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Abstract—Code virtualization built upon virtual machine (VM)
technologies is emerging as a viable method for implementing
code obfuscation to protect programs against unauthorized
analysis. State-of-the-art VM-based protection approaches use
a fixed set of virtual instructions and bytecode interpreters
across programs. This, however, exposes a security vulnerability
where an experienced attacker can use knowledge extracted
from other programs to quickly uncover the mapping between
virtual instructions and native code for applications protected
under the same scheme. In this paper, we propose a novel VM-
based code obfuscation system to address this problem. The core
idea of our approach is to obfuscate the mapping between the
opcodes of bytecode instructions and their semantics. We achieve
this by partitioning each protected code region into multiple
segments where the mapping of opcodes and their semantics
is randomized in different ways in different segments. In this
way, each bytecode instruction will be translated into different
native code in different sections of the obfuscated code. This
significantly increases the diversity of the program behavior. As
a result, the knowledge of bytecode to native code mappings
obtained from other programs will be less useful when targeting
a new program. We evaluate our approach on a set of real-world
applications and compare it against two state-of-the-art VM-
based code obfuscation approaches. Experimental results show
that our simple approach is effective, which provides stronger
protection at the cost of little extra overhead.

Index Terms—Virtualized obfuscation, reverse engineering,
instruction set randomization, analysis knowledge

I. INTRODUCTION

Unauthorized code reverse engineering is a major concern
for software developers. It is often exploitted by adversaries
to perform various attacks, including removing copyright
protection of software, taking out advertisements from the
application, or injecting malicious code into the program.
By making the program harder to be traced and analyzed,
code obfuscation is a viable means to protect software against
unauthorized code modification [1], [2], [3], [4], [5], [6].

Code virtualization based on a virtual machine (VM) is
emerging as a promising way for implementing code obfusca-
tion [7], [8], [9], [10], [11], [12], [13]. This strategy forces
the attacker to move from a familiar instruction set to an
unfamiliar environment, which can significantly increase the
time and effort involved in the attack.

Reverse engineering of VM-obfuscated code typically fol-
lows several steps. The attack first reverse-engineers the virtual
interpreter to understand the semantics of individual byte-
code instructions. Then translates the bytecode back to native

machine instructions or even high-level program languages
to understand the program logic [14], [15]. Among these
steps, understanding the semantics of individual bytecode
instructions is often the most-consuming process, which is
involved in analysing the handler that used to interpret every
bytecode instruction.

Numerous approaches have been proposed to protect VM
handlers from reverse engineering. Most of them aim to
increase the diversity of program behavior by obfuscating
the handler implementation [13] or iteratively transforming a
single program multiple times using different interpretation
techniques [10], [11]. However, all prior work employ a fixed
strategy where each bytecode is deterministically translated
to a fixed set of native code. Such techniques are vulnerable
for programs protected under the same obfuscation technique.
In particular, an attacker can reuse the knowledge (termed
analysis knowledge) of the handler implementation obtained
from one program to launch the attack on another program.

We present DCVP (Code Virtualization Protection with
Diversity), an enhanced VM-based code obfuscation system to
address the issue of reusing analysis knowledge. We employ
a technique called Instruction Set Randomization (ISR) [16]
to randomly change the opcodes of bytecode instructions
and their semantics; so that the mapping between bytecodes
and their handlers varies across programs. The randomization
itself, however, is not sufficient for providing stronger pro-
tection, because it is easy to be bypassed due to the non-
uniform distribution of the bytecode instructions (e.g. the
more frequent a bytecode is used, the more likely the relation
between the bytecode and its handlers can be obtained from
other programs). To overcome this issue, DCVP partitions the
protected code region into several parts where the mappings
of bytecode instructions and their handlers in each part are
different. As a result, the same bytecode instruction in different
parts of the program will have different semantics.

The key contribution of this paper is a countermeasure to ad-
dress the issue of reusing analysis knowledge for code reverse
engineering. We compare our approach against VMProtect [8]
and Themida [9] on a set of real-world Intel x86 applications
and algorithms. Experimental results show that DCVP provides
stronger protection at the cost of little extra overhead. It is to
note that our work focuses on protecting code against code
reverse engineering. Like any code obfuscation technique,
malware developers could also exploit this to protect malicious



Fig. 1: A representative architecture for VM-based obfuscation. The main
work of this paper is to improve the core steps of VM-based protection (areas
marked as “a” and “b”). In the �rst region (a), we partition the protected code
region into different segments, and obfuscate thebytecode handlers to
generate multiple implementations for eachhandler . In the second region
(b), we use a number of obfuscation and anti-taint analysis technologies to
protect the important components of the VM core.

programs, but preventing this is outside the scope of this work.

