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Abstract

The issues of functional form, distributions of the error components and endogeneity are for the most part

still open in stochastic frontier models. The same is true when it comes to imposition of restrictions of mono-

tonicity and curvature, making efficiency estimation an elusive goal. In this paper we attempt to consider these

problems simultaneously and offer practical solutions to the problems raised by Stone (2002) and addressed in

Badunenko, Henderson and Kumbhakar (2012). We provide major extensions to smoothly mixing regressions

and fractional polynomial approximations for both the functional form of the frontier and the structure of ineffi-

ciency. Endogeneity is handled, simultaneously, using copulas. We provide detailed computational experiments

and an application to US banks. To explore the posteriors of the new models we rely heavily on Sequential

Monte Carlo techniques.
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1 Introduction

Stone (2002) has raised several important points in connection to efficiency estimation, including the choice of func-

tional forms, the distributions of statistical error term and the one-sided error term that represents inefficiency etc.

Badunenko, Henderson and Kumbhakar (2012, BHK henceforth) used simulations to compare the performance of (i)

a two-stage semi-parametric stochastic frontier (SSF) estimator due to Fan et al. (1996), and (ii) the non-parametric

bias-corrected DEA estimator of Kneip et al. (2008).

One important outcome from their simulation studies is that, in realistic situations, “both estimators do a fair

job at identifying the best and the worst performing decision making units. However, each does a relatively poor

job at identifying the median performer.” Another important conclusion for policy making was the following:

“For a practical example, we note that [...] identifying a benchmark firm(s) is often important to

regulators. A benchmark firm(s) (say top 5%) is often used to decide the penalty (or carrot) for the

bottom firms in yardstick competition. In such a case, it is important to accurately estimate the top

5% and bottom 5% of firms. We note that identification of both the top 5% and bottom 5% of firms is

feasible in scenarios s1, s2 and s4. In general, FLW would produce more reliable results for the bottom

5% (except for s2) and KSW would generally produce more reliable results for the upper 5%.”1

Of course, BHK used an SSF alternative to the bootstrapped DEA approach. This partly solves the functional

form assumption although not in a comprehensive manner. There are two problems: (i) With many inputs and

small samples, the estimator would not be reliable. (ii) The estimator still uses a normal-half-normal distribution

in the second stage to estimate technical efficiencies. (iii) There are other problems with actual data sets that

neither Stone (2002) nor BHK considered. (iv) The recommendation that one estimator is best for the upper 5%

and another for the bottom 5% of firms is, at best, problematic as the overall statistical properties are hard to

analyze.

The questions that Stone (2002) raised and which were partly answered by the simulation studies in BHK are

still at large. Functional forms and error term distributions in stochastic frontier analysis are still problems that we

need to consider jointly. Another problem that plagues applications is the potential endogeneity of inputs: Inputs

are not experimentally designed nor they are exogenous to production; they are decided by firms. Nothing really

implies that outputs are exogenous and inputs are endogenous. In a cost minimization framework, for example, the

firm decides the quantities of inputs, given input prices and outputs. Under this behavioral consideration, inputs

would be endogenous and outputs would be exogenous. Many public firms would belong to this category. Under
1Here, s1 to s4 refer to different scenarios in their simulations. Suppose σ2

v and σ2
u denote the variances of two sided error term (v)

and one sided error term (u) respectively and λ = σu/σv . “In scenario s1 (σv = σu = 0.01,λ = 1.0), both terms are relatively small. In
other words, the data are measured with relatively little error and the units are relatively ecient. In scenario s2 (σv = 0.01 and σu =
0.05, λ = 5.0), the data have relatively little noise, but the units under consideration are relatively inecient. In scenario s3 (σv = 0.05
and σu = 0.01,λ = 0.2), the data are relatively noisy and the the rms are relatively ecient. The fourth scenario s4 (σv = σu = 0.05,λ =
1.0) is redundant as = 1.0 as in s1. However, we show this case to emphasize that the results of the experiment depend upon the ratio
of σu to σv and not their absolute values.”
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profit maximization, both inputs and outputs are endogenous as they are both subject to choice by the firm. The

endogeneity problem has proven to be quite hard to attack. Measurement error in inputs is also a problem and, for

practical purposes, it means that observed inputs are correlated with the error term(s) so we have an endogeneity

problem.

In stochastic frontier models the basic model is y = f(x) exp(v − u) where y is output, x is a vector of inputs,

v is statistical noise usually assumed to be normally distributed, N (0, σ2
v), and u is a positive error term usually

assumed to follow a half-normal distribution2, u ∼ N+(0, σ
2
u). The ratio λ = σu

σv
is known as signal-to-noise ratio

and indicates how important is inefficiency (u) relative to noise (v). The simulation study in BHK concluded that

with a low value of λ it does not make much sense to proceed and measure inefficiency as this is inherently hard

in this situation. When λ ≥ 1, both methods they used turned out to be, for the most part at least, similar in

performance subject to the considerations stated above.

When the value of λ is small, the data are not very informative about the presence of an inefficiency signal.

However, this could be attributed, at least partially, to the potential correlation between x and v and / or u.

Ignoring this may seriously bias efficiency scores while formally accounting for it, it can lead to better separation

of inefficiency from noise.

The distributional assumptions problems seem to be resolved only in the context of bootstrapped-DEA as this

approach does not need any such particular assumptions. In the two-stage SSF estimator due to Fan et al. (1996),

the first stage estimates a term that includes f(x) and thus it dispenses away with the functional form assumption

(at least, on the surface) but it does assume a normal-half-normal specification in the second stage to estimate

technical inefficiencies. From that point of view the approach is not completely satisfactory. Another problem is

that monotonicity and concavity are not imposed (e.g. Pu, Parmeter and Racine, 2013) on f(x) and, therefore, it

is not clear that a production function is estimated indeed. The bootstrapped-DEA method, again, seems to have

an advantage here.

Why not use the bootstrapped-DEA method then? BHK have shown that adopting this practice indiscriminately

may lead to serious problems as, generally, the semi-parametric stochastic frontier estimator seems to perform better!

Moreover, under conditions of endogeneity, measurement errors etc, bootstrapped-DEA cannot offer a panacea. The

semi-parametric stochastic frontier estimator is, clearly, not a panacea either in this situation. Another consideration

is that with data sets running in the thousands of observations, applying the the bootstrapped-DEA method is

extremely computationally intensive whereas applying the SSF estimator is much easier. Therefore, we believe

that there are reasons to stick with stochastic frontiers but functional form issues, issues related to distributional

assumptions and endogeneity issues must be resolved simultaneously, under the same umbrella of a common, unifying

flexible stochastic frontier model. We should, nevertheless, mention that there have important developments in

DEA. These are summarized in Daraio and Simar (2007). Two-stage models that allow for explanatory variables
2Many other distributions have been used in the literature like the exponential, the gamma, the Weibull etc.
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are treated fully in Simar and Wilson (2007). See also Daraio, Bonaccorsi and Simar (2015) and Daraio and Simar

(2014) who have used a directional distance function with estimated input - output - specific directions, see also

Simar and Vanhems (2012) and Simar, Vanhems and Wilson (2012).

2 Model

2.1 The approach in Badunenko, Henderson and Kumbhakar (2012)

Badunenko, Henderson and Kumbhakar (2012) compare two promising estimators of technical efficiency in the

cross-sectional case. They compare the non-parametric kernel estimator of Fan et al. (1996) with the non-parametric

bias-corrected DEA estimator of Kneip et al. (2008).

The model of Fan et al. (1996) requires a parametric second stage (and hence it is semiparametric), it is more

robust than the initial stochastic frontier model by Aigner et al. (1977) and Meeusen and van den Broeck (1977)3.

The method of Kneip et al. (2008) introduces statistical ineference via bootstrapping has been shown to complement

well the standard DEA model found in Charnes et al. (1978).

Suppose xi ∈ <p is a vector of inputs and yi denotes output for firm i = 1, . . . , n . In the model of Kneip et al.

(2008) we have:

yi = f(xi) + vi − ui, i = 1, . . . , n, (1)

where f : <p → < is an unknown smooth estimation, vi is a two-sided error term and ui ≥ 0 is a one-sided

error representing inefficiency. As E(yi|xi) = f(xi) − E(ui) 6= f(xi), a non-parametric estimator of the regression

function E(yi|xi) is not f(xi) itself. It becomes necessary to adopt distributional assumptions on both v and u to

construct the log-likelihood function to be maximized to obtain the efficiency scores. Under he assumption that

vi|xi ∼ N(0, σ2
v) and, independently, ui|xi ∼ N+(0, σ

2
u), the log-likelihood function is:

l(λ) = −n ln σ̂ +

n∑
i=1

lnΦ

(
−λε̂i

σ̂

)
− 1

2σ̂2

n∑
i=1

ε̂2i , (2)

where ε̂i = yi − Ê(yi|xi)− µ(λ, σ̂), µ(λ, σ̂) = λσ
√
2{π(1 + λ2)1/2}, and

σ̂2 =
n−1

∑n
i=1{yi − Ê(yi|xi)}2

{1− 2λ2

π(1+λ2)}
. (3)

The log-likelihood function in (2) is a function of the single parameter λ = σu

σv
given the estimator σ̂2 of σ2 = σ2

v+σ2
u.

Given an estimate λ̂ the estimate of σ̂2 can be recovered from (3). The point estimator of inefficiency via Jondrow

et al. (1982) can be obtained as:

ûi = µ̂∗
i + σ̂∗ φ(µ̂

∗
i /σ̂

∗)

Φ(µ̂∗
i /σ̂

∗)
, i = 1, . . . , n, (4)

3For a review, see Kumbhakar and Lovell (2003).
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where µ̂∗
i = −ε̂iσ̂

2
u/(σ̂

2
v + σ̂2

u), σ̂∗ = σ̂vσ̂u/(σ̂
2
v + σ̂2

u)
1/2, and φ, Φ denote the standard normal pdf and cdf respec-

tively. Badunenko, Henderson and Kumbhakar (2012) use a local linear estimator to formulate the log-likelihood

in (1).

2.2 In search of a new model

In this paper we are not concerned with DEA. The challenges in stochastic frontier modeling are the following:

i) To estimate the unknown function f(x) in (1). The function must satisfy certain theoretical properties. It

must be increasing and concave for all x ∈ <n
+.

ii) To dispense with the distributional assumptions on vi and ui. In this context it would be useful if the

distribution of ui depends flexibly on a given vector of predetermined of environmental variables zi ∈ <s. This

vector may include xi but in this case the following point applies more forcefully.

iii.1) To account for the endogeneity of the regressors xi. We should mention that what is endogenous depends

on behavioral assumptions. Under cost minimization x is endogenous but y is not. Under profit maximization both

are endogenous. Under revenue maximization only y is endogenous.

iii.2) If prices are available, the endogeneity problem can be solved by appending the first-order-conditions from

the cost minimization, profit maximization or revenue maximization problem. If, as is most common, prices are not

available, endogeneity must be addressed in a different way.

3 New models

3.1 Functional form

There is considerable evidence that mixture-of-normals models tend to perform substantially better compared to

other alternatives such as the Dirichlet process prior. Geweke and Kean (2007) propose the smoothly mixing

regression (SMR):

p(y|x) =
G∑

g=1

ωg(x)fN (β′
gx, σ

2
g), (5)

where x ∈ <k is a multivariate covariate, fN (µ, σ2) denotes the density of a N(µ, σ2) distribution and the weights

satisfy ωg(x) ≥ 0 ,
∑G

g=1 ωg(x) = 1. Villani, Kohn and Nott (2012) and Villani, Kohn and Giordani (2009) extend

the model as follows:

p(y|x) =
G∑

g=1

ωg(x)fN
(
β′
gvg(x), exp(δ

′
gwg(x))

)
. (6)

Typically, it is assumed that:

ωg(x) =
exp(γ′

gx)∑G
s=1 exp(γ

′
sx)

, (7)
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where vg(x) and wg(x) are transformations of the regressors, such as splines.

Geweke and Petrella (2012) introduce an alternative set of fractional polynomial approximations and show that

the set of fractional polynomial approximations is dense on a Sobolev space of functions on a compact set.4 Moreover,

imposing regularity conditions directly on the fractional polynomials produces pseudo-true approximations that

converge rapidly to productions functions having no exact representation as fractional polynomials. Fractional

polynomial approximations (with k terms) are defined as:

f(x1, ..., xn) =

k∑
i=1

ai

n∏
l=1

xsil
i , (8)

which is assumed positive on <n
++. Such fractional polynomial approximations can approximate the unknown

function and its first two derivatives on a closed compact subset of <n
++. In compact notation fractional polynomials

are denoted by:

p(x;a) =

k∑
i=1

aix
j(i), (9)

where x = [x1, ..., xn]
′, j(i) =

[
j
(i)
1 , ..., j

(i)
n

]′
is a sequence of multi-indices. Therefore, xj(i) is a “Cobb-Douglas-type”

function whose exponents are given by the multi-index j(i) . A twice differentiable function f(x) is called strictly

regular on C ⊆ <n
++ if f(x) > 0 , ∂f(x)/∂x > 0 and ∂2f(x)/∂x∂x′ is negative definite, for all x ∈ C. For strictly

regular functions, Geweke and Petrella (2012) have proved that fractional polynomials can approximate to any

degree any function and its first two derivatives.

Suppose we have the data xt ∈ <n, t = 1, ..., T . The fractional approximation can be written as:

p(xt;a) =

k∑
i=1

ai

n∏
j=1

x
sji
tj , (10)

with sji ≡ s
(i)
j . We can represent this function more compactly as:

p(xt;a) =



xs11
t1 xs21

t2 ... xsn1
tn

xs12
t1 xs22

t2 ... xsn2
tn

... ...

xs1k
t1 xs2k

t2 ... xsnk
tn





a1

a2
...

ak


= z′

ta. (11)

Define the T × k matrix Z = [z1, z2, ..., zT ]
′ so that

[p (x1;a) , p (x2;a) , ..., p (xT ;a)]
′
= Za, (12)

4Fractional polynomials are also used in Sauerbrei and Royston (1999).
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with the typical element being zti =
∏n

l=1 x
sli
tl . It can be shown that the derivatives are given as follows:

∂p(xt;a)/∂xt = W ′
ta (13)

where W t = [wtij ] , wtij = sjix
−1
tj zti . The n× n Hessian matrix is:

∂2p(xt;a)/∂xt∂x
′
t =

k∑
i=1

aiCti = (a′ ⊗ In)


Ct1

...

Ctk

 , (14)

where Cti = [ctijr] , ctijr = x−1
tj x−1

tr sjisrizti − δjrsjix
−2
tj zti and δjr represents the Kronecker δ. If we define the

nk × nT matrix C = [Cti, t = 1, ..., T, i = 1, ..., k] then we have:

[
∇2p(x;a), ...,∇2p(xT ;a)

]
= (a′ ⊗ In)C. (15)

Positivity and monotonicity correspond to the restrictions:

Za > O, Wa > O. (16)

Strict concavity can be checked using the eigenvalues of matrices Cti which are nonlinear functions of a. Geweke

and Petrella (2012) advocate checking the conditions at a number of points in G rather than checking or enforcing

them at all data points.

With base b = 1
2 a cost function, for example, in three input prices, can be represented as

a1 + a2x1 + a3x
1/2
1 x

1/2
2 + a4x

1/2
1 x

1/2
3 + a5x

1/2
1 + a6x2 + a7x

1/2
2 x

1/2
3 + a8x

1/2
2 + a9x3 + a10x

1/2
3 , (17)

when homogeneity is not imposed. Notice that with b = 1
2 when homogeneity is imposed this results in the gener-

alized Leontief functional form. Similarly, polynomials in bases b = 1, 1
2 ,

1
3 ,

1
4 , ... can be defined. With homogeneity

imposed the cost function is:

a1x1 + a2x
1/2
1 x

1/2
2 + a3x

1/2
1 x

1/2
3 + a4x2 + a5x

1/2
2 x

1/2
3 + a6x3.

In their application to the 158 observations of Christensen and Greene (1976), Geweke and Petrella (2012) impose

regularity at 1,000 points randomly generated on a hyper-rectangle bounded below by 90% of minimum price and

bounded above by 110% of maximum price. A significant result of the study was that base b = 1
2 polynomials

provided the best fit assessed by the Bayes factor so the generalized Leontief functional form is strongly favored by
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the data (as Bayes factor were always in excess of 5.5).

3.2 Smoothly mixing regressions and fractional polynomial approximations

The simplicity of fractional polynomials of base b = 1
2 makes them ideal candidates for incorporation into the SMR

framework. We can represent the conditional distribution of a dependent variable y given x ∈ <n as:

p(y|x) =
G∑

g=1

ωg(x; c)fN (vg(x;a), exp(wg(x; b))) , (18)

where

vg(x;a) =

k∑
i=1

agi

n∏
j=1

x
sji
tj , (19)

wg(xt; b) =

k∑
i=1

bgi

n∏
j=1

x
sji
tj , (20)

assuming that both fractional polynomials have the same number of terms k. The parametrization of the variances

is made for convenience so that one does not have to check positivity. The polynomials imply vectors of parameters

ag = [ag1, ..., agn]
′ and bg = [bg1, ..., bgn]

′ for each g = 1, ..., G. Then, a = [a′
1, ...,a

′
G]

′, b = [b′1, ..., b
′
G]

′ and

c = [c′1, ..., c
′
G].

3.3 Major extension

Given the ability of fractional polynomial expansions to approximate arbitrary regular functions and their derivatives

it seems plausible that they can be generalized to the non-fractional case as follows:

p(xt;α) =

k∑
i=1

αi

n∏
j=1

x
βji

tj , (21)

where αi are parameters as the ai s but the βji s are parameters as well (βji ≥ 0,
∑n

j=1 βji = 1 ). The functional

form can be written as:

p(xt;α) = α1

(
xβ11

t1 xβ21

t2 ...xβn1

tn

)
+ α2

(
xβ12

t1 xβ22

t2 ...xβn2

tn

)
+ ...+ αk

(
xβ1k

t1 xβ2k

t2 ...xβnk
tn

)
(22)

For identification we can impose the restrictions:

α1 ≤ α2 ≤ ... ≤ αk. (23)

When the βji s are parameters we can economize on the order of a given fractional polynomial expansion.
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Homogeneity of degree one can be imposed easily using:

k∑
i=1

αi = 1. (24)

Positivity reduces to αi > 0, i = 1, ..., k and the curvature restrictions can be imposed using the methodology of

the previous section.

An important exercise is to test whether the proposed functional form outperforms a given fractional polynomial.

It is, indeed, possible to do so when the number of terms k increases. At the same time the proposed functional

form satisfies automatically the positivity, homogeneity and positive-derivative properties provided we impose the

restrictions βji ≥ 0, j = 1, ..., n, i = 1, .., k . These restrictions are independent of the data so it remains to

impose only curvature restrictions. These restrictions, however, are automatically satisfied provided βji < 1, j =

1, ..., n, i = 1, .., k since the functional form is a sum of Cobb-Douglas type functions.

Embedded into the SMR framework, effectively we can generalize the conditional distribution y|x to a semi-

parametric form that is capable of approximating arbitrary distributions as the number of groups,G, increases. The

SMR allows for arbitrary heteroskedastity, skewness and kurtosis without sacrificing simplicity as we deal with a

mixture-of-normals distribution.

3.4 Technical inefficiency

We can allow for technical inefficiency by assuming:

yt =

k∑
i=1

αi

n∏
j=1

x
βji

tj + εt + ut, (25)

where ut ≥ 0 is the one-sided error term representing technical inefficiency. Flexible distributions for the two error

components are as follows:

p (εt|xt) =

Gε∑
g=1

ω(ε)
g (xt)fN

(
0, exp(w(ε)

g (x))
)
, (26)

and, independently,

p (ut|xt) =

Gu∑
g=1

ω(u)
g (xt)fN+

(
0, exp(w(u)

g (xt))
)
. (27)

Here5, ω(ε)
g and ω

(u)
g represent fractional or Cobb-Douglas type approximations (g = 1, ..., G ). We should notice that

standard assumptions in the SFM literature, responsible for its inflexibility, such as independence or orthogonality

between the error components and the regressors, are removed here. Here, fN+

(
µ, σ2

)
denotes the density of the

5Clearly, flexibility in modeling the distributions of the two error components also accounts for endogeneity which is an additional
advantage of smoothly mixing regressions.
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half-normal distribution. The assumption can be generalized to the case of the truncated normal distribution:

p (ut|xt) =

Gu∑
g=1

ωu,g(xt)fN+

(
v(u)g (xt), exp(w

(u)
g (xt))

)
. (28)

There is an alternative to (21) which is, perhaps, more faithful to the SMR concept. The alternative is to assume:

yt|xt, ut, It = g ∼ N
(
v(ε)g (xt) + ut, exp(w

(ε)
g (xt))

)
, (29)

where It is an index that represents the group to which the observation belongs and

p (It = g|xt) = ωg(x) =
exp(γ′

gx)∑G
s=1 exp(γ

′
gx)

, g = 1, ..., G. (30)

The marginal distribution of ut is given by (27).

In (29) v
(ε)
g (xt) is a real or fractional polynomial expansion which is group-specific whereas in (21) a single

polynomial expansion is used to approximate the functional form. The distributional assumptions are relaxed via

(29) and (30).

4 Panel data and Endogeneity

4.1 Panel data

With panel data, unobserved heterogeneity can be introduced via the assumption:

yit|xit, uit, Iit, λi = g ∼ N
(
v(ε)g (xit) + λi + uit, exp(w

(ε)
g (xit))

)
, (31)

(i = 1, ..., N, t = 1, ..., T ) where λi denotes the individual effects or

yit = v(ε)g (xit) + λi + uit + εit, (32)

conditional on xit, λi, uit and Iit = g ∈ {1, ..., G}, along with:

εit|xit ∼ N
(
0, exp(w(ε)

g (xit))
)
. (33)

Modeling the individual effects relies on a substantial generalization of Mundlak’s (1978) device:

p(λi) =

Gλ∑
g=1

ωu,g(x̄i)fN+

(
0, exp(w(λ)

g (x̄i))
)
, (34)
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where x̄i = T−1
∑T

t=1 xit represents the average value of the covariates and exp(w
(λ)
g (x̄i) is a (flexible) function

representing the log of their variance. In this formulation it is not necessary to assume independence between the

individual effects and the regressors.

4.2 Endogeneity

Often the assumption that the regressors xit satisfy a strong exogeneity assumption cannot be maintained. We have

used this assumption previously as flexibility in modeling the distributions of the two error components also accounts

for endogeneity which is an additional advantage of SMR. Suppose an M × 1 vector dit may be available which

can be considered exogenous (for example, time trend). Endogeneity can be handled, alternatively, by assuming a

panel vector autoregression (PVAR) of the form:

xit = ai +Bxi,t−1 + Γdit + ξit, (35)

where ξit ∼ N (O,Σξ) , B and Γ are matrices n× n and n×M respectively, and the individual effects

ai ∼ Nn (O,Σa) , (36)

independently of ξit . The assumption can be generalized to an SMR specification for the ai s as functions of x̄i

and. possibly, di = T−1
∑T

t=1 dit . It is possible to extend the PVAR in (35) to an SMR context but this extension

does not seem very promising. The important issue is to allow for correlation between ξit and εit in (32). This can

be done by assuming that:  εit

ξit

 ∼ Nn+1 (O,Σit) . (37)

The dependence between εit and ξit can be used to model endogeneity as an alternative to SMR, see (29)-(30).

The assumption has been introduced by Kutlu (2010) and Tran and Tsionas (2013) although with a fixed Σit.

For the elements of Σit we assume that var (εit) is given by (33), the diagonal elements of cov (ξit) are fixed

parameters or depend on xi,t−1 and possibly dit via flexible functional forms, and non-diagonal elements are fixed.

Alternatively, consider the Cholesky factorization:

Σit = HitH
′
it, (38)

where Hit is a lower diagonal n×n matrix. Denote hit = vec (Hit) = [hit,1, ..., hit,m]
′ which is a vector of dimension

m = n(n+1)
2 . We assume

hit,j = w(j) (xi,t−1,dit) , j = 1, ...,m (39)
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where w(j) () represents a flexible functional form. The parameters of the specification are unrestricted and allow

for a quite flexible specification of the joint distribution of εit and ξit . The assumption can be further generalized

as follows:

p (εit, ξit) ≡ p (ζit) =

Gζ∑
g=1

ω(g) (xit) fN,n+1

(
O,Σ

(g)
it

)
, (40)

where fN,n+1 (O,Σit) denotes the (n+ 1)- variate normal distribution with mean zero and covariance matrix Σit,

whose specification is given above. As in SMR the weights ω(g) depend on the regressors xit. Due to the explicit

parametrization of hit in (39) the use of a multivariate normal mixture for the joint multivariate distribution is not

as demanding as when Σ(g) is left unrestricted and, therefore, it can be used even when the number of variables

(n) is relatively large.

4.3 Endogeneity through copulas

In this section suppose Φ(z) denotes the standard normal cdf and Φk+1,Σ(z) denotes the cdf of a (k+1)−dimensional

normal distribution with correlation matrix Σ.

Given the marginal distributions Fε(εit) and Fj(xj,it), j = 1, . . . , k and the densities fε(εit) and fj(xj,it), j =

1, . . . , k, the joint distribution of εit and xit can be represented by a copula function C(Fε,F) where F(x) =

[F1(x1), . . . , Fk(xk)]
′,x ∈ <k. The copula is defined in [0, 1]k+1 by:

C(ξ1, . . . , ξk+1) = P (Fε(εit) ≤ ξ1, F1(x1,it) ≤ ξ2, . . . , Fk(xk,it) ≤ ξk+1), (41)

so that the copula is itself a cdf. Moreover, Uj = Fj(x) and Uε = Fε(ε) have uniform distributions. If c(ξ1, . . . , ξk+1)

denotes the pdf associated with the copula, then by Sklar’s (1959) theorem, we have:

f(ε, x1, . . . , xk) = c(ε, x1, . . . , xk) · fε(ε) ·
k∏

j=1

fj(xj). (42)

One commonly used copula function is the Gaussian copula6. The (k+1)-dimensional CDF with correlation matrix Σ

is given by c(w; Σ) = Φk+1,Σ(Φ
−1(Uε),Φ

−1(U1), . . . ,Φ
−1(Uk)), where w := (Uε, U1, . . . , Uk) = (Fε(ε), F1(x1), . . . , Fk(xk)).

The density copula is:

c(w; Σ) = det(Σ)−1/2 exp
{
− 1

2 [Φ
−1(Uε),Φ

−1(U1), . . . ,Φ
−1(Uk)]

′(Σ−1 − Ik+1)[Φ
−1(Uε),Φ

−1(U1), . . . ,Φ
−1(Uk)]

}
(43)

6Relative to other copulas, the Gaussian copula is generally robust for most application and has many desirable properties (Danaher
and Smith, 2011).

12



and the joint distribution is given by

log f(ε, x1, . . . , xk) = log c(w; Σ) + log fε(ε) +

k∑
j=1

log fj(xj). (44)

Clearly, it is easy to formulate and evaluate (44) as c(w; Σ) can be computed easily and marginals fε(ε) and

f1(x1), . . . , fk(xk) are assumed available. Regarding the marginal density fε(ε) enough has been written in the

previous sections. For the marginals of the regressors, we approximate them using:

F̃j(xj) =
1

n+1

n∑
i=1

I(xj,it ≤ xj), j = 1, . . . , k, (45)

and we use the scaling factor n+1 to avoid difficulties arising from the potential unboundedness of log c(w; Σ) as some

of arguments the tend to one. Additionally, as
∑k

j=1 log fj(xj) does not depend on the parameters, it can be omitted

from (44). To obtain Fε(ε) =
´ ε
−∞ fε(e)de we, generally, need to use univariate numerical integration through, for

example, Gaussian quadrature. We use 40-point quadrature using the Gauss-Kronrod rule as implemented in IMSL.

Based on (44) we can define the log-likelihood function:

log f(ε,x1, . . . ,xk) =
∑
i,t

log c(wit; Σ) +
∑
i,t

log fε(εit), (46)

ignoring a constant term, εit := yit − f(xit;β) and w := (Fε(εit), F1(x1,it), . . . , Fk(xk,it)). The log-likelihood can

be maximized with respect to θ = [β′, σ, λ]′ and the different elements of Σ.

5 Computational experiment I

In this computational experiment we consider artificial data with N = 1, 500 and N = 5, 000 observations with

T = 10 time periods (and therefore n = 150 or n = 500). Of course, N = nT . The sample sizes are typical of

what is used in applied econometrics. We have three relative input prices and three outputs, and a cost function

is assumed along with share equations derived from Shephard’s lemma. The cost function is of the form C =

C(w1, w2, w3; y1, y2y3, , t). We consider two basic data generating processes:

i) A mixture of Translog models with C components.

ii) A mixture of Quadratic models with C components.

All models satisfy the theoretical regularity conditions. For the generalized Leontief this is straightforward while

for the translog models we follow the procedure set forth by Perelman and Santin (undated). We vary C from 1 to

5 so effectively we have ten data generating processes in cases (i) and (ii). Mixture models are generated so that

each one has equal probability. We set σv = σu = 0.3 which is also typical. Individual effects are included in all

models and are generated from a normal distribution with zero mean and standard deviation 0.1.
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Our interest focuses on estimating (i) technical change, (ii) technical inefficiency, (iii) input elasticities and

returns to scale. These measures depend on the parametrizations used to make the functional forms regular for

each observation in the samples.

To determine the best model when using a fractional polynomial approximation (FPA) or an approximation

using the additive Cobb-Douglas (ACD) specification we use the modified log predictive scores methodology. The

cross-validated log score (Gelfand et al, 1992) is:

N∑
i=1

log p(yi|Y −i) ∼=
N∑
i=1

log

(
S−1

S∑
s=1

log p(yi|θ(s),Y −i)

)
. (47)

The modified cross-validated log score (Geweke and Keane, 2007) relies on keeping the first N1 < N observations

for estimation and keeping the remaining for cross-validation. This is repeated R times and we take the mean:

R−1
R∑

r=1

(
N∑

i=N1+1

log p
(
y
(r)
i |y(r)−i ,Y

(r)
N1

))
, (48)

where Y (r) is a random selection from Y (the data) and averaging over the draws θ(s) is also performed to compute

the score:

R−1
R∑

r=1

(
N∑

i=N1+1

log p
(
y
(r)
i |y(r)−i ,Y

(r)
N1

))
∼= R−1

R∑
r=1

(
S−1

S∑
s=1

N∑
i=N1+1

log p
(
y
(r)
i |y(r)−i ,Y

(r)
N1

,θ(s)
))

. (49)

The difference is that the Gelfand et al (1992) variant is more computationally demanding as N posterior simulators

are needed while the Geweke and Keane (2007) variant uses only R << N posterior MCMC simulators so it can be

computationally more efficient. Models with higher log predictive score perform better in terms of cross-validated

prediction. In this work we take R = 50 and N1 = 1, 000 when N = 1, 500 and N1 = 4, 500 when N = 5, 000 so

that 500 observations are always left out for cross-validation.

Posterior simulation via MCMC is performed, for both FPA and ACD, using a variant of Sequential Monte Carlo

as described in the Appendix. All posterior simulators rely on a transient phase of 50,000 simulations followed by

another 100,000 draws. Convergence is monitored using Geweke’s (1992) convergence diagnostics and numerical

standard errors (NSE) as well as relative numerical efficiency (RNE) are computed as well, based on AR(10)

approximations to compute the spectral density of the process at the origin. Latent technical efficiency is explicitly

integrated out of the posterior to reduce the amount of autocorrelation inherent in MCMC computations.

The theoretical restrictions are imposed on a grid rather than on each observation. Since we have three relative

prices and three outputs , following Geweke and Petrella (2012) we choose a random grid of size aN where a = 1
2 ,

1 or 2. When, for example, N = 5, 000 this means that the theoretical restrictions are imposed at 2,5000, 5,000 or

10,000 points using rejection. In all cases the results were qualitatively and quantitatively the same when a = 1 or
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a = 2 implying that the imposition of restrictions at N/2 points was more than adequate. Relative to Geweke and

Petrella (2012) we added the following check to facilitate the imposition of theoretical restrictions: The restrictions

are imposed at the point of means and then also at points on a ball whose radius was r = 1
2 and r = 3

2 relative to

the mean. We count the number of violations in each specification and if it exceeds 1
3 of the sample size (N) we

add more points. We ended up with a fixed specification where the theoretical restrictions are exactly imposed at

points with radius r = 1 (the mean) and also r = ± 3
k for k = 2, 4, 5 and r = ± 1

k for k =2,3,4,5 plus the 90% and

110% minimum and maximum of the data: The random grid was set up so that 90% and 110% of the minimum

and maximum respectively of the data, are included in the random grid. We use standard uniform random numbers

to construct the grid instead of quasi-random numbers as in Geweke and Petrella (2012). We did not experiment

with quasi-random numbers as the algorithms were quite successful after imposing the constraints at points around

the means as described above. To facilitate the imposition of theoretical restrictions the data are divided by their

means so that in logs they have zero mean (in translog) or unit mean (in the Quadratic specification).

As a basis of comparison of take the simple translog specification when N = 1, 500. The results for N = 5, 000

are quite similar qualitatively and are not reported in the interest of space.

Table 1. Model Comparison

Fractional Polynomial Approximation Additive Cobb-Douglas

k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Translog 0.000 -1.252 -3.454 -4.821 -4.901 0.000 -4.216 -3.217 -6.218 -3.216 -3.891

Mixture of Translog, C = 2 0.000 -3.742 -5.8231 -6.771 -7.004 0.000 -3.256 -1.517 -2.872 -3.217 -3.779

Mixture of Translog, C = 3 0.000 -2.476 -3.821 -4.202 -5.891 0.000 -4.289 -2.777 -3.252 -4.220 -6.242

Mixture of Translog, C = 4 0.000 -1.717 -3.672 -4.406 -5.202 0.000 -3.781 -2.882 -4.847 -5.201 -8.782

Mixture of Translog, C = 5 0.000 -2.233 -1.785 -3.229 -5.227 0.000 -4.472 -5.212 -3.217 -6.220 -7.961

Quadratic 0.000 1.217 2.822 3.217 3.474 0.000 -2.122 -4.181 -4.557 -5.228 -8.278

Mixture of Quadratic, C = 2 0.000 -0.893 -1.217 -1.517 -3.891 0.000 -2.771 -4.891 -5.289 -7.007 -11.651

Mixture of Quadratic, C = 3 0.000 -1.891 -1.343 -3.117 -3.828 0.000 -7.289 -3.219 -11.232 -18.298 -20.235

Mixture of Quadratic, C = 4 0.000 -3.774 -2.338 -4.555 -6.229 0.000 -7.298 -5.224 -6.282 -8.272 -11.289

Mixture of Quadratic, C = 5 0.000 -5.217 -3.202 -5.178 -8.272 0.000 -9.216 -6.781 -8.991 -10.765 -13.738

Notes: Although we have panel data, we do not determine the sample of size N1 by retaining the firm structure. Therefore, we randomize

as if the data were iid. We feel this provides a more stringent cross-validation comparison. Otherwise, we would have to select a sample of size

n1 < n which retains all T observations for a particular firm. This could bias the results for technical change reported below in Table 2.

To make the comparison easier we normalize the log predictive score to 0 and we take deviation of other LPS

from the LPS at zero.

From Table 1 it turns out that low-order fractional polynomials but also low order ACD models perform quite
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well in terms of cross-validation. Perhaps surprisingly, the ACD model does not need more than three compo-

nents to approximate complicated DGPs like the Translog or Quadratic specification with large number of mixing

components. This shows that the ACD can be a valid competitor to the more complicated Fractional Polynomial

Approximation.

Of course, the critical issue is whether functions of interest like technical change and technical inefficiency can

be approximated equally well by the FPA and the ACD approximations. For the best models, selected using the

modified cross-validated LPS of Geweke and Keane (2007) relevant information is presented in Table 2, where we

examine the performance of both FPA and ACD.

Table 2. Model Comparison in terms of functions of interest

(rank correlation coefficients, median across all MCMC draws finally retained, skipping every other

10th draw)

Technical change Inefficiency εw1 εw2 εw3 εy1 εy2 εy3

Translog 0.982 0.995 0.988 0.993 0.985 0.981 0.995 0.997

Mixture of Translog, C = 2 0.985 0.995 0.985 0.995 0.991 0.986 0.997 0.997

Mixture of Translog, C = 3 0.983 0.991 0.982 0.985 0.984 0.982 0.983 0.950

Mixture of Translog, C = 4 0.980 0.991 0.981 0.983 0.981 0.982 0.982 0.944

Mixture of Translog, C = 5 0.977 0.988 0.985 0.975 0.976 0.974 0.978 0.938

Quadratic 0.999 0.998 0.998 0.998 0.999 0.997 0.996 0.998

Mixture of Quadratic, C = 2 0.997 0.996 0.998 0.995 0.994 0.995 0.994 0.993

Mixture of Quadratic, C = 3 0.994 0.994 0.991 0.992 0.993 0.995 0.992 0.993

Mixture of Quadratic, C = 4 0.987 0.988 0.990 0.982 0.987 0.983 0.981 0.992

Mixture of Quadratic, C = 5 0.984 0.983 0.988 0.982 0.984 0.980 0.973 0.985
Notes: εwj = ∂C

∂wj

wj
C and εyj = ∂C

∂yj

yj
C . For each MCMC draw these are series which can be computed for both the FPA and ACD

approximations. The rank correlation is then computed, monitored for each draw (omitting every other tenth) and then the medians are

reported. A measure of inverse returns to scale is ecy =
∑

j εyj , that is RTS = e−1
cy . Technical change is TC = 1

C
∂C
∂t . Technical inefficiency

for each draw is computed from its posterior conditional distribution after the draws for regression parameters and scale parameters become

available, using well-known expressions. Averaging across parameter draws produces technical inefficiency estimates which are then compared

for the FPA and ACD approximations using rank correlation coefficients.

From Table 2, it is evident that estimated functions of interest are quite close in terms of rank correlation

coefficients and therefore the good behavior of ACD, reported in Table 1, produces estimated functions of interest

that are quite close to those corresponding to the FPA. Given the hardness of imposing the theoretical restrictions

in FPA, the excellent behavior of ACD should, undoubtedly, encourage its use in applied econometrics.

An interesting question is whether Finite-Mixture-of-Normals-Models (FMNM) can also be used profitably

as approximations. FMNM based on Cobb-Douglas regression models with different scale parameters can also
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approximate, in theory, arbitrary functional forms (Norets and Pelenis, 2011). Although Norets and Pelenis (2011)

employ a more general approach to extract conditional distributions from a general distribution provided by a

FMNM, a simpler approach is to use FMNM of stochastic frontier models in the usual sense often used in the

literature.

Table 3. Results from FMNM

(rank correlation coefficients, median across all MCMC draws finally retained, skipping every other

10th draw)

Technical change Inefficiency Optimal order of FMNM

Translog 0.855 0.671 5

Mixture of Translog, C = 2 0.651 0.555 7

Mixture of Translog, C = 3 0.454 0.403 8

Mixture of Translog, C = 4 0.301 0.322 9

Mixture of Translog, C = 5 0.271 0.255 9

Quadratic 0.345 0.353 7

Mixture of Quadratic, C = 2 0.212 0.301 9

Mixture of Quadratic, C = 3 0.117 0.274 11

Mixture of Quadratic, C = 4 0.101 0.216 12

Mixture of Quadratic, C = 5 0.007 0.189 14
Notes: Reported results are for sample size N=5,000. Results for N=1,500 were qualitatively similar.

From Table 3 it turns out that the approximation properties of FMNM are worse when compared to ACD and

FPA. We have computed but do not report, in the interest of space, rank correlations between true and estimated

elasticities and returns to scale (RTS) to obtain a similar result. The rank correlation between true and estimated

elasticities and RTS range from, approximately, 0.3 to 0.6.

6 Computational experiments II

In this section we consider the computational experiments in Badunenko, Henderson and Kumbhakar (2012). They

consider two simple production functions: (1) Cobb-Douglas (CD) y = xα
1x

1−α
2 exp(v − u) and (2) a constant

elasticity of substitution (CES) y = [βxρ
1 + (1 − β)xρ

2]
−1/ρ exp(v − u). They set α = 1

3 , β = 2
3 and ρ = 1

2 . For the

error term we assume v ∼ N(0, σ2
v) and for inefficiency we have u ∼ N+(0, σ

2
u). Three sample sizes are analyzed

(total number of observations is 50, 100 and 200). To generate x1 and x2 they assume that they are uniformly drawn

in the interval [1, 2] iid and independently of each other. With respect to the parameters of noise and inefficiency

they have three scenarios:
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In scenario S1 (σv = σu = 0.01, λ = 1.0), both terms are relatively small. In other words, the data are measured

with relatively little error and the units are relatively efficient. In scenario S2 (σv = 0.01, σu = 0.05, λ = 5.0),

the data have relatively little noise, but the units under consideration are relatively inefficient. In scenario S3

(σv = 0.05, σu = 0.01, λ = 0.2), the data are relatively noisy and the the firms are relatively efficient. In scenario S4

(σv = 0.05, σu = 0.05, λ = 1.0), the data are relatively noisy and the the firms are relatively inefficient. This scenario

is actually redundant as the results mostly depend on λ and not the individual values of σv and σu. However, the

case is interesting since we can examine whether the results depend on actual values of λ and / or the magnitude

of noise and inefficiency.

All experiments consist of 2000 Monte Carlo trials. Data sets where the residuals have wrong (positive) skewness

are discarded. We compare our results only with the frontier estimator (FLW) as the DEA estimator (KSW) has

been found to have disappointing performance under noise -even moderate- in the study of Badunenko, Henderson

and Kumbhakar (2012).

We use the following metrics, as in Badunenko, Henderson and Kumbhakar (2012):

Bias = n−1
n∑

i=1

(T̂Ei − TEi)

RMSE = {n−1
n∑

i=1

(T̂Ei − TEi)}1/2

Upward Bias = n−1
n∑

i=1

I(T̂Ei > TEi)

Kendall’s τ =
nc − nd

1
2n(n− 1)

where T̂Ei is estimated technical efficiency, TEi = exp(−ui) is actual technical efficiency, nc, nd represent the

number of concordant pairs and the number of discordant pairs in the data set (efficiency ranks) respectively.

From Tables 4 and 5 it turns out in cases of Cobb-Douglas and CES that the methods developed in this study

improve drastically over the procedures in FLW. Coverage is much better in many cases, biases and RMSEs are

significantly lower, the upward bias is mitigated and the correlations between actual and predicted efficiency are

much higher.
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Table 4. Finite sample performance of the efficiency estimates: Cobb-Douglas pro-

duction technology

ECA, 95%(a) Bias RMSE Upward bias(c) Correlation(d)

FLW(b) this study FLW this study FLW this study FLW this study FLW this study

Scenario S1 (σv = σu = 0.01, λ = 1.0)

n=50 0.92 0.92 -0.0034 -0.0018 0.0044 0.0038 0.320 0.503 0.43 0.58

n=100 0.95 0.95 -0.0030 -0.0017 0.0039 0.0035 0.320 0.503 0.45 0.66

n=200 0.96 0.95 -0.0031 -0.0013 0.0591 0.0302 0.315 0.501 0.46 0.79

Scenario S2 (σv = 0.01, σu = 0.05, λ = 5.0)

n=50 0.92 0.93 -0.0107 -0.007 0.0133 0.008 0.28 0.504 0.76 0.80

n=100 0.94 0.95 -0.0127 -0.005 0.0132 0.007 0.21 0.504 0.78 0.82

n=200 0.94 0.95 -0.0148 -0.003 0.0148 0.006 0.16 0.502 0.80 0.85

Scenario S3 (σv = 0.05, σu = 0.01, λ = 0.2)

n=50 0.78 0.85 -0.0379 -0.0181 0.0379 0.0122 0.020 0.503 0.12 0.08

n=100 0.85 0.89 -0.0331 -0.0122 0.0331 0.0120 0.020 0.505 0.12 0.07

n=200 0.88 0.93 -0.0278 -0.0115 0.0278 0.0117 0.025 0.505 0.12 0.06

Scenario S4 (σv = 0.05, σu = 0.05, λ = 1.0)

n=50 0.92 0.95 -0.0134 -0.007 0.020 0.015 0.34 0.507 0.46 0.51

n=100 0.95 0.95 -0.0092 -0.006 0.016 0.008 0.36 0.503 0.47 0.55

n=200 0.96 0.95 -0.0059 -0.004 0.012 0.007 0.40 0.502 0.47 0.59
Notes:

Cobb-Douglas production function: ;yi = x
1/2
i1 x

2/3
i2 exp(vi − ui), vi ∼ N(0, σ2

v), u ∼ N+(0, σ2
u), λ = σu

σv
.

(a) Empirical Coverage Accuracy is the share of true technical efficiencies that are within bounds of predicted 95% confidence interval for

estimated technical efficiency. Reported in this table is the median of such shares across all Monte Carlo simulations;

(b) FLW represents the SSF estimator and the results are taken from Badunenko, Henderson and Kumbhakar (2012).

(c) Upward Bias is the share of predicted technical efficiencies strictly larger than the true ones. The desired value of upward bias is 0.5.

The values less (greater) than 0.5 indicates systematic underestimation (overestimation) of technical efficiencies. Reported in the table is the

median of such shares across all Monte Carlo simulations;

(d) Kendall correlation coefficient between predicted and true technical efficiencies. Reported in the table is the median of such coefficients

across all Monte Carlo simulations.
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Table 5. Finite sample performance of the efficiency estimates: CES

ECA, 95%(a) Bias RMSE Upward bias(c) Correlation(d)

FLW(b) this study FLW this study FLW this study FLW this study FLW this study

S1 (σv = σu = 0.01, λ = 1.0)

n=50 0.92 0.95 -0.0045 -0.0012 0.0052 0.0032 0.28 0.503 0.45 0.55

n=100 0.95 0.95 -0.0040 -0.0008 0.0045 0.0025 0.28 0.505 0.46 0.59

n=200 0.96 0.96 -0.0040 -0.0006 0.0650 0.0012 0.27 0.503 0.47 0.62

S2 (σv = 0.01, σu = 0.05, λ = 5.0)

n=50 0.92 0.95 -0.0120 -0.0001 0.0142 0.008 0.22 0.511 0.78 0.85

n=100 0.92 0.95 -0.0148 <-0.0001 0.0151 0.006 0.17 0.502 0.80 0.91

n=200 0.92 0.94 -0.0168 <-0.0001 0.0168 0.004 0.13 0.503 0.81 0.95

S3 (σv = 0.05, σu = 0.01, λ = 0.2)

n=50 0.78 0.95 -0.0397 -0.0122 0.0397 0.0215 0.020 0.504 0.11 0.38

n=100 0.85 0.95 -0.0334 -0.007 0.0334 0.0122 0.020 0.503 0.11 0.51

n=200 0.88 0.95 -0.0280 -0.005 0.0280 0.009 0.025 0.502 0.12 0.65

S4 (σv = 0.05, σu = 0.05, λ = 1.0)

n=50 0.92 0.94 -0.0157 -0.0034 0.0209 0.017 0.32 0.511 0.47 0.55

n=100 0.95 0.95 -0.0105 -0.0021 0.0167 0.007 0.35 0.507 0.47 0.69

n=200 0.96 0.95 -0.0068 -0.0015 0.0133 0.004 0.38 0.503 0.47 0.76
Notes:

CES production function: ;yi = [ 23x
1/2
i1 + 1

3x
1/2
i2 ]1/2 exp(vi − ui), vi ∼ N(0, σ2

v), u ∼ N+(0, σ2
u), λ = σu

σv
. .

(a) Empirical Coverage Accuracy is the share of true technical efficiencies that are within bounds of predicted 95% confidence interval for

estimated technical efficiency. Reported in this table is the median of such shares across all Monte Carlo simulations;

(b) FLW represents the SSF estimator and the results are taken from Badunenko, Henderson and Kumbhakar (2012).

(c) Upward Bias is the share of predicted technical efficiencies strictly larger than the true ones. The desired value of upward bias is 0.5.

The values less (greater) than 0.5 indicates systematic underestimation (overestimation) of technical efficiencies. Reported in the table is the

median of such shares across all Monte Carlo simulations;

(d) Kendall correlation coefficient between predicted and true technical efficiencies. Reported in the table is the median of such coefficients

across all Monte Carlo simulations.

In tables 4 and 5 we have shown that “on average” our improved procedure is arguably better than FLW. One

interesting question is what would happen at low and upper ends of the efciency distribution. We provide the

results in Tables 4a and 5a for the 5% and 10% lower and upper ends of the efciency distribution. Specifically, we

proceed as follows: Given that an observation has efficiency in the lower 5% of the efciency distribution in the data,

we first examine whether it belongs to the lower 5% of the efciency distribution in a given simulation. If not we

record the correlation as zero; otherwise, we compute the actual correlation.

From the results in Tables 4a and 5a it turns out that, in most cases, the correlations at the lower and upper

5% and 10% ends of the efficiency distribution are lower than the “average” but fairly close to the “average” value.
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Therefore, the performance of the improved procedure does not deteriorate and can be used safely in most cases.

Table 4a. Finite sample performance of the efficiency estimates: Cobb-Douglas pro-

duction technology (Correlations at lower and upper ends of the efficiency distribu-

tion)

lower 5% lower 10% upper 5% upper 10%

S1 (σv = σu = 0.01, λ = 1.0)

n=50 0.48 0.51 0.50 0.52

n=100 0.60 0.62 0.61 0.62

n=200 0.72 0.75 0.72 0.75

S2 (σv = 0.01, σu = 0.05, λ = 5.0)

n=50 0.72 0.77 0.75 0.78

n=100 0.73 0.79 0.78 0.79

n=200 0.78 0.81 0.80 0.82

S3 (σv = 0.05, σu = 0.01, λ = 0.2)

n=50 0.05 0.07 0.04 0.05

n=100 0.06 0.07 0.06 0.07

n=200 0.05 0.07 0.05 0.07

S4 (σv = 0.05, σu = 0.05, λ = 1.0)

n=50 0.48 0.50 0.50 0.51

n=100 0.52 0.54 0.50 0.53

n=200 0.45 0.57 0.49 0.55
Notes: See notes to Table 4.
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Table 5a. Finite sample performance of the efficiency estimates: CES production

technology (Correlations at lower and upper ends of the efficiency distribution)

lower 5% lower 10% upper 5% upper 10%

S1 (σv = σu = 0.01, λ = 1.0)

n=50 0.52 0.54 0.52 0.54

n=100 0.57 0.59 0.57 0.59

n=200 0.59 0.61 0.60 0.62

S2 (σv = 0.01, σu = 0.05, λ = 5.0)

n=50 0.81 0.84 0.81 0.83

n=100 0.87 0.90 0.87 0.91

n=200 0.92 0.94 0.92 0.95

S3 (σv = 0.05, σu = 0.01, λ = 0.2)

n=50 0.35 0.38 0.34 0.37

n=100 0.48 0.51 0.47 0.50

n=200 0.60 0.64 0.61 0.65

S4 (σv = 0.05, σu = 0.05, λ = 1.0)

n=50 0.50 0.55 0.51 0.54

n=100 0.65 0.68 0.64 0.67

n=200 0.73 0.75 0.72 0.75
Notes: See notes to Table 5.

7 Data

We apply the new techniques to the US banking data of Malikov et al (2015) on which we rely heavily for the

following description. Our data on commercial banks come from Call Reports available from the Federal Reserve

Bank of Chicago and include all FDIC-insured commercial banks with reported data for 2001:Q1–2010:Q4. We

focus on a selected subsample of relatively homogeneous large banks, namely those with total assets in excess of $1

billion dollars (in 2005 US dollars) in the first 3 years of observation.We further exclude Internet banks, commercial

banks conducting primarily credit card activities and banks chartered outside the continental USA. After cleaning

the data we have an unbalanced panel with 2397 bank–year observations for 285 banks. We deflate all nominal

stock variables to 2005 US dollars using the consumer price index (for all urban consumers).

We follow the commonly used ‘intermediation approach’ of Sealey and Lindley (1977) to model the bank’s

production technology. According to this approach a bank’s balance sheet is assumed to capture the essential

structure of its core business. Liabilities, together with physical capital and labor, are taken as inputs to the bank’s
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production process, whereas assets (other than physical) are considered as outputs. Liabilities include core deposits

and purchased funds; assets include loans and trading securities. We define the following outputs of the bank’s

production process: consumer loans (y1), real estate loans (y2), commercial and industrial loans (y3) and securities

(y4). These output categories are essentially the same as those in Berger and Mester (1997, 2003). Following

Hughes and Mester (1998, 2013), we further include off-balance-sheet income (y5) as an additional output. We also

include bank’s total non-performing loans (b).

The variable inputs are labor, i.e. the number of full-time equivalent employees (x1), physical capital (x2),

purchased funds (x3), interest-bearing transaction accounts (x4) and non-transaction accounts (x5). We also include

financial capital (equity, e) as an additional input to the production technology. We follow Berger and Mester (1997,

2003) and Feng and Serletis (2009) and assume that equity is a quasi-fixed input. The treatment of equity capital

as an input to banking production technology is consistent with Hughes and Mester’s (1993, 1998) argument that

banks may use it as a source of funds and thus as potential protection against losses. We compute the prices of

variable inputs (w1–w5) by dividing total expenses on each input by the corresponding input quantity. Table I in

Malikov, Kumbhakar and Tsionas (2015) presents summary statistics of the data we use.7

8 Empirical results

We will consider several models to examine whether the new techniques perform better and / or provide a better

description of the data.

Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans

and a time trend. The model does not allow for inefficiency. This model is used as a benchmark.

Model II: An FPA model with normal and half-normal distributions for the two error components of the model.

Model III: An FPA model with the following modification. The log variance of the two-sided error term is itself

an FPA model and the log of the scale parameter of the half- normal distribution for the one-sided error term is

also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale

parameters of the normal and half-normal distributions for the two error components of the model are functions of

logs of input prices, outputs, equity, non-performing loans and, finally, a time trend.

Additionally, we will also look closely into the models developed for panel data in sections 4.1, 4.2 and 4.3.

7The data are available in http://qed.econ.queensu.ca/jae/datasets/malikov001/
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Table 6. Model comparison for US banking data

Notes: Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans and a time trend. The

model does not allow for inefficiency. This model is used as a benchmark.

Model II: An FPA model with normal and half-normal distributions for the two error components of the model.

Model III: An FPA model with the following modifications: The log variance of the two-sided error term is itself an FPA model and the log

of the scale parameter of the half- normal distribution for the one-sided error term is also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale parameters of the normal and

half-normal distributions for the two error components of the model are functions of logs of input prices, outputs, equity, non-performing loans

and, finally, a time trend.

model normalized LPS

translog 0.000

I 4.713

II 17.091

III 27.616

IV 4.919

V 14.151

VI 33.817

VII 29.715

model order of Additive Cobb-Douglas

1 2 3 4 5 6 7 8 9 10

IV 0.027 0.514 1.102 1.514 2.217 3.345 4.919 4.102 3.213 2.131

V 1.072 3.210 5.103 7.154 9.782 14.151 8.201 7.332 4.202 2.550

VI 0.785 2.115 4.122 15.543 33.817 22.761 11.454 7.215 3.210 1.105

base of Fractional Polynomial Approximation

model 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

II 0.764 4.355 8.201 17.091 12.021 8.872 5.413 3.202 1.210 0.551

III 8.337 15.201 27.616 13.201 8.045 4.317 1.414 0.881 0.224 0.038

From the results in the left of Table 6 it turns out that an ACD specification is better, followed by model VII

(the full SMR which uses bases 1
3 for the cost function and 1

2 for the logs of scale parameters of the two error

components; the weight function also turns out to be of base 1
2 ).8The right panel of Table 6 provides the normalized

LPS for (i) the order of the ACD in the upper panel, and (ii) the base of FPA in the lower panel.

Given these results, it seems safe to proceed conditional on the choices of the particular order of ACD or base of

the FPA for models IV, V, VI and II, III. Before doing so, it would be desirable to test the different models based

on the alternative assumptions proposed in section 4, viz. panel data (section 4.1), endogeneity (section 4.2) and

copulas (section 4.3). To summarize, in section 4.1 we introduce one-sided individual effects λi which are handled

in a flexible way, see (33) and (34). In section 4.2 we capture the correlation between xit and εit using a panel

VAR and a normal joint distribution where the elements of the Cholesky factor of the covariance matrix are flexible

functions, see (35)-(37) and (38)-(39). Finally, in section 4.3 we have a copula dependence model, see (44) or (46).

To save space we report results only for the best models in each of the three alternatives and we report the results

in Table 7.

8For model VII we used a full comparison between FPA for the cost function, the two scale parameters and the weights in bases
1
k
, k = 1, ..., 10. This involved a choice among 10,000 different models so we give only the final best choice.
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Table 7. Alternative assumptions about panel data and endogeneity

Results for models IV,V, VI and I, II are the same as in Table 6 to allow direct comparison. Models x.1, x.2 x.3 correspond to x=IV, V, V and

I,II. Models of the form x.1 are as in section 4.1 where we introduce one-sided individual effects λi which are handled in a flexible way, see (33)

and (34). Models of the form x.2 are as in section 4.2 where we capture the correlation between xit and εit using a panel VAR and a normal

joint distribution where the elements of the Cholesky factor of the covariance matrix are flexible functions, see (35)-(37) and (38)-(39). Models

of the form x.3 are as in section 4.3 where we have a copula dependence model, see (44) or (46). In models x.1 and x.2 the orders of the various

flexible functions are optimized and the best results are provided. All model orders run from 1 to 10 and they are combined with different orders

of the Additive Cobb-Douglas or the Fractional Polynomial Approximation for the functional form of the cost function. Precise model orders

are available on request.

model order of Additive Cobb-Douglas

1 2 3 4 5 6 7 8 9 10

IV 0.027 0.514 1.102 1.514 2.217 3.345 4.919 4.102 3.213 2.131

IV.1 0.011 0.124 0.332 0.444 0.512 0.633 0.782 0.981 1.106 1.225

IV.2 0.017 0.225 0.832 0.913 1.414 1.505 1.617 1.771 1.803 1.981

IV.3 0.021 0.043 0.055 0.077 0.082 0.093 0.225 0.301 0.514 0.623

V 1.072 3.210 5.103 7.154 9.782 14.151 8.201 7.332 4.202 2.550

V.1 0.561 0.602 0.731 0.855 1.051 1.118 1.245 1.302 1.515 1.777

V.2 1.202 1.281 1.300 1.452 1.551 1.617 1.713 1.802 1.903 2.001

V.2 0.038 0.061 0.082 0.171 0.185 0.202 0.302 0.425 0.552 0.633

VI 0.785 2.115 4.122 15.543 33.817 22.761 11.454 7.215 3.210 1.105

VI.1 0.034 0.082 0.171 0.253 0.348 1.414 1.761 1.822 1.873 1.903

VI.2 0.542 0.616 2.313 3.156 5.105 4.180 3.210 3.191 2.774 0.723

VI.3 0.021 0.032 0.043 0.050 0.072 0.084 0.078 0.063 0.051 0.040

base of Fractional Polynomial Approximation

model 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

II 0.764 4.355 8.201 17.091 12.021 8.872 5.413 3.202 1.210 0.551

II.1 0.121 0.255 0.313 0.520 0.615 0.503 0.442 0.316 0.217 0.201

II.2 0.551 2.332 3.444 5.670 6.154 5.332 4.120 2.561 0.781 0.120

II.3 0.072 0.103 0.217 0.353 0.410 0.332 0.298 0.271 0.265 0.120

III 8.337 15.201 27.616 13.201 8.045 4.317 1.414 0.881 0.224 0.038

III.1 0.056 0.072 0.091 1.312 2.510 1.651 1.312 0.873 0.641 0.553

III.2 2.330 4.551 5.005 7.217 6.271 5.440 4.212 3.155 2.364 2.120

III.3 0.041 0.055 0.073 0.092 1.210 0.871 0.773 0.555 0.430 0.212

From the results in Table 7 it turns out that, at least in this empirical application, it is not necessary to resort to

the flexible panel specification (section 4.1), panel VAR-based-endogeneity as in section 4.2 or copulas (section 4.3).

In fact, copulas seem to perform worst. The flexible panel specification performs worst relative to the benchmark
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models (II, III, IV or II,III). Assuming cost inefficiency to be flexible but time-invariant is quite restrictive and a

panel VAR (even with a quite flexible for the elements of the Cholesky factor of the covariance matrix Σit) does

not seem sufficient to handle the joint distribution of xit and εit relative to the benchmark SMR specification. This

shows that the SMR and its substantial generalizations in this study, are quite capable of representing actual and

possibly complicated features of the data, including endogeneity in particular. In fact, the dominance of models III

and VI (with VI being the best) also implies that there is considerable value added from modeling endogeneity : The

LPS of III and VI are 27.616 and 33.817, respectively, over a simple translog model. From Table 6, models that

do not account for endogeneity (like model II) sometimes imply a sizable LPS (like 17.091) which is still 10 times

smaller compared to the LPS of model III. This is, of course, an overwhelming difference implying that endogeneity

is critical in the performance of models in this empirical application.

The copula specification seems to perform worst relative to the other two models. The bad performance of

copulas is evidently as result of the more flexible specifications in SMR. The specification in section 4.2 (a panel

VAR with a flexible parametrization for the elements of the Cholesky decomposition of the covariance matrix, Σit)

performs best suggesting that explicit modeling of Σit is critical. However, none of the models in section 4 performs

better than the models presented in Table 6. This suggests that these extensions, although interesting for future

applications, are complicated enough and over-parametrized that fail to improve the log-predictive score statistic.

To show the value added from accounting for endogeneity we can consider models I and II under the specifications

in section 4.2 where the organizing principle is that of a panel vector autoregression (PVAR) with a joint distribution

of εit and ξit. We take again the translog as a benchmark with a LPS of zero and the results are presented in Table

8. In case A we have a PVAR model with a general covariance matrix Σit for εit and ξit. In case B we resrict

the covariance matrix not to depend on xit. In cases C and D we consider the general specification in (40) with

a general and fixed covariance matrix respectively. In case D, although the covariance matrix is fixed, it differs

among groups (g = 1, ..., Gζ).
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Table 8. Additional results for endogeneity

Notes: FPA and ACD denote “Fractional Polynomial Approximation” and “Additive Cobb-Douglas” respectively. The results presented are for

the best orders of FPA and ACD and are not reported to save space but are available on request. In case A we have a PVAR model with a

general covariance matrix Σit for εit and ξit. In case B we resrict the covariance matrix not to depend on xit. In cases C and D we consider

the general specification in (40) with a general and fixed covariance matrix respectively. In case D, although the covariance matrix is fixed, it

differs among groups (g = 1, ..., Gζ).

FPA ACD

translog 0.000 0.00

A. Panel VAR,

fixed Σit

2.415 3.342

B. Panel VAR,

Joint distribution

of εit and ξit,

fixed Σit

3.032 3.430

C. Joint

distribution

of εit and ξit,

fixed Σit

1.255 1.717

D. Joint

distribution

of εit and ξit,

general Σit

1.121 1.713

From the results in Table 8, there are definitely gains from considering endogeneity relative to a simple translog,

so endogeneity matters empirically. The issue is whether modeling endogeneity in this way is better when compared

to the alternatives in Tables 7. As the highest LPS is 3.342 it turns out worse that an LPS of 4.919 for the FPA

model IV in Table 7 and certainly LPS of 17.091 or 33.817 for models VI and III in the same Table. Therefore, at

least in this empirical application, modeling endogeneity through a PVAR as in section 4.2 does not appear viable.

Although there is, clearly, considerable value added from modeling heterogeneity, it turns out PVAR models (section

4.2) turn out to be worst when compared to the alternative, more general and flexible models like II,III or IV,VI.

The different models can be compared in terms of returns to scale (RTS), efficiency change (EC), productivity

growth (PG) which is equal to technical change plus EC, and cost efficiency.

27



Figure 1. Sample distribution of RTS

Notes: Returns to scale are computed as rts = 1/
∑K

k=1
∂ log C(p,y)

∂ log yk
. The measure is averaged across all SMC draws to account for parameter

uncertainty. Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans and a time trend.

The model does not allow for inefficiency. This model is used as a benchmark.

Model II: A FPA model with normal and half-normal distributions for the two error components of the model.

Model III: A FPA model with the following modification. The log variance of the two-sided error term is itself an FPA model and the log

of the scale parameter of the half- normal distribution for the one-sided error term is also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale parameters of the normal and

half-normal distributions for the two error components of the model are functions of logs of input prices, outputs, equity, non-performing loans

and, finally, a time trend.

The good performance of models VI and VII in terms of LPS materializes in the fact that these models have

quite different implications for RTS, PG and efficiency. From Figure 1, these models agree that RTS is close to 0.98

whereas the other models provide RTS measures from 0.82 to 0.90 -which is typical in banking studies employing

“flexible” functional forms. The translog itself provides average RTS close to 0.82 and very small probability that

RTS could be higher than 0.95.

From Figure 2, models VI and VII suggest that PG is very close to zero and very few banks have PG close to

1% or -1%. The other models provide, again, results which indicate that PG averages almost 4% and can be as

large as 10% for certain banks. Models VI and VII are inconsistent with this prediction and suggest that PG, if

any, is quite small.

28



Figure 2. Sample distribution of PG

Notes: Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans and a time trend. The

model does not allow for inefficiency. This model is used as a benchmark.

Model II: A FPA model with normal and half-normal distributions for the two error components of the model.

Model III: A FPA model with the following modification. The log variance of the two-sided error term is itself an FPA model and the log

of the scale parameter of the half- normal distribution for the one-sided error term is also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale parameters of the normal and

half-normal distributions for the two error components of the model are functions of logs of input prices, outputs, equity, non-performing loans

and, finally, a time trend.
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Figure 3. Sample distribution of technical efficiency

Notes: Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans and a time trend. The

model does not allow for inefficiency. This model is used as a benchmark.

Model II: An FPA model with normal and half-normal distributions for the two error components of the model.

Model III: An FPA model with the following modification. The log variance of the two-sided error term is itself an FPA model and the log

of the scale parameter of the half- normal distribution for the one-sided error term is also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale parameters of the normal and

half-normal distributions for the two error components of the model are functions of logs of input prices, outputs, equity, non-performing loans

and, finally, a time trend.

Another difference is in terms of technical efficiency (see Figure 1). Models VI and VII suggest that cost efficiency

averages 95%-96% but the sample distribution is highly skewed to the left. The remaining models suggest that

cost efficiency averages 92% but the sample distributions are quite different. For example, the remaining models

suggest that efficiency in excess of 96% is practically impossible, contrary to the predictions of models VI and VII.

It should be mentioned that since one can put condence intervals on efciency estimates, 0.96 and 0.98 will probably

be statistically the same.

In Figure 4 we examine the temporal pattern of PG. Again, models VI and VII suggest that PG has been fairly

close to zero from 2001 to 2010. The other models provide quite different predictions with a generally declining

pattern of PG but still positive and well above 3% on the average. Model IV even suggests that PG increased

in the aftermath of the sub-prime crisis. In terms of efficiency change (Figure 5) models VI and VII suggest that

there has been no serious change in cost efficiency contrary to the remaining models. Some models provide positive
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estimates while other provide negative estimates for efficiency change so we have a “mixed bag” in this case, in terms

of the temporal behavior of efficiency change. As the models are quite different and have different implications,

this is not unexpected. The fact that models VI and VII suggest that PG has been fairly close to zero since 2001

is more in line with reality. In banking most innovations (like ATMs and electronic banking) have exhausted their

productivity effects well before the 2000s as they have been introduced extensively by almost all banks. From that

point of view it is not surprising to find that productivity growth has been quite low.

Figure 4. Temporal behavior of PG

Notes: Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans and a time trend. The

model does not allow for inefficiency. This model is used as a benchmark.

Model II: A FPA model with normal and half-normal distributions for the two error components of the model.

Model III: A FPA model with the following modification. The log variance of the two-sided error term is itself an FPA model and the log

of the scale parameter of the half- normal distribution for the one-sided error term is also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale parameters of the normal and

half-normal distributions for the two error components of the model are functions of logs of input prices, outputs, equity, non-performing loans

and, finally, a time trend.
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Figure 5. Cost efficiency change

Notes: Model I: a translog cost function model which depends on input prices, outputs, equity, non-performing loans and a time trend. The

model does not allow for inefficiency. This model is used as a benchmark.

Model II: A FPA model with normal and half-normal distributions for the two error components of the model.

Model III: A FPA model with the following modification. The log variance of the two-sided error term is itself an FPA model and the log

of the scale parameter of the half- normal distribution for the one-sided error term is also an FPA model.

Models IV, V and VI: As models I, II and III with the modification that we use ACD instead of FPA.

Model VII: A general SMR (or GSMR) model for the cost function. The probabilities and logs of the scale parameters of the normal and

half-normal distributions for the two error components of the model are functions of logs of input prices, outputs, equity, non-performing loans

and, finally, a time trend.

Similar to productivity change is what we observe in terms of cost efficiency change. Most models agree that

cost efficiency change has been quite low and in the neighborhood of ±2-3% with the preferred models VI and VII

showing no evidence of quantitatively important changes in cost efficiency. This challenges the conventional view

that efficiency can adjust rapidly to changing economic conditions as, for example, in the aftermath or during the

sub-prime crisis. On the contrary, conventional models like model I, deliver the empirical implication that efficiency

has constantly improving at an average rate of 1,5-2% per year, which is hard to believe and must be attributed to

the inflexibilities of the functional forms in this model.

The marginal effects of several variables on cost efficiency are provided in Figures 6a through 6c. These marginal

effects may be computed as ∂ log r̂it
∂wit

where9 r̂it = exp(−ûit) and ûit is estimated cost inefficiency. To approximate

these effects numerically we use finite differences, viz. ∆ûit

∆wit
, where ∆wit is defined as ∆wit = wit + h, and h

9Here, wit stands for the vector of variables that affect the ACD specification. We remind that most elements of wit are already in
logs.
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is a vector whose elements are 0.1 times the minimum absolute value of elements of wit. The marginal effects are

computed for each draw and they are averaged across all draws so that they fully account for parameter uncertainty.

Finally, results are reported only for our preferred specification, viz. Model VI. For visual clarity all variables are

normalized to lie in the interval [0, 1].

Figure 6a. Marginal effects on cost efficiency

One of the most important technical aspects of our major extensions is the ability to deliver the marginal effects

of certain variables on cost efficiency. The marginal effects are plotted in Figures 6a through 6c. The effects are

highly nonlinear and do not always have the same sign through the entire (relevant) domain. The effect of consumer

loans (Fig. 6a) is positive starting from about zero to finally obtain a value of 0.04. The effect of real estate loans

is negative for the most part but positive when these loans are less than their 20% percentile. At the median their

effect is -0.04 and increases to -0.12 at higher percentiles -a fact that can be attributed to the volatile character of

real estate prices. Commercial and industrial loans have a monotonic impact on efficiency with their effect being

negative for values less than the 35% percentile and they increase to reach a maximum of of 0.12. Finally, securities,

have a consistently positive and monotonic effect which is close to 0.01 at the median and increases to 0.04 near

the maximum.

33



Figure 6b. Marginal effects on cost efficiency

From Figure 6b, it turns out that labor and capital consistently decreases cost efficiency but purchased funds

have a positive effect with a minor positive contribution from off-balance-sheet income. These results indicate that

further expansion of the banks in terms of capital or labor cannot possibly increase the efficiency of their operations,

although there are clearly ways to do so through re-balancing their activities in terms of scope. Purchased funds,

for example, (Fig. 6b) as well as securities and consumer loans (Fig. 6a) can contribute to higher efficiency.
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Figure 6c. Marginal effects on cost efficiency

We can see how economies of scope in efficiency work further if we take a look at Figure 6c. Non-performing

loans have a clear negative effect on cost efficiency (of nearly -0.10 at the median) while interest-bearing accounts,

equity and non-transaction accounts have a positive effect (although non-monotonic) on efficiency. Non-mononicity

is particularly pronounced in the case of equity: Its effect “takes off” just above the 70% percentile although even

the effect at the median is quantitatively important (nearly 0.05). In terms of policy implications these results

are important. Cost efficiency can be improved through a shift from capital, labor and non-performing loans to

equity, interest-bearing transaction and non-transaction accounts, purchased funds and, somewhat less importantly,

to consumer loans. The use of commercial and industrial loans and other items is more ambiguous and depends on

where a particular bank is, in terms of its current position in the (relevant) domain of this variable.

These results are not just descriptive although we deliberately considered the separate effect of each variable on

technical efficiency. As a matter of fact, for each particular bank, we can consider in a formal way, the precise effect

(along with 95% Bayes probability intervals) of changing the mix of outputs on its efficiency. In that way, we can

design formally a particular scheme to increase cost efficiency by, say, three or four percentage points by keeping

constant labor and capital and changing the mix of consumer versus industrial and commercial loans and securities.

The flexibility of our new models, therefore, solves another outstanding problem, viz. that researchers often can

estimate efficiency but do not know what to do when it comes to specific proposal about increasing efficiency levels.

Our results can be used to design formal schemes to achieve precisely this goal.
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Finally, in Figure 7 we report the marginal effect ∂ log r̂it
∂t which we call the “technical change function”. First,

the values of the function are quite close to zero, a fact that is consistent with previous results. Second, it seems

that in the beginning of 2000s there was some positive, albeit quite small technical change, the general pattern

shows a negative trend and a recovery took place in recent years but technical change in the banking sector is still

close to zero and negative.

Figure 7. Technical change function

Note: The dotted lines represent 95% Bayes probability intervals.

In view of the empirical fact that there has been immaterial technical change and productivity growth, it is clear

that the banking sector can realize cost savings mainly through increasing its cost efficiency. As we have shown the

matter is both quantitative and qualitative, in the sense that a new mix of outputs or re-balancing must be sought

with specific changes in the mix that can be computed through an obvious generalization of marginal effects in the

direction of changing several outputs at a time. Due to the flexibility of our functional forms and the many stages

at which they enter (functional form, mixing weights, variances etc) there are rich patterns that can be modeled in

a systematic and attractive manner. Indeed, one of the elusive goals of efficiency estimation so far, has been not

only to estimate efficiency (although doing this in a flexible manner has proved to be quite challenging) but also to

figure out what has to be done in order to realize cost savings in practice. The models in this paper are likely to

contribute to this goal and open new avenues for further research to this important policy issue.
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Concluding remarks

We provide major extensions to smoothly mixing regressions and fractional polynomial approximations for both

the functional form of the frontier and the structure of inefficiency. Moreover, we handle endogeneity using copulas

thus providing reasonable answers to the problems raised by Stone (2002) and addressed in Badunenko, Henderson

and Kumbhakar (2012). Our flexible model is based on nontrivial extensions of Smoothly Mixing Regressions

(SMR, Geweke and Keane, 2007) and and fractional polynomial approximations (FPA, Petrella and Geweke, 2014).

Additionally we provide an alternative model which is based on a sum of Cobb-Douglas functions (ACD). In an

empirical application to US banks it turns out that the ACD specification performs very well both in the frontier

function and as a model for the scale functions of the two error components of the stochastic frontier model. The

new procedures strike a good balance between traditional fully parametric stochastic frontier models and fully

nonparametric estimation which has its own shortcomings when the sample sizes are small and / or the number

of inputs and outputs is large. Our functional forms are flexible and regularity conditions can be imposed easily

while endogeneity is also taken into account via copulas. We believe that the new techniques could become part of

the toolbox of economists and engineers interested not only in measuring efficiency but also in examining how a set

of environmental variables has an impact on inefficiency. This impact is also modeled in a flexible way within the

SMR using FPA or ACD specifications.
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APPENDIX

Chopin (2002) recommends the independence Metropolis algorithm to select the kernel, which requires a source

distribution. A possible choice, if we sampled from pn (n < T ), with respect to pn+s is N (Ên+s, V̂n+s) where

Ên+s =

∑J
j=1 wjθj∑J
j=1 wj

, V̂n+s =

∑J
j=1 wj (θj − En+p) (θj − En+p)

′∑J
j=1 wj

.

The strategy can be parallelized easily. If K processors are available, we can partition the particle system into

K subsets, say Sk, k = 1, ...,K), and implemenr computations for particles of Sk in processor k. The algorithm
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can deal with new data at a nearly geometric rate and therefore the frequency of exhanging information between

processors (after reweighting) decreases at a rate exponential to n, which is highly efficient.

Resampling according to θmj ∼ Kt(θ
r
j , .) reduces particle degeneracy (Gilks and Berzuini, 2001) since identical

replicates of a single particle are replaced by new ones without altering the stationary distribution. For the appli-

cation in the next section, using J = 212 particles gave a mean squared error in posterior means of 10−5 over 100

runs.

Chopin (2004) introduces a variation of MSC in which the observation dates at which each cycle terminates (say

t1, ..., tL) and the parameters involved in specifying the Metropolis updates (say λ1, ..., λL) are specified. Therefore,

0 = t0 < t1 < ... < tL = T and we have the following scheme (we rely heavily on Durham and Geweke, 2013).

Step 1. Initialize l = 0 and θ
(l)
jn ∼ p(θ), j ∈ J , n ∈ N .

Step 2. For l = 1, ..., L:

(a) Correction phase:

(i) wjn(tl−1) = 1, j ∈ J , n ∈ N

(ii) For s = tl−1 + 1, ..., tl

wjn(s) = wjn(s− 1)p(ys|y1:s−1, θ
(l−1)
jn ), j ∈ J , n ∈ N .

(iii) w
(l−1)
jn := wjn(tl), j ∈ J , n ∈ N .

(b) Selection phase, applied independently to each group j ∈ J : Using multinomial or residual sampling

based on
{
w

(l)
jn , n ∈ N

}
, select

{θ(l,0)jn , n ∈ N}

from {θ(l−1)
jn , n ∈ N}.

(c) Mutation phase, applied independently across j ∈ J , n ∈ N :

θ
(l)
jn ∼ p(θ|y1:t, θ(0)jn , λl) (A.1)

where the drawings are independent and the pdf above satisfies the invariance condition:

ˆ
Θ

p(θ|y1:tl , θ∗, λl)p(θ
∗|y1:tl)dν(θ∗) = p(θ|y1:tl). (A.2)

Step 3. θjn := θ
(l)
jn , j ∈ J , n ∈ N .

At the end of every cycle, the particles θ
(l)
jn have the same distribution p(θ|y1:tl). The amount of dependence

within each group depends upon the success of the Mutation phase which avoids degeneracy.
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