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Abstract—Unplanned and serendipitous peer discovery is im-
portant for emerging Internet applications, particularly in dy-
namic environments (e.g., the IoT, ubiquitous computing and fog
domains) where a large number of resources operate different
services in any one locality and resource availability varies unpre-
dictably over time. The current approach is to select services at
design time based on offered providers and their reputation. This
obviously has its limitations, particularly in terms of consistency,
scalability, and adaptivity, let alone the challenges of crossing
vendor and operator divides. In this work, we demonstrate how
an application is better able to dynamically adapt to unforeseen
changes in its environment through in-network mediation of
service requests. In our model, application developers express
their service needs using intents. These are mapped to ap-
propriate service providers with explicit consideration of the
intermediate network. We design a general architecture and
associated algorithms to realise intent formulation and processing
for mapping application intents to service providers. Our results
demonstrate the feasibility of adopting in-network mediation to
enable adaptive application deployment using declarative intents.
We also show, through a hybrid methodology of quantitative and
qualitative assessment, that the proposed implementation of the
mediator enables a real service deployment of a collaborative
document editing application to seamlessly adapt and to scale in
different deployment scenarios.

Index Terms—adaptation, intent driven networking, edge ser-
vices, fog computing, iot, internet of things, anti-fragility

I. INTRODUCTION

Networked environments and their requirements have
changed significantly during recent years. With the remarkable
advancements in integrated sensor-actuator design and low-
power WAN technologies, the number of connected devices is
expanding at a rapid rate (50 billion expected by 2020 [1]).
Advanced virtualisation and containerisation further expands
the number of services that can be hosted on such devices,
giving rise to both the Internet of Things (IoT) and fog
computing paradigms.

Two crucial challenges arise in such environments: (i) better
support for changes in the deployment environment [2], [3];
and (ii) controls (especially privacy) for where and how
support roles are executed [2]. Currently, most applications
limit their consumers to the predetermined deployment en-
vironments they were designed for [2]. Consequently, they
are brittle and susceptible to suboptimal operation when the
context changes, e.g., due to a backhaul network fault or
a server outage. Under such conditions, centralised (mainly
cloud-based) approaches fall short especially in network-
constrained conditions. Instead, applications often need a way
to be able to adapt at the edge without prior preparation.

We are motivated to answer these challenges by enabling
edge applications to discover services in a network-aware
fashion in order to dynamically adapt to changes in their
environment. Our philosophy is to allow edge application de-
velopers to specify their requirements at a high level that will
allow post-deployment adaptation to be both requirements- and
context-aware.

We realise this vision through employing the Intent Driven
Networking (IDN) paradigm [4]. This paradigm operates as
an enabler for the interaction, via high-level declarative state-
ments (‘intents’) between the different network components,
primarily end user applications and network devices. Using
intents allows these players to express what they desire/provide
from/to the network in a simple and abstract way without
specifying implementation details. For example, one user
intent might be to communicate with a particular group of
users; another might be to stream a video. A service provider
can also issue an intent of providing a service with certain
QoS guarantees. The network is then responsible for tending
to such requests accordingly.

As a consequence, IDN simplifies the development of end-
user applications by eliminating the need for including ‘try-all-
cases’ logic – Fig. 1a. This is particularly useful in ensuring
lightweight end devices remain simple. For instance, IDN can
provide a service-based application with an overall picture of
the available network services and can support the selection
of required services instead of letting the application try
all available services, which can be costly, or alternatively
a preconfigured set of services, which can be suboptimal.
Instead, the application can formulate and declare its intent
– Fig. 1b – which the network then processes, selecting a
provider to satisfy it (thereby removing such processing from
the application logic). In addition, embedding this service-
selection functionality into the network has the key benefits of
(i) using ground truth network statistics to be factored into
the decision making, i.e., Data-driven Network Engineering;
and (ii) allowing the use of network instrumentation using
SDN and NFV to be better aligned with end-user application
requirements.

