus we can generally use the Minkowski background as
a good approximation. In the EQG notation, f10 is re-
placed by b1 which already has the constraint b1 < 1061

so we can ignore this extra term.
For a classical wave, ω2 = k2 so the term on the second

line of (13) disappears for a Minkowski background. This
is the case for IDG when we assume there are no extra
poles in the propagator. On the other hand, EQG does
have poles, so for EQG or IDG with a single pole there
can be damping [50–53] and therefore ω2 6= k2.

Kuntz used LIGO constraints on the density parameter
Ω0 as well as the constraint on the mass of the pole m >
5×1013 GeV to constrain ε, the amplitude of the massive
mode as ε < 1.4 × 10−33 [36]. Since then, LIGO has
found more stringent constraints of Ω0 < 5.58 × 10−8

[54]. Following the same method as [36], we divide by

the critical density ρc = 3H2
0

8πG to find

Ω0 =
1
12

(
εα
0 ε0α + ε2

) m2

H2
0

< 5.58 × 10−8 (14)

which we use to find a stronger constraint of ε < 8.0 ×
10−34. This cuts the allowed parameter space nearly in
half and makes it less likely that the detector [55] referred
to in [36] would be able to detect this mode.

IV. POWER EMITTED

We can use the backreaction equation to find the power
radiated to infinity by a system, which is given by [35]

P =
∫

S2
∞

t0μnμr2dΩ, (15)

where the integral is taken over a two-sphere at spatial
infinity S2

∞ and nμ is the spacelike normal vector to the
two-sphere. In polar coordinates, nμ = (0, 1, 0, 0). We
are therefore interested in the t0r component.

In the limit H → 0 and including the usual GR term,
(11) becomes

tμν =
1

64πG

[

2 〈∂μhTT
αβ ∂νhαβ

TT 〉 + 4 〈hTT
σ(μ�ηhTTσ

ν) 〉

−ημν 〈h
TT
στ �ηhτσ

TT 〉

]

. (16)

Note that hTT
0ν = η0r = 0, which means we can discard

the second and third terms in the square bracket. The
relevant term for the power becomes

t0μnμ =
−GM2

32π2r2

〈
d3

dt3

(
Îij(tr)

) d3

dt3

(
Îij(tr)

)〉

. (17)

Note that this is the same as the GR expression, but
where we have defined Îij =

∫
dt′re

−M2(tr−t′r)2/4Iij(t′r)
instead of Iij . If we convert to the reduced quadrupole
moment Ĵij , using Jij = Iij − δijδ

klIkl [35], we can use
the identities (C1) from [35] to see that the power emitted
by a system is

P = −
G

5

〈
d3Ĵij

dt3
d3Ĵ ij

dt3

〉

, (18)

where Ĵij =
∫∞
−∞ dt′re

−M2(tr−t′r)2Jij(t′r). This result can
then be applied to any system for which we know the
reduced quadrupole moment. We will now apply it to
binary systems in both circular and elliptical orbits.

A. Circular orbits

For a binary system of two stars in a circular orbit,
the reduced quadrupole moment Jij in polar coordinates
is given in [35] and depends on the mass of each of the
stars Ms, the distance between them R, and the angular
velocity ω.3 Using (18), our power is (again in the limit
r → ∞) and using

〈
sin2(x)

〉
≡ 1

2 ,

P = −
128
5

GR2M4
s ω6e−2ω2/M2

. (19)

This is the GR result with an extra factor of e−2ω2/M2

where M is the IDG mass scale. This gives a reduction
in the amount of radiation emitted from a binary system
of stars in a circular orbit. Note that this factor tends to
1 in the GR limit M → ∞.

B. Generalisation to elliptical orbits

The power radiated by a binary system with a circu-
lar orbit is of limited applicability because in GR the
power emitted is highly dependent on the eccentricity e
of the orbit [56], i.e. PGR = P circ

GR fGR(e). where fGR(e)
is an enhancement factor that reaches 103 at e = 0.9.
The circular orbit is therefore unlikely to be an accurate
approximation.