II. BACKGROUND

Virtualization techniques is widely used to protect software
programs from unauthorized analyses. Examples of VM-based
code obfuscation tools include VMProtect [8], Code Virtual-
izer [7] and [9]. Code obfuscation often comes at a cost, with
bloating code size and longer execution time. To minimize
the overhead, in practice only critical parts of the software are
obfuscated [17]. VM-based protection works by transforming
the native machine code of the protected code region into a set
of bespoke virtual instructions which are stored as bytecode
in the program binary. At runtime, the virtual instructions will
be translated into native code using byte interpreters.

Figure 1 illustrates a classical VM-based obfuscation sys-
tem. At the heart of this system are the virtual IS (Instruction
Set) and the set of interpreters used to translate the IS to native
code. Interpretation of virtual instructions follows the classical
decode-dispatchapproach [18], using a bundle ofhandlers
and aVMloop . Here, theVMloop is the execution engine
which fetches and decodes a bytecode instruction and then
dispatches ahandler to interpret instruction.VMcontext ,
which contains hardware-independent virtual registers and
�ags. At runtime, the virtual registers and �ags will be
mapped down to the underlying hardware, and theVMInit
is responsible for saving the native context and initializing
the VMcontext . In comparison,VMExit restores the native
context when exiting VM. Finally, these VM components will
be assembled into a new section and attached to the end of
the target program through binary rewriting.

Our work focuses on two key components of the VM-based
obfuscation architecture, highlighted using labels `a' and 'b'
in Figure 1. Our approach divides the protected code region
to different sections. It generates multiple implementations
for each bytecode handler using code obfuscation techniques.
Different implementations of the same bytecode handler are
semantically equivalent and will produce an identical output
for a given virtual instruction; but they follow different ex-
ecution paths and exhibit diverse behavior during runtime.
We further enhance the strength of the protection by using
a number of obfuscation and anti-taint analysis technologies
to protect the important components of the VMCore.

III. T HE THREAT MODEL

In our threat model, we assume an attacker owns a copy of
the target application and can run it in a malicious host envi-
ronment [19]. Such a threat model is also known as the white-
box attack [20], [21]. In such an environment, the adversary
has full privileged accesses to the system. We also assume the
adversary can use static and dynamic analysis tools, such as
IDA [22], OllyDbg [23] andSysinternals Suite [24],
to trace and analyze instructions, monitor registers and process
memory, and modify instruction bytes and control �ows at
runtime, etc. Prior work has demonstrated that these are reason
assumptions [14], which are often available to an experienced
adversary.

There are two preliminarily used methods to attack VM-
based protection systems. Our work assumes an adversary can
use any of or a combination of the methods to launch the
attack. These two methods are described as follows.

The �rst technique is based on the virtual execution analysis
proposed by Rolleset al. [15]. This requires an analyst to have
a deep understanding of the code virtualization techniques
employed by the obfuscation system. It works by dynamically
tracking the execution process of the virtual interpreter to
extract the key bytecodes and handlers, and then through the
analysis and code simpli�cation to recover the program logic.
Falliereet al. [14] show that it is possible to perform the above
analysis [8]. This type of attack method is closely related to
the principle and structure of code virtualization, and has been
widely adopted to analyze obfuscated malware.

The second technique is based on behavior and semantic
analysis of the target program. This type of attack method can
be used to attack not only code virtualization but also other
obfuscation methods. Cooganet al. [25] propose a behavior
based analysis method. Their approach aims to analyze impor-
tant behavior of code, but it does not pay attention to restoring
the original code. Yadegariet al. [26] propose a method based
on semantic analysis. The method uses taint propagation to
track the �ow of inputs values, and semantics-preserving code
transformations to simplify the logic of the instructions. This
type of method has wider applicability, but is restricted to a
small code region.

IV. M OTIVATION

Figure 2 depicts an reverse analysis scenario where an
analyst can reuse theanalysis knowledgeto attack applications
protected by the same VM-based code obfuscation scheme. In
this example, there are four different programs to be protected,
labelled as A, B, C and D. In the right side of the diagram,
all the four programs are protected using an identical set of
virtual instructions and bytecode handlers.

Under this setting, an experienced analyst would be able
to use the knowledge of the mapping of virtual instructions
and bytecode handlers obtained from one program to reverse-
engineer the other three programs. Bear in mind that, uncover-
ing the mapping between virtual instructions and native code
is often the most time-consuming process for attacking VM-
based code obfuscation. Having able to reuse the attacking



Fig. 2: The process of reusing attacking knowledge for code reverse engineer-
ing. Here we have four different target programs, A, B, C and D. In the right
side of the scenario, all programs are obfuscated with a code obfuscation
scheme that a virtual instruction will be deterministically translated to a
�xed set of native code. This allows an attacker to reuse knowledge obtained
from one program to ef�ciently reverse engineer other programs. In another
scenario, the mapping between virtual instructions and native code is different
for different programs. In this way, the attacker is unable to reuse the
previously extracted knowledge to perform reverse analysis across programs.

knowledge thus can signi�cantly reduce the cost involved in
the attack. In another scenario, the translations between virtual
instructions and native code vary among programs. Therefore,
the knowledge obtained from one program will be inapplicable
to others. This forces the analyst to start from the scratch when
reverse engineering a new program. This example shows that
shuf�e the relationship between the virtual instructions and
bytecode handlers can signi�cantly increase the effort and cost
involved in performing the attack. In the remainder sections of
the paper, we describe how we can construct such as scheme
in details.

V. OVERVIEW

DCVP consists of four components, described as follows.

Virtual Instruction Set and Handlers. The native machine
instructions within the target code region are translated into
bespoke virtual instructions and stored as bytecode in the
program binary. The virtual instructions will be decoded by
the handlers during runtime. A virtual instruction can be
decoded by multiple semantically-equivalent handlers. A brief
description of the design of a virtual instruction set is given
in Section VI.

Native code translation.We develop a tool to automatically
translate the native machine code into virtual instructions and
stored as bytecode. This is detailed in Section VII-A.

Bytecode diversi�cation. The generated bytecode instructions
will be diversi�ed using a special encoding scheme. Each
protected code region is partitioned to multiple segments and
the opcodes of the virtual instructions in each segment will be
mapped to different native code. This means that a mapping
from opcode to native code found at one segment is likely to
be inapplicable for other segments. This is the key component
of DCVP, presented at Section VII-B.

PE Refactoring. Finally, the generated bytecode program and
other VM components will be linked together through binary
rewriting.

VI. V IRTUAL INSTRUCTIONSET AND HANDLERS

The virtual instruction set and their handlers are the founda-
tions of any VM-based code obfuscation system. The virtual
instruction set must be Turing-equivalent to target native
machine code. This means that any native instruction could
be substituted with some virtual instructions without violating
the semantics of the original code. Virtual instructions will be
interpreted by the hand-craftedhandlers during program
execution. It is to note that the instructionhandlers are
written in native instructions.

There are two mainstream approaches for implementing
a VM: a stack-based approach and a register-based one. In
this paper, we choose to use the stack-based architecture to
implement DCVP for the following reasons:

� In a stack-based VM, operations are carried out with the
help of stack, where operands and results of operations
are stored. This simpli�es the addressing of operands and
ultimately simpli�es the implementation ofhandlers .

� The process of converting native x86 instructions to
virtual instructions is simpler compared to a register-
based alternative.

� Stack-based VMs require more virtual instructions for
a given computation; this makes the instructions more
complex and conforms to our objective of impeding
reverse analysis.

A näive approach to design a virtual instruction set that
is semantically equivalent to the native instruction set, is to
map every single native instruction to a virtual instruction.
However, this would require us to implement a large number
of instruction handlers as our goal is to provide multiple
handlers for a single virtual instructions. We choose a different
approach that has a lower implementation cost, by exploiting
the characteristics of a stack-based VM. Our design choice
is based on the following observation. In a stack VM, a
native operation is either executed or virtualized a three-step
fashion: (i) pushing the operand into the stack, (ii) executing
an operation, and (iii) storing the result into the execution
context. Therefore, we can use the following, smaller number
of instructions to implement a virtual instruction set:

� We needload andstore instructions for data transfers.
load instructions are for pushing operands into the stack,
andstore instructions are for popping results out of the
stack and storing the results back the virtual context.

� We need arithmetical and logical instructions. The num-
ber of these virtual instructions needed are smaller than
their Intel x86 counterparts, as the addressing mode
of operands is simpler and uniform (i.e., stack-based
memory addressing).

� Branch instructions for changing the control �ow of the
bytecode program.

Other instructions that are not included in the above cat-
egories are de�ned as special virtual instructions, and are
labelled asundef , When encountering such an instruction
at time, we will �rst restore the native context and exits the
VM. Then, we execute the unde�ned native instruction in the



native context and re-enter the VM to continue executing the
remaining bytecode instructions.

VII. O FFLINE CODE OBFUSCATION

We now describe how to translate native instruction instruc-
tions to virtual instructions and store them in the bytecode
format.

A. Native Instructions to Virtual Instructions

At code obfuscation time, we �rst convert native instructions
into virtual instructions. This conversion process follows the
three-step execution process in a stack-based VM, which is
described in Section VI. Speci�cally, we �rst load the operands
into stack with theload virtual instruction; then, we execute
the ready to execute operation; and store the result into virtual
context or a certain memory address withstore virtual
instructions.

Native data transfer instructions are mainly mapped into
load andstore instructions. Examples of such instructions
in the x86 instruction set includemov, push , and pop .
Arithmetical and logical instructions will be translated by
strictly following the aforementioned three-phase processing,
and branch instructions are mapped into aload instruction
followed by a virtual branching instruction. Native instructions
with complex addressing modes are processed iteratively using
a combination of the aboved virtual instructions.

B. Virtual Instructions to Bytecodes

Virtual instructions will be encoded into bytecodes in the
end. It is similar to that an assembler assembles assembly
instructions into machine code and only can be interpreted by
virtual interpreter of VM-based protection system. We adopt
an encoding scheme less compacted than the x86 instruction
architecture which uses separate bytes for theopcodeand
operandof a virtual instruction. In practice, we assign each
virtual instruction a distinct ID as itsopcode. The ID is used
by VMloop as an index to �nd the address of thehandler
of the virtual instruction in the address table recording the
addresses of eachhandler . Since the number of virtual
instructions is less than 256, thus one byte is suf�cient to
encode their IDs. As for theoperands, since they could be of
different size1, we use one, two, or four bytes to encode them
correspondingly.

1) Randomize the Semantics of Bytecode Instructions:
From the above demonstration, if an analyst gets known
the semantics of a bytecode instruction, the next time she
encounters it, she does not bother to analyze itshandler
once again to �gure out what it does2. For example, in Figure
3, the bytecode instruction"10" means an addition operation
through analyzingHandler 4023e0 . The next time we

1The operandof a virtual instruction could be an index for virtual register,
an immediate value, or a memory address. They could be of different size:
a virtual register index being 8 bits, an immediate value being 8/16/32 bits,
and a memory address being 32 bits.

2Sincehandlers could be mutated to hinder analysis, it saves an analyst
a lot of time end effort without bothering to analyze them once again.

Fig. 3: Examples of some virtual instructions and their bytecode. Each virtual
instruction is encoded into a bytecode instruction, which consists of anopcode
and optionally anoperand. The bytecode instructions feed intoVMloop and
the opcodeof each bytecode instruction is used byVMloop as an index to
�nd the address of the corresponding handler in the HAT (Handler Address
Table).

encounter a bytecode instruction of"10" , we could say that
it does an addition operation immediately.

To mitigate the effect of reuse of previously obtained
analysis knowledge, we randomize the semantics of virtual
instructions. According to the encoding scheme we adopt, it is
easy to achieve this goal. The idea is to change the relationship
between the IDs (opcodes) and the virtual instructions, which
is similar to [16]. Every time to encode the virtual instructions,
the IDs are �rst shuf�ed once. Then the shuf�ed IDs are
used to encode the virtual instructions. The addresses of
handlers are also �lled into the handler address table
accordingly.

2) Partition Bytecode Program:With the randomization
of the semantics of bytecode instructions, an analyst can
not directly reuse heranalysis knowlegeto work out what
a bytecode instruction actually does. However, the effect of
the randomization could be easily bypassed. The frequencies
of virtual instructions are not uniform, whereload r and
store r are two of the most frequently used virtual instruc-
tions. Thus, an analyst could infer the semantics of bytecode
instructions based on the non-uniform frequencies ofopcodes.

3) Bytecode Program Partitioning:To obfustrate the infer-
ences based on the frequencies ofopcodes, we partition all the
generated virtual instructions into several parts, each part been
encoded differently. Speci�cally, during obfuscation, instead
of encoding the generated virtual instructions all at a time,
we encode those resulted parts separately. And prior to each
encoding process, we �rst randomly shuf�e the IDs of virtual
instructions and then use the results for encoding. The effect
of the shuf�es is that an identicalopcodein different parts
of the bytecode program probably reveals different semantics,
thus the frequencies ofopcodesare obscured . Figure 4 shows
an example of partitioning the virtual instructions into two
parts. The opcode of a virtual instruction is probably encoded
differently in different parts. For example,load r is encoded
into "00" in the �rst part, while "7a" in the other.



Fig. 4: Example of partitioning virtual instructions into several parts (two
parts in this �gure). Virtual instructions in different partitions are encoded
differently and interpreted using differenthandlers set. The number of
HAT increases accordingly. To switch the currently used (byVMloop ) HAT
to the next one, we add a new virtual instructionswitch HAT. Theoperand
of switch HAT is the size of a HAT.

Fig. 5: The virtualization of adirect inner transfer instruction with HAT
switching. The address of the destination HAT is pushed into stack by
load i , and is assigned to the HAT pointer used byVMloop at runtime.

As the opcodes of bytecode instructions are used by
VMloop as the indexes for the addresses of their corre-
sponding handlers , and different partitions are encoded
differently, each partition needs their own HAT. At the end
of a partition, the HAT used byVMloop should be switched
to the HAT of the next partition. This is done by a new
virtual instruction - switch HAT. Since switch HAT is
always added to the end of a partition and the orders of HATs
are in accordance with that of the partitions,switch HAT
needs to add the size of a HAT to the HAT pointer used by
VMloop (as Handler 4024a6 does in �gure 4). In our
prototype, the number ofHandlers is 148 and the address
of a Handler is 4 bytes, thus the size of a HAT is592
(250h in hexadecimal ) bytes.

The switchings of HATs is not limited to the end of parti-
tions. A branch instruction also causes the switching when its
destination resides in a different partition. Branch instructions
change the control �ow of a program through changing the
VPC. When encounter such an instruction, we cannot simply
append aswitch HAT to it, since theswitch HAT may
not get interpreted byVMloop if the VPC is changed to
a location in another partition. Hence, we put the code for
switching inside theHandlers of the branch instructions.
Here, the branch instructions indicate thedirect innerones, as
direct outerbranches andindirect branches all leave the virtual
context and need not to worry about the switching of HATs.

During protection, for eachdirect inner branch instruction,
we �rst calculate its destination, and then �gure out which
partition the destination resides. The address of the HAT of
that partition is pushed into stack byload i and will be
used by theHandler of the branch instruction to set the
value of the HAT pointer used byVMloop . Figure 5 shows
the virtualization of adirect inner branch instruction.

4) Security Analysis of Partition Design:The number of
HAS obfuscated is determined by the number of partitions.
Our system will randomly select several methods from the
obfuscation method library which contains the junk instruc-
tions injection, equivalent instruction substitution [27], code
out-of-order [28] and control �ow �attening [29]. Then the
system will use the selected method in a random order to
obfuscate thehandler . Finally we have multiple equivalent
but different forms of HAS. We will also adopt some anti-taint
analysis techniques (some details are presented in section III)
to protect the HAS that after obfuscated. This can effectively
prevent the virtual interpreter from being attacked by some
de-obfuscation methods.

For example, HAS (Handler Set) as an originalhandler
set that consists ofm handler . We use a HAT to store the
address of thesehandlers , and their index corresponds to
theopcodeof virtual instruction. HAS will be obfuscated forn
times with different strategies,n is dependent on the number of
partitions. Then we get multiple HASs and which are semantic
equivalence but have different forms. At this time, all of the
equivalenthandlers still have the same index. This is a
type of insecure and direct mapping relationship. Therefore,
according to the method that partitions bytecode program and
randomizes the semantics of bytecode instructions described
in Section VII-B2, we �rst randomly shuf�e the IDs of virtual
instructions and then use these results to generate a new HAT
for each partition (as shown in Figure 4). The effect of shuf�es
is that an identicalopcodein different parts of the bytecode
program probably reveals different semantics. The relationship
of these equivalenthandlers in different HASs should be:

HAS1(i), HAS2(j), ... , HASn (k), 1� i, j, k� m:

This various semantics of bytecode instructions and different
forms ofhandlers can effectively prevent the attacker from
using the attack knowledge base matching to realize the
automated reverse analysis. The attacker has to spend a lot
of time to analyze every detail.

The above methods can prevent the spread of tainted data by
laundering tainted data and resist the taint analysis effectively
.

VIII. E VALUATION

In this section, we �rst evaluate the effectiveness of DCVP

by computing the likelihood of a bytecode instruction of two
partitions to be mapped to an identical machine code. We
then evaluate the overhead of DCVP in terms of code size
and running time.
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