
Detecting Periods of Exuberance: A Look at the Role of Aggregation with an Application to 
House Prices 

 

 

Abstract 

The recently developed SADF and GSADF unit root tests of Phillips and Yu (2011) and Phillips et 
al. (2015a,b) have become popular in the literature for detecting exuberance in asset prices. In 
this paper, we examine through simulation experiments the effect of cross-sectional aggregation 
on the power properties of these tests. The simulation design considered is based on simulated 
data and actual housing data for both U.S. metropolitan areas and international housing markets 
and thus allows us to draw conclusions for different levels of aggregation. Our findings suggest 
that aggregation lowers the power of both the SADF and GSADF tests. The effect, however, is 
much larger for the SADF test. We also provide evidence that tests based on panel data 
techniques, namely the panel GSADF test recently proposed by Pavlidis et al. (2016), can perform 
substantially better than univariate tests applied to aggregated series. Furthermore, we also 
illustrate the date-stamping procedure under the univariate/panel GSADF procedure uncovering 
novel evidence on the role of interest rates and policy uncertainty as factors explaining episodes 
of widespread mildly explosive dynamics in housing markets. 

Keywords: Aggregation; Mildly explosive time series; Right-tailed unit-root tests; Sup ADF 
(SADF) test; Generalized sup ADF (GSADF) test; House prices. 
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1. Introduction 

Mildly explosive behavior is modeled by an autoregressive process with a root that exceeds 

unity but remains within the vicinity of one and approaches unity as the sample size tends to 

infinity, as in Phillips and Magdalinos (2007a, 2007b) and Phillips and Magdalinos (2012). The 

literature refers to instances of mildly explosive behavior as periods of exuberance, a 

terminology which we henceforth also adopt in the paper. 

Mildly explosive behavior represents a small departure from martingale behavior, but one that 

is consistent with the submartingale property commonly used to describe rational bubbles in 

the asset pricing literature. Diba and Grossman (1988a; 1988b) were among the first to argue 

within the standard asset pricing equation framework that, given a constant discount factor, 

the detection of such a departure in the data could be seen as evidence of non-fundamental 

(bubble-like) behavior. 

Diba and Grossman (1988a; 1988b) were also among the seminal papers to propose the use of 

unit root and cointegration tests for detecting mildly explosive behavior. However, it is a well-

known fact that standard unit root tests have extremely low power in detecting episodes of 

explosive behavior in asset prices that end with a large drop. As has been shown by a number 

of studies, this type of nonlinear dynamics, which are consistent with the presence of 

periodically-collapsing bubbles in asset markets, can frequently lead to finding spurious 

stationarity even though the underlying asset price process is inherently explosive (Evans, 1991; 

Gurkaynak, 2008). 

To alleviate this problem, researchers have recently proposed recursive (right-tailed) unit root 

tests which, by utilizing subsamples of data, perform remarkably better in identifying periods of 

explosiveness (as shown in Homm and Breitung, 2012).1 These recursive unit root tests—

namely the supremum ADF (SADF) and the Generalized SADF (GSADF)–have been widely 

employed over the last decade for testing asset price dynamics (Phillips and Yu, 2011; Phillips et 

                                                           
1 Conventional testing methods for detecting evidence consistent with the presence of rational bubbles in the time 
series include unit root and cointegration tests (Diba and Grossman, 1988a; 1988b), variance bound tests (LeRoy 
and Porter, 1981; Shiller, 1981), specification tests (West, 1987), and Chow and CUSUM-type tests (Homm and 
Breitung, 2012). 
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al., 2015a,b).2 A popular application of these recursive unit root tests is in real estate markets. 

Following the housing boom of the early and mid-2000s and its subsequent market collapse 

leading to the 2008 global recession, there has been a plethora of studies that test for explosive 

dynamics in real estate prices (e.g., Phillips and Yu, 2011; Pavlidis et al. 2016; Engsted et al. 

2016; Yusupova et al. 2016; Shi, 2017; Hu and Oxley, 2018). 

A common feature of all the above studies is that they employ house price indices which are 

constructed by aggregating data across locations. A question of direct practical relevance to 

applied researchers is: what is the effect of the level of cross-sectional aggregation on the 

performance of recursive unit root tests? This question is particularly relevant for housing since 

there is substantial heterogeneity in the dynamics of housing prices across local/regional 

markets (e.g., house prices in San Francisco behave very differently than prices in Denver or 

Washington). Even within the same market, there is great variation across locations so that 

aggregate and disaggregate series may behave very differently (see, e.g., Gyourko et al. 2006). 

Although potentially important, the effect of cross-sectional aggregation on the power of unit 

root tests remains unexplored and often overlooked. The existing econometric literature has 

mainly focused on the role of temporal aggregation and sample frequency on the performance 

of standard unit root tests. For instance, Shiller and Perron (1985), Perron (1991), and Campbell 

and Perron (1991) find through Monte Carlo simulations that the power of unit root tests is 

mainly affected by the time span, and much less by sampling frequency. In line with this finding, 

Pierse and Snell (1995) show theoretically that the asymptotic local power of a unit root test is 

not dependent on sample frequency. However, Boswijk and Klaassen (2012) demonstrate that 

this result does not hold for time series that exhibit fat tails and volatility clustering. With 

regard to temporal aggregation, Choi (1992) illustrates that in finite samples aggregating 

subinterval data can also result in substantial power losses. 

                                                           
2 Recent studies suggest that, during the last financial crisis, macro and financial time series have been described 
by significant nonlinearities (Tsagkanos and Siriopoulos, 2015, and Evgenidis et al. 2017). The tests considered in 
this paper are linear but recursive in nature. By allowing for time variation in regression coefficients, the tests can 
capture nonlinearities in the data (such as changes in persistence or asymmetric effects). This fact is based on 
White’s Theorem that shows that any nonlinear model can be approximated by a time-varying linear model. For a 
thorough discussion see Granger (2008). 
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In this paper, we examine the role of cross-sectional aggregation by conducting one simulation 

experiment based on artificial processes that deterministically switch between martingale and 

explosive behavior. Moreover, we also conduct two large simulation experiments based on 

actual real house price data. The first of the experiments with actual data uses monthly real 

house price data from the S&P/Case-Shiller 10-City Composite Index for the 10 largest 

metropolitan areas in the U.S., deflated by their corresponding local CPI. The second 

experiment utilizes national-level, quarterly real house price index data for 23 mostly-advanced 

economies, deflated with the corresponding country’s PCE deflator, obtained from the Federal 

Reserve Bank of Dallas’ International House Price Database (Mack and Martínez-García, 2011). 

The main conclusion that emerges from our simulation exercises is that aggregation lowers the 

power of both the SADF test of Phillips and Yu (2011) and the GSADF test of Phillips et al. 

(2015a,b). The decline is substantially larger for the SADF test than for the GSADF test, which 

provides an important reason to prefer the latter for detecting periods of exuberance in asset 

prices—particularly whenever researchers have to rely on highly aggregated data (as often 

happens with housing data). We also provide evidence that the panel GSADF test recently 

proposed by Pavlidis et al. (2016) is preferable whenever disaggregated data is available. 

Furthermore, we illustrate the date-stamping strategy under the univariate and panel GSADF 

methodologies to establish a chronology of episodes of global exuberance for the 23 countries 

covered in the International House Price Database (Mack and Martínez-García, 2011). Using a 

dynamic panel probit model we show explosive dynamics in the data are, consistent with 

theory, partly driven by fundamental behavior tied interest rate spreads and policy uncertainty. 

Housing demand and macro factors (real personal disposable income growth per capita, stock 

market valuation gains, and real GDP growth) as well as a number of financial variables (the 

current account ratio over GDP, real credit growth in the nonfinancial sector, and market 

volatility measured by the VIX index) contribute as well. Our findings also reinforce the view 

that the degree of aggregation can be a limiting factor on the overall usefulness of right-tailed 

tests for monitoring asset markets as it can impact on our empirical inferences. 
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The remainder of the paper is structured as follows: Section 2 outlines the SADF test of Phillips 

and Yu (2011), the GSADF test of Phillips et al. (2015a,b), and the panel GSADF test of Pavlidis et 

al. (2016). This section also discusses the potential role of aggregation on the power of the 

recursive (right-tailed) unit root tests. Section 3 defines our Monte Carlo simulation design and 

presents results for the simulated as well as for the actual data. Section 4 discusses illustrates 

the practical implementation of these recursive unit root tests for monitoring the dynamics of 

asset prices. It also shows the aggregation bias that may arise on empirical inferences based on 

date-stamping a chronology of periods of exuberance after rejecting the null of no exuberance 

in-sample. Section 5 concludes, while the Appendix provides a stylized theoretical model 

motivating the spillovers from monetary policy—through policy uncertainty and interest rate 

spreads—into real house prices that we investigate in our application in section 4 and 

additional technical details on the implementation of the recursive unit root tests. 

 

2.Testing Mildly Explosive Behavior 

Phillips and Magdalinos (2007a, 2007b) define a mildly explosive root using the following data-

generating process (DGP) for the observed time series: 

𝑦𝑡 = 𝛿𝑇𝑦𝑡−1 + 𝜖𝑡, 𝜖𝑡~𝑖. 𝑖. 𝑑. (0, 𝜎
2),                                                (1) 

with the intercept set at zero for simplicity, where 𝛿𝑇 = 1 +
𝑐

𝑇𝛼
, 𝛼 ∈ (0,1) and 𝑇 denotes the 

sample size. Whenever 𝑐 > 0, such a root is explosive and approaches unity at a rate slower 

than 𝑂(𝑇−1) as 𝑇 → ∞.3 Subtracting 𝑦𝑡−1 from both sides, the process in (1) can be expressed 

                                                           
3 Phillips and Magdalinos (2007a, 2007b) and Phillips and Magdalinos (2012) provide a large-sample asymptotic 
theory for this class of mildly explosive processes that enables econometric inference, unlike what occurs for 
purely explosive processes. Autoregressive processes with a purely explosive root, 𝑦𝑡 = 𝛿𝑦𝑡−1 + 𝜖𝑡 ,
𝜖𝑡~𝑁𝐼𝐷(0, 𝜎

2), |𝛿| > 1, were first discussed by White (1958) and Anderson (1959). Assuming a zero initial 
condition for 𝑦𝑡 , an asymptotic Cauchy limit distribution theory for the OLS/ML estimator exists. However, the 
asymptotic distribution of the estimator is ultimately dependent on the distributional assumptions imposed on the 
innovations (Anderson, 1959)—the imposed Gaussianity of the errors cannot be relaxed without changing the 
asymptotic distribution. Hence, there is no general framework for asymptotic inference on purely explosive 
processes. 



5 
 

as ∆𝑦𝑡 = 𝛽𝑇𝑦𝑡−1 + 𝜖𝑡, 𝜖𝑡~𝑖. 𝑖. 𝑑. (0, 𝜎
2) where ∆ is the difference operator, and 𝛽𝑇 = 𝛿𝑇 − 1 is 

the corresponding coefficient to be tested. 

If serial correlation is a concern, a standard parametric autoregressive approach to deal with it 

consists in extending equation (1) to an AR(k+1) process (Said and Dickey, 1984). The approach 

is based on generalizing the process to be 𝜃𝑘+1(𝐵)𝑦𝑡 = 𝜖𝑡, where 𝜃𝑘+1(𝐵) = 1 − 𝜃1𝐵 −⋯−

𝜃𝑘𝐵𝑘 − 𝜃𝑘+1𝐵𝑘+1 defines the lag operator. A unit root in 𝜃𝑘+1(𝐵) corresponds to 𝜃𝑘+1(1) =

0. Then, testing for a unit root is more easily performed by rewriting the augmented regression 

model in the following form:4 

∆𝑦𝑡 = 𝛽𝑇𝑦𝑡−1 + ∑ 𝜓𝑗Δ𝑦𝑡−𝑗
𝑘
𝑗=1 + 𝜖𝑡, 𝜖𝑡~𝑖. 𝑖. 𝑑. (0, 𝜎

2),                                 (2) 

where 𝛽𝑇 = −𝜃𝑘+1(1) and 𝜓1 = −(𝜃2 + 𝜃3 +⋯+ 𝜃𝑘 + 𝜃𝑘+1), 𝜓2 = −(𝜃3 +⋯+ 𝜃𝑘 +

𝜃𝑘+1), … , 𝜓𝑘 = −(𝜃𝑘+1). 

The procedure studied in the paper for detecting mildly explosive behavior consists in 

recursively applying the Augmented Dickey-Fuller (ADF) test for the null of a unit root against 

the alternative of a mildly explosive root (the right tail of the distribution) based on the 

specification in (2). 

First, some notation is required to describe the recursive implementation of the supremum ADF 

(SADF) of Phillips and Yu (2011) and the generalized SADF (GSADF) of Phillips et al. (2015a,b). 

We can think of the full sample as being normalized on the interval [0,1] (i.e., divided by the 

total number of observations 𝑇). We denote 𝑟1 and 𝑟2 as the corresponding fractions of the 

sample which define the beginning and end of a given subsample such that 0 ≤ 𝑟1 < 𝑟2 ≤ 1. 

We denote by 𝑟𝑤 = 𝑟2 − 𝑟1 the window size of the regression estimation, while 𝑟0 is the fixed 

initial window required by the econometrician such that the subsample ending in 𝑟2 satisfies 

that 𝑟2 ∈ [𝑟0, 1] (i.e., 𝑟0 is the minimum window size). 

                                                           
4 The ADF approach generalizes the Dickey and Fuller (1979) test by parametrically removing the structural 
autocorrelation in the time series, but otherwise implements the same testing procedure. 
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Second, the empirical specification used for testing is the following recursive formulation of the 

ADF auxiliary regression equation: 

Δ𝑦𝑡 = 𝑎𝑟1,𝑟2 + 𝛽𝑟1,𝑟2𝑦𝑡−1 + ∑ 𝜓𝑟1,𝑟2
𝑗

Δ𝑦𝑡−𝑗
𝑘
𝑗=1 + 𝜖𝑡, 𝜖𝑡~𝑖. 𝑖. 𝑑. (0, 𝜎𝑟1,𝑟2

2 ),                  (3) 

where 𝑦𝑡 denotes the generic time series tested for explosiveness, Δ𝑦𝑡−𝑗 for 𝑗 = 1,… , 𝑘  are 

the differenced lags of the time series, and 𝜖𝑡 is an i.i.d. error term. Furthermore, 𝑘 is the 

maximum number of lags included in the specification, while 𝑎𝑟1,𝑟2, 𝛽𝑟1,𝑟2, and 𝜓𝑟1,𝑟2
𝑗

 for 𝑗 =

1, … , 𝑘 are the corresponding regression coefficients—the intercept, the autoregressive 

coefficient, and the coefficients of the lagged first differences—when estimated over the 

(normalized) subsample beginning in 𝑟1 and ending in 𝑟2. 

Finally, whenever disaggregated data is available, our statistical toolkit for the detection of 

periods of mildly explosive behavior also includes the novel panel GSADF test of Pavlidis et al. 

(2016). The GSADF test was designed to overcome the SADF’s lack of power in identifying 

multiple episodes of periodically-collapsing mildly explosive behavior in-sample. The panel 

GSADF test, in turn, offers a more flexible alternative than the univariate GSADF test because it 

explicitly models the cross-sectional dependencies and heterogeneity present in the 

constituent series that are otherwise muddled together in the aggregated series. 

 

2.1 Standard Right-Tailed Augmented Dickey-Fuller (ADF) Test 

Setting 𝑟1 = 0 and 𝑟2 = 𝑟0 = 1 yields the standard ADF test statistic over the full sample, 

𝐴𝐷𝐹0
1 =

�̂�0,1

𝑠.𝑒.(�̂�0,1)
. Under the I(1) null, the limit distribution of 𝐴𝐷𝐹0

1 is given by 
∫ �̃�(𝑟)𝑑�̃�(𝑟)
1
0

(∫ �̃�(𝑟)2𝑑𝑟
1
0

)

1
2

, 

where �̃� is a demeaned Wiener process (Brownian motion). With this, we test the null 

hypothesis of a unit root in 𝑦𝑡, 𝐻0: 𝛽0,1 = 0, against the alternative of mildly explosive behavior, 

𝐻1: 𝛽0,1 > 0. Whenever 𝐴𝐷𝐹0
1 exceeds the corresponding right-tailed critical value from its limit 

distribution, the unit root hypothesis is rejected in favor of the alternative of mildly explosive 

behavior. 
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Evans (1991) shows through simulation methods that non-recursive unit root tests like 𝐴𝐷𝐹0
1 

(and cointegration tests as well) have low power and frequently cannot reject the null of no 

explosive behavior even when present in the data. Nonlinear dynamics, such as those displayed 

by mildly explosive processes, may lead the standard right-tailed ADF test to findings of 

spurious stationarity. Intuitively, this is the case because increases followed by downward 

corrections make the process appear mean-reverting and stationary in finite samples even 

when its DGP is not. 

 

2.2 Sup ADF (SADF) Test 

In order to deal with the effect of a collapse occurring within sample on the performance of the 

standard right-tailed ADF test (𝐴𝐷𝐹0
1), Phillips and Yu (2011) proposed a procedure based on 

the recursive estimation of the ADF regression equation in (3) on subsamples of the data. The 

approach uses a forward expanding estimation subsample with the end of the subsample 𝑟2 

increasing from 𝑟0 ∈ (0,1) (the fixed minimum size for the initial window) to one (the last 

available observation). The starting point of each estimation is kept fixed at 𝑟1 = 0, so the 

expanding window size of the regression (over the normalized sample) is simply given by 𝑟𝑤 =

𝑟2. Then, incrementing the window size 𝑟2 ∈ [𝑟0, 1] with one additional observation at a time, 

the recursive estimation of the ADF regression equation in (3) over the forward expanding 

subsample yields a sequence of 𝐴𝐷𝐹0
𝑟2 =

�̂�0,𝑟2

𝑠.𝑒.(�̂�0,𝑟2)
 statistics. 

The Phillips and Yu (2011) test statistic, called sup ADF (SADF), is defined as the supremum 

value of the sequence of 𝐴𝐷𝐹0
𝑟2  statistics expressed as follows: 

𝑆𝐴𝐷𝐹(𝑟0) =
𝑠𝑢𝑝

𝑟2∈[𝑟0,1]
 𝐴𝐷𝐹0

𝑟2 .                                                           (4) 

Under the I(1) null, the limit distribution of the 𝑆𝐴𝐷𝐹(𝑟0) statistic is given by 

𝑠𝑢𝑝
𝑟2∈[𝑟0,1]

 
∫ �̃�(𝑟)𝑑�̃�(𝑟)
𝑟2
0

(∫ �̃�(𝑟)2𝑑𝑟
𝑟2
0 )

1
2

. Whenever 𝑆𝐴𝐷𝐹(𝑟0) exceeds the corresponding right-tailed critical value 
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from its limit distribution, the unit root hypothesis is rejected in favor of mildly explosive 

behavior. 

The rolling-window structure of the 𝑆𝐴𝐷𝐹(𝑟0) test leads to improved power in detecting mildly 

explosive behavior relative to what can be achieved with the standard 𝐴𝐷𝐹0
1 test alone. 

Furthermore, Homm and Breitung (2012) show through simulation experiments also that the 

𝑆𝐴𝐷𝐹(𝑟0) test generally outperforms alternative testing methods commonly used to detect a 

single structural break in the persistence of the process (from I(1) to explosive). 

The alternative tests considered by Homm and Breitung (2012) aim to detect a permanent 

structural break in the persistence of the process and, as a consequence, perform well only 

when the series becomes explosive but never bursts in-sample. Intuitively, the 𝑆𝐴𝐷𝐹(𝑟0) test 

performs better than those alternatives because it deals with series where at most one episode 

of explosiveness occurs and collapses in-sample. However, the power of the 𝑆𝐴𝐷𝐹(𝑟0) test and 

its performance deteriorate in the presence of multiple (more than one) recurring and 

periodically-collapsing episodes of exuberance, as established in Phillips et al. (2015a,b). 

 

2.3 Generalized SADF (GSADF) Test 

Phillips et al. (2015a,b) proposed another recursive (right-tailed) unit root test, the Generalized 

SADF (GSADF), covering a larger number of subsamples than the 𝑆𝐴𝐷𝐹(𝑟0) test by relaxing the 

requirement that the starting point of the subsample 𝑟1 be kept fixed. This additional margin of 

flexibility on the estimation window of the 𝐺𝑆𝐴𝐷𝐹(𝑟0) results in substantial power gains, 

consistent with multiple and periodically-collapsing episodes of explosiveness in the data. 

The GSADF approach builds on the forward expanding estimation subsample strategy of the 

SADF procedure, but instead allows the starting point of the subsample 𝑟1 to change. The initial 

window size 𝑟0 satisfies that 𝑟0 < 𝑟2, while the expanding window size of the regression (over 

the normalized sample) is defined as 𝑟𝑤 = 𝑟2 − 𝑟1. Incrementing the window size 𝑟2 ∈ [𝑟0, 1] 

with one additional observation at a time over each starting point of the sample 𝑟1 ∈

[0, 𝑟2 − 𝑟0], the recursive estimation of the ADF regression equation in (3) yields a sequence of 
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𝐴𝐷𝐹𝑟1
𝑟2 =

�̂�𝑟1,𝑟2

𝑠.𝑒.(�̂�𝑟1,𝑟2)
 statistics. 

The Phillips et al. (2015a,b) test statistic, called Generalized SADF (GSADF), is defined as the 

supremum value of the sequence of 𝐴𝐷𝐹𝑟1
𝑟2  statistics expressed as follows: 

𝐺𝑆𝐴𝐷𝐹(𝑟0) =
𝑠𝑢𝑝

𝑟1∈[0,𝑟2−𝑟0]
{ 𝑠𝑢𝑝
𝑟2∈[𝑟0,1]

𝐴𝐷𝐹𝑟1
𝑟2}.                                            (5) 

Under the I(1) null, the limit distribution of the 𝐺𝑆𝐴𝐷𝐹(𝑟0) statistic is given by 

𝑠𝑢𝑝
𝑟1∈[0,𝑟2−𝑟0],𝑟2∈[𝑟0,1]

 

{
 

 1

2
𝑟𝑤[𝑊(𝑟2)

2−𝑊(𝑟1)
2−𝑟𝑤]−∫ 𝑊(𝑟)𝑑𝑟[𝑊(𝑟2)−𝑊(𝑟1)]

𝑟2
𝑟1

𝑟𝑤

1
2 {𝑟𝑤 ∫ 𝑊(𝑟)2𝑑𝑟

𝑟2
𝑟1

−[∫ 𝑊(𝑟)𝑑𝑟
𝑟2
𝑟1

]
2
}

1
2

}
 

 
. Whenever 𝐺𝑆𝐴𝐷𝐹(𝑟0) 

exceeds the corresponding right-tailed critical value from its limit distribution, the unit root 

hypothesis is rejected in favor of mildly explosive behavior. The rolling-window structure of the 

𝐺𝑆𝐴𝐷𝐹(𝑟0) test leads to improved power in detecting recurring episodes of mildly explosive 

behavior relative to what can be achieved with the standard 𝐴𝐷𝐹0
1 and the 𝑆𝐴𝐷𝐹(𝑟0) tests. 

 

2.4 Panel GSADF Test 

Pavlidis et al. (2016) developed an extension of the GSADF test procedure for heterogeneous 

panels based on the panel data techniques developed by Im et al. (2003). Consider the panel 

version of the ADF regression equation in (3): 

 Δ𝑦𝑡
𝑠 = 𝛼𝑟1,𝑟2

𝑠 + 𝛽𝑟1,𝑟2
𝑠 𝑦𝑡−1

𝑠 + ∑ 𝜓𝑟1,𝑟2
𝑠,𝑗

Δ𝑦𝑡−𝑗
𝑠𝑘

𝑗=1 + 𝜖𝑡
𝑠, 𝜖𝑡

𝑠~𝑖. 𝑖. 𝑑. (0, �̂�𝑟1,𝑟2
2 ),                 (6) 

where 𝑠 = 1,… ,𝑁 indexes the 𝑁 constituent time series to be tested {𝑦𝑡
𝑠}𝑠=1
𝑁 , and the 

aggregated series 𝑦𝑡 is a linear combination of those disaggregated series. The procedure then 

tests the null hypothesis of a unit root in all 𝑁 disaggregated series {𝑦𝑡
𝑠}𝑠=1
𝑁 , 𝐻0: 𝛽𝑟1,𝑟2

𝑠 = 0, ∀𝑠, 

against the alternative of mildly explosive behavior, 𝐻1: 𝛽𝑟1,𝑟2
𝑠 > 0 for at least one 𝑠. 

Let 𝐴𝐷𝐹𝑟1
𝑠,𝑟2 =

�̂�𝑟1,𝑟2
𝑠

𝑠.𝑒.(�̂�𝑟1,𝑟2
𝑠 )

 denote the test statistic for a given series 𝑠 over the subsample 

beginning in 𝑟1 and ending in 𝑟2. Over the sequence of 𝐴𝐷𝐹𝑟1
𝑠,𝑟2 for all possible 𝑟1 and 𝑟2, we 
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define the Backward SADF (BSADF) as 𝐵𝑆𝐴𝐷𝐹𝑟2
𝑠 (𝑟0) =

𝑠𝑢𝑝
𝑟1∈[0,𝑟2−𝑟0]

{ 𝑠𝑢𝑝
𝑟2∈[𝑟0,1]

𝐴𝐷𝐹𝑟1
𝑠,𝑟2}. The panel 

BSADF statistic can now be defined by taking the average at each time period of the BSADF 

statistics of each constituent series 𝑠 as follows: 𝑃𝑎𝑛𝑒𝑙 𝐵𝐺𝑆𝐴𝐷𝐹𝑟2(𝑟0) =
1

𝑁
∑ 𝐵𝑆𝐴𝐷𝐹𝑟2

𝑠 (𝑟0)
𝑁
𝑠=1 . 

Then, the definition of the panel GSADF test statistic follows naturally as the supremum of the 

panel BSADF, i.e., 

𝑃𝑎𝑛𝑒𝑙 𝐺𝑆𝐴𝐷𝐹(𝑟0) =
𝑠𝑢𝑝

𝑟2∈[𝑟0,1]
{𝑃𝑎𝑛𝑒𝑙 𝐵𝐺𝑆𝐴𝐷𝐹𝑟2(𝑟0)}.                                  (7) 

The distribution of the panel unit root test based on mean unit root statistics is not invariant to 

cross-sectional dependence of the error terms. To deal with that, the procedure of Pavlidis et 

al. (2016) adopts a sieve bootstrap approach that is designed specifically to allow for cross-

sectional error dependence. If the panel GSADF statistic is larger than the corresponding critical 

value, we reject the null hypothesis of a unit root in favor of mildly explosive behavior. 

The specification of the alternative hypothesis proposed by Pavlidis et al. (2016) allows for the 

coefficients 𝛽𝑟1,𝑟2
𝑠  to vary across each of the constituent time series and, in that sense, is a more 

flexible alternative for testing than the homogenous alternative hypothesis. Hence, the panel 

GSADF test specification better captures cases in which the aggregated data inherits its 

explosiveness from some (but not all) of its constituent series. Furthermore, while the 

univariate GSADF test on aggregated data imposes a linear restriction on the 𝐻0 and 𝐻1 

hypothesis being tested, the panel GSADF approach tests the null that all constituent series are 

I(1) directly against the alternative that at least one displays mildly explosive behavior.5 Not 

                                                           
5 As an illustration of the specification of the panel and univariate GSADF testing hypothesis, consider a simple 
arithmetic mean aggregator where the 𝑁 disaggregated series are {𝑦𝑡

𝑠}𝑠=1
𝑁 . Therefore, the aggregated series is 

given by 𝑦𝑡 =
1

𝑁
∑ 𝑦𝑡

𝑠𝑁
𝑠=1 . The null hypothesis of a unit root in the aggregate series 𝑦𝑡  for a given subsample can be 

expressed as 𝐻0: 𝛽𝑟1,𝑟2 =
1

𝑁
∑ 𝛽𝑟1,𝑟2

𝑠𝑁
𝑠=1 = 0, while the null hypothesis of a unit root in all disaggregated series 

{𝑦𝑡
𝑠}𝑠=1
𝑁  imposes the stricter requirement that 𝐻0: 𝛽𝑟1,𝑟2

𝑠 = 0, ∀𝑠 for the panel test. In turn, the alternative of mildly 

explosive behavior in 𝑦𝑡  for any subsample is expressed as 𝐻1: 𝛽𝑟1,𝑟2 =
1

𝑁
∑ 𝛽𝑟1,𝑟2

𝑠𝑁
𝑠=1 > 0 while the alternative 

tested on disaggregated data {𝑦𝑡
𝑠}𝑠=1
𝑁  simply requires that 𝐻1: 𝛽𝑟1,𝑟2

𝑠 > 0 for some (but not necessarily all) of the 

constituent series 𝑠. Therefore, if we reject the null with the panel GSADF test when it is false, then it must be the 

case that 𝛽𝑟1,𝑟2 =
1

𝑁
∑ 𝛽𝑟1,𝑟2

𝑠𝑁
𝑠=1 > 0 is true and accordingly we should reject the null with the univariate GSADF test 

on aggregated data as well. In comparing the univariate and panel GSADF tests in finite samples, however, we 
often find that the ability or power of the panel test to detect mildly explosive behavior if such behavior truly 
occurs in-sample (rejecting the null when it is incorrect) tends to be higher than that of the univariate GSADF test. 
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surprisingly, due to the additional flexibility of the framework to incorporate all relevant cross-

sectional information (not just the time series information) for testing, we find that such a 

panel statistic—when data is available to implement it—performs better in terms of power 

than a simple univariate GSADF test on the series that aggregates all constituent series. 

 

2.5 Univariate SADF/GSADF and Panel GSADF: Implementation 

The computation of the SADF, GSADF, and panel GSADF test statistics requires the selection of 

the minimum window size 𝑟0 and the maximum autoregressive lag length 𝑘. Regarding the 

minimum window size, we follow the rule of thumb of Phillips et al. (2015a,b), 𝑟0 = 0.01 +
1.8

√𝑇
 

where 𝑇 is the total number of observations. With respect to the autoregressive lag length, this 

is known for our exercise with simulated data. Accordingly, we set 𝑘 equal to its true value of 

zero. For the other two simulation experiments that use actual house price data, the true lag 

length is unknown and we evaluate our results for the case where 𝑘 is equal to four. Our 

findings do not appear very sensitive to the lag length specification, though. 

The implementation of the univariate test procedures also requires the limit distributions of the 

SADF, GSADF, and panel GSADF test statistics. These distributions are non-standard and depend 

on the minimum window size 𝑟0. For the former two tests, finite-sample critical values are 

obtained through Monte Carlo simulations by generating 2000 replications of a driftless 

random walk process with 𝑁(0,1) errors. For the panel test, we set the number of bootstrap 

replications to 1000. 

 

2.6 Power Losses Due to Aggregation 

Time series that display boom-bust episodes, like real house prices, display two important 

properties: First, they are nonlinear (because they burst) and, second, they are explosive during 

their boom phase. Blanchard and Watson (1982), Diba and Grossman (1988a; 1988b), and 

Evans (1991), among others, provide theoretical DGPs consistent with the standard asset 
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pricing equation (in the presence of rational bubbles) that display such nonlinear and explosive 

dynamics. 

Regarding the first property, the effects of aggregating nonlinear processes (or linear with 

nonlinear processes) are, in general, unknown, as discussed in Granger and Lee (1999). This 

implies that, even if we knew the true DGP for each individual constituent series, we may still 

not be able to infer the exact form and features for the aggregate index constructed from those 

constituent series. 

We can, nevertheless, draw inferences about the integration properties of an aggregated series 

by exploiting the second property of periodically-collapsing episodes of exuberance (i.e., mildly 

explosive dynamics). It is well known that the combination of explosive processes with other 

explosive, unit root, and/or stationary processes generally results in an explosive process.6 This 

point is particularly important for unit root testing procedures because it implies that as long as 

one of the constituent series is explosive, so will be the aggregated series. 

However, we argue that aggregation affects the performance of the recursive (right-tailed) unit 

root tests to detect mildly explosive behavior. We often find that the empirical evidence to 

detect explosiveness is a lot stronger if we can test it directly on the affected constituent series 

than if one has to make inferences on the basis of an observed aggregate series that mixes it 

with other constituent series that may not display similar patterns of explosiveness. 

We evaluate the performance of the recursive (right-tailed) unit root tests discussed in this 

section on the basis of their statistical power. The power of a test is defined by the probability 

with which the test correctly rejects the null hypothesis (𝐻0) when the alternative hypothesis 

(𝐻1) is true—in our case, that determines the ability of the test to detect deviations from unit 

root behavior whenever the data actually displays mildly explosive behavior. As the power of 

                                                           
6 In theory, the combination of explosive processes can be stationary or I(1) if the processes under consideration 
are co-explosive (see, e.g., Nielsen, 2010). Therefore, the effect of an upward explosive period in one of the 
constituent series could offset the effect of a simultaneous downward explosive period in another constituent 
series of the aggregate. Although theoretically possible, this scenario seems unlikely from a practical point of view 
in most conventional applications (a knife-edge case). 
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the test increases, the probability of a Type II error (a false negative) declines under the 

alternative hypothesis. 

Along this metric, our simulation findings reveal that the power of the recursive (right-tailed) 

unit root ADF test improves when we exploit the recursive nature of the SADF specification of 

Phillips and Yu (2011) and especially that of the GSADF specification of Phillips et al. (2015a,b). 

Simply put, the power loss due to aggregation worsens the already low power problem of the 

standard (right-tailed) unit root test. The recursive nature of the SADF and GSADF tests 

improves the power and, accordingly, gives these tests a better chance at detecting exuberance 

in the aggregated series. The panel GSADF test applied to disaggregated data introduces a 

much richer specification that captures the heterogeneity and cross-sectional dependencies of 

the constituent series and further improves the power of the GSADF approach.7 

To understand this, we recognize that the statistical power of the (right-tailed) unit root ADF 

test depends on a number of factors.8 First, we note that the recursive implementation of the 

SADF test and, particularly, that of the GSADF test keep the full sample size invariant but lead to 

higher power. The recursive SADF and GSADF procedures lift the restriction of testing over the 

full sample and instead define their statistics in terms of the supremum of an ADF statistic 

sequence over many subsamples (including the full sample itself). Intuitively, the probability of 

rejecting the null when it is false (the power) should not be lower with the SADF/GSADF tests 

than the power of the standard (right-tailed) ADF test over the full sample as the performance 

of the standard (right-tailed) ADF test can always be achieved within the given sequence. 

Second, the magnitude of the deviation from unit root to mildly explosive behavior present in 

some of the disaggregated series can become diluted due to aggregation.9 In turn, the smaller 

                                                           
7 However, the practical implementation of panel testing is not always possible when aggregates exist but we lack 
the actual disaggregated data. 
8 The statistical significance is defined in terms of the probability of a Type I error (𝛼)—which is the probability of 
rejecting the null when the null is correct. Naturally, another factor that influences the power of a test is its 
statistical significance which is customarily set at 𝛼 = 5%. However, while increasing 𝛼 lowers the probability of a 
Type II error (𝛽) and therefore increases the power of the test, it also means accepting a higher risk of rejecting the 
null when the null is true (Type I error). 
9 Even when the processes for the disaggregated series under consideration are not co-explosive to begin with 
(see, e.g., Nielsen, 2010). 
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effect on the aggregate series lowers the finite-sample power for the standard and for any of 

the recursive (right-tailed) unit root ADF tests studied in the paper. In order to illustrate this 

point, consider a simple arithmetic mean aggregator where the 𝑁 disaggregated series are 

{𝑦𝑡
𝑠}𝑠=1
𝑁 . Therefore, the aggregated series is given by 𝑦𝑡 =

1

𝑁
∑ 𝑦𝑡

𝑠𝑁
𝑠=1 . Assume the following 

simple DGP for the constituent series (with only one of them displaying mildly explosive 

behavior): 

∆𝑦𝑡
𝑠 = 𝜖𝑡

𝑠, ∀𝑠 = 1, … , 𝑁 − 1,                                                        (8) 

∆𝑦𝑡
𝑁 = 𝛽𝑦𝑡−1

𝑁 + 𝜖𝑡
𝑁, 

where 𝜖𝑡
𝑠~𝑖. 𝑖. 𝑑. (0, 𝜎𝑠,2) for all 𝑠 = 1,… ,𝑁 with possibly cross-sectional dependence in the 

error terms, and where 𝛽 = 𝛿 − 1 is the coefficient to be tested. Hence, in this scenario, we see 

that the dynamics for the aggregate series can be expressed as: 

 ∆𝑦𝑡 =
𝛽

𝑁
(
𝑦𝑡−1
𝑁

𝑦𝑡−1
) 𝑦𝑡−1 + 𝜖𝑡 = (

𝑦𝑡−1
𝑁

∑ 𝑦𝑡−1
𝑠𝑁

𝑠=1
) 𝛽𝑦𝑡−1 + 𝜖𝑡,                                 (9) 

where 𝜖𝑡 =
1

𝑁
∑ 𝜖𝑡

𝑠𝑁
𝑠=1  is the average error (whose distribution depends on the assumptions 

imposed on the errors for each series 𝑠). 

With this example we show that the aggregated series inherits the mildly explosive behavior of 

the constituent series 𝑠 = 𝑁, but we also see that the deviation from unit root behavior is 

different in the aggregated series. To be more precise, we observe that the relative 

contribution of the constituent series 𝑠 = 𝑁 to the aggregate series weighs down the 

magnitude of the effect given by the coefficient 𝛽 > 0. Intuitively, the smaller effect 

incorporated into the aggregated series tends to lower the statistical power of the recursive 

ADF tests in finite samples. 

In this sense, we could achieve better performance by testing for mildly explosive behavior 

directly on the disaggregated series 𝑠 = 𝑁 or over the entire cross-section (along the lines of 

what the panel GSADF of Pavlidis et al. 2016 does) than testing for it indirectly through the 

aggregated series. Needless to say, this is not an option when the disaggregated series are not 
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available for testing. Then, the empirical question becomes to quantify the extent of the power 

loss due to aggregation and the mitigation effects that can be obtained with the recursive SADF 

and GSADF procedures. The simulation exercises that we discuss in the remainder of the paper 

aim to answer formally that question. 

 

3. A Monte Carlo Examination of the Power of Recursive Unit Root Tests 

What is the effect of aggregation on the power of the recursive SADF and GSADF tests in finite 

samples? To shed light on this issue, we run three sets of Monte Carlo simulation experiments. 

The first set of experiments is based on a family of time series processes examined by Phillips et 

al. (2015a,b). The second and third sets are based on actual real house price data. 

 

3.1 Illustration with Artificial Data 

Phillips et al. (2015a) consider two DGPs that deterministically switch between martingale and 

explosive behavior. The first DGP is given by: 

𝑦𝑡 = 𝑦𝑡−11{𝑡 < 𝜏𝑒} + 𝛿𝑇𝑦𝑡−1 1{𝜏𝑒 ≤ 𝑡 ≤ 𝜏𝑓} + 

(∑ 𝜖𝑘 + 𝑦𝜏𝑓
∗  𝑡

𝑘=𝜏𝑓+1
) 1{𝑡 > 𝜏𝑓} + 𝜖𝑡1{𝑡 ≤ 𝜏𝑓}.                                    (10) 

This process exhibits martingale behavior in the first part of the sample, it then enters a mildly 

explosive phase during which it grows exponentially and, finally, it collapses and resumes 

martingale behavior until the end of the sample (𝑇). The origination and termination dates of 

the explosive episode are denoted by 𝜏𝑒 and 𝜏𝑓, respectively. The autoregressive coefficient 

 𝛿𝑇 = 1 + 𝑐𝑇
−𝛼 with 𝑐 > 0 and 𝛼 ∈ (0,1) determines the rate of expansion, 𝜖𝑡~𝑁(0, 𝜎

2), and 

𝑦𝜏𝑓
∗ = 𝑦𝜏𝑒 + 𝑦

∗ equals 𝑦𝜏𝑒  plus a small perturbation 𝑦∗ = 𝑂𝑝(1). 

The second DGP considered by Phillips et al. (2015a,b) constitutes an extension of the previous 

one that allows for two episodes of mildly explosive behavior: 
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𝑦𝑡 = 𝑦𝑡−11{𝑡 ∈ 𝑇0} + 𝛿𝑇𝑦𝑡−1 1{𝑡 ∈ 𝐵1 ∪ 𝐵2} + (∑ 𝜖𝑘
𝑡

𝑘=𝜏1𝑓+1
+ 𝑦𝜏1𝑓

∗ )1{𝑡 ∈ 𝑇1} + 

(∑ 𝜖𝑙 + 𝑦𝜏2𝑓
∗  𝑡

𝑙=𝜏2𝑓+1
) 1{𝑡 ∈ 𝑇2} + 𝜖𝑡1{𝑡 ∈ 𝑇0 ∪ 𝐵1 ∪ 𝐵2},                       (11) 

where 𝑇0 = [1, 𝜏1𝑒), 𝐵1 = [𝜏1𝑒 , 𝜏1𝑓], 𝑇1 = (𝜏1𝑓 , 𝜏2,𝑒), 𝐵2 = [𝜏2𝑒 , 𝜏2𝑓], and 𝑇2 = (𝜏2𝑓 , 𝑇]. The 

observations 𝜏1𝑒 and 𝜏1𝑓 mark the origination and termination dates of the first episode of 

exuberance, while 𝜏2𝑒 and 𝜏2𝑓 are the origination and termination dates of the second 

exuberance episode to occur in-sample. After the collapse of the first period of explosiveness, 

𝑦𝑡 resumes a martingale path until 𝜏2𝑒 − 1. Then, a second episode of exuberance begins at 𝜏2𝑒 

which lasts until it collapses at time 𝜏2𝑓. The process 𝑦𝑡 then continues on a martingale path 

until the end of the sample period. 

In this section, we examine the power of the recursive (right-tailed) unit root tests whenever 

we aggregate the above processes—the one exuberance episode case in (10) and the two 

exuberance episodes case in (11)—with pure random walk processes. Given the 

computationally intensive nature of the panel GSADF test, in the simulation experiments we 

restrict the cross-sectional dimension to five series, and we allow the number of processes that 

display explosive dynamics to increase from 𝑠 = 1,… ,5 . With regard to parameter values, we 

set 𝛿𝑇 = 1.05, 𝜎2 = 0.2, 𝑇 = 100, and we assume that the cross-correlation of errors equals to 

0.25. The number of Monte Carlo simulations is 1000 and the number of bootstrap replications 

for the panel GSADF is also 1000. For the one-episode-of-exuberance case, we set the 

origination date to 𝜏𝑒 = 50 and the termination date to 𝜏𝑓 = {60,70,80}. For the two-episodes-

of-exuberance case, we consider a ‘short’ first episode that originates at 𝜏1𝑒 = 30 and 

terminates at 𝜏1𝑓 = 40 and a ‘long’ second episode that originates at 𝜏2𝑒 = 60 and terminates 

at 𝜏2𝑓 = {80,90}. 

Tables 1 and 2 report the power of the SADF, GSADF, and panel GSADF tests in the presence of 

at least one series displaying one- and two-episodes of explosiveness, respectively. Overall, we 

observe that the power of all tests increases with the number of series that display exuberance, 

the duration of the exuberance episode(s), and the number of episodes. The latter two findings 
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are not surprising and are in line with those of previous studies (Phillips et al., 2015a,b; Pavlidis 

et al., 2016). The former finding is new and highlights the impact of aggregation on the power 

of the various tests. Most notably, for a single, short episode of exuberance, the power of the 

tests varies from around 5 percent, when only one out of the five processes displays 

exuberance and the rest are pure random walks, to around 50 percent, when all processes 

display exuberance. 

In terms of ranking, we observe that the panel GSADF is superior to both the SADF and its 

univariate counterpart, and that the differences in power across tests can be substantial. For 

instance, when only one series displays a single, long episode of exuberance, the power of the 

SADF and GSADF tests is less that 35 percent, while the power of the panel GSADF exceeds 52 

percent. Similarly, when two out of the five processes display an episode of exuberance from 

𝑡 = 30 to 40 and a second episode from 𝑡 =60 to 80, the SADF and GSADF tests can detect 

exuberance in the aggregate series 30 and 39 percent of the cases, respectively. In turn, the 

panel GSADF test rejects the null hypothesis of no exuberance in any of the constituent series 

54 percent of the time. Thus, the panel GSADF test can result in substantial power gains in finite 

samples. A comparison of the results for the two univariate tests does not reveal significant 

differences in the presence of a single episode of exuberance. However, as expected given its 

known consistency in the presence of multiple boom-bust episodes, the GSADF is superior to 

the SADF procedure when there are two episodes of exuberance. 
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Table 1. Artificial Data with One Episode of Exuberance Simulation Results: Power of the Tests 

(𝝉𝒆, 𝝉𝒇) Test 𝒔 = 𝟏 𝒔 = 𝟐 𝒔 = 𝟑 𝒔 = 𝟒 𝒔 = 𝟓 

(50,60) SADF 0.061 0.114 0.226 0.320 0.476 

 GSADF 0.057 0.110 0.238 0.339 0.527 

 Panel GSADF 0.063 0.161 0.323 0.427 0.569 

(50,70) SADF 0.151 0.402 0.629 0.735 0.841 

 GSADF 0.144 0.405 0.641 0.768 0.870 

 Panel GSADF 0.252 0.571 0.779 0.873 0.940 

(50,80) SADF 0.347 0.725 0.855 0.911 0.941 

 GSADF 0.312 0.736 0.875 0.927 0.953 

 Panel GSADF 0.525 0.879 0.946 0.980 0.990 

Notes: The table reports the power of the SADF, GSADF, and Panel GSADF tests. 𝑠 denotes the number of 
processes that display exuberance, and 𝜏𝑒 and 𝜏𝑓 denote the origination and termination dates of the episode of 

exuberance. 

 

Table 2. Artificial Data with Two Episodes of Exuberance Simulation Results: Power of the Tests 

(𝝉𝟐𝒆, 𝝉𝟐𝒇) Test 𝒔 = 𝟏 𝒔 = 𝟐 𝒔 = 𝟑 𝒔 = 𝟒 𝒔 = 𝟓 

(60,80) SADF 0.130 0.302 0.545 0.683 0.794 
 GSADF 0.155 0.388 0.683 0.816 0.883 
 Panel GSADF 0.238 0.540 0.766 0.861 0.915 

(60,90) SADF 0.317 0.653 0.794 0.872 0.922 
 GSADF 0.344 0.709 0.871 0.927 0.959 
 Panel GSADF 0.515 0.833 0.933 0.971 0.989 

Notes: The table reports the power of the SADF, GSADF, and Panel GSADF tests. s denotes the number of 
processes that display exuberance, and 𝜏𝑒 and 𝜏𝑓 denote the origination and termination dates of the second 

episode of exuberance. 

 

3.2 Illustration with House Price Data 

Given the wide use of aggregated indices, the issue of aggregation is a very important topic in 

financial econometrics with applications to the monitoring of asset markets (not just housing 

markets). It is appropriate to note here that our findings are generally valid to applications 

based on any asset price index (or, for that matter, any time series) where the issue of 

aggregation may be pertinent in testing the occurrence of episodes of mildly explosive 

behavior. The application to housing market data is particularly relevant for illustration 

purposes because housing is notoriously heterogeneous across many characteristics (including 

their location). It is also an interesting application in itself because of the significance of the 



19 
 

housing cycle and its broad impact on real economic activity—the widespread boom-bust 

housing cycle that preceded the 2008-09 global recession being a prime example of that. 

Our empirical investigation is then based on two real house price datasets that showcase at 

least two levels of aggregation across heterogeneous locations. First, we look at the 

construction of national house price indices that aggregate price data across a number of 

heterogeneous major statistical metropolitan areas of the U.S. Second, we also look at the 

construction of international real house price indices aggregating representative national 

indices. Our analysis of the disaggregated housing data suggests that there is very strong 

evidence of exuberance within sample in both datasets. We find that by exploiting 

disaggregated data, we can more successfully detect the occurrence of such episodes of 

exuberance. 

The two simulation experiments based on actual data on real house prices resemble 

conventional applications of the recursive (right-tailed) tests to monitor housing markets. 

Specifically, both experiments under consideration consist of the following steps: 

Step 1a. Fit sequentially to the corresponding real house price index the Augmented Dickey-

Fuller (ADF) regression equation: 

Δ𝑦𝑡 = 𝑎𝑟1,𝑟2 + 𝛽𝑟1,𝑟2𝑦𝑡−1 + ∑ 𝜓𝑟1,𝑟2
𝑗

Δ𝑦𝑡−𝑗
𝑘
𝑗=1 + 𝜖𝑡, 𝜖𝑡~𝑖. 𝑖. 𝑑. (0, 𝜎𝑟1,𝑟2

2 ),              (12) 

where 𝑟1 and 𝑟2 denote fractions of the total sample size that specify the starting and 

ending points of a subsample and satisfy the rule proposed by Phillips et al. (2015a,b), 𝑟2 −

𝑟1 ≥ 0.01 + 1.8/√𝑇, and 𝑘 is the maximum number of lags. Obtain, for each time period t, 

the vector of estimated coefficients (�̂�𝑟1,𝑟2 , �̂�𝑟1,𝑟2 , �̂�𝑟1,𝑟2
𝑗

 , 𝑗 = 1,… , 𝑘) and the estimated 

variance of residuals (�̂�𝑟1,𝑟2
2 ) that correspond to the BSADF statistic.10 

                                                           
10 For further details on the BSADF, SADF, and GSADF statistics, see Phillips et al. (2015a,b) and Pavlidis et al. 
(2016). 



20 
 

Step 1b. Use the matrix of estimated coefficients and draw randomly from a normal 

distribution with mean zero and variance equal to the estimated error variance at each time 

period 𝑡 to generate artificial series from: 

Δ𝑦𝑡
𝑠 = �̂�𝑟1,𝑟2 + �̂�𝑟1,𝑟2𝑦𝑡−1

𝑠 + ∑ �̂�𝑟1,𝑟2
𝑗

Δ𝑦𝑡−𝑗
𝑠𝑘

𝑗=1 + 𝜖𝑡
𝑠, 𝜖𝑡

𝑠~𝑁(0, �̂�𝑟1,𝑟2
2 ).              (13) 

Note that, due to its sequential nature and the flexible window size, this procedure allows 

for very rich dynamics in the simulated constituent series that closely resemble the 

dynamics of actual asset prices. 

Step 2. Run the SADF, GSADF, and Panel GSADF tests on the artificial constituent series and 

obtain the corresponding test statistics. 

Step 3. Run the SADF and GSADF tests on the aggregate series (for simplicity, the aggregate 

is set equal to the average of the constituent simulated series) and obtain the 

corresponding test statistics. 

Step 4. Repeat steps (1b) to (3) a thousand times and compute the power of each test as 

the number of times the value of the test statistic is greater than the 95% critical value. 

 

3.2.1 Aggregation from Local to National Real House Prices 

We first apply the above procedure to the U.S. housing market and its major metropolitan 

statistical areas. For this exercise, we use data on monthly house prices for the S&P/Case-Shiller 

10-City Composite Home Price Index and its constituents (corresponding to the 10 largest 

metropolitan areas in the U.S.), deflated by its corresponding local CPI. The sample covers the 

period from January 1987 to February 2016, giving a total of 350 observations. The data sources 

are S&P Dow Jones Indices and the Bureau of Labor Statistics. The data is illustrated in Chart 1. 
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Table 3 reports the SADF and GSADF statistics for the S&P/Case-Shiller 10-City Composite Home 

Price Index and its constituents, as well as the finite-sample critical values. According to the 

SADF statistic results, the null hypothesis of a unit root can be rejected at the 5% significance 

level for all metropolitan areas except for Los Angeles (LA). Thus, 9 out of the 10 metropolitan 

areas appear to exhibit exuberance during (at least) part of the sample period under 

consideration. Using the GSADF test, all metropolitan areas show evidence of exuberance at the 

1% significance level. Moreover, we observe that the estimated test statistics for the 

aggregated series fall inside the range of values for the constituent metropolitan area series. 

In accordance with our evidence, the simulation results reported in Chart 2 show that the 

power of the SADF and GSADF tests for the aggregate series lies between the lowest and 

highest power for the constituent metropolitan area series. This finding shows how aggregation 

leads to power losses in practice, since if there was no power loss then every time a test 

detected explosive dynamics in a constituent metropolitan area, it should also detect explosive 

dynamics in the aggregate. A striking contrast comes from looking at Boston for which the 
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Chart 1. U.S. Real House Prices by Major MSA

Boston Chicago Denver Las Vegas Los Angeles Miami

DC New York San Diego San Francisco Aggregate

Index, 2005=100

Notes: Monthly house prices for the S&P/Case-Shiller 10-City Composite Home Price Index and its constituents, deflated by its corresponding local CPI. The sample 
covers the period from January 1987 to February 2016.
Sources: S&P Dow Jones Indices;Bureau of Labor Statistics.
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power of the SADF is 97 percent or Miami for which the SADF power is 96 percent, while the 

SADF power for the 10-city aggregate that includes them is merely 16 percent. By comparing 

the results for the two tests, the SADF and the GSADF tests, we observe that the GSADF test 

performs remarkably better than the SADF with very small power losses due to aggregation. In 

this application, the power achieved is somewhat lower but very close to that of the Panel 

GSADF test based on the disaggregated data. 

We summarize the geographical dispersion of the power gains achieved by the GSADF test over 

the SADF test for each one of the metropolitan area series in the map in Chart 3. Comparing the 

results for the two tests—the SADF and the GSADF tests—we observe that the GSADF test 

performs much better than the SADF but with significant variation across metropolitan areas. 

For Boston and Miami the power gain of the GSADF test is under 20 percentage points (0.2 in 

units) while the gain exceeds 80 percentage points (0.8 in units) for Los Angeles (LA). 

 

Table 3. S&P/Case-Shiller 10-City Composite Home Price Index, Unit Root Test Results (Actual Data) 

Panel A: Test Statistics SADF GSADF Panel GSADF 

Boston 2.264*** 5.253***  

Chicago 2.719*** 4.946***  

Denver 1.748** 7.372***  

Las Vegas 4.791** 5.321***  

Los Angeles 1.098 3.803***  

Miami 4.703*** 5.987***  

Washington 1.793** 4.329***  

New York 1.520** 4.742***  

San Diego 1.959*** 3.740***  

San Francisco 2.493*** 3.947***  

   U.S. Composite 10 2.772*** 4.095***  

   Full Panel of 10 Cities   3.295*** 

Panel B: Critical Values SADF GSADF Panel GSADF 

90% 1.145 1.911 1.800 

95% 1.433 2.167 2.025 

99% 1.942 2.712 2.431 

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance levels respectively. All 
results are for autoregressive lag length k=4. The aggregate series is computed as an unweighted average of the 
real house price indices of all the metropolitan areas. 
Sources: Standard & Poor's, Bureau of Labor Statistics, authors’ calculations. 
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Chart 2. S&P/Case-Shiller 10-City Composite Home Price Index 
Simulation Results: Power of the Tests

Notes: The figure and table display the power of the SADF and GSADF tests. The nominal significance level is set at 5%. 
Sources: Standard & Poor's, Bureau of Labor Statistics, authors’ calculations.
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3.2.2 Aggregation from National to International Real House Prices 

To provide further evidence on the effect of aggregation on the performance of both recursive 

(right-tailed) unit root tests, in our second experiment, we repeat the same Monte Carlo 

simulation exercise using the cross-country real house price data from the Federal Reserve 

Bank of Dallas’ International House Price Database (Mack and Martínez-García, 2011). The 

database comes at quarterly frequency and covers 23 (mostly advanced) countries between the 

first quarter of 1975 and the fourth quarter of 2015, deflated with the corresponding country 

PCE deflator.11 This data is illustrated graphically in Chart 4. 

 

 

 

                                                           
11 The quarterly national house price indices are those most consistent with the quarterly U.S. house price index 
for existing single-family houses produced by the Federal Housing Finance Agency. This database can be accessed 
publicly at: http://www.dallasfed.org/institute/houseprice/  
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Chart 4. Real House Prices by Country

Australia (AU) Belgium (BE) Canada (CA) Switzerland (CH) Germany (DE)

Denmark (DK) Spain (ES) Finland (FI) France (FR) U.K. (GB)

Ireland (IE) Italy (IT) Japan (JP) S. Korea (KR) Luxembourg (LU)

Netherlands (NL) Norway (NO) New Zealand (NZ) Sweden (SE) U.S. (US)

S. Africa (ZA) Croatia (HR) Israel (IL) Aggregate

Index, 2005=100

Notes: Covers 23 countries, deflated with the country PCE deflator.
Source: Federal Reserve Bank of Dallas (Mack and Martínez-García (2011)).

http://www.dallasfed.org/institute/houseprice/
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Table 4. Dallas Fed’s Real House Prices, Unit Root Test Results (Actual Data) 

Panel A: Test Statistics SADF GSADF Panel GSADF 

Australia 2.296*** 6.110***  

Belgium 0.904 3.450***  

Canada 0.699 4.061***  

Switzerland 1.848** 4.091***  

Germany -0.595 3.515***  

Denmark 1.279* 3.186***  

Spain 0.885 2.408**  

Finland 1.255* 2.357**  

France 1.065 2.055*  

U.K. 1.629** 3.143***  

Ireland 2.793*** 6.781***  

Italy -1.369 2.800***  

Japan 1.621** 5.013***  

S. Korea -0.541 -0.130  

Luxembourg 2.383*** 5.278***  

Netherlands -1.140 4.064***  

Norway 1.518** 2.533**  

New Zealand 1.911** 3.051***  

Sweden 1.125* 5.178***  

U.S. 1.686** 4.243***  

S. Africa -0.474 3.807***  

Croatia -0.002 2.244**  

Israel 0.936 1.849*  

   Aggregate 1.612** 3.327***  

   Full Panel of 22 Countries   1.641*** 

Panel B: Critical Values SADF GSADF Panel GSADF 

90% 1.076 1.766 0.678 

95% 1.380 2.065 0.749 

99% 1.936 2.670 0.942 

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance levels respectively. All 
results are for autoregressive lag length k=4. The aggregate series is computed as an unweighted average of the 
real house price indices of all the countries. 
Sources: Federal Reserve Bank of Dallas’ International House Price Database and authors’ calculations. 
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Chart 5. Dallas Fed's Real House Price Series
Simulation Results: Power of the Tests

Notes: The figure and table display the power of the univariate SADF and GSADF tests and the panel GSADF. The stat. significance level is set at 5%. 
Sources: Federal Reserve Bank of Dallas’ International House Price Database and authors’ calculations.
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Table 4 reports the SADF and GSADF statistics for the aggregate real house price index and its 

constituent country indices, as well as the corresponding finite-sample critical values. Chart 5 

displays the simulation results. This second set of results shows even more clearly than in the 

previous exercise with house price data by metropolitan area the severe power loss of the SADF 

test due to aggregation, and the superior performance of the GSADF test over the SADF test. 

However, it also illustrates that power losses relative to the panel GSADF test can be significant 

due to aggregation when having to rely on the univariate GSADF test on the aggregated series. 

For our second experiment based on real house prices for the 23 countries covered by the 

Federal Reserve Bank of Dallas’ International House Price Database, we summarize the power 

gains achieved by the GSADF test over the SADF test for each one of the constituent country 

series in the map in Chart 6. A striking contrast emerges from looking at Ireland (IE), South 

Korea (KR), and Norway (NO) for which the power gain of the GSADF test is under 20 

percentage points (0.2 in units) while the power gain exceeds 80 percentage points (0.8 in 

units) for the Netherlands (NL). By comparing the results across tests, we confirm that the 

GSADF test performs much better than the SADF test with national indexes, but we still find 

significant variation in the realized gains across locations. 

 

4. Implications of Aggregation for Empirical Inference 

To the best of our knowledge, the role that aggregation plays on detecting periods of mildly 

explosive behavior in time series—let alone the effects of aggregation on the empirical 

inferences that can be made about boom-bust episodes—have not been examined in the 

literature. In this paper, we investigate the role of aggregation with simulated data but also 

with real house price data at different levels of geographical aggregation. We specifically 

explore aggregation from local real house prices to national real house prices and the 

aggregation from national real house prices to global real house prices. 

The main empirical contribution of our paper is to examine the effect of cross-sectional 

aggregation on the performance of recursive (right-tailed) unit root tests—the power of the 
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univariate SADF and GSADF tests developed by Phillips and Yu (2011) and Phillips et al. 

(2015a,b), respectively. Furthermore, we explore the panel GSADF test proposed by Pavlidis et 

al. (2016) to exploit the cross-sectional variation in disaggregated data too. The panel GSADF 

provides a useful benchmark to quantify the power loss associated with aggregation. Our 

findings reveal a decline in power of both the SADF and GSADF tests due to aggregation and 

very large differences in the performance of both tests when applied to aggregated data—

favoring the recursive implementation of the GSADF test over than of the SADF test. 

We argue that this may warrant increased utilization not only of disaggregated data but also of 

panel data techniques, such as the panel GSADF proposed by Pavlidis et al. (2016), whenever 

possible. Moreover, our findings show that the GSADF test applied to aggregated data is 

substantially more powerful than the SADF test. Thus, we conclude that the GSADF test should 

be preferred to the SADF test whenever the researcher is restricted to using aggregated data 

for detecting explosive behavior in time series. In this section, we now illustrate the date-

stamping and empirical inferences that we draw—using aggregated vs. panel data—under the 

GSADF methodology. 

 

4.1 Exploring the Predictive Ability of Fundamentals 

The implications of rejecting the null under any of the recursive (right-tailed) unit root tests—

the univariate GSADF and SADF tests, and the panel GSADF test that exploits the cross-sectional 

dimension of the disaggregated data—must still be interpreted with caution because they are 

only indicative, not conclusive of non-fundamental behavior (bubbles). This is because factors 

other than bubbles can also give rise to explosive dynamics: for instance, in subsection 4.1 we 

highlight the role of risk-spreads and uncertainty in housing exuberance. This renders the 

interpretation of the results of these tests inconclusive. 

A common approach to empirically backout evidence of non-fundamental behavior in the data 

is to derive the fundamental price of housing and to test whether deviations between the 

actual and the fundamentals-based price (𝑃𝑡 − 𝑃𝑡
∗) display mildly explosive behavior. The 
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drawback of this approach is that it is heavily dependent on having the correct housing model 

to describe the fundamental-based price (𝑃𝑡
∗). More generally, omitted variables, measurement 

error in fundamentals, or simply model misspecification can bias our interpretation of (mildly) 

explosive behavior tests simply because rejecting the null may indicate the presence of rational 

bubbles in the data, some form of misspecification, or both (Flood and Garber, 1980; Hamilton 

and Whiteman, 1985; Gurkaynak, 2008). In other words, such a model-based approach has to 

contend with the well-known joint-hypothesis testing problem. 

We adopt an alternative strategy to investigate what underlies (mildly) explosive dynamics in 

real house prices. Our identifying assumption does not impose a particular model of housing 

tying fundamentals to house prices, but instead relies on a generic implication that holds true 

for a large class of asset pricing models: that is, that (mildly) explosive dynamics that arise from 

non-fundamental behavior ought to be unpredictable while those that spill over from 

fundamentals must be by their very own nature predictable. 

To implement our strategy, we do as follows: First, we use the date-stamping approach 

recommended by Pavlidis et al. (2016) on the panel and the related one recommended by 

Phillips et al. (2015a,b) on the aggregate series under the GSADF methodology in order to 

establish a timeline of episodes of exuberance (periods of mildly explosive behavior) in house 

prices. Second, we employ a dynamic probit model to assess the in-sample predictive ability of 

well-known housing-market and macro/financial fundamentals. This strategy allows us to 

evaluate the predictive ability of a given set of fundamentals.12 

We illustrate this strategy with the panel of 23 countries from the Federal Reserve Bank of 

Dallas’ International House Price Database (Mack and Martínez-García, 2011). The dependent 

variable of the probit model is a dummy variable 𝐸𝑋𝑈𝑡 that takes the value of 1 during an 

episode of global exuberance in real house prices and 0 otherwise, i.e., 𝐸𝑋𝑈𝑡 =

                                                           
12 With this strategy, we evaluate empirically the contribution—if any—of specific fundamentals to explain the 
observed patterns of (mildly) explosive behavior. Still, evidence that observed fundamentals are not statistically-
significant does not establish that episodes of exuberance in-sample must arise from rational bubbles due to 
possible omitted variables, measurement error, etc. We only argue that observed fundamentals that are not 
statistically significant do not appear to explain much of the evidence of (mildly) explosive behavior that we detect 
and date-stamp in the available data. 
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{
0, if Panel 𝐵𝑆𝐴𝐷𝐹𝑡(𝑟0) < 𝑠𝑐𝑣𝑡

𝛼 ,

1, if Panel 𝐵𝑆𝐴𝐷𝐹𝑡(𝑟0) > 𝑠𝑐𝑣𝑡
𝛼 ,

 where inference about the explosiveness of the process at 

observation 𝑡 = ⌊𝑟2𝑇⌋ is based on comparing the panel Backward Sup ADF (BSADF) statistic 

(panel 𝐵𝑆𝐴𝐷𝐹𝑡(𝑟0)) for that observation against the corresponding 100(1 − 𝛼)% critical value 

of the panel Sup ADF (𝑠𝑐𝑣𝑡
𝛼). The critical value 𝑠𝑐𝑣𝑡

𝛼  is based on 𝑡 = ⌊𝑟2𝑇⌋ observations, a 

sample size of 𝑇 observations, and a significance level of 𝛼.13 Similarly, we also construct an 

alternative exuberance indicator using the univariate BSADF on the aggregated series.14 

The panel BSADF statistic is particularly appealing because it measures the degree of overall 

exuberance in international housing markets taking into account the cross-sectional 

heterogeneity. With this panel approach we detect exuberance in-sample and date its 

occurrence second quarter 1999 till fourth quarter 2007. Interestingly, the chronology obtained 

using the univariate BSADF statistic on aggregated real house price data is similar going from 

second quarter 1999 till second quarter 2007. The dynamic probit 𝑃(𝐸𝑋𝑈𝑡 = 1) =

𝛷(𝐸𝑋𝑈𝑡−1𝛽𝑒𝑥𝑢 + 𝑥𝑡
′𝛽𝑥), where 𝛷(. ) is the standard normal cumulative distribution function, 

includes a dummy for one-quarter lagged exuberance 𝐸𝑋𝑈𝑡−1 and a vector 𝑥𝑡
′ of aggregate 

predictors for the 23 countries for which we have house price data. 

We augment a simple dynamic probit model with the vector of observed aggregate 

fundamentals 𝑥𝑡
′ to evaluate the extent to which fundamental-based explosiveness occurs.15 As 

                                                           
13 The Backward Sup ADF (BSADF) statistic for country i=1,…,N, 𝐵𝑆𝐴𝐷𝐹𝑖,𝑡(𝑟0) =

𝑠𝑢𝑝
𝑡=⌊𝑟2𝑇⌋,𝑟1∈[0,𝑟2−𝑟0]

 𝐴𝐷𝐹𝑖,𝑟1
𝑟2 , relates to 

the country i’s GSADF statistic as follows: 𝐺𝑆𝐴𝐷𝐹𝑖(𝑟0) =
𝑠𝑢𝑝

𝑟2∈[𝑟0,1]
𝐵𝑆𝐴𝐷𝐹𝑖,𝑡=⌊𝑟2𝑇⌋(𝑟0). The panel counterpart of the 

BSADF given by Panel 𝐵𝑆𝐴𝐷𝐹𝑡(𝑟0) =
1

𝑁
∑ 𝐵𝑆𝐴𝐷𝐹𝑖,𝑡(𝑟0)
𝑁
𝑖=1  and the corresponding panel GSADF statistics are 

described in detail in section 2.4. The distributions of these test statistics are non-standard and depend on the 
minimum window size 𝑟0. Hence, finite-sample critical values are obtained through Monte Carlo simulations by 
generating 2000 replications of a driftless random walk process with 𝑁(0,1) errors. In the panel case, we adopt a 
sieve bootstrap approach designed specifically to allow for cross-sectional error dependence in the distribution. 
Additional information on the bootstrap procedure to derive the critical values can be found in Phillips et al. 
(2015a,b) and Pavlidis et al. (2016). 
14 Following the implementation strategy discussed in subsection 2.5, we set 𝛼 at 95% and the lags in the ADF 
regression to 𝑘 = 4. The minimum window size 𝑟0 ensure a minimum window of ⌊𝑟0𝑇⌋ = 25 quarterly 
observations for real house price series with a sample size 𝑇 of 164 observations. Finally, we also follow the 
recommendation of Phillips et al. (2015a,b) and Pavlidis et al. (2016), we set a minimum duration for each episode 

of exuberance that corresponds to a fraction 
ln(𝑇)

𝑇
 of quarterly series of sample size 𝑇—which, in our case, implies a 

minimum duration of 5 quarters—in order to exclude very short episodes. 
15 We construct aggregates for the covariates as well as for real house prices in our dataset based on a simple 
arithmetic average (consistent with the empirical exploration in section 3). 
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suggested by the standard asset pricing model of housing laid out in the Appendix, we 

investigate the predictive ability of measured policy uncertainty (from PolicyUncertainty.com) 

and the spread between the long- and short-term interest rates (which proxies the slope of the 

yield curve and indicates market expectations of future policy rates). 

Among the other housing/macro fundamentals in 𝑥𝑡
′ we include: quarter-over-quarter changes 

in real personal disposable income per capita from the Federal Reserve Bank of Dallas’ 

International House Price Database (capturing a key demand-side fundamental that is viewed 

as anchoring the housing market over the long-run); quarter-over-quarter changes in stock 

market valuations deflated with the CPI (to incorporate an alternative asset class which 

influences households’ financial wealth); and real GDP growth (quarter-over-quarter) (as key 

indicator of the state of the business cycle). 

Furthermore, we also incorporate a number of financial variables in the specification—

whenever those are found to be statistically-significant—among a set that includes: Quarter-

over-quarter changes in credit to the private sector and in the current account deflated with 

the CPI as well as the current-account-to-GDP ratio (since an expansion of private credit or 

capital inflows from abroad can lead to asset price and housing boom and busts); market 

volatility measured by the Chicago Board Options Exchange’ VIX and, to account for commodity 

prices, oil prices based on the West Texas Intermediate deflated with U.S. headline CPI.16 

 

4.2 Empirical Findings 

To specify the benchmark panel dynamic probit model, we start with a general specification 

including all statistically-significant explanatory variables and the exuberance indicator under 

the panel BSADF approach as the dependent variable (Table 5, Column M1). This model is 

reduced by removing the financial variables (Table 5, Column M2) and all explanatory variables 

other than lagged exuberance, policy uncertainty and the spread (Table 5, Column M3). 

                                                           
16 Due to data availability, we proxy market volatility (VIX) as well as policy uncertainty from PolicyUncertainty.com 
with the available U.S. series for each which allows us to cover from first quarter 1986 till fourth quarter 2015 in 
our subsequent probit exercise. 
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Similarly, we estimate a probit model for the exuberance indicator under the univariate BSADF 

approach on the aggregated real house price series including all the relevant covariates 

(Column M4), the covariates excluding the statistically-significant financial variables in the 

specification (Column M5), and lagged exuberance, policy uncertainty, and the spread alone 

(Column M6) in Table 5. We report all the results with a constant in the specification. 

These results largely support the view that policy uncertainty and the spread of the yield curve 

appear to be associated with global exuberance in-sample, but with opposite sign (as suggested 

by theory). Based on these findings, the higher spreads across countries tend to be associated 

with a higher likelihood of global exuberance while policy uncertainty can tame the emergence 

of such an episode of widespread explosiveness in international housing markets. We observe 

that apart from lagged exuberance, policy uncertainty and the spread, key explanatory 

variables include standard macro/housing fundamentals such as the real personal disposable 

income per capita and stock market valuation gains (which play a substantial role in mapping 

housing demand) as well real GDP growth (that captures the aggregate business cycle). 

Furthermore, financial variables also appear to play a role in the emergence of global 

exuberance. Here, we show that our empirical inferences depend on the degree of aggregation 

applied to real house prices in order to derivate the dummy variable 𝐸𝑋𝑈𝑡. The role of market 

volatility and real credit growth in the private sector appear most significant under the 

chronology of exuberance obtained from aggregated real house prices while the extent of 

foreign financing proxied by the current account over GDP ratio is the dominant financial force 

whenever the chronology of exuberance is set under our preferred panel technique. 

Both univariate and panel BSADF methodologies give similar chronologies and both are 

consistent with theory in pointing out that spreads and policy uncertainty matter. However, 

empirical inferences can still differ even when the resulting chronologies are close like in this 

exercise. As noted here, the mechanism that is highlighted by the evidence is somewhat 

different depending on the degree of aggregation of the underlying house price data (specially 

on the role of financial variables). 
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Table 5. Estimation Results for the Dynamic Probit Model 
 

Panel BSADF Univariate BSADF 

 M1 M2 M3 M4 M5 M6 

Lagged exuberance 40.56*** 26.84*** 7.11*** 21.83*** 4.85*** 4.32*** 

Policy Uncertainty -0.24*** -0.18** -0.07*** -0.18** -0.01 -0.02** 

Interest rate spread 3.98*** 2.20*** 0.87 5.03*** 0.53* 0.50 

RPDI per capita growth 5.33** 0.89 -- 5.39** 0.17 -- 

Real GDP growth 5.86*** 3.29** -- 9.22** 1.04*** -- 

Real stock growth 0.66*** 0.58** -- 0.44*** 0.04** -- 

Current account ratio 4.83** -- -- -- -- -- 

Real credit growth -- -- -- -3.13** -- -- 

Market volatility (VIX) -- -- -- 0.94** -- -- 

AIC 0.18 0.18 0.17 0.24 0.25 021 

McFadden’s R2 0.96 0.95 0.91 0.93 0.88 0.88 

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance levels respectively. All 
results underlying the detection and date-stamping of exuberance are for autoregressive lag length k=4 with the 
initial window set from first quarter 1975 to first quarter 1982. Our panel is strongly balanced and includes 
dummies for global exuberance based on the 23 countries in our sample and nearly complete data on a large 
selection of covariates covering the period from first quarter 1986 to fourth quarter 2015. The covariates include 
interest rate spreads, the U.S. economic policy uncertainty index from PolicyUncertainty.com, growth in real per 
capita personal disposable income (RPDI), changes in real stock market valuations, changes in the West Texas 
Intermediate (WTI) index of oil prices deflated with U.S. CPI, the CBOE market volatility index (VIX extended with 
the VOX, old method data), real GDP growth, private real credit growth to the nonfinancial sector, the current-
account-to-GDP ratio, and the growth rate in the real current account. All covariates are aggregated with a simple 
arithmetic mean. 
We fit a dynamic panel probit model with constant term (M1-M3) with lagged exuberance where the dependent 
variable is constructed with the panel BSADF statistic. We report the results of a parsimonious specification of the 
dynamic panel model that includes the statistically significant variables. This benchmark M1, apart from lagged 
exuberance, includes policy uncertainty, interest rate spreads, real per capita personal disposable income (RPDI) 
growth, real GDP growth, changes in real stock market valuations, and additional financial variables (the current 
account to GDP ratio). We also report results after dropping the financial variables (M2) and all the explanatory 
variables except the spread and policy uncertainty (M3). Standard errors are robustified. We also report the results 
of three analogous specifications (benchmark in M4 where the relevant financial variables are credit growth and 
the VIX index, benchmark excluding the financial variables in M5, and benchmark excluding all covariates except 
the spreads and policy uncertainty in M6) where episodes of global exuberance are dated based on an aggregates 
real house price index obtained as the arithmetic mean of the 23 countries in the sample. Standard errors are 
robustified. 
Sources: Federal Reserve Bank of Dallas’ International House Price Database, National Sources (Central Banks and 
Statistical Offices), Bank for International Settlements, Wall Street Journal, Chicago Board Options Exchange 
(CBOE), PolicyUncertainty.com, Haver Analytics, and authors’ calculations. 

 

Based solely on aggregated data, we would conclude that credit growth is an important factor 

explaining exuberance—and that stock market volatility (VIX) has also effects above and 

beyond those priced into the interest rate spreads. In turn, when we exploit the panel 
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dimension, we see that is financing fuelled from the rest-of-the-world—instead of overall credit 

growth—the key financial factor. Therefore, these findings reinforce our main conclusion that 

the degree of aggregation of the data can be a limiting factor on the overall usefulness of right-

tailed tests for monitoring asset markets—not solely because of the power losses that we show 

elsewhere in this paper, but also because of the potential impact of an aggregation bias (whose 

direction or magnitude are not well-known) on our empirical inferences. 

 

5. Concluding Remarks 

In this paper, we explore the relevance of aggregation for detecting periods of exuberance 

(mildly explosive) with simulated data and with two applications based on real house price data 

disaggregated by location. We find that by exploiting disaggregated data in a panel setting, we 

can more successfully identify such episodes. Our findings also suggest that aggregation bias 

can be a limiting factor to interpret the deep causes of mildly explosive behavior detected by 

recursive (right-tailed) unit root tests. 

Therefore, we recognize that the collection and analysis of locational data across different 

housing markets may be of crucial importance to monitoring housing market developments. 

We argue more generally that this may warrant increased utilization not only of disaggregated 

data but also of panel data techniques, such as the panel GSADF proposed by Pavlidis et al. 

(2016), whenever possible. 

Our findings indicate that the GSADF test applied to aggregated data is substantially more 

powerful than the SADF test and, even more so, than the standard (right-tailed) ADF test 

implemented over the full sample only. Our findings suggest that the recursive implementation 

of the (right-tailed) unit root test over a large sequence of subsamples is key to lessening the 

power loss associated with the use of aggregated data. Thus, the univariate GSADF test should 

be preferred to the univariate SADF test (and also to the standard ADF test) whenever the 

researcher is restricted to using aggregated data only.  
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Appendix. Mildly Explosive Behavior, Uncertainty, and Risk-Spreads 
To motivate our subsequent empirical analysis and the challenges posed by aggregation, we 
start with a theoretical distinction between non-fundamental behavior (bubbles) in episodes of 
exuberance and fundamental-based explosiveness in the housing data. We adopt the asset 
pricing framework (in line with Clayton, 1996; Hiebert and Sydow, 2011; Pavlidis et al. 2016) 
under standard arbitrage conditions for the study of financial contagion and explosive behavior 
in house prices (whose formal derivation from first principles can be found in Martínez-García 
and Grossman, 2018). The asset pricing model yields the following difference equation for 
house prices 

𝑃𝑡 =
1

𝜀𝑡[𝐼𝑡+1
𝑠 ]

𝜀𝑡[𝑃𝑡+1 + (1 − 𝑏)𝑌𝑡+1],                                                   (A1) 

where 𝜀𝑡[𝐼𝑡+1
𝑠 ] is the discount factor, 𝑃𝑡+1 is the asset-value of a housing unit at t+1 and 

(1 − 𝑏)𝑌𝑡+1 is the housing rental income (either actual if the housing unit is rented or imputed 
if owner-occupied) at t+1. Here, rental income is defined as the payout ratio (1 − 𝑏) times the 
flow of earnings on the housing unit (actual or imputed) 𝑌𝑡+1; in this way, housing rents net out 
expenses such as maintenance costs, taxes, reinvestment, etc. from total earnings. 

The difference equation in (A1) shows that the price of a housing unit today must be equal to 
the discounted value of tomorrow’s expected rental income (the payout component of housing 
earnings) plus tomorrow’s resale price of housing. We discount using an appropriate rate—the 
expected return on an alternative risky investment—given by: 

𝜀𝑡[𝐼𝑡+1
𝑠 ] = 𝐼𝑓 + 𝑓(𝜎𝑚, 𝜎𝑠; . ).                                                      (A2) 

This discount rate adds a risk-premium component (𝑓(𝜎𝑚, 𝜎𝑠; . )) to the risk-free rate (𝐼𝑓) which 
prices macro risks such as those arising from macro volatility (𝜎𝑚) or from market volatility 
associated to the alternative asset that could be used for investment (𝜎𝑠).

17 

By replacing (A2) into (A1) and recursively substituting forward, we obtain the following 
present-value specification: 

𝑃𝑡 = (1 − 𝑏)𝜀𝑡 [∑ (
1

𝐼𝑓+𝑓(𝜎𝑚,𝜎𝑠;.)
)
𝑗

+∞
𝑗=1 𝑌𝑡+𝑗] + lim

𝑇→+∞
𝜀𝑡 [(

1

𝐼𝑓+𝑓(𝜎𝑚,𝜎𝑠;.)
)
𝑇

𝑃𝑡+𝑇] .             (A3) 

We allow earnings from investing in a housing unit (𝑌𝑡) to follow a general autoregressive 
process of order 1, 

𝑌𝑡 = 𝜑𝑌𝑡−1 + 𝜖𝑡, 𝜖𝑡~𝑊𝑁(0, 𝜎𝜖
2),                                                     (A4) 

where 𝜑 is unrestricted to take values in the I(0), I(1), and mildly-explosive regions, and 𝜖𝑡 is an 
independent and identically-distributed (i.i.d.) white noise stochastic process. 

                                                           
17 Whenever it follows that 𝑓(𝜎𝑚, 𝜎𝑠; . ) > 0 and 

𝜕𝑓(𝜎𝑚,𝜎𝑠;.)

𝜕𝜎𝑚
> 0,

𝜕𝑓(𝜎𝑚,𝜎𝑠;.)

𝜕𝜎𝑠
> 0, ceteris paribus the risk-premium is 

higher the higher macro volatility (𝜎𝑚) or the higher market volatility (𝜎𝑠) are. 
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Heterogenous beliefs and uncertainty. An important economic concept is that of Knightian 
uncertainty (Knight, 1921) which arise when the probabilities of outcomes cannot be accurately 
measured or are simply unknown—unlike risk which is related to outcomes whose odds are 
known or can be learned. Knightian uncertainty goes beyond situations in which we cannot 
measure accurately the odds of events and includes cases for which we don’t know all possible 
outcomes, but here we highlight monetary policy uncertainty in the former case assuming that 
heterogenous beliefs (and disagreements across investors) reflect the difficulty in assessing the 

odds on the risk-free rate (𝐼𝑓). 

For simplicity, we assume that there is a finite number of possible outcomes for the risk-free 

rate which we narrow down to just two: a high rate 𝐼𝑓,𝐻 and a low rate 𝐼𝑓,𝐿 such that 0 <

𝐼𝑓,𝐿 ≤ 𝐼𝑓,𝐻. Furthermore, we assume two types of agents indexed 𝜏 = 𝐿, 𝐻 that put a mass of 
probability one in either the low or the high rate outcomes, respectively. In this simple setup, 
uncertainty about the risk-free rate reflects disagreements on the stance of monetary policy 
and leads to heterogeneous beliefs on the economically-relevant discount factor for pricing 
housing investments. 

Heterogeneous expectations are introduced into the asset-pricing model in (A1)-(A4) following 
the axiomatic approach in Branch and McGough (2009). In particular, we assume that agents’ 
expectations satisfy the law of iterated expectations at the aggregate level and rule out wealth 
distribution dynamics that otherwise could influence the forecasts by agent type ensuring a 
structure on higher-order beliefs that allows for aggregation. Thus, we denote the aggregate 
(subjective) expectations operator on the generic variable 𝑔𝑡+1 at 𝑡 + 1 based on information 
up to time 𝑡 as 𝜀𝑡[𝑔𝑡+1] and we define it as a weighted average of the subjective expectations 

across agent types 𝜏, i.e., 𝜀𝑡[𝑔𝑡+1] = ∑ 𝜃𝜏𝜀𝑡
𝜏[𝑔𝑡+1]𝜏∈{𝐿,𝐻} . The mass of each agent type 𝜃𝜏 

satisfies that ∑ 𝜃𝜏𝜏∈{𝐿,𝐻} = 1 and 0 ≤ 𝜃𝐿 ≤
1

2
. 

We assume that both agent types are rational and form their expectations with all available 
information up to the present, except because uncertainty on the stance of monetary policy 
shows up in their disagreement about the likely state in which the (constant) risk-free rate falls. 
Accordingly, we can rewrite equations (A1) and (A2) as follows 

𝑃𝑡 =
1

𝜃𝐿𝜀𝑡
𝐿[𝐼𝑡+1

𝑠 ]+𝜃𝐻𝜀𝑡
𝐻[𝐼𝑡+1

𝑠 ]
[𝜃𝐿𝜀𝑡

𝐿[𝑃𝑡+1 + (1 − 𝑏)𝑌𝑡+1] + 𝜃𝐻𝜀𝑡
𝐻[𝑃𝑡+1 + (1 − 𝑏)𝑌𝑡+1]],       (A5) 

𝜀𝑡
𝜏[𝐼𝑡+1

𝑠 ] = 𝐼𝑓,𝜏 + 𝑓(𝜎𝑚, 𝜎𝑠; . ), 𝜏 ∈ {𝐿, 𝐻},                                             (A6) 

where we assume that the expectations of each agent type 𝜀𝑡
𝜏[. ] are rational albeit under 

heterogenous beliefs on the risk-free rate. From here we obtain the counterpart of the present-
value specification in (A3) as: 

𝑃𝑡 = (1 − 𝑏) [∑ (
1

𝜃𝐿𝐼𝑓,𝐿 + 𝜃𝐻𝐼𝑓,𝐻 + 𝑓(𝜎𝑚, 𝜎𝑠; . )
)
𝑗+∞

𝑗=1
𝜀𝑡(𝑌𝑡+𝑗)] + ⋯ 

   lim
𝑇→+∞

𝜀𝑡 [(
1

𝜃𝐿𝐼𝑓,𝐿+𝜃𝐻𝐼𝑓,𝐻+𝑓(𝜎𝑚,𝜎𝑠;.)
)
𝑇

𝑃𝑡+𝑇] .                                          (A7) 
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Moreover, given that the expectations about the future fundamentals (𝑌𝑡+𝑗) do not depend on 

the agents’ beliefs about the risk-free rate and are rationally formed, it follows that 𝜀𝑡(𝑌𝑡+𝑗) =

𝜀𝑡
𝐿[𝑌𝑡+𝑗] = 𝜀𝑡

𝐻[𝑌𝑡+𝑗] = 𝜑𝑗𝑌𝑡. 

Asset-pricing under heterogenous beliefs. We define the weighted risk-free rate for the 

aggregate present-value specification in (A7) as 𝐼𝑓 = 𝜃𝐿𝐼
𝑓,𝐿 + 𝜃𝐻𝐼

𝑓,𝐻 = 𝐼𝑓,𝐻 − 𝐼𝑓,𝐷𝑖𝑓𝑓 and 

measure uncertainty by the disagreement amongst agent types given by 𝐼𝑓,𝐷𝑖𝑓𝑓 ≡

𝜃𝐿(𝐼
𝑓,𝐻 − 𝐼𝑓,𝐿). In this setting, so long as 𝐼𝑓,𝐻 > 𝐼𝑓,𝐿 (𝐼𝑓,𝐻 ≠ 𝐼𝑓,𝐿), uncertainty reaches its 

lowest when 𝜃𝐿 = 0 and there is no disagreement 𝐼𝑓,𝐷𝑖𝑓𝑓 = 0. In turn, uncertainty is at its 

highest whenever both agent types reach the highest disagreement point 𝐼𝑓,𝐷𝑖𝑓𝑓 =
1

2
(𝐼𝑓,𝐻 − 𝐼𝑓,𝐿) and 𝜃𝐿 =

1

2
. Hence, the higher the uncertainty becomes, the smaller the 

weighted risk-free rate 𝐼𝑓 would be. 

The rational-expectations solution to the present-value model in (A4)-(A7) under heterogenous 
beliefs consists of a fundamental component (𝑃𝑡

∗) and a periodically-collapsing rational bubble 
(𝐵𝑡) such that 𝑃𝑡 = 𝑃𝑡

∗ + 𝐵𝑡 (similar to Sargent 1987; Diba and Grossman 1988a, 1988b). There 
exist infinite forward solutions to the house price 𝑃𝑡  implied by the present-value model in (A7) 
where the non-fundamental component (rational bubble) 𝐵𝑡 satisfies the submartingale 
property: 

𝜀𝑡[𝐵𝑡+1] = (𝐼
𝑓 + 𝑓(𝜎𝑚, 𝜎𝑠; . )) 𝐵𝑡,                                               (A8) 

if the transversality condition lim
𝑇→+∞

𝜀𝑡 [(
1

𝐼𝑓+𝑓(𝜎𝑚,𝜎𝑠;.)
)
𝑇

𝑃𝑡+𝑇] = 0 does not hold. Since the 

discount factor is positive (𝐼𝑓 + 𝑓(𝜎𝑚, 𝜎𝑠; . ) > 0), the term 𝐵𝑡 is thus expected to be explosive. 

Imposing the transversality condition lim
𝑇→+∞

𝜀𝑡 [(
1

𝐼𝑓+𝑓(𝜎𝑚,𝜎𝑠;.)
)
𝑇

𝑃𝑡+𝑇
∗ ] = 0 to rule out non-

fundamental behavior (rational bubbles), the unique (nonexplosive) solution to (A8) whenever 

𝐼𝑓 + 𝑓(𝜎𝑚, 𝜎𝑠; . ) − 𝜑 > 0 yields a variant of the discounted dividend model (Gordon and 
Shapiro, 1956) for real house prices, i.e., 

𝑃𝑡
∗ = (

𝜑

𝐼𝑓+𝑓(𝜎𝑚,𝜎𝑠;.)−𝜑
) (1 − 𝑏)𝑌𝑡,                                                 (A9) 

and 

𝑃𝑡
∗ = 𝜑𝑃𝑡−1

∗ + (
𝜑

𝐼𝑓+𝑓(𝜎𝑚,𝜎𝑠;.)−𝜑
) (1 − 𝑏)𝜖𝑡,                                       (A10) 

where the fundamental dynamics of the house price in (A10) follow from (A9) and (A4). 

Implications for explosiveness in house prices. The fact that 𝐵𝑡 is explosive has important 
implications for house prices, according to this model. If the economic fundamentals in (A4) 
follow either a stationary (|𝜑| < 1) or an integrated process of order 1 (a martingale with 𝜑 =
1), then the dynamics of fundamental-based prices given by (A10)—which inherit the 
autoregressive coefficient 𝜑 directly from (A4)—also display non-explosive behavior. 
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Furthermore, house prices and fundamentals would be cointegrated in the absence of the 
bubble term 𝐵𝑡. Hence, a possible reason why house prices display explosive dynamics in this 
framework is because of the emergence of rational bubbles. 

Often the observable housing fundamentals of the housing markets show non-explosive 
behavior in the data. However, factors other than bubbles can give rise to explosive dynamics in 
house prices too even when housing earnings (or housing rents) are non-explosive. Within the 
asset pricing framework laid out here, time-variation in the discount rate can lead to explosive 
behavior even when rational bubbles are ruled out and fundamentals are known to be non-
explosive (see, e.g., Pavlidis et al., 2016). In fact, it can be shown that unexpected changes in 
the risk-premium 𝑟𝑝 ≡ 𝑓(𝜎𝑚, 𝜎𝑠; . ) that raise the discount rate can lead to episodes of 
explosive behavior within sample, while greater policy uncertainty lowering the weighted risk-

free rate 𝐼𝑓 has the opposite effect. 

For instance, let’s say that investors price in 𝑟𝑝 = 𝜎𝐿 > 0, but at time t they wake up to 

discover that 𝑟𝑝𝐻 > 𝑟𝑝𝐿  before risk-spreads return to 𝑟𝑝𝐿  from t+1 onwards. This unexpected 
(short-lived and temporary) spike in riskiness alone implies that equation (A10) no longer holds 
and the dynamics of fundamental-based house prices become: 

𝑃𝑡+𝑗+1
∗ = 𝛿𝑗(𝜑, 𝑟𝑝

𝐻 , 𝑟𝑝𝐿 ; . )𝑃𝑡+𝑗
∗ + (

𝜑

𝐼𝑓+𝑟𝑝𝐿 −𝜑
) (1 − 𝑏)𝜖𝑡+𝑗, ∀𝑗 ≥ 0,                 (A11) 

where 𝛿𝑗(𝜑, 𝑟𝑝
𝐻 , 𝑟𝑝𝐿 ; . ) = {

𝜑 (
𝐼𝑓+𝑟𝑝𝐻

𝐼𝑓+𝑟𝑝𝐿
) , if 𝑗 = 0

𝜑, if 𝑗 > 0
. Under a standard parameterization ensuring 

that 𝐼𝑓 + 𝑟𝑝𝐿 > 0, it follows that (
𝐼𝑓+𝑟𝑝𝐻

𝐼𝑓+𝑟𝑝𝐿
) > 1. Hence, this illustration shows that unexpected 

shifts on the risk-spread can generate an episode of explosive behavior whereby 

𝛿𝑗(𝜑, 𝑟𝑝
𝐻 , 𝑟𝑝𝐿 ; . ) > 1 for 𝑗 = 0 when housing fundamentals are I(1) (𝜑 = 1) and even when 

fundamentals are stationary (|𝜑| < 1) if it holds that 𝜑 (
𝐼𝑓+𝑟𝑝𝐻

𝐼𝑓+𝑟𝑝𝐿
) > 1. Analogously, we can infer 

that an increase in uncertainty that increases the disagreement amongst agent types 𝐼𝑓,𝐷𝑖𝑓𝑓 

and lowers the weighted risk-free rate 𝐼𝑓 would have the opposite effect. 
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Supplementary Appendix. Recursive Implementation of the Right-Tailed ADF Tests 

In this paper we implement a number of right-tailed unit root tests designed to detect the 
presence of periods of mildly explosive behavior within sample. These tests include: 

1. ADF 

2. sup ADF (SADF), see Phillips and Yu (2011) 

3. Generalized SADF (GSADF), see Phillips et al. (2015a,b) 

4. Panel GSADF, see Pavlidis et al. (2016) 

These right-tailed unit root tests differ crucially on the recursion mechanism used in their 
implementation. In order to illustrate this, we need to review some notation first. The full 
sample of 𝑇 observations is normalized on the interval [0,1]. Here, we denote 𝑟1 and 𝑟2 as the 
corresponding fractions of the sample which define the beginning and end of a given subsample 
such that 0 ≤ 𝑟1 < 𝑟2 ≤ 1. We denote by 𝑟𝑤 = 𝑟2 − 𝑟1 the window size of the regression 
estimation, while 𝑟0 is the required fixed initial window which satisfies that the subsample 
ending in 𝑟2 is such that 𝑟2 ∈ [𝑟0, 1] (i.e., 𝑟0 is the required minimum window size). 

The first test is a right-tailed version of the standard ADF unit root test. With the given notation 
for a generic recursive mechanism, the implementation of the ADF test can be represented 
graphically simply as follows: 

 

 

 

The SADF test is based on a proper recursion mechanism based of the ADF test statistics with 
an expanding window. The recursion mechanism goes as follows in this case: 

10 Sample interval

𝑟1

𝑟𝑤= 1

𝑟2

Illustration of the ADF Procedure



44 
 

 

The SADF test suffers from a loss of power in the presence of multiple periodically-collapsing 
occurrances of mildly explosive behavior. As a prefered alternative, Phillips et al. (2015a,b) 
suggest the GSADF test procedure which is a generalization of the SADF test that allows a more 
flexible recursion mechanism where the starting point 𝑟1 varies within the range [0, 𝑟2−𝑟0]. The 
same recursion mechanism is applied in the panel GSADF procedure of Pavlidis et al. (2016). 
Formally, the GSADF test recursion can be illustrated as follows: 

 

 

The GSADF recursion mechanism adopts the following strategy: set 𝑟1 ∈ [0, 𝑟2−𝑟0] and 𝑟2 ∈
[𝑟0, 1]; use [𝑟1, 𝑟2] as a moving window where 𝑟𝑤 = 𝑟2 − 𝑟1 is the corresponding window width 
for each subsample; and, then, vary 𝑟1 and 𝑟2 over the full sample. 

 

10 Sample interval

𝑟1

𝑟𝑤= 𝑟2

𝑟2

𝑟2

𝑟2

Illustration of the SADF Procedure

10
Sample interval

𝑟1

𝑟1

𝑟1

𝑟𝑤= 𝑟2 − 𝑟1

𝑟2

𝑟2

𝑟2
𝑟2

𝑟2
𝑟2

𝑟2
𝑟𝑤= 𝑟2 − 𝑟1

𝑟𝑤= 𝑟2 − 𝑟1

𝑟2
𝑟2

Illustration of the GSADF Procedure