3 The corrections to the orbital motion due to the change in the
Newtonian potential from IDG will be negligible as this has
already been constrained down to the micrometre scale, much
shorter than the distance between the stars.
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FIG. 1. The enhancement factor f IDG(e) given by (D4)
against the eccentricity e as well as the enhancement fac-
tor for the GR term fGR(e), where the total power is
P circ

GR fGR(e) + P circ
IDGf IDG(e). This factor describes how the

power emitted changes with respect to the eccentricity. The
extra IDG term will show up most strongly at around e = 0.7,
which coincidentally is close to the value for the Hulse-Taylor
binary (0.617).

For an elliptical orbit, the relevant components of the
reduced quadrupole moment are [56]

Jxx = μd2

(

cos2(ψ) −
1
3

)

, Jyy = μd2

(

sin2(ψ) −
1
3

)

, (20)

where μ is the reduced mass m1m2/(m1 + m2) and the
distance d between the two bodies is given by
d = a(1−e2)

1+e cos(ψ) , where e is the eccentricity of the orbit
and a is the semimajor axis [56]. The change in angular
position over time is

ψ̇ =

[
G(m1 + m2)a(1 − e2)

]1/2

d2
. (21)

For the xx component, we need to calculate

Ĵxx = μa2(1 − e2)2
∫ ∞

−∞
dt′re

−M2(tr−t′r)2 cos2(ψ(t′r)) −
1
3

(1 + e cos(ψ(t′r)))
2 . (22)

This is a very difficult integration to do. However, if
we make the change of coordinates z = M(tr − t′r), we
can use a Taylor expansion in 1

M if it is small and the
identities (D2) to see that we can write down (D3), i.e.

P ≈ PGR + PIDG = P circ
GR fGR(e) + P circ

IDGf IDG(e), (23)

where the IDG power for an elliptical orbit is the power
for a circular orbit multiplied by an enhancement factor
f(e) which depends on the eccentricity.

We find that

PIDG = P circ
IDGf IDG(e) =

256
5

ω8

M2
GR2M4

s f IDG(e), (24)

where f IDG(e) is a polynomial of 22nd order and so is
given in the appendix. In the limit M → ∞, PIDG → 0
and (23) returns to PGR. f IDG(e) is plotted in Fig 1 with
a comparison to the enhancement factor for GR, fGR(e).

The Hulse-Taylor binary has a period of 7.5 hours
and ellipticity of 0.617. The radiation emitted from the
Hulse-Taylor binary is 0.998±0.002 of the GR prediction
[2], which leads to the constraint M > 6.9× 10−49MP =
1.0×10−21eV on our mass scale M , which is much weaker
than previous constraints.

The previous lower bound 4 is ∼0.01 eV from lab-
based experiments [13]. In order to produce a compa-
rable constraint, we would need to study radiation pro-
duced from systems with orbital periods5 of less than
10−4 seconds. Not only do these systems have an or-
bital frequency much higher than LIGO and LISA will
be able to probe (15-150 Hz [58] and 10−4-10−1Hz [59]
respectively), but they would also be out of the weak-
field regime we used for our calculations. Therefore lab-
based experiments and CMB data are likely to provide
the tightest constraints in the near future.

V. CONCLUSION

We found the modified quadrupole formula for IDG,
which describes how the metric changes for a given stress-
energy tensor. We generalised the backreaction formula
already found for Effective Quantum Gravity (EQG) to
a de Sitter background (for both EQG and IDG). We
used updated LIGO results to give a tighter constraint
of ε < 8.0× 10−34 on the amplitude of the massive mode
in EQG.