This vision requires in-network entities that can receive
intents and accordingly perform optimal selection and dynamic
binding. We therefore introduce the concept of in-network
mediators, which are trusted middleboxes that reside in the
network to receive intents from users and providers, parse
them, compose them, and ultimately satisfy them, unburdening
the application of logic to search for services in reaction to
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Fig. 1: A high level view of an intent driven network.

changes in the network. The parsing of the intents extracts the
intent attributes in preparation for processing. The composition
of the intents includes integrating different user intents (e.g.,
composing the individual collaborators’ intents in the collab-
orative editing scenario) and/or composing the requirements of
a single intent (e.g., the need for a composite service to satisfy
the intent). The satisfaction of the intent is carried out by
selecting the required services from the network. This selection
should take into consideration things like network conditions,
pricing, as well as time constraints associated with the intent.
For evaluation, we adopt a hybrid strategy of quantitative and
qualitative assessment of mediation effectiveness.

Contributions: Our contributions are as follows:

1) A design of the internal components of the mediator as an
independent agent in a given subnetwork.

2) Two alternative approaches to realise the selection of
services by the mediator in its attempt to satisfy intents.
Particularly, we present a scalable genetic algorithm that
enables a mediator to serve 100,000s of simultaneous
application and service intents.

3) An evaluation of mediator performance and limits using
controlled experiments, comparing the two different ap-
proaches.

4) A demonstration of mediated service management through
a real world case study where clients formulate intents to
express their need to collaboratively edit a document with
specific QoS requirements.

Distinction from state of the art: There is a wide range
of efforts on adapting service management, and particularly
on dynamic and late binding of services. However, these
challenges are seldom addressed in light of the application’s
current deployment environment. Furthermore, there has only
been few works trying to integrate awareness of the network
into such service selection process. One approach is to in-
corporate QoS metrics into an optimisation program, e.g.,
the shortest path [5] or using latency in an integer linear
programming model [6]. Numerous other efforts (e.g., [7],
[8]) have focused on optimising placement of VNFs and
services based on a network-wide model. Leaving aside the
feasibility challenge of acquiring such knowledge and how it
changes post-deployment, none of these approaches allows the
application to express its runtime requirements.

II. IDN CONCEPT

In this section we give a brief overview of the intents
concept we proposed in [4].

A. Definition

An intent is an abstract declaration of what the application
desires from the network on behalf of the user. It is a compo-
sition of a set of primitive ‘verbs’, each describing a specific
high-level operation. For example, an application intent could
be to prioritise imminent VoIP streams with certain remote
peers. In response to this, the network carries out the necessary
configuration to best serve such an intent.

In more detail, the primitive elements that comprise intents
are expressed as tuples of:

<verb, object, modifiers, subject>

A verb is an operation that describes the intent based on an on-
tology (described previously in [4]). Object identifies a service,
process or item that is the objective of the verb. Modifiers are
then used to parameterise this; each modifier can be tagged
as either ‘essential’ or ‘desirable’, indicating prioritisation.
Subject is an optional identifier of another service/process/item
that is to be linked to the defined object. Primitive intents
expressed are composed using recursive encapsulation to form
a full intent.

B. Mediation

The satisfaction of intents is achieved through mediation.
Mediators are responsible for ‘understanding’ intents by pars-
ing them and, if necessary, compiling (i.e., composing multi-
ple intents into a composite one), and realising them. Such
realisation involves the mediator taking on any of a range
of roles, such as a service broker or a network manager.
For instance, in the case of Construct intents with the verb
Discover, the mediator finds the required services to satisfy
the intent(s) and returns service access information to the
intent issuer. In the case of Transfer intent where a content
provider might decide to push copies of their contents towards
edge points where there is an increase in consumption, the
mediator will parse the intent and perform the required content
transfer. In a third example utilising Regulate, a mediator will
translate an intent into network configuration, e.g., an intent
to block ssh login attempts from a certain address block.
The mediators can also satisfy a composition of intents. For
instance, the mediator might Discover a cache location and
Push the contents to that cache. These different cases (among
others) call for corresponding algorithms to realise the work
carried out by the mediators to satisfy the intents.

