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Abstract 

Water and phosphorus (P) are essential resources for crop production, yet both are increasingly 

limited, threatening global food security. Soil drying and re-wetting (DRW) has reportedly 

increased P availability in numerous soils, whilst intermittent irrigation that applies less water 

than conventional full irrigation can maintain crop yields. To test the hypothesis that DRW 

could release P at soil water potentials (SWPs) that can support plant growth, thereby increasing 

crop P use efficiency and yields, experiments at different scales aimed to evaluate P release and 

plant uptake. Laboratory studies using three low-P UK soils determined that available P (sodium 

bicarbonate extractable P) significantly increased (by 4-7 mg kg-1) as SWP decreased (to a 

minimum of -212 MPa). A significant change point (releasing 2 mg P kg-1) occurred at -2.9 

MPa. A pot study showed that surface soil drying to this change point did not increase P 

availability over one or two DRW cycles, suggesting laboratory results could not be scaled up 

spatially and temporally. Initially air-drying (to -38 MPa) and re-wetting soil prior to planting 

Brachypodium distachyon in pots significantly increased available P at transplanting (by 1 mg 

kg-1) and doubled grain yields independent of P fertiliser application. In a field trial in central 

Madagascar in low-P, highly P-fixing soil, applying alternate wetting and drying (AWD) or 

post-anthesis soil drying to Oryza sativa hardly altered P uptake or yields. Thus, DRW increased 

P availability and yields in pots, but plants did not benefit during a cropping cycle in the field. 

Applying P fertiliser (10 or 25 kg ha-1) had a greater effect than AWD, with optimal harvest 

index (HI) and P use efficiency (PUE) at the intermediate rate. Further research to determine 

locally-relevant management techniques, stimulating P release at appropriate spatial and 

temporal scales to allow plant uptake, is urgently required. 

Key words: phosphorus, drying and re-wetting, soil water potential, phosphorus use efficiency, 

yields.  
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“...Good luck and Good work for the happy mountain raindrops…some… creep out of site to 

the grass roots… seeking and finding their appointed work.” 

-John Muir, 1911, ‘My first summer in the Sierra.’ 

 

* 

 

“I cannot over-emphasize the importance of Phosphorus not only to agriculture and soil 

conservation but also to the physical health and economic security of the people of the 

nation.” 

-Franklin D. Roosevelt, 1938, ‘Message to Congress on Phosphates for Soil Fertility.’ 
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Chapter 1: General Introduction 

Global water and phosphorus use in agriculture  

The supplies and management of water and phosphorus are two of the most important issues 

related to global agricultural production and food security. Water is fundamental to the growth 

of crop plants as it is required for structure, photosynthesis and solute transport. Irrigation 

comprises the major component of global water use, although increases in demand alongside 

uncertain impacts of climate change are predicted to cause severe water stress to agricultural 

productivity and food security (van Dijk et al., 2013; Wang et al., 2016). Severe water scarcity 

is already experienced by 2.4 billion people, comprising 36 % of the global population, and 

predicted to affect 52 % of the global population by 2050 in the absence of effective mitigation 

strategies (von Grember et al., 2016). As well as geo-political and socio-economic controls on 

water supplies, climate change will likely create more variable and extreme rainfall and drought 

events (NAS, 2016). Linking crop and water simulation models with different scenarios of 

socio-economic and climatic change showed that future water scarcity will likely limit cereal 

crop production by up to 40 % from current levels by the 2040s. This is due to increased crop 

water requirements with elevated temperatures associated with climate change as well as 

increased water demand from other sectors (Wei et al., 2009). Already, there are many examples 

of these effects. Madagascar’s diminished rice harvest in 2013, which left four million people 

food insecure, was attributed to erratic weather characterised by flooding followed by a period 

of drought (FAO/ WFP, 2013). More than 18 million people in Somalia, Ethiopia and Kenya 

experienced acute food insecurity in 2017, largely caused by declines in crop yields due to 

drought and flooding; for example, cereal yields were 87 % below average in northwest Somalia 

due to late onset and early cessation of seasonal rains (USAID, 2017). Increasing the efficiency 

of water use in agriculture at the global scale is paramount to current and future food security.  

Nutrients are also vital for crop growth. Phosphorus (P) is an essential macronutrient which 

cannot be substituted, forming adenosine triphosphate (ATP) which is crucial to metabolism 
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and growth for all forms of life. The green revolution dramatically increased crop yields, 

partially enabled by the increased application of mined rock phosphate as a primary source of 

P in chemical fertilisers (Elser and Bennett, 2011). However, rock phosphate is a non-renewable 

resource and P sustainability in agriculture has gained increasing attention in recent years. 