Finally, we found the power emitted by a binary sys-
tem, for both circular and elliptical orbits and investi-
gated the example of the Hulse-Taylor binary. We showed
that IDG is consistent with the GR predictions .
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Appendix A: Linearised and quadratic curvatures

The linearised Ricci curvatures around a de Sitter
background are [44]

rμ
ν = H2hμ

ν −
1
2
�hμ

ν , r = 0. (A1)

The curvatures to quadratic order are

r(2)
μν =

1
4

(
hαβ∇μ∇νhαβ − 2hα(ν(�− 4H2)hα

μ)

)

r(2) = −
1
4
hμν

(
�− 8H2

)
hμν . (A2)

The averaged second order equations of motion are

κtμν
IDG =

1
2
〈hμ

σF2(�)
(
�− 2H2

)2
hσ

ν 〉

−
1
8
δμ
ν 〈hτ

σF2(�)
(
�− 2H2

)2
hσ

τ 〉 . (A3)

Appendix B: Adding a cosmological constant

It should be noted that it is possible to incorporate
a cosmological constant Λ to the linearised equations of
motion by taking the “Λ-gauge” ∂νhμν = 1

2∂μh − Λxμ

[60]. This adds an extra term Λhμν onto the right hand
side of (5). This gives us possibilities for future work.

Appendix C: Other identities

We require the identities for integrating over a sphere
[35]

∫
dΩ = 4π,

∫
ninjdΩ =

4π

3
δij ,

∫
ninjnknldΩ =

4π

15
(δijδkl + δikδjl + δilδjk) , (C1)

Appendix D: Elliptical orbits

Using our change of coordinates, the integral (22) be-
comes

Ĵxx = −
μ

M

∫ −∞

∞
dz e−z2 cos2(ψ(tr − z

M )) − 1
3(

1 + e cos(ψ(tr − z
M ))

)2 . (D1)

We can use a Taylor expansion in 1
M to write this as

the GR expression Jxx (the zeroeth order) plus the first
order expression (which disappears as the integrand is
odd) and finally the second order correction. We use the
identities

∫ −∞

∞
e−z2

dz = −
√

π,

∫ −∞

∞
e−z2

zdz = 0,

∫ −∞

∞
e−z2

z2dz = −
√

π

2
, (D2)

to find

Ĵxx ≈ Jxx −
√

πμ

24M2(1 + e cos(ψ))4

{

ψ′2

(

4
(
e2 − 3

)
cos(2ψ) − 8e2 − 19e cos(ψ) + 3e cos(3ψ)

)

−2ψ′′ sin(ψ)
(
2
(
e2 + 3

)
cos(ψ) + e(3 cos(2ψ) + 5)

)
}

(D3)
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We perform a similar calculation for Ĵyy to find that the full enhancement factor for the IDG term f IDG(e) is given
by

f(e)IDG = 1 −
(9299 + 111168π)e
12282 + 155520π

+
(753298 + 4783383π)e2

18423 + 233280π
+

(1347719 − 15413436π)e3

147384 + 1866240π
+

(152362163 + 521885160π)e4

294768 + 3732480π

−
(6051611 + 36789444π)e5

72(2047 + 25920π)
+

(666697961 + 1567922058π)e6

294768 + 3732480π
−

15(1908618 + 1108133π)e7

32752 + 414720π

+
(344524449 + 556982911π)e8

65504 + 829440π
−

(5826870871 + 2360357712π)e9

1152(2047 + 25920π)
+

(37373085170 + 45561968109π)e10

4716288 + 59719680π

−
(45892881151 + 15257013132π)e11

6144(2047 + 25920π)
+

(685593299971 + 742716547416π)e12

36864(2047 + 25920π)
−

(18923346001 + 5812048566π)e13

2304(2047 + 25920π)

+
(1406663203279 + 1486964224080π)e14

73728(2047 + 25920π)
−

(612225325649 + 186007875390π)e15

73728(2047 + 25920π)

+
(1879563787501 + 1982636168004π)e16

98304(2047 + 25920π)
−

5(108886731499 + 33068066736π)e17

65536(2047 + 25920π)

+
(7518767717389 + 7930544672016π)e18

393216(2047 + 25920π)
−

(9799832804557 + 2976126006240π)e19

1179648(2047 + 25920π)

+
(15037546015045 + 15861089344032π)e20

786432(2047 + 25920π)
+ O(e21) (D4)
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