III. MEDIATOR DESIGN

As mentioned above, intents realisation is achieved thro-
ugh deploying mediators that reside in the network. In this
paper, we limit ourselves to using IDN for addressing service
provider selection, i.e., the Construct verb. This would involve
an intent that requests that the network finds a provider that
offers a given service API. Here, the mediator is responsible
for understanding client intents and exploring the network to
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find providers that are able to satisfy the intents, simplifying
the client application logic. However, the success of the
mediation role calls for achieving the following properties:

• Independence: Mediation should be separated from the de-
tailed logic of the different network users and providers. The
declarative intents should be sufficient for the mediator to
understand what the intent issuer desires from the network.

• Scalability: The scalability of the mediation arises due to
the increasing number of service providers in addition to
the complexity of the intents. The scalability of IDN highly
depends on the ability of the mediators to search the space
of the provider(s) and to respond to the intent issuer within
the specified time constraint.

• Dependability: Dependability is an essential property to
advocate the different network users’ trust and confidence
to use IDN. This requires techniques to achieve dependabil-
ity through load balancing, replication, fault-tolerance and
secure communication, among others.

The work of this paper focuses on the first two properties.
We assume that one mediator is deployed in a given subnet-
work on a fog device or as a virtual network function (VNF).
This would be extended to be a part of a hierarchical structure
of mediators deployed in parent and sibling subnetworks.
Such structure and the corresponding requirements are to be
addressed in future work.

In Fig. 2 we sketch our mediator design, which has the
following main components:

• Intent Listeners: These are simply interfaces that are used
by the providers and clients to submit their intents to the
mediator.

• Client/Provider Intents Queue: When a client (or a provider)
submits an intent and the mediator is busy, the intent is
queued. Once the mediator becomes available and the queue
is not empty, an intent will be polled according to a first-
come-first-served policy.

• Provider Intents Parser: This receives the providers’ intents
from the Providers Intents Listener and extracts the intents
attributes such as the service type, the service modifier
values, and the information needed to access the service
(e.g., URL). This is then passed to the Provider Repository
to be stored.

• Services Repository: This repository is simply a database
that stores the service attributes to be used by the Service
Selector component.

Fig. 2: The internal components of the mediator.

• Client Intents Compiler: This component fetches client
intents from the queue, extracts the intents attributes such
as the required service(s) type(s) and the modifier values
and types (i.e., essential or desirable). In cases where client
intents need to be composed (e.g., the case of required col-
laborative services), the compiler forms a composite intent
from the corresponding clients intents. Then the compiler
passes them to the Service Selector component.

• Service Selector: This component implements the selection
algorithm that will use the Services Repository to select
a service or a composite service that satisfies the intents.
Obviously, this component can be realised through differ-
ent search algorithms. In the next section, we realise this
component using two different algorithms.

IV. MEDIATOR ALGORITHMS

This section illustrates the applicability of mediation by
presenting two alternatives to realising provider selection.

Let us consider an example involving a user application that
needs to use a service or a composition of services. With the
increased scale of current computational environments, e.g.,
the cloud and SOC, the decision of selecting a service provider
is challenging to the end user. Alternatively, the users can
submit their application requirements to the network, i.e., to
the mediator, which will select the required services. Having
found a provider, the sends back a response as an XML-based
metadata describing the type and modifiers of the service and
how to access it. From then onwards, it is the responsibility of
the intent issuing application to parse the response and access
the service.

In the following, we consider three types of services that
clients may need to use, namely storage services (SS), proxy
services (PS), and intrusion detection services (IDS). Each
service is represented as a tuple of criteria that characterises
the service. Table I summarises such criteria based on relevant
literature surveys [9], [10].

Using IDN, the client application will form an intent that
reflects the application requirements and submit the intent to
the mediator. The intent can express the need for an elementary
or a composite service. Also each intent specifies a deadline
for receiving a response from the mediator. Similarly the
providers submit their intents advertising the services they
provide. Figs. 3-4 show examples of a client intent and a
provider intent, respectively. The mediator then compiles the
intent to extract the requirements and searches for services
that match the client needs. Fig. 5 shows an example mediator
response.The selection process used by the mediator can be realised
through different methods. Here, we present two approaches:
Utility-based and Genetic-based selection.