Following a price spike of 700 % in 2008, Cordell et al. (2009) cautioned of the risk of  global 

“peak phosphorus” due to a high dependency causing demand to outweigh supply, with strong 

economic and geo-political implications due to inequitable control of, and access to, phosphate 

mines. Several comprehensive reviews have highlighted the need to reduce dependency on rock 

phosphate due to environmental and economic risks, and to instead seek opportunities to 

sustainably utilise P resources in food production (Cordell et al., 2009; 2014; 2015; Haygarth 

et al., 2014; George et al., 2016).  

Although water and phosphorus are essential resources for food production, both are limited 

and increasingly threatened. Moreover, integrated guidelines on water and nutrient management 

(as in Thompson et al., 2005) are limited. There is increasing understanding that water 

availability affects P availability and it is the central aim of the studies herein to further 

characterise how they interact and their agronomic relevance. Since approximately 40 % of 

global food production depends on irrigation (Turral et al., 2011), and 90 % of global 

phosphorus demand is for food production (Cordell et al., 2009), focusing on agricultural food 

crops is a key priority. Although a diversity of food crops is essential to human nutrition and 

health, the majority of calories are supplied by cereal crops, principally paddy rice, wheat and 

maize (Fischer et al., 2014) which use the most water (Mekonnen and Hoekstra, 2010), land 

(Fischer et al., 2014) and nutrient fertilisers (Heffer, 2013). Thus reducing water and fertiliser 

inputs in these systems without reducing yields would be beneficial. 

Increasing the efficiency of water use in agriculture 

As demand for food increases, there is a need to enhance crop yields using limited water. The 

“sustainable intensification” (SI) of agriculture aims to increase yields without converting more 
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non-agricultural land into production, and without depleting resources or causing adverse 

environmental impacts (Pretty and Bharucha, 2014). Consistent with the SI concept, 

understanding water-limited crop yield as the product of water use, water use efficiency 

(biomass production / water use; WUE) and harvest index (harvested biomass / total biomass; 

HI) is central to realising opportunities to maximise yields (Passioura, 1980; 1996). Irrigation 

water productivity (crop yield per unit of applied irrigation water; WP) is also a useful 

agronomic measure (Sadras, 2009). A key practical challenge of limiting irrigation volumes is 

to maintain a sufficient mass of the root system within soil that is maintained above the point 

of soil drying beyond which plants fail to recover, known as permanent wilting point (PWP). 

This can be judged by the soil water potential (SWP) and is generally considered to be –1.5 

MPa (Figure 1.4). This value depends on soil type (Czyż and Dexter, 2013) and the tolerance 

of different plant species and genotypes to soil moisture deficit, yet remains a useful reference 

point for severely water-limited conditions.   

Various techniques and technologies aiming to reduce irrigation inputs have been developed for 

different crop production systems globally, and are employed by commercial enterprises. In 

numerous studies, deficit irrigation approaches (where water is provided at rates below 

requirements for full crop evapotranspiration) can yield equally to fully irrigated crops, often 

with improvements in crop quality, despite reduced water use (Fereres and Soriano, 2007). 

Deficit irrigation (DI) techniques allow water supply to be regulated according to crop 

requirements, accounting for changes in water demand with phenological development. Water 

application is thereby decreased temporally by reducing irrigation frequency, though can also 

be decreased spatially by supplying water to only part of the rootzone alternately, termed partial 

rootzone drying. Differences in physiological responses and agronomic outcomes of these 

temporal and spatial approaches have been reviewed (Dodd, 2009; Sadras, 2009; Dodd et al., 

2015). In addition to saving water, DI techniques can have agronomic benefits. For example,  

not watering wheat plants after anthesis induced a mild water deficit and promoted vegetative 

senescence, which increased carbon (C) translocation from the stem to the grain thereby 
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increasing HI and yields (Yang et al., 2000; Yang and Zhang, 2006). Whether WUE and WP 

can be increased  while maintaining or enhancing yields compared to conventional full 

irrigation, depends largely on the extent of the water deficit and when it is imposed (Dodd et 

al., 2015). Therefore agronomic impacts depend on crop tolerance to reduced SWP, regulated 

by soil and plant factors.  

A unique form of deficit irrigation, developed by the International Rice Research Institute 

(IRRI) (Bouman et al., 2007) for lowland irrigated rice, is termed “alternate wetting and drying” 

irrigation (AWD). Lowland irrigated rice is traditionally cultivated under continuously flooded 

(CF) conditions, to suppress weeds and pests and increase yields (Bouman et al., 2007), whereas 

AWD creates intermittent flooding. Managing AWD “safely” allows the surface soil to dry but 

prevents the water table dropping lower than 15 cm below the soil surface. This management 

reduces crop water use and increases the crop WUE, whilst ensuring access to water via deeper 

roots (Bouman and Lampayan, 2009). In addition to reduced water use, AWD can have various 

agronomic benefits including increased WP, improved rooting systems and thereby reduced 

lodging (Bouman et al., 2007) and increased HI (reviewed in Price, 2013). A meta-analysis of 

56 studies, involving 528 comparisons of adjacent CF and AWD treatments, found that 

adherence to safe AWD guidelines did not limit yield while reducing water use by 23.4 %. 

