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ABSTRACT In this paper, we present a novel power allocation scheme for multicarrier cognitive radio
networks. The proposed scheme performs subchannel power allocation by incorporating primary users
activity in adjacent cells. Therefore, we first define the aggregated subchannel activity index (ASAI) as an
average indicator which characterizes the collective networkwide primary users’ communication activity
level. The optimal transmit power allocation is then obtained with the objective of maximizing a total
utility function at the secondary base station (SBS), subject to the maximum SBS transmit power, and
collision probability constraint at the primary receivers. Utilizing ASAI, we further obtain an energy efficient
power allocation for the secondary system. Optimal energy efficiency (EE) and spectral efficiency (SE) are
contradicting objectives thus there is a tradeoff between these two performance metrics. We also propose
a design approach to handle this tradeoff as a function of the ASAI, which provides quantitative insights
into efficient system design. In addition to a lower signaling overhead, the simulation results confirm that
the proposed scheme achieves a significantly higher achievable rate. Simulation results further indicate that
using ASAI enables obtaining an optimal operating point based on the tradeoff between EE and SE. The
optimal operating point can be further adjusted by relaxing/restricting the sensing parameters depending on
the system requirements.

INDEX TERMS Cognitive radio networks, energy efficiency, spectral efficiency, spectrum sensing,
spectrum sharing.

I. INTRODUCTION

IN cognitive radio networks (CRN), secondary users (SUs)
may opportunistically access the available spectrum dur-

ing the times/in the locations, where the primary users (PUs)
are not active. However, the SUs have to terminate transmis-
sion immediately if a PU starts its communications activity
again. CRN is one of the envisaged solutions for improving
spectral efficiency (SE), which is defined as the total capacity
normalized by the available bandwidth measured in bps/Hz,
in the cellular band, see, e.g., [1], [2]. The main challenge
in spectrum sharing is to efficiently exploit the underutilized
portions of the spectrum without compromising the quality-
of-service (QoS) in the primary system.

The amount of the underutilized spectrum available to

the CRN depends on the nature of primary users’ commu-
nication activity. Availability of the spectrum is primarily
detected through robust spectrum sensing methods such as
those proposed in [3]. Several spectrum sharing methods
have been also proposed for the CRNs including overlay
and underlay spectrum access [4]. In the overlay spectrum
sharing, the secondary system accesses the channel only if
the channel is idle. In the underlay method, the secondary
system simultaneously utilizes the channel subject to keeping
the aggregated interference at the primary receiver below a
predefined threshold. This threshold is a system parameter
which depends on the primary system characteristics [5].
Ideally, to assure the QoS in the primary system, in overlay
(underlay) access, accurate information of spectrum sensing
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(i.e., perfect channel state information for the channel be-
tween the secondary transmitters and the primary receivers)
is a prerequisite. In practice however, attaining such informa-
tion is challenged by no or very limited resources for inter-
system signaling.

In a multicell CRN, coordination among the neighboring
secondary base stations (SBS) plays a paramount role in
efficient design of resource allocation [6]. Networkwide re-
source allocation significantly reduces the impact of intra-
system interference on the overall secondary system per-
formance. This further enables the secondary system to ex-
ploit the temporal variations of spectrum availability due
to the time-varying primary system communication activity.
Exploiting stochastic dynamics of the available spectrum
enhances the performance of the radio resource allocation in
the secondary system [7].

Several schemes have been proposed which are designed
to exploit the primary service activity, however it is usually
assumed that the activity information is available to the
secondary system, either through signaling or a priori knowl-
edge, see, e.g., [5]. Yet, this assumption may not always
be valid in practical scenarios where multicell networks are
considered. Our previous work [8] has partially dealt with
this issue by proposing a collaborative approach among SBSs
to estimate the primary system communication activity on
the subchannels to maximize the SE. In this paper, we in-
corporate the primary subchannels activity into transmission
power allocation at the SBS, such that the maximum possible
SE is achieved. The proposed method simplifies the power
allocation method in CRN while significantly reducing the
corresponding signaling overhead.

We also investigate the impact of the proposed primary
channel activity profile on the energy efficiency (EE) of
the system. Here, EE measures how efficiently the available
energy is utilized to maintain the QoS in the end-to-end
communications [9]. The EE metric can be defined in various
forms such as energy-per-bit to noise power spectral density
ratio, i.e., Eb/N0, bit per Joule capacity, rate per energy, or
Joule per bit, however they are essentially equivalent and
mutually convertible [10]. For EE resource allocation, an
energy-per-goodbit metric is considered in [11] that adopts
the spectrum sharing along with soft-sensing information by
adaptively setting the sensing threshold. Energy and spectral
efficient design for CRN is also studied in [12], [13] to
optimize one of them during a frame duration.

Accuracy of the spectrum status estimation is directly af-
fected the achieved EE, however such information might not
be available to the SU transmitter [14]. To tackle this issue,
instead of using perfect subchannel availability status, our
proposed method utilizes the estimated primary users’ activ-
ity on each subchannel. Primary users’ activity is estimated
using a simple method with very low signaling overhead.

The primary system communication activity on a subchan-
nel is a function of PUs’ arrival and departure rates and thus
has a random nature. To characterize this here we define
a new parameter, subchannel activity index (SAI), which

indicates the level of communication activity in a primary
subchannels. Therefore, SAI is a probabilistic metric which
is based on the limited number of sensing results. In this
paper, we then propose schemes to evaluate the aggregated
SAI (ASAI). The ASAI is then utilized in an optimal power
allocation design in the secondary system to manage the
tradeoff between the SE and EE.

A low SAI indicates an underutilized subchannel which
may accommodate SUs. This is however subject to careful
and controlled power allocation to avoid compromising pri-
mary system’s communication quality. In a secondary cell,
ASAI for a subchannel indicates the activity of the PUs
located in that particular cell, as well as the PUs accessing the
same subchannels in the adjacent cells. To estimate ASAI, we
then propose a simple, yet efficient, collaborative spectrum
monitoring scheme with very low signaling overhead. In the
proposed scheme, the required information is one bit per
subchannel feedback transmitted by adjacent SBSs.

In cases where the SBS allocates a higher transmission
power to the subchannels with a higher ASAI, the mini-
mum QoS requirements for the primary services might be
compromised along with significant degradation on EE. In
the secondary system however, a more conservative power
allocation to a subchannel with a lower ASAI may result
in a lower SE. To model this tradeoff, we adopt the notion
of utility function [15], [16]. To characterize SE (EE), a
utility function is defined for each subchannel which is an
increasing function of the achievable rate (achievable rate
normalized by the corresponding allocated power). Both
utility functions are also a decreasing function of the ASAI.

Optimal power allocation method is then formulated in
which the objective is to maximize the total SBS utility, in
terms of the SE, subject to total available transmit power at
the SBS and primary system collision probability constraints.
For the same system settings, we also formulate the optimal
power allocation with the objective of maximizing total SBS
utility, in terms of EE, subject to the similar constraints
described above. The formulated problems are the instances
of weighted sum-rate maximization which have been widely
studied in the related literature, see, e.g., [6], [17], [18].
Most of the previous works are based upon accurate channel
state information and/or spectrum sensing, thus need direct
inter-system and heavy intra-system signaling. Our proposed
method does not require inter-system signaling, and the sig-
naling overhead in the secondary system is very low as it
needs only one bit per subchannel.