A. Utility-based selection

In this approach, selection is founded on quantifying the
extent to which each service satisfies the intent by assigning a
utility value to each service modifier. These utilities are then
maximised to select the optimal service(s).
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TABLE I: Characteristic service criteria
Typical Value

Criteria Description Range
Storage Service
cost Price per GB ($) 0-10
capacity Available storage (GB) 10-100
max file size Maximum allowed file

size (GB)
5-20

file versioning Multiple versions of a
file exist at the same
time?

True/False

encryption at rest File is encrypted at the
service provider side?

True/False

encryption at transit File is encrypted during
transmission?

True/False

Proxy Service
cost Price per month ($) 5-20
cache size Cache size (MB) 200-1000
addressing type Traffic redirection

method
NATting/forwarding

visibility type Visibility of proxy to
other network devices

transparent/visible

Intrusion Detection Service
cost Price per month ($) 5-20
detection method Method of detecting

intrusion
signature-based/
specification-based/
anomaly-based

detection time Intrusion detection time real-time/ non real-
time

technology type Technology layout network/ host/
wireless /network
behaviour analysis/
hybrid

data type Type of input data
passed to the service

host logs/application
logs/wireless
network traffic/net-
work traffic

In order to assign utilities, we use the utility functions
shown in Table II, which are adapted from a utility model
developed in [11] for quantifying volunteer services. These
utility functions assign a maximum utility of 1 to each service
that satisfies the corresponding intent modifier according to
what the service provider advertises in their intent. The service
modifiers that do not satisfy the intents receive a utility of 0.
For the case of the cost modifier, the utility function assigns
higher values to lower costs.

After calculating the utilities, services are sorted accordingly
in descending order with higher priorities given to the essential
utilities first then desirable ones. Then, services with maximum
utilities are selected.

B. Genetic-based selection

The utility-based algorithm ensures optimal service selec-
tion, but at the expense of computational complexity as the
search space grows. As a more scalable alternative, genetic-
based selection simulates the evolution process by the Genetic
Algorithm (GA) [12]. It starts from a random solution and
evolves it iteratively to generate slightly better ones. Each
solution is represented as a set of ‘genomes’ that iteratively
undergo the evolution operations of selection, crossover, muta-
tion and fitness evaluation. In each iteration, the fittest solution
will survive, and others will be ignored. Evolution stops when
a pre-defined criterion is met, e.g., a specific fitness value, a

<CompositeIntent>
<id>1</id>
<deadline>323</deadline>
<intent>
<id>1.1</id>
<verb>discover</verb>
<object>storage</object>
<modifiers>
<max_file_size,essential,10.0/>
<capacity,essential,5.0/>
<file_versioning,desirable,true/>
<encryption_at_rest,desirable,true/>
<encryption_at_transit,desirable,false/>
<price,essential,10.0/>
</modifiers>
</intent>
<intent>
<id>1.2</id>
<verb>discover</verb>
<object>ids</object>
<modifiers>
<price,essential,5.0/>
<detection_time,desirable,non_real_time/>
<technology_type,desirable,wireless/>
<detection_method,desirable,specification/>
<data_type,desirable,network_traffic/>
</modifiers>
</intent>
</CompositeIntent>

Fig. 3: An example of a client application intent.

<ProviderIntent>
<id>1</id>
<verb>advertise</verb>
<object>storage</object>
<modifiers>
<modifier max_file_size,20.0/>
<modifier capacity,5.0/>
<modifier file_versioning,true/>
<modifier encryption_at_rest,true/>
<modifier encryption_at_transit,false/>
<modifier price,10.0/>
</modifiers>
</ProviderIntent>

Fig. 4: An example of a service provider intent.

certain number of no-improvement in the fitness value, or a
maximum number of iterations.