However, more severe drying (SWP < -0.02 MPa) reduced yields by 22.6 % compared to CF, 

which was exacerbated when AWD occurred throughout the crop life cycle (Carrijo et al., 

2017). Therefore relating soil water deficits to degrees of drying (SWPs) is important.  

The mechanisms underpinning plant responses to soil drying and re-wetting are uncertain, 

though likely reflect a combination of altered plant water relations, soil nutrient availability, 

and root-to-shoot phytohormonal responses (Dodd et al., 2015; Wang et al., 2017). Beneficial 

nutritional effects depend on maintaining xylem flow and phloem function and the recovery of 

photosynthesis after re-wetting the soil (Yang and Zhang, 2006). Improved understanding of 

the physiological responses to different controlled soil drying and re-wetting regimes, such as 
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AWD, is needed to optimise management techniques to improve WUE, HI and yields and 

reduce water use.   

Increasing the efficiency of phosphorus use in agriculture 

The need for more sustainable P use has become apparent and urgent in recent years (Cordell 

et al., 2009). Critical soil P levels for optimal crop yields, and to avoid environmental losses, 

vary according to soil type and properties, as well as the crop species (Bai et al., 2013). In 

regions in which mineral P fertilisers are available, over-application is inefficient and causes 

economic losses. For example, dairy and tillage farms in the Republic of Ireland over-applied 

inorganic P fertiliser by an average of 2.9 to 3.5 kg P ha-1 in 2008, which was similar to P losses 

via runoff (Buckley and Carney, 2013). Contrary to the SI concept, loss to non-agricultural land 

and water disrupts adjacent and downstream environments, and soil nutrient availability can 

alter numerous measures of ecosystem functioning (Laliberté and Tylianakis, 2012). The edges 

of remnant New Zealand forests adjacent to pasture had plant-available P (Olsen P; Figure 1.1) 

levels that were 500-5000 % higher than reference forest sites (Didham et al., 2015). Leachate 

P concentrations from arable soils have been related to soil P concentrations, with P 

solubilisation suddenly increasing at “change points” indicating threshold values for P leaching 

(Fortune et al., 2005). Various legislation aims to increase efficiency and avoid polluting effects 

associated with nutrient management, including P standards for rivers under the Water 

Framework Directive (WFD, 2013). There are also regulations for P fertiliser application in 

Northern Ireland (DAERA, 2014) and specific guidelines for farmers on nutrient application 

rates and best management practices, such as the Fertiliser Manual (RB209) prepared by the 

Department for the Environment and Rural Affairs in the UK (DEFRA, 2017). Challenges 

persist such as the limitations of spatially and temporally restricted soil P tests and their 

suitability for different soil types, and the relatively high costs of equipment aiding precision 

agriculture approaches; yet progress towards increasing P efficiency is needed for the long-term 

sustainability of P management in systems receiving inorganic fertilisers.  
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Perhaps more scientifically challenging is the search for opportunities to increase P efficiency 

in regions where P fertilisers cannot be accessed. An estimated one-sixth of the world’s farmers 

lack the financial resources to access fertiliser markets (Cordell et al., 2014). Thus, crop yields 

are limited by insufficient plant-available (largely inorganic) soil P. Plants acquire P via roots 

as orthophosphate ions, primarily H2PO4 and also HPO4 (Johnston and Syres, 2009). However, 

organic P may contribute a large proportion of soil total P that is potentially available to plants 

(Oberson et al., 2006; Richardson et al., 2011; Nash et al., 2014) and harnessing it is essential 

to crop nutrition in P-limited soils (Stutter et al., 2012). Soils under rice cultivation with more 

organic matter had higher organic P concentrations (Turner, 2006), requiring greater 

understanding of the role of organic P in crop P nutrition. Whilst some plant species can access 

organic P (Stutter et al., 2012), inputs from substrates such as straw and manure partially depend 

on microbial mineralisation to become available; therefore complementary agronomic practices 

must support this process.  Most studies have focused on the role of adding organic matter to 

soil, though some have simultaneously investigated other management factors including water. 