The contributions of this paper are as follows:
• We propose and characterize the SAI as an indicator

of activities level of the PUs in their corresponding
subchannels. We then propose a simple yet efficient
collaborative spectrum monitoring among the base sta-
tions with very low signaling overhead to obtain the
aggregated SAI (ASAI).

• A utility function is then defined to incorporate the
ASAI into the corresponding spectral efficiency for
all subchannels. We then formulate the joint efficient
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transmit power and subchannel allocation schemes in
the SBS to maximize the total SBS utility function.

• We further applied ASAI to achieve the energy efficient
resource allocation technique. Similar to the previous
case, we define a utility function to characterize energy
efficiency. Energy efficient power allocation is then
obtained by maximizing the total system utility. The ob-
tained solutions can also be extended to other scenarios.

• We then study the system performance in terms of EE
and SE against reference system models. Simulation
results show that the proposed method closely follows
the ideal spectrum access with a slightly lower achiev-
able rate, whereas the required signaling overhead is
significantly reduced. The results further indicate that
using ASAI enables obtaining an optimal operating
point based on the tradeoff between EE and SE. The
optimal operating point can be further adjusted by relax-
ing/restricting the sensing parameters depending on the
system requirements. Such a EE and SE tradeoff man-
agement has never been studied before in the literature.
The obtained EE and SE relation based on ASAI in the
proposed method is practically more efficient than the
conventional EE and SE tradeoff which is, in most cases,
based on the transmit power.

The rest of this paper is organized as follows. Section II
presents the system model and defines the notion of ASAI.
Section III presents the problem formulation and maximizing
system utility. In Section IV, energy efficient power alloca-
tion is presented. Section V includes the simulation results
followed by conclusions in Section VI.

II. SYSTEM MODEL
A. CHANNEL MODEL
The considered system includes a cellular CRN, also referred
to as the secondary system, co-located with legacy primary
system. The primary network could be cellular network or
TV broadcaster, whereas the secondary network could possi-
bly be femtocell, tactical network or even a heterogeneous
network. Here, we consider a primary base station which
serves a number of PUs within the transmission range. In
such cases, the available subchannels vary over space and
time which makes it difficult to achieve reliable spectrum
allocation. However, the analysis and simulation results in
this paper are equally valid for different primary networks.

A schematic of the considered network is presented in
Fig. 1. AB Hz frequency band is licensed to the primary sys-
tem which serves PUs indexed by j ∈ {1, . . . , J}. The spec-
trum of the primary system is shared with secondary system
for downlink transmission. The CRN is a multicell network
with M secondary base stations (SBSs). In the central cell,
SBS serves SUs indexed by s ∈ {1, . . . , S}. The secondary
system utilizes orthogonal frequency division multiple access
(OFDMA), where the radio spectrum is divided into N non-
overlapping Bi = B/N Hz subchannels which are indexed
by i ∈ {1, . . . , N}. The considered network scenario and
proposed resource allocation method are equally applicable

FIGURE 1. A schematic of the considered cognitive cellular network.

for uplink transmission by considering appropriate access
scheme, e.g., single carrier FDMA (SC-FDMA), to improve
the power efficiency of user devices. Moreover, the user
terminals should be able to estimate uplink channel state
information.

The communication link between the secondary transmit-
ter to the secondary receivers and secondary transmitter to
the primary receivers, for subchannel i ∈ {1, . . . , N}, are
referred to as secondary channel, and interference channel,
which are denoted by gsi(ν), and hji(ν), respectively. Pa-
rameter ν denotes the joint fading state which is dropped
hereafter for brevity. The value of gsi is updated through the
measurement in each time frame by the CRN user. Making
hji available at the secondary system is a challenging task be-
cause there is often no direct signaling between primary and
secondary systems. However, similar to [19], we assume that
it is estimated through the aggregated interference received
at the SUs due to the primary transmission.

In this setting, the spectral efficiency for SU, s, accessing
subchannel i is:

rsi = log2

(
1 +

gsiPsi
hjiPpi +N0

)
bps/Hz, (1)

where, Psi is the allocated transmission power on subchannel
i at the SBS corresponding to secondary user s, therefore
gsiPsi is a random variable. Furthermore, hjiPpi is the
received interference at the secondary system due to subchan-
nel reclaimed by the primary users which is measured at the
secondary receiver andN0 is the white Gaussian noise power.
We also define rs = [rs1 . . . rsi . . . rsN ]T as the rate vector
for secondary user s, where (·)T indicates a vector transpose
operator. The optimal transmit power vector in the central
SBS, P∗i = [P ∗1i . . . P

∗
s,i . . . P

∗
Si]

T , is directly related to the
primary network communication activity on subchannel i as
well as the associated constraints for protecting PU’s QoS.
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Time is slotted into frames and SBSs are synchronized in
the frame level. All transmitters and receivers in the system
have single antenna unless otherwise stated. There is no
direct signaling between the primary and secondary systems.
The secondary service either adopts underlay or overlay
spectrum access technique based on each subchannel status.
In underlay access the secondary service can always access
to the subchannel subject to the interference constraint for
the primary system. In overlay access, the secondary service
senses the subchannel status and conducts transmission if the
corresponding frequency band is idle. While implementing
OFDMA in CRN, the inter-channel interference is negligible
due to high spectral distance and sharp bandpass filter in the
secondary system [5].

B. SPECTRUM SENSING
We consider an energy detector spectrum sensing technique
where sensing is performed in each sensing slot at the sec-
ondary terminals to determine whether the subchannel is idle
or busy. Therefore, when the subchannel status is estimated,
it is either a correct estimation or a sensing error. We fur-
ther assume that subchannel i’s status remains unchanged
during a sensing slot, Ti. The actual state of the subchannel
i ∈ {1 . . . N} is represented by hypothesis {H0, H1}, where
H0 (H1) indicates the idle (busy) state of the subchannel.
Probabilities of H0, and H1 are denoted by Pr(H0), and
Pr(H1), respectively.

The exact pattern of Pr(H0) and Pr(H1) can be obtained
by observing the current sensing results and the previous ac-
cess patterns, or by querying the available radio environment
map. However, they can be analytically obtained with the
help of an appropriate distribution function. It is generally
the case that the subchannels are randomly accessed by PUs
which approximately follow the uniform distribution over
unbiased subchannel space {1, . . . , N}. In such a case, both
probabilities are equally likely which results equi-probable
hypotheses.

Here, Pr(H0) and Pr(H1) are also the indicators of channel
holding time by primary system. For any arbitrary channel
i, when Pr(H1) is higher, the duration of channel holding
by PU is expected to be higher. Moreover, when a large
number of subchannels are considered, the channel holding
time becomes very small duration [20]. One way is to use
the known distribution function as in cellular communication
case, however, in cases of cognitive radio, it is estimated by
using a cost effective sensing techniques or by maintaining a
subchannel database.

In energy detection method, the SUs receive Tif0 base-
band complex samples during the sensing slot, Ti, where the
sampling rate is f0. Let Yk denote the received kth signal
sample from PU,

Yk =

{
Zk, : H0,

Xk + Zk, : H1,
(2)

where Xk is the received signal from PUs and Zk is the
additive white Gaussian noise (AWGN) with variance σ2

w =

E[|Zk|2]. The test statistic of the received signal is thus
obtained as

EY =
1

Tif0

Tif0∑
k=1

|Yk|2. (3)

For each subchannel i, the test statistic is then compared
with the threshold energy level, εi, to locally obtain the status
of subchannel i. In practice, εi is a system parameter which
mainly depends on the primary system requirements [18].

C. SUBCHANNEL ACTIVITY INDEX
For a subchannel i ∈ {1, . . . , N}, the outcomes of de-
tection are: idle (EY < εi|H0), busy (Ey ≥ εi|H1),
miss detection (EY < εi|H1), and false alarm (Ey ≥
εi|H0). In cases of any spectrum sensing methods un-
der consideration, the error terms can never be completely
avoided. In the considered energy detection method, the
sensing errors, i.e., miss detection and false alarm, should
be taken into consideration to model the practical cases
of resource allocation in CRN. Therefore, to achieve an
optimal SE and EE balance, SUs access the subchannel
i when Pr(idle)Pr(H0) + Pr(miss detection)Pr(H1) >
Pr(busy)Pr(H1) + Pr(false alarm)Pr(H0). Note that
the primary channel protection and spectrum utilization
are defined according to the available CRN standard,
i.e., IEEE 802.22 [21], as Pr(detection) ≥ 0.9, and
Pr(false alarm) ≤ 0.1, respectively. The above condition
thus reduced to the following probability ratio.

Ψi ,
Pr(Ey < εi|H0)Pr(H0) + Pr(Ey < εi|H1)Pr(H1)

Pr(Ey ≥ εi|H1)Pr(H1) + Pr(Ey ≥ εi|H0)Pr(H0)
> 1.

(4)

Definition 1. We define, SAI, i.e., δi, as a measure of the
primary system activity as following.

δi ,


1, if Pr(Ey<εi|H0)Pr(H0)+Pr(Ey<εi|H1)Pr(H1)

Pr(Ey≥εi|H1)Pr(H1)+Pr(Ey≥εi|H0)Pr(H0) < 1,

0, if Pr(Ey<εi|H0)Pr(H0)+Pr(Ey<εi|H1)Pr(H1)
Pr(Ey≥εi|H1)Pr(H1)+Pr(Ey≥εi|H0)Pr(H0) > 1,

R{0, 1} otherwise,
(5)

where, R{0, 1} returns a binary value with equal probability
of 0 and 1.

Here, all possible sensing errors, i.e., miss detection and
false alarm, have been considered in the parameter δi. In
cases δi , 0, the activity of primary system on subchannel i
is most likely minimum. In such cases, the SUs can access
subchannel i with a low risk of interference. Conversely,
when δi , 1, it is likely that the subchannel is in use
by the primary system, and thus SUs are not allowed to
access the subchannel without proper transmit power control
mechanism.

When the probability ratio, Ψi in (4) is equal to 1, although
it occurs with a very low probability, δi randomly selects
either 0 or 1, which is basically a decision deadlock situation.
If this decision does not fall towards the correct state of
the subchannel, the interference to the primary transmission
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system is likely to be unavoidable. This situation occurs if
and only if Ψi = 1.

In the following, we investigate the cases δi = 0 and
δi = 1, due to the fact that Ψi = 1 is a less likely
event in the considered subchannel sensing method. It is
straightforward to express Ψi in terms of miss detection and
false alarm for the outcomes of subchannel detection method
as Ψi =

(1−Pfa,i)Pr(H0)+Pmd,iPr(H1)
(1−Pmd,i)Pr(H1)+Pfa,iPr(H1) , where for subchannel

i ∈ {1, . . . , N}, Pmd,i and Pfa,i are the probabilities of miss
detection and false alarm, respectively. The probability of de-
tection, Pd,i, is defined as 1−Pmd,i. Note that Ψi ∈ [0,+∞)
because 1 + Pmd,i ≥ Pfa,i and 1 + Pfa,i ≥ Pmd,i.

Here, Q
((

εi
σ2
w
− γi − 1

)√
Tif0

2γi+1

)
is the probability of

detection,Pd,i, for the sensing duration, Ti, and sampling fre-
quency, f0, where Q(z) := (1/

√
2π)

∫ +∞
z

e−(τ2/2)dτ , and
εi, σ2

w, and γi are energy detection threshold, variance of the
additive white Gaussian noise at the spectrum sensors, and
the average received signal to noise ratio (SNR) of primary
system signal received at the spectrum sensors, respectively
[22]. Similarly, the probability of false alarm, Pfa,i, is ex-
pressed as Q

((
εi
σ2
w
− 1
)√

Tif0
2γi+1

)
. The sensing parameters

are assumed to be fixed during the sensing duration.

Theorem 1. An equiprobable subchannel i is available if

γi ≷ Θ1i + Θ2
2i ±Θ2i

√
Θ2

2i + 2Θ1i + 1, ∀i, (6)

where γi is the received SNR, Θ1i = εi
σ2
w
− 1, Θ2i =

Q−1
(1−P̄fa,i)√
Tif0

, P̄fa,i is the false alarm probability threshold,
and εi is the energy detection threshold.

Proof. See Appendix A. �

Remark 1. The spectrum sensing decision deadlock situa-
tion occurs when Ψi = 1, and thus Pmd,i = Pfa,i,∀i. For
a given energy detector, such cases however are unlikely to
occur. This can also be concluded from the complementary
receiver operating characteristic (CROC) curve, i.e., plot of
Pmd,i against Pfa,i.

When maximum tolerable false alarm probability, which is
a system defined parameter, is set to P̄fa, the corresponding
decision threshold εi

σ2
w

is obtained. However, in the proposed
method as described in Theorem 1, the parameter δi deter-
mines the availability of subchannels which considers all the
possible sensing errors. In such cases, the level of received
SNR at the distributed sensors would be able to precisely
calculate the subchannels activities. Therefore, using (6), we
obtain the corresponding received SNR, γ̄i, as a decision
variable depending on P̄fa. In Fig. 2, the threshold Pfa,i
versus the received SNR from primary transmitter is shown
which is based on δi to assists the subchannel decision
process.

The SNR is obtained at γi = γ̄i, where δi is randomly
chosen, thereby introducing the interference due to imperfect
decision. Here, γ̄i is in fact the SNR threshold based on which
the subchannel availability is detected. Furthermore, when

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0
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FIGURE 2. Probability of false alarm threshold vs. the received SNR to
estimate the idle (or busy) primary channels based on δi.

the condition γi > γ̄i (γi < γ̄i) is satisfied, the interference
to the primary system due to the imperfect decision is very
low. The plot in Fig. 2 is presented in which all other sensing
parameters including the sensing signaling overhead, frame
duration, etc. are kept constant.

In cases where a lower P̄fa,i is set, which ultimately
enhances the spectrum utilization, the subchannel is available
only a high received SNR regime. However when the con-
straint is relaxed, the condition γi > γ̄i is held even for lower
SNR. Therefore, more subchannels become available to be
accessed by the SUs. Note that in Fig. 2, Pmd,i = Pfa,i,
or γ = γ̄, is the region in CROC curve around which the
maximum interference occurs because of the uncertainty in
decision made on the availability of subchannel i. In the
considered system, having γi = γ̄i is however always less
likely than γi ≷ γ̄i. Therefore in the proposed method,
the interference due to the random subchannel decision is
negligible.

III. INTER-CELL COLLABORATIVE SPECTRUM
MONITORING

The spectrum sensing task is executed at SUs and the sensing
outcomes must be transmitted to SBS where they are pro-
cessed to cooperatively accumulate and estimate the status of
the subchannels. Corresponding to subchannel i in SBS m,
where m = 1, . . . ,M , spectrum sensing returns a decision
variable δm,i. If subchannel i is busy (idle), then δm,i = 1
(δm,i = 0). Sensing vector, δm = [δm,1, . . . , δm,N ]T ,
indicates the status of the subchannels in SBS m.

The cooperative detection technique of δm,i|{m=1...M, i∈{1...N}}
is then implemented among the SBSs to obtain the aggre-
gated SAI (ASAI). The subchannel sensing however is not
perfect, which results the subchannel status, e.g., idle or busy,
is likely subject to sensing errors.

For subchannel i in a SBS with M − 1 neighboring SBSs,
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Algorithm 1 Inter-Cell Collaborative Spectrum Monitoring
Scheme at SBS0

1: Neighbor SBSs, feedback δm = [δm1, . . . , δmN ]T , to
SBS0,

2: for each subchannel i, do
3: SBS0, obtains δ̂i, using (7)
4: if δ̂i = 1, then
5: the subchannel is not allocated in SBS0.
6: else if δ̂i = 0, then
7: overlay access is adopted by the SBS0 on

subchannel i,
8: obtain optimal transmit power, P∗a, and maximize

spectral efficiency,
9: go to step (12),

10: else if 0 < δ̂i < 1, then
11: SBS0 adopts underlay access on subchannel i and

allocates power based on scheme in Section III.D.
12: obtain optimal transmit power, P∗b, based on the

scheme in Section IV.
13: end if
14: end for

the ASAI is obtained as:

δ̂i =
1

M

M∑
m=1

wmδm,i, ∀i, (7)

where wm is the weight associated with δm,i provided by
SBS m = 1, . . . ,M . The value of wm primarily depends
on the priority given to the decision, e.g., depending on
the distance of the neighbor SBSs. It is assumed that SBSs
maintain perfect synchronization through a beacon signal
such that each BS executes correct SAI information. Here,
we simply consider unit weights, wm = 1,∀m. The weights
could be also assigned based on the level of interference from
the neighboring SBSs, or depending on the nature of traffic
in the neighbour base stations. The aggregated activity index
vector for an SBS is defined as:

δ̂ =
[
δ̂1, . . . , δ̂N

]T
, (8)

where according to (7), 0 ≤ δ̂i ≤ 1, ∀i.
To obtain ASAI, each SBS only needs to transmit 1-bit

information per subchannel to the neighboring SBSs. In our
proposed method, each SBS broadcasts its corresponding δi
at the beginning of each time frame which is received and
recognized by all its neighboring SBSs. Therefore, in a SBS
with M − 1 neighboring cells, obtaining ASAI for all N
subchannels only requires (M − 1)×N bits of feedback.

A. COLLABORATIVE SPECTRUM ACCESS
In a given SBS, the availability of subchannel i is evaluated
based on δ̂i. The SBS then adopts an appropriate access
technique for each subchannel based on its corresponding
ASAI.

In this section, we propose a power allocation scheme in
which incorporating δ̂i, the transmit power of the SBS is

obtained to maximize the achievable rate of the secondary
system. The constraints include the maximum SBS transmit
power, and the minimum QoS on the primary network. The
proposed spectrum access method at the SBS based on ASAI
is summarized in Algorithm 1.

There are three possible cases: i) δ̂i = 0, ii) δ̂i = 1, and iii)
0 < δ̂i < 1. For δ̂i = 0, there is no PU transmission detected
on subchannel i both within the SBS and in the neighboring
cells. Therefore, overlay subchannel access is adopted for
transmission over subchannel i. In cases where δ̂i = 1,
subchannel i is busy both in the SBS and its neighboring
cells, therefore secondary transmission on this subchannel
is not allowed. In cases where 0 < δ̂i < 1 which is most
likely to occur, underlay access technique is adopted by the
secondary system. The larger the δ̂i, the higher will be the
chance of imposing interference on subchannel i, thus the
transmit power at the SBS should be adjusted accordingly
to protect the subchannels used by primary system. In the
following, we present subchannel power allocation, where
0 < δ̂i < 1.

B. OPTIMAL TRANSMIT POWER ALLOCATION
Here, we propose an analytical framework for optimal sub-
channel power allocation based on δ̂i, i.e., 0 < δ̂i < 1. As it
is seen in (1), the achievable rate for user s on subchannel
i, rsi depends on signal to noise and interference ratio,
i.e., gsi/(Ipi + N0), where Ipi = hjiPpi is the aggregated
interference due to simultaneous transmissions by the PUs.
It is assumed that the primary transmitters follow a non-
adaptive and constant transmission power. On the other hand,
the higher the value of δ̂i, the higher is the activity of the
primary system over subchannel i. Therefore, a higher Psi is
required to keep rsi at the same level.

As the matter of fact, two subchannels i and k, having
similar path loss and channel gains hji and hjk, respectively,
provide the same achievable rate, rsi = rsk. Therefore,
δ̂i < δ̂k apparently results Ipi < Ipk. Furthermore, according
to (1), a higher transmit power is required to provide the same
rate, i.e., Psi < Psk. In other words, the “cost” of providing
the same rate to user s on subchannels i is lower than that of
subchannel k.

Here, our aim is to quantify the impact of δ̂i on the
system performance at the SBS when deciding for the access
method, and the transmit power on subchannel i, i.e., Psi.
Thus corresponding to SU s, transmitting on subchannel i,
we define utility function usi, measured in b/s/Hz:

usi ,
rsi

δ̂i
αsi, (9)

where αsi is a weight parameter which characterizes the
priority level for user s, which are specified in the medium
access control layer to achieve, e.g., a certain level of fairness
and/or traffic load control. Here, the utility function, usi, is
constructed as a decreasing function of ASAI to indicate the
fact that higher activities of PUs deteriorates the cognitive
radio system performance in terms of spectral efficiency.
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Therefore, the larger the value of usi, the lower is the cost of
transmission on subchannel i. Total secondary system utility,
Ua, is then defined as

Ua =

S∑
s=1

N∑
i=1

usi. (10)

If 0 < δ̂i < 1, the SBS adopts the underlay spectrum
access. Thus the interference is induced at the primary re-
ceivers. Transmission collision may then occur at the pri-
mary receiver if the inflicted interference by the secondary
transmission, Iji =

∑S
s=1 Psihji, ∀i, j, is getting higher

than a predefined threshold, βji, ∀i, j. To protect the QoS
in the primary system, a radio resource allocation is devised
so that the probability of collision in the primary system
due to the simultaneous transmission by SU is kept below a
threshold, ηji, which is a primary system parameter related to
the primary QoS [19]. The optimal radio resource allocation
is then formulated as:

A1 : max
P

Ua, (11a)

s.t.
S∑
s=1

N∑
i=1

Psi ≤ PT , (11b)

Pr

{
S∑
s=1

Psi hji > βji

}
≤ ηji, ∀j, i, (11c)

where, Psi is the allocated transmission power for SU s on
subchannel i, P is a S × N matrix, P = [P1| . . . |PS ], and
Ps = [Ps1, . . . , PsN ]T . Constraint in (11b) ensures that the
total transmit power in the SBS is always smaller than its
maximum transmit power, PT . Furthermore, (11c) keeps the
collision probability for the PUs below ηji. Hereafter, for
brevity we assume the same QoS requirements for all users
and over all subchannels, thus βji = β, and ηji = η.

Obtaining the solutions of A1 is challenged by the prob-
abilistic constraint in (11c). Instead, similar to [19], we
transform it to a convex approximation, assuming that the
channel distribution information (CDI) of the interference
channel, hji, is estimated at the SBS. Since there is often no
direct signaling between the primary and secondary systems,
estimating hji’s CDI based on the feedback from the PUs
might not be an option. Therefore, other techniques such as
the one in [19] might be adopted to estimate hji based on
e.g., the level of interference signal. The constraint in (11c)
is then reduced to

Pr

{
hji >

β∑S
s=1 Psi

}
= 1− Pr

{
hji ≤

β∑S
s=1 Psi

}
,

= 1− Fhji

[
β∑S

s=1 Psi

]
,

≤ η̄, ∀j, i, (12)

where, FX(x) is the cumulative distribution function (CDF)
of random variable X .

1) Rayleigh Distributed Interference Link
If hji follows a Rayleigh distribution with parameter r, then
(12) is further reduced to

exp

(
−β

2r2
∑S
s=1 Psi

)
≤ η, ∀i. (13)

For Rayleigh distributed hji, using (13), (11c) is then reduced
to

S∑
s=1

Psi ≤
β

2r2
(

ln 1
η

) , ∀i. (14)

Therefore, A1 is converted to the following optimization
problem:

A2 : max
P

S∑
s=1

N∑
i=1

rsi

δ̂i
αsi, (15a)

s.t.
S∑
s=1

N∑
i=1

Psi ≤ PT , (15b)

S∑
s=1

Psi ≤
β

2r2
(

ln 1
η

) , ∀i. (15c)

Hereafter, for brevity, we assume αsi = 1 ∀i, s.

2) Suboptimal Power Allocation in SBS
We note that P ∈ P is the feasible power allocation set inA2

which is defined as P = P1×P2× . . .×PN , where× is the
Cartesian product. Since we have considered a multicell and
multicarrier network, resource allocation jointly depends on
PU’s activity profile in neighbour base stations, and the QoS
requirements of the SUs. Therefore, P is directly dependent
on the δi from its neighbor base station, where δi ∈ {0, 1}.
Consequently P is a non-convex solution set, thereforeA2 is
a non-convex optimization problem.

Here, we adopt the dual decomposition approach [23], to
obtain a suboptimal solution in optimization problem A2.
There is a duality gap between the obtained solutions using
dual decomposition method, and the actual optimal solutions.
However, when the number of subchannels is sufficiently
large, the duality gap becomes very small. Note that the
obtained Ua using dual decomposition is in fact a lower
bound on the maximum achieved total secondary system
utility.

Lagrange function, L, corresponding to A2 is:

L(P, λ,µ) =

N∑
i=1

1

δ̂ i

∑
s∈S

log2

(
1 +

gsiPsi
Ipi +N0

)

+λ

(
S∑
s=1

N∑
i=1

Psi ≤ PT

)
+

N∑
i=1

µi

 S∑
s=1

Psi ≤
β

2r2
(

ln 1
η

)
 ,

(16)

where, λ ≥ 0 is the Lagrangian multiplier associated with
the constraint (15b), and µ ≥ 0 is the Lagrangian vector
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associated with the constraints in (15c). The dual function
is accordingly defined as:

D(λ,µ) = max
P
La(P, λ,µ). (17)

Therefore,

D(λ,µ) = max
P

N∑
i=1

1

δ̂i

∑
s∈S

log2

(
1 +

gsiPsi
Ipi +N0

)

− λ
N∑
i=1

S∑
s=1

Psi −
N∑
i=1

µi

S∑
s=1

Psi, (18)

and thus the corresponding dual optimization problem is

min D(λ,µ),

s.t. λ ≥ 0, µ ≥ 0. (19)

The optimal transmission power obtained from (19) maxi-
mizes the total system utility, however it needs to adjust λ,µ,
which are in fact the prices associated with the violation of
constraints in A2.

Here, Lagrangian multipliers (λ,µ) are iteratively esti-
mated using the sub-gradient method [24], where the suitable
direction of (λ,µ) is obtained. This reduces the computa-
tional complexity of finding the solution of the optimization
problem. The value of λ and µ are calculated through the
following iterations:

λ(n+ 1) =

(
λi(n) + ∆s(n)

(
PT −

S∑
s=1

N∑
i=1

Psi

))+

,

(20)

µi(n+1) =

µi(n) + ∆s(n)

 β

2r2
(

ln 1
η

) − S∑
s=1

Psi

+

,

(21)
where, (a)+ = max{0, a} and ∆s(n) is the step size at
the nth iteration. The step size is initialized as ∆s(n) ≥ 0,
where

∑∞
n=1 ∆2

s(n) < ∞, and
∑∞
n=1 ∆s(n) → ∞. Here,

we dynamically update the step size, ∆s(n), towards the
convergence. This will reduces the number of iterations to
find the optimal solution.

The optimal power allocation for each subchannel which
maximizes the total utility in the SBS is a classic water-filling
problem, see, e.g., [23], thus,

P ∗si =

(
1/ln(2)

δ̂i(λ+
∑
i µi)

− Ipi +N0

gsi

)+

. (22)

As it is seen, (22) returns P ∗si = 0 for subchannel i if
Ipi+N0

gsi
> 1/ln2

δ̂i(λ+
∑

i µi)
,∀s. Note that P ∗si is independent from

η̄ and β. Therefore, the constraint in (15c) needs to be re-
evaluated as a further requirement of suboptimal transmit
power.

In OFDMA based cognitive radio systems only one SU,
s∗, accesses subchannel i , therefore the maximum transmis-
sion power for the case where there is a free subchannel is

calculated as the maximum value of the constraint in (15c):

P ∗s∗i =
β

2r2
(

ln 1
η

) . (23)

Therefore, the optimum transmission power is

P optsi = min {max(0, P ∗si),max(P ∗s∗i, 0)} ,∀s, i, (24)

which maintains the collision probability requirement for all
the PUs as well as the transmission power constraint for
the SBSs. Eq. (24) is in fact the minimum value of (22)
and (23), which is considered as the optimal transmission
power because this does not violate other constraints and
also fulfills the QoS requirements of the primary system. To
speed up the convergence rate and reduce the computational
complexity, one may consider ε-suboptimality, where the
level of computational complexity is inversely related to ε2.

IV. ENERGY EFFICIENT POWER ALLOCATION
In this section, the efficient transmission power allocation
method is investigated from the energy efficiency perspec-
tive. As mentioned in the previous section, the ASAI provides
an extra degree of freedom in system design to achieve the
optimal spectral efficiency. Here, we study the implication of
δ̂i on the EE of the CRN as a new design criteria. We extend
the objective function and accordingly define it as the achiev-
able utility per unit power. Similar to the case of spectral
efficiency, we consider the total interference constraints to
guarantee the minimum QoS to the PUs. Therefore, we define
a utility function Ub to characterize the energy efficiency of
the system:

Ub =

N∑
i=1

1
δ̂i

∑
s∈S

log2

(
1 + gsiPsi

Ipi+N0

)
k1 + k2

N∑
i=1

S∑
s=1

Psi

αsi, (25)

where, k1 and k2 are the circuit operation power and power
amplifier consumptions, respectively. For brevity hereafter
we assume αsi = 1, ∀i, s.

The maximum achievable EE is then obtained through the
following optimization problem.

A3 : ξ∗ = max
P

N∑
i=1

1
δ̂i

∑
s∈S

log2

(
1 + gsiPsi

Ipi+N0

)
k1 + k2

N∑
i=1

S∑
s=1

Psi

, (26a)

s.t.
S∑
s=1

Psi hji < βji, (26b)

Psi ≥ 0 ∀s, i, (26c)
Psi ≤ Pmax ∀s, i. (26d)

The optimization problem inA3 needs to be approximated
to be transformed into a convex optimization problem. We
show that the fractional function in (26a) requires further
analysis to show that it is quasi-concave. Subject to the KKT
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conditions, we then conclude that P ∗s,i is an optimal solution,
see, e.g., [11] and references therein.

We use the results in [25] in which it is shown that
utilizing Charnes-Cooper Transformation (CCT), a quasi-
concave fractional optimization problem can be further re-
duced to a concave optimization problem. To further simplify
A3, here we define auxiliary variables, y, and t, where
y = tP , i.e., P = y

t , and t = 1

k1+k2
N∑

i=1

S∑
s=1

Psi

, and

y , {ysi}{s=1...S, i=1...N}. As it is seen, ysi is proportional
to the allocated power to SU, s on subchannel i. Further
analytical manipulation, A3 is then reduced as follows.

A4 : max
y,t>0

t

N∑
i=1

1

δ̂i

∑
s∈S

log2

(
1 +

y

t

gsi
Ipi +N0

)
, (27a)

s.t.
S∑
s=1

ysi gj − β t ≤ 0, (27b)

t

(
k1 + k2

N∑
i=1

S∑
s=1

ysi

)
= 1, (27c)

ysi ≥ 0 ∀s, i. (27d)

Here, we note that t appears in numerator of the objective
function as well as in the denominator of the second term of
the objective function. Therefore, A4 can be further reduced
as follows.

A5 : (28a)

max
y,t>0

N∑
i=1

t
1

δ̂i

∑
s∈S

log2

(
t+ y

gsi
Ipi +N0

)
−

S∑
s=1

1

δ̂i
tlog2(t),

(28b)
s.t. (27b), (27c), (27d). (28c)

The Lagrangian function corresponding to A5 is

L(y, t, λ, µ, φ, υ) =

N∑
i=1

t
1

δ̂i

∑
s∈S

log2

(
t+ y

gsi
Ipi +N0

)

−
S∑
s=1

1

δ̂i
t · log2(t)−

N∑
i=1

λi

(
S∑
s=1

ysi gj − β t

)

− µ

(
t · k1 + k2

N∑
i=1

S∑
s=1

ysi − 1

)
+

S∑
s=1

φsys + υ · t,

(29)

where, λ, µ, φ and υ are Lagrangian coefficients associated
with the corresponding constraints in A5. In addition, ξ can
also be defined as EE and we find optimal transmission
power profile which maximizes ξ. Following the same line of
arguments as in the Section III, by taking the complimentary
slackness of KKT condition and noting that 0 ≤ P ≤ Pmax,
where Pmax is the maximum limit of transmit power, we then
find the optimal transmission power, P ∗ = y∗

t∗ as:

Algorithm 2 Iterative power allocation algorithm and EE
optimization
Input: error tolerance: ε > 0, maximum iterations: Imax,
iteration index: n, λ(0) =λ(0), µ(0) =µ(0), initial EE: ξ(0) =
ξ(0)

Output: ε-optimal power profile: P∗, optimal EE: ξ∗

1: while (n ≤ Imax AND XN (P∗, δ̂i)− ξ∗XD(P∗, δ̂i) ≥
0) do

2: obtain P(n) from (30) for a given (or obtained) ξ(n)

3: obtain λ(n), and µ(n) using subgradient method
4: set n = n+ 1, and ξ(n) = XN (P∗,δ̂i)

XD(P∗,δ̂i)
5: end while
6: return the ε-optimal power allocation profile P∗ =

P(n), and ξ∗ = ξ(n).

P ∗si = min


[ 1

ln(2)

δ̂i (
∑
i λigj + µ)

− Ipi +N0

gsi

]+

, Pmax

 .

(30)
A new optimization problem can also be obtained by

adding a new constraint to the total transmission power in
A5. The closed form solution of the optimal transmission
power can be obtained similar to (30). Therefore, Pmax has
been considered as the maximum of P ∗si. For detail analysis
of such scenario, refer to, e.g., [26] and references therein.

For further observation, we write the fractional utility
function, Ub, in (25) as ξ = XN (P,δ̂i)

XD(P,δ̂i)
. Optimal value of

ξ and transmit power are then obtained by utilizing the
Dinkenlbach’s Theorem [27] as follows.

Theorem 2. The optimal EE, ξ∗, is achieved if

max
P
{XN (P, δ̂i)− ξ∗XD(P, δ̂i)} =

XN (P∗, δ̂i)− ξ∗XD(P∗, δ̂i) = 0

is satisfied for XN (P, δ̂i) ≥ 0, and XD(P, δ̂i) > 0.

Based on Theorem 2, we then develop an iterative al-
gorithm to obtain the optimal power allocation for each
subchannel, P∗, based on (30) which is also EE optimal.
According to Theorem 2, the transmit power is optimal
if in Algorithm 2, XN (P∗, δ̂i) − ξ∗XD(P∗, δ̂i) is equal
to zero after n iterations. To reduce the number of iter-
ations, we consider ε-optimal power allocation, therefore,
XN (P∗, δ̂i) − ξ∗XD(P∗, δ̂i) < ε, where ε > 0 is the error
tolerance. The convergence of Algorithm 2 depends on the
associated constraints, channel state information, and error
tolerance in the secondary system.

V. SIMULATION RESULTS
A. SIMULATION SETTINGS
In this section, we perform the simulation on an OFDMA
based cellular CRN as shown in Fig. 1. First, we consider
one base station, e.g., SBS0, which implements the proposed
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Algorithm 1 presented in Section III. Both primary and sec-
ondary users are randomly dispersed within the transmission
range of SBS0. In each time frame, ASAI, i.e., 0 < δ̂i ≤ 1,
where i ∈ {1, . . . , N}, is estimated. As mentioned in the
previous sections, ASAI in all subchannels are independently
estimated through the collaborative energy detection method.
The path-loss exponent is assumed to be 2.7 and shadowing
follows log-normal distribution, normalized to have mean
one and standard deviation of 7.5 dB. The simulation pa-
rameters are shown in Table 1, unless otherwise stated. Note
that, the decision variable which is the received SNR for
spectrum sensor as shown in (6) has been obtained under
equiprobable hypothesis channel for mathematical tractabil-
ity, see Appendix A and [28]. It is therefore assumed that the
subchannels are equiprobable and PH0 = 0.5.

We investigate the impact of system parameters on the
performance of the proposed method. We then compare
the system performance of the proposed method with two
benchmark systems. Various schemes have been proposed in
literature to measure the performance of channel and power
allocation technique, e.g., [5], [29], [30]. To the best of our
knowledge, there are however no directly related works in
multicell cognitive environment in which the collaborative
spectrum sensing results are utilized in decision making pro-
cess for resource allocation. Based on the available literature,
several benchmark models have been developed for compari-
son. The concepts of equal power allocation, perfect channel
utilization, and bursty primary traffic are designed from the
previous works for comparison purpose in this paper. They
are considered to be upper and lower bounds for the perfor-
mance measurement. The primary purpose of the proposed
performance comparison is to measure how close it is with
the upper-bound result and the performance gain compared
to the lower-bound. In cases where the performance of the
proposed method is closer to that of the ideal scenario, the
more efficient will be the radio resource allocation technique.

The first one is referred to as Equal Power Allocation
(EPA). Here, EPA is the scenario under which stand-alone
SBS0 with no signaling among the adjacent SBSs is consid-
ered. As a result, base station does not have any knowledge
of ASAI which ultimately forces to allocate equal power in
all the subchannels. Moreover, Perfect Channel Utilization
(PCU) is considered as a second reference model for com-
parison. This ideal scenario is the upper-bound benchmark,

TABLE 1. Simulation Parameters

Number of subchannels (N ) 32
subchannel Bandwidth (Bi) 125 KHz
Channel Model Rayleigh with r = 1
Number of The Secondary Users (S) 6

Interference Threshold (β) 0.15
Collision Probability Threshold (η) 0.1− 0.6
Maximum SBS Transmit Power (PT ) 10-30 dBm
Probability of Idle subchannel (PH0) 0.5
Thermal Noise Density −174 dBm/Hz
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FIGURE 3. Total achievable spectral efficiency of the SBS vs. collision
probability threshold, for PT = 10, 30 dBm for the proposed method and the
PCU for δ̂ = 0.6.

which is generally not available in practice. Here, PCU is a
scenario in which an ideal spectrum sharing system is con-
sidered, where both accurate spectrum sensing information
and perfect interference channel state are available on the
secondary system. PCU utilizes overlay spectrum sharing for
idle subchannels, and underlay spectrum sharing method for
underutilized subchannels.

For underlay method, the secondary system SE is max-
imized for a proposed power allocation method subject to
aggregated interference constraint and maximum SBS trans-
mit power. Moreover, EPA can be considered as a worst
case scenario due to the lack of knowledge about primary
user activity and interference channel status, whereas PCU
is considered as the best case scenario due to the availability
of interference channel and user activity information. The in-
vestigated performance metric is the total achievable spectral
efficiency defined as

∑S
s=1

∑N
i=1 rsi which is the sum-rate

normalized over the system bandwidth.

B. IMPACT OF COLLISION PROBABILITY CONSTRAINT
The achievable SE at the SBS versus η is plotted in Fig. 3 for
the proposed power allocation scheme as well as the system
settings for PCU. As expected, allocating a higher maximum
transmission power results in a higher SE. We further ob-
serve that increasing PT from 10 to 30 dBm results in an
improvement of 0.5 bps/Hz on SE mostly in all considered
interference constraint from 0.01 to 0.12. Corresponding to
a larger PT , a relatively greater throughput improvement
is observed for larger values of η. Since a primary system
with a larger η demonstrates a higher tolerance against the
secondary interference, the SBS is able to allocate a higher
transmission power and achieves a higher SE.

Fig. 3 further indicates that the SE performance of the
proposed method closely follows the scenario of PCU. Note
that comparing to PCU, the proposed method requires a
significantly lower signaling overhead. In other words, the
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FIGURE 4. Total achievable spectral efficiency of the SBS vs. the number of
SUs, S, for PT = 10, 30 dBm, δ̂ = 0.001, 0.6, and η = 0.05.

lower level of required signaling in the proposed method is
associated with a reasonable cost on throughput.

Here, the achievable spectral efficiency of the proposed
method for two distinct primary network load conditions
are compared. The first scenario is the case in which the
primary service transmitter has very limited amount of data
to transmit. This situation is modeled by setting very low duty
cycle which apparently simulates the low traffic intensity
at primary transmitter. This will result a very low ASAI
which is obtained, in average, at δ̂ = 0.001. The next is a
case where moderately loaded primary service is considered,
where subchannel activity index is approximately achieved
to be δ̂ = 0.6. The case when δ̂ = 0.001 is obtained,
the power allocation in Section III acts similar to an over-
lay method of spectrum access. Therefore, the comparison
presented here indicates how efficient is the proposed power
allocation scheme in exploiting the load variations in the
primary network.

The total achievable spectral efficiency in the secondary
system is plotted in Fig. 4 when the number of SUs (S)
varies in the range of 4 to 10, and total transmit power (PT )
varies from 10 to 30 dBm. Also the network scenario is
maintained such that ASAI is approximately estimated to be
δ̂ = 0.001, 0.6, 0.999, and η = 0.05. As it is observed
in Fig. 4, by increasing ASAI (δ̂i) in the primary network,
the achievable SE at the secondary system is decreased.
Surprisingly however, the achievable SE of the proposed
method is very close to that of the overlay access for a low to
moderate secondary network load. It is also observed in Fig. 4
that for PT = 10, 30 dBm, the spectral efficiency does not
increase in the same rate. This is due to the imposed collision
probability constraint in the optimization problem.

C. COMPARISON WITH EPA AND PCU
The SE of the proposed system along with its comparison
against two benchmark power allocation settings, i.e., EPA
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FIGURE 5. Total achievable spectral efficiency of the secondary system vs.
the total number of the secondary users, for different scenarios and PT values.

and PCU, are presented in Fig. 5. The variations in traffic
demand in the secondary system represented by the number
of SUs, S. As expected, PCU achieves the highest system
utility, whereas EPA has the lowest. The proposed resource
allocation scheme however achieves a significantly higher SE
than that of the EPA. This is due to the fact that the primary
system activity provided by incorporating ASAI is exploited
in the subchannel power allocation. It is further observed that
the proposed method closely follows the ideal subchannel
access, i.e., PCA with a slightly lower SE but significantly
lower signaling overhead among the SBSs.

D. IMPACT OF PRIMARY NETWORK TRAFFIC ON
ENERGY EFFICIENCY
We now compare the performance of the proposed method
in terms of EE against the case when the ASAI is not
estimated. In cases where the impact of interference from
primary system increases, the achievable energy efficiency
deteriorates due to the higher transmit power requirement
at the secondary system to suppress the interference. The
lowest EE is achieved when the primary network traffic is
of bursty nature in which the variation of δ̂ becomes high.
Therefore, even in the lower interference regime, the EE is
not significantly higher. For instance, EE is achieved to be
four times higher (≈ 20 b/Hz/Joule) when δ̂ = 0.7 than
the case of bursty primary network traffic (≈ 5 b/Hz/Joule).
Therefore, it can be concluded that the δ̂ estimation enables
the improved resource allocation to achieve higher EE as
shown in Fig. 6.

Moreover, in cases with perfect primary user activity
estimation, by increasing the primary users activity there
are more opportunities available to access the subchannels
such that the system energy is significantly utilized for data
transmission to achieve improved EE. In cases where the
interference from the primary system is higher, energy effi-
ciency cannot be significantly improved. For instance at the
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FIGURE 6. Energy efficiency vs. normalized interference from primary system
for various primary network traffic.

normalized interference of 0.6, the EE is improved from 4 to
6 b/Hz/Joule, for cases of bursty primary traffic, and δ̂i = 0.3,
respectively.

E. ENERGY EFFICIENCY AND TOTAL SPECTRAL
EFFICIENCY
When the PUs are highly active by accessing the subchannels
more frequently, i.e., higher δ̂i, the achievable rate at SBS is
decreased as shown in Fig. 7. Interestingly, however, it is ob-
served that when smaller number of the PUs accessing their
subchannel is reduced, e.g., δ̂i < 0.5, increasing PT does not
significantly improve better system throughput. As it is seen,
the increase in PT from 10 dBm to 30 dBm, the maximum SE
achievement is below 1 bps/Hz. This is due to the fact that, for
lower δ̂, where a large number of subchannels are available
for secondary system, per subchannel transmit power at SBS
remains almost constant even where higher PT is allocated
due to the imposed interference constraint.

Here, we further analyze the optimal EE and SE as a
unified model for the real-time measurement of the sub-
channel activity index, δ̂, since both EE and SE depend on
optimal transmit power and QoS requirements imposed by
the primary system. In addition, the ASAI is used in the
proposed analytical models to design the optimal transmit
power allocation.

The optimal SE and EE as a function of δ̂i for the proposed
method, for a range of total transmit power, is shown in
Fig. 7. The proposed methods improve the performance in
various range of ASAI, i.e., δ̂i. It is shown in Fig. 7, for
instance, that when subchannels are busy, as indicated by
δ̂i in the range of [0.65, 0.9], the transmission power is
controlled in such a way that the EE is improved whereas
the SE does not degrade significantly when maximum PT is
30 dBm. Also in the lower ASAI, as indicated by δ̂i in the
range of [0.1, 0.3], EE remains in the same level of around
15 b/Hz/Joule without significant decrease in SE. Moreover,
when the primary channels are moderately occupied, i.e., δ̂i
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FIGURE 7. Achievable spectral and energy efficiency vs. primary user activity
index for various total power constraints.

in the range of [0.4, 0.6], the secondary system can achieve
an acceptable levels of both EE and SE simultaneously. As it
is seen, in this case, the maximum PT does not play a vital
role on the system performance.

In a conventional EE and SE optimization, the improve-
ment in EE as well as SE is obtained either by consider-
ing a linear combination of EE and SE objectives [31], or
defining an objective function based on the transmit power
as discussed in [13]. In such cases, when the transmit power
is increased, improved SE is obtained with the sacrifice on
the EE and vice-versa. The major concern in such models
of CRN design is that there is a limited range of transmit
power for SUs due to the interference constraints imposed
by primary system. For instance, the higher the transmit
power, larger will be the interference to the primary system
which puts the transmit power restrictions on the secondary
transmitters. In our proposed model however, relaxing (or
tightening) the constraint in (6) by fine-tuning radio sensing
parameters, larger (or smaller) number of subchannels are
available for SUs such that δ̂i slightly adjusts to the higher
(or lower) range. Therefore, depending on the requirements,
i.e., either better EE or better SE is anticipated, the mobile
network operators can optimize the system parameters to
achieve the optimized EE or SE, as shown in Fig. 7, without
compromising the QoS on primary system.

Therefore, the proposed method provides an entirely new
perspective on cognitive communication and network design,
where the operating point in terms of ASAI, as shown in x-
axis in the Fig. 7, can be dynamically obtained by adjusting
the spectrum sensing related parameters, e.g., sensing dura-
tion, sensing threshold, and detection probability threshold.

F. APPLICATION FRAMEWORK
The cyber-physical system (CPS) connects our physical
world to the information world by integrating the technolo-
gies like IoT, M2M, cellular network, fog computing etc.
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to our daily life. The proposed method of radio resource
allocation, nevertheless, has applications within the CPS
framework, for instance, manufacturing, e-health, military
systems, traffic control, physical security and many more.
For such applications, we need significantly larger number
of real-time sensing data which are processed to efficiently
interact with the real-world problems. On the other hand,
the devices must be highly energy efficient to operate for
longer duration without changing the battery sources. The
distributed sensing and resource allocation techniques pro-
posed in this paper aims to significantly contribute to enable
such CPS technologies by providing a degree of freedom to
control EE and SE through spectrum sensing parameters.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed and characterized SAI to incor-
porate the communication activity associated with the PUs
in efficient resource allocation. We then proposed a simple
yet efficient collaborative spectrum monitoring scheme with
very low signaling overhead to evaluate the activities level
of users in the subchannels, i.e., ASAI, as an indicator of
network wide activities level of PUs on the subchannels.
We then obtained the efficient power allocation profile at
the SBS with the objective of maximizing total SBS utility,
defined based on ASAI. We also investigated the impact
of ASAI into the EE by defining the utility function and
obtained the efficient transmit power profile. A practically
viable design between SE and EE was successfully achieved
considering the primary communication activity on the al-
located subchannels. Simulation results confirmed that the
proposed scheme exploited the variations in the primary
system communication activity to improve the secondary
system achievable rate. We also investigated the impact of
ASAI into the EE and concluded that the proposed method
is a better design approach to obtain the optimal EE and SE
concurrently by adjusting the spectrum sensing parameters.
As a future work, we investigate the impact of proposed radio
resource allocation in machine type communication (MTC)
network and compare its performance against recent tech-
nologies, e.g., LoRa, SigFox and Narrowband-IoT standard.

VII. APPENDICES
APPENDIX A: PROOF OF THEOREM 1
Proof. Based on the spectrum sensing result, the subchannel
is estimated to be busy if the following condition is satisfied.

(1− Pfa,i)Pr(H0) + Pmd,iPr(H1)

(1− Pmd,i)Pr(H1) + Pfa,iPr(H1)
< 1. (31)

The false alarm probability is bounded by its maximum
threshold at P̄fa,i which is a system defined parameter, for
instance IEEE WRAN 802.22 [21], where P̄fa,i ≤ 10%.
Therefore,

(1− P̄fa,i)Pr(H0) + Q
((

εi
σ2
w
− γi − 1

)√
Tif0

2γi+1

)
Pr(H1)

(1− Q
((

εi
σ2
w
− γi − 1

)√
Tif0

2γi+1

)
)Pr(H1) + P̄fa,iPr(H1)

< 1.

(32)

Here, we assume equiprobable hypothesis over subchan-
nels as in [28] for mathematical tractability in which the
probability of a subchannel being idle is equal to that of
being busy. However, the result is equally valid for all other
scenarios with slide modification on the result. The condition
to avoid the subchannel due to its unavailability is then
obtained as

(1− P̄fa,i) + Q
((

εi
σ2
w
− γi − 1

)√
Tif0

2γi+1

)
(1− Q

((
εi
σ2
w
− γi − 1

)√
Tif0

2γi+1

)
) + P̄fa,i

< 1, (33)

this can be reduced to

1− P̄fa,i − Q

((
εi
σ2
w

− γi − 1

)√
Tif0

2γi + 1

)
< 1. (34)

Straightforward mathematical manipulations results in

Q−1(1− P̄fa,i)√
Tif0

>

(
εi
σ2
w

− 1

)
1√

2γi + 1
− γi√

2γi + 1
, ∀i.
(35)

Setting Θ1i = εi
σ2
w
− 1, Θ2i =

Q−1
(1−P̄fa,i)√
Tif0

, (35) is further
reduced to

γi > Θ1i + Θ2
2i ±Θ2i

√
Θ2

2i + 2Θ1i + 1, ∀i. (36)

Similarly, the subchannel is estimated to be busy where the
following condition is satisfied:

(1− Pfa,i)Pr(H0) + Pmd,iPr(H1)

(1− Pmd,i)Pr(H1) + Pfa,iPr(H1)
> 1. (37)

Following the same lines of arguments as above, we then
obtain spectrum sensing decision threshold as

γi < Θ1i + Θ2
2i ±Θ2i

√
Θ2

2i + 2Θ1i + 1, ∀i. (38)

The detection criteria for spectrum availability is consid-
ered for the best possible SNR at the energy detector is

γi ≷ max{Θ1i + Θ2
2i ±Θ2i

√
Θ2

2i + 2Θ1i + 1}, ∀i, (39)

which completes the proof. �
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