In our case, genetic-based selection starts from a random
service (or a random composite service, based on the intent)
and evaluates its fitness in satisfying the intent. In order to
define the fitness functions (shown in Table III), we need also
to consider that an intent modifier can be either essential or
desirable. For this purpose, we define a variable yj for each
modifier j where the value of yj equals 0 if the modifier mj is
essential and the value of mj is not equal to the corresponding
service attribute and 1 otherwise. Then in each iteration, a new
service will be selected randomly from the available services,
resulting in a new solution. The new solution will replace the
current one if the fitness of the former is higher than that of
the latter. The search process stops after a maximum of 100
iterations or a 20 times of no-improvement in the fitness value;
returning the fittest solution. Note that genetic-based selection
may not necessarily find the optimal solution; however, it
scales much better when trying to satisfy a high number of
intents.
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<Response>
<storageState>found</>
<idsState>found</>
<proxyState>found</>
<storageService>
<id>153717</id>
<price>5.0</>
<capacity>5.0</>
<max_file_size>10.0</>
<file_versioning>false</>
<encryption_at_rest>false</>
<encryption_at_transit>true</>
<binding>http://localhost</>
</storageService>
<idsService>
<id>357162</id>
<price>5.0</price>
<detection_time>non_real_time</>
<technology_type>network_behaviour_analysis</>
<detection_method>specification</>
<data_type>host_logs</>
<binding>http://localhost</>
</idsService>
</Response>

Fig. 5: An example of a mediator’s response.

TABLE II: Utility Functions

Utility Function Used for

Uic =

{
1 + ci

V (mc)
(δ − 1), if ci ≥ V (mc)

0, otherwise Cost

Uij =

{
1, if V (mj) ≥ Sij

0, otherwise
Capacity,
max file size,
cache size

Uij =


0, if mj is ‘essential’ &

V (mj) 6= Sij

1, otherwise

file versioning,
encryption at rest,
encryption at transit,
addressing type,
visibility type,
detection method,
detection time,
technology type,
data type

where Uij is the utility of attribute j of service i,
Sij is the value of the attribute j of service i,
ci is the cost of service i,
V (mc) is the value of cost modifier, and
V (mj) is the value of the modifier specified in the intent

V. QUANTITATIVE EVALUATION

We first use simulation-based experiments to compare the
performance of the mediation selection process using both
utility- and genetic-based selection algorithms.

A. Objectives and methods

The objectives of the experiments are to evaluate:
1) Mediation time – the end-to-end time from an application

submitting an intent until receiving the response.
2) Percentage of satisfied intents (PSI) – the number of intents

that the mediator found services/composite services for
within the specified deadline divided by the total number
of submitted intents.

The experiments are conducted on a very modest desktop
PC with Intel Pentium D 3.0GHz, 1GB RAM, Linux Ubuntu,
Java SE v1.8.0. We vary the number of clients, the number of
services, and the depth of intents i.e., the number of different
services required to be composed to satisfy an intent. As an

TABLE III: Fitness Functions

Service Fitness Function

Storage
∏n

j=1 yj×Ui,c×Ui,capacity×Ui,file size

Proxy
∏n

j=1 yj × Ui,c × Ui,cache size

Intrusion Detection
∏n

j=1 yj × Ui,c

example, an intent that expresses the need for only one service
(e.g., an SS) will have a depth of 1; an intent that expresses
the need for two services (e.g., an SS and a PS) will have a
depth of 2, and so on. The intents arrive according to a Poisson
process. The deadlines of the intents are generated randomly
between 100ms and 300ms. Also, the values of intent and
service modifiers are generated randomly according to the
values shown in Table I.

B. Results

Fig. 6 portrays the cost of mediation, which includes the
transmission time of the intent and the response, the parsing
time, and the service selection time, in milliseconds, for
a varied number of services and varied depth of intents.
Mediation time increases proportionally with increase in either
of the dimensions of the number of services and the depth of
intents. The increase exhibits a linear trend in the case of
utility-based selection, which can be acceptable especially is
small networks. In comparison, the figure shows the benefit
of reducing the mediation time in the case of genetic-based
selection, which makes it a much more suitable option in large
networks. Fig. 6(b) shows also that the mediation time exhibits
a constant trend with high number of services. The reason
refers to the way the genetic algorithm works. As explained
in Section IV the stopping condition of the search is either
reaching a certain number of iterations or a certain number of
no-improvements in the fitness functions. The high number of
services means that more offerings that satisfy the intent are
available and hence the no-improvements threshold is always
reached.

Fig. 6: Mediation time as we increase the number of services,
as well as the depth of intents (left) and the number of clients
(right).

Fig. 7 plots the PSI for the same range of client and service
populations. PSI, a proxy for efficacy, decreases with the
increase in the number of services and with the depth of
the intents in the case of utility-based selection. The decrease
exhibits a linear trend which can be acceptable in small cases.
However, the PSI reaches low values when the number of
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Fig. 7: Percentage of satisfied intents as we increase the
number of services, as well as the depth of intents (left) and
the number of clients (right).

services is high especially when intent depth equals 3. The
PSI is likely to decrease further with higher intent depths.
The reason is that the higher the scale of the network the more
time needed to rank the utilities and select the services, which
results in exceeding deadlines set in intents. Such decrease is
significantly reduced in the genetic-based selection compared
to the utility-based counterpart where it is almost equal to one.
Clearly, the quickness of genetic-based selection enables the
meeting of intent deadlines.

VI. CASE STUDY ON ADAPTIVE POST-DEPLOYMENT
SERVICE MANAGEMENT

We now consider a real world application to closely in-
spect how IDN helps it adapt to unforeseen deployment
circumstances. We study the case of a number of independent
application users who want to collaboratively work on a shared
document, and where each collaborator has their own QoS
requirements. For this case study we use Etherpad1, an open
source collaborative document editing solution analogous to
Google Docs and MS Word Online.

This example is only for illustrative purposes but is indica-
tive of a whole host of applications and network functions
that multiple clients interconnect to. Mediators would be local
agents in charge of deciding how to implement a given service
chain and where to place it.

Currently, the selection of a collaborative editing service
provider is handled in a manual way where collaborators agree
on one provider to use. The selection can be arbitrary, based on
the provider’s promised QoS, or based on a recommendation.
The problem with this lies within the scale and the uncertainty
associated with provider performance.

A. Composition of intents

We consider response time as a modifier to parameterise
the intent. Each of the collaborator intents should specify the
required value of the response time and indicate whether the
modifier is essential or desirable. As the mediator should select
a provider that satisfies all of the collaborator intents, these
intents need to be composed to form a composite intent to
be processed by the mediator. For this purpose, the mediator
adopts a simple algorithm to aggregate the modifier values.

1http://etherpad.org/

As response time is a negative criterion (i.e., the lower the
value, the better), the value of the response time modifier of
the composite intent is the minimum essential response time
of the intents and it will be tagged as essential. If non of the
intent tags response time as essential, then the aggregate will
be the minimum desirable response time and will be tagged
as desirable.

RSR =

{
minRSe, if ∃ essential me ∈ M

minRSd, if @ essential me ∈ M
(1)

where RSR is the required response time, RSe and RSd are
the essential and desirable response times, and M is the set of
all modifiers of the intents. The intent here takes the form of
a composition between a set of composite discover intents to
connect clients to one provider, and a series of advertise verbs
from available service providers. Having found a provider that
matches the intents, the mediator will suggest to bind the
collaborators to the provider.

B. Experimental context
We deployed six VirtualBox virtual machines (VMs) repre-

senting two providers (P1 and P2) with different QoS levels
and four collaborators (C1–C4), each running Etherpad v1.6.1
on top of Ubuntu 16.04, and equipped with 1GB of RAM.
The mediator, implemented in Java SE v1.8.0, is deployed
separately on a Windows 10 PC.

For the purpose of conducting the experiment, we developed
a client GUI through which collaborators issue their intents.
Upon receiving intents from collaborators, the mediator com-
poses them and processes the composite intent. It then returns
the response in XML format that is parsed by the GUI logic.
Then the GUI connects to the provider service and displays
the shared document. The GUI also monitors the providers’
response to HTTP requests to calculate the respective intent
metrics (e.g., response time and availability) every 5 seconds.

In the experiment, three collaborators access the system
from three different machines using Google Chrome. The three
machines are placed in a local network. The collaborators used
the editing service for a period of 6 minutes. An external
collaborator joins the editing at minute 2 and leaves at minute
4. The machine of this collaborator is placed in another
network. We specify the value of 100ms as the required
response time. Also, two Etherpad services are deployed,
one on machine in the local network and one on a different
machine in a network representing the cloud.

Fig. 8 sketches the placement of the used machines. As
a first the providers submit their intents specifying to the
mediator the QoS levels they guarantee. A main collaborator
(from the local network) submits their intents. The mediator
searches for a provider that satisfies these intents and duly
responds. The main collaborator shares the document URL
with the other collaborators, who submit their intents to the
mediator expressing their interest to collaborate with P1 along
with QoS requirements. We compare this adaptive application
deployment against the current state of affairs where users
manually select their provider at design time and statically
bind to their API endpoint to it.
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Fig. 8: The location of two service providers: P1 at the edge
and P2 in the core (cloud data center).

C. Results

According to the QoS specified in the intent of C1, the
mediator selected the local Etherpad service P1 as it best
satisfies the intents. This selection does not change when C2
and C3 submit their intents as it is still the best setting. When
C4 joins and submits their intent, the mediator selects P2 as the
choice satisfying all intents, and notifies the other collaborator
applications so that they adapt accordingly. As Fig. 9a shows,
the adaptation results in a raise in the average response time
experienced by the C1, C2, and C3. However, all the intents
are still satisfied. Fig. 9 also shows the average response time
as perceived by the internal and external collaborators when
manual provider selection is adopted (i.e., without IDN). In
this case, internal collaborators encounter satisfying response
times (Fig. 9a) whereas the external collaborator experiences
high response time which violates its intent (Fig. 9b). In the
latter case, the users’ application will malfunction and be
forced to manually seek and bind to another provider, if such
logic is implemented.

We also compare the number of lines of code (LoC)
required to select a provider assuming the selection logic
is implemented as part of the application logic – case 1 –
or offloaded to the mediator – case 2. For this comparison,
we assume that application developers have a directory of
providers to select from, which could be either hard-coded
or available through a directory service. In this case study, the
number of lines of code is 428 lines in case 1 compared to
only 5 in case 2, which constitute the basic code required to
create and issue an intent object. This indicates a significant
improvement for end-user application developers.

VII. DISCUSSION AND FUTURE WORK

The presented mediation approach illustrates that through
high level specification of user intents, the network can be
made aware of the application requirements and consequently
involved in satisfying those requirements. Developers who
need to integrate services in their applications gain many
advantages from using mediators. They just need to replace the
development of the logic required for finding (and negotiating)
providers in a scalable environment with the simple intents
formulation. In such a way, much of the development overhead
is mitigated and is addressed at the network level. This in turn
simplifies and accelerates application development and reduces

Fig. 9: Client-perceived QoS in the form of application re-
sponse time over the experiment time.

application logic errors. However, it should be clear that the
task of monitoring services and making adaptation decisions
when required are not part of the mediators’ responsibilities.

To reach our goal of in-network mediation, several chal-
lenges need to be addressed. We now outline these.
• Negotiation. Mediation is a highly complex task as it is

likely that many conflicts will emerge. For example, a user
streaming content would want high quality delivery at low
cost, a publisher would wish to have their content viewed
as many times as possible, and an ISP would prefer to only
have low-cost (locally available) content viewed. Such po-
tentially conflicting viewpoints will need to ensure thorough
negotiation to ensure that all stakeholders are incentivised
to cooperate in the scheme. This requires the development
of a negotiation protocol that should be independent of
any particular set of verbs and rely on generic notions
of utility and priority as derived from intent specification.
In addition, we envisage regular reporting of intents, with
public mediation logs that could be scrutinised to ascertain
performance.

• Mediator interaction. We demonstrated how a mediator
would assist end-user applications operating in its subnet-
work. The next step is to enable mediators in different
subnetworks to intercommunicate in order to satisfy intents
across different domains.
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• Dependability. The capability of the mediators to satisfy the
intents regardless any events that may affect the performance
(e.g., hardware/software failures) is essential to ‘convince’
the users to trust and use the IDN. Undoubtedly, introducing
mechanisms to achieve dependability (e.g., replication, load-
balancing, and encryption) will affect the performance of
the mediation, especially in high-scale environments. This
makes the desire of achieving both scalability and depend-
ability a substantial challenge that hinders the adoption of
IDN.

• Brokerage and reification. Marketplace brokerage is an
area with a lot of potential for reifying spontaneous and
strategic intent. Reification is likely to create the need for
running in-network services towards the edge. Marketplaces
of resources to host such services might benefit from the
operation of brokerage and arbitrage agencies. For this,
thorough investigation is required to alleviate concerns re-
garding trust and security. Efforts are also sought for reifying
mediation outcomes in the form of adjusting the network
control plane or providing information that could be used
for late-binding.

• Realising other intent verbs. We have only implemented
a mechanism for satisfying one type of intents; i.e., the
Construct intents which are used either to Advertise services
by the providers or to Discover services by the users. More
work is needed for other intent types; namely Transfer,
which allows applications to pull and push content, and
Regulate, used to express an application’s desire to have
traffic handled in a certain way in the network.

VIII. RELATED WORK

Bringing application awareness to networks has been a long
sought after goal of a number of network architectures.

Clear synergies lie between IDN and existing models of
service-centricity, often referred to as Service Oriented Ar-
chitectures (SOA) [13] where systems are composed from a
number of loosely coupled services that adhere to shared APIs.
The technologies used to underpin SOA include SOAP and
REST, both of which adopt the narrow network API approach.
Thus, they continue to suffer from all of the associated
problems discussed in Section I.

Information-centric networking (ICN) [14] proposes to con-
vert networks into inherent content delivery systems. Service-
centric networking (SCN) [15], [16] extends ICN principles
to apply to services. Both ICN and SCN attempt to align the
application and the network, which helps to break away from
statically binding to specific resources. However, they only
partly address the problems we have outlined in the specific
cases of accessing content/services: they do not naturally
generalise to other scenarios, e.g., those involving switching
of networks.

Policy-Based Management (PBM) enables the definition
of high level policies that can be refined into actionable
and quantifiable network-level targets [17]. PBM is typically
constructed around rule-based, goal-driven, or event-driven
principles that are mapped to specific operations. Other PBM

work is also emerging under the ‘network synthesis’ subfield,
to translate a high-level forwarding policy into confluent
network-wide OSPF and BGP rules [18], [19]. Recent ex-
tensions to this philosophy include the RFC on autonomic
networking [20], which discusses intents as abstract oper-
ational goals, but does not indicate how to implement or
deploy operations to reach such high-level goals. Recent works
provide solutions to quantify such soft goals using Network
Function Virtualization (NFV) chains [21] and SDN-based
topologies [22], [23]. This small but growing body of work is
largely about facilitating malleable network management that
is driven by QoS objectives or business constraints. As such,
they are geared towards those dealing with wholesale traffic
(i.e., network operators). They cannot, for instance, be used for
facilitating application-defined opportunistic service binding at
the edge.

Closer to our proposal are recent efforts on enabling ap-
plications to express their requirements and allowing these
to percolate down to the underlying network. Declarative
languages like Pyretic [24] and Merlin [25] raise the level
of abstraction of writing network policies, enabling the defi-
nition of sophisticated network structures through a high-level
language. Both Pyretic and Merlin focus on issues relating
to unifying network administration rather than identifying and
addressing application requirements.

Service discovery solutions have covered a vast problem
space, and moved from centralised (e.g., [26]) to decentralised
methods (e.g., [27]) to facilitate opportunistic bindings. How-
ever, awareness and consideration of the capabilities, status,
and operations of the network is rarely part of the design of
such systems.

IX. CONCLUSION

We have proposed an approach for realising network con-
sciousness for service selection and application adaptation
through employing Intent Driven Networking (IDN). This is
achieved through deploying ‘mediators’, which are trusted
middleboxes that reside in the network, receive the client
intents, and process them to satisfy their requirements. Apart
from enjoying network service levels that better match their
intents, applications also benefit from IDN in that some of their
selection logic could be pushed to the network. No longer are
user applications expected to ship with intricate conditional
logic to work around unexpected network behaviour (they still
could employ such logic, but they would thereby be limiting
their ability to be deployed in foreign environments and handle
unforeseen conditions).

We also presented and evaluated two approaches to realise
the selection process carried out by the mediators, in addition
to a case study that shows real adaptation scenario of using the
IDN mediators. Our results are the first to quantitatively and
qualitatively evaluate in-network mediation through IDN, and
they reveal that in-network mediation is feasible to unbudern
the application from the costly search for providers in large-
scale environments in addition to enabling adaptive application
deployment.
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