For example, available P (resin-P; Figure 1.1) was compared in soils with and without straw 

addition in both aerobic and anaerobic soils from rice fields in Madagascar, with organic matter 

addition immediately prior to flooding increasing P availability (Rakotoson et al. 2015). Studies 

combining various approaches, common in studies of the “system of rice intensification” (SRI) 

which integrates different planting, nutrient amendment and irrigation practices (discussed in 

Chapter 4) are valuable for determining the outcomes of soil process interactions. However, 

there remains the need to isolate water management effects on soil P availability, especially 

since the drying and re-wetting cycles imposed with AWD (and as an aspect of SRI) may also 

drive the turnover of organic P due to microbial cell lysis (Turner, 2006). Further study of these 

effects on soil P availability is required.  

Improving agricultural P efficiency should also occur at the plant level. Crop P use efficiency 

(PUE) is often agronomically defined as grain yield per unit of P uptake (in the above-ground 

biomass) (Rose et al., 2013). Whilst there are many breeding efforts towards improving 
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physiological PUE (total shoot biomass produced per unit of P in shoots) (Rose et al., 2013), 

altering irrigation scheduling may also regulate P supply and uptake. For example, limiting 

water supply to rice substantially reduced tissue P content, with little effect on N (Somaweera 

et al., 2016). In cereal crops, more than 70 % of the total P content at maturity is typically stored 

in grains (Rose et al., 2013), which is removed from the field at harvest and thereby unavailable 

to subsequent crops. Avoiding luxury P uptake by the crop beyond levels contributing to 

increased yields, thereby limiting soil P depletion, is a valuable goal towards increasing PUE, 

which is affected by P availability and other environmental conditions (Vandamme et al., 2016). 

Soil nutrient availability responses to soil drying and re-wetting: processes 

Since water and P efficiencies should be increased whilst maintaining crop yields, it is vital to 

better understand the impacts of deficit irrigation techniques, imposing soil drying and re-

wetting, on soil P availability to crop plants. Drying and re-wetting (DRW) is also a very 

common abiotic stress in soils, which is experienced at different magnitudes and durations 

according to geographical location and associated climatic and seasonal variations in water 

supply.   

The “Birch effect” 

The contribution of soil DRW cycles to increased mineral nutrient availability, first reported by 

Birch (1958), is well documented. The effect describes a pulse of organic matter decomposition 

and mineralisation of P and N upon re-wetting a dried soil, with a decline in rate over time. 

Different interacting soil processes regulate the occurrence and magnitude of the “Birch effect” 

in determining nutrient availability. Briefly, more intense drying (to lower water contents and 

water potentials, such as occurring at high temperatures or for long durations) induces more 

mineralisation upon re-wetting. Recurrent DRW cycles may increase mineralisation overall, 

compared with continuously moist soils (Jarvis et al., 2007), emphasising the importance of soil 

moisture fluctuations in driving the underlying nutrient cycling processes. However, whether 

these fluctuations can be actively managed to enhance soil nutrient provision to plants has 
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received little attention. Given the difficulty of defining “plant-available” P, key forms and soil 

P tests are outlined in Figure 1.1 and discussed (this chapter). 

Soil DRW affects the transfers and transformations of P between the four pools outlined in 

Figure 1.1, which is the foundation to understanding how biological and physical processes 

cause and regulate the “Birch effect”, summarised in Figure 1.2 and further discussed.  
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Figure 1.1: Phosphorus forms commonly analysed and availability to plants. 

Sources: Johnston and Syres, 2009; Six et al., 2013.   
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Figure 1.2: Effects of soil drying and re-wetting on phosphorus availability, driven by physical and 

biological processes across different intensities (degrees) and rates. 

Sources: (1) Cosentino et al. (2006); (2) Fierer and Schimel (2003); (3) Gordon et al. (2008). 

Published in: Dodd et al., 2015.  
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Biological processes contributing to the “Birch effect” include the death of soil microbes due 

to desiccation upon drying and cell lysis upon rapid re-wetting (caused by osmotic shock), 

releasing their nutrient constituents into the soil solution (Figure 1.2). This contributed the 

majority of the increased water-extractable total P (TP) (88 %) and molybdate unreactive P 

(MUP)1 (95 %) from two fertilised pasture soils following DRW (Turner et al., 2003). In many 

studies, the quantities of organic P released into solution after drying were greater than those of 

inorganic P, due largely to the contributions from the microbial biomass and soil organic matter 

(SOM) (Turner and Haygarth, 2001, 2003; Turner et al., 2002, 2003; Blackwell et al., 2009). 

For example, across 29 permanent grassland soils in England and Wales, varying in P 

concentrations (9 – 48 mg kg-1 sodium bicarbonate extractable P, NaHCO3-P) and C and clay 

contents, water-soluble TP increased by 1.9 – 19-fold following DRW. This was primarily (56–

100 %) water-soluble MUP, and the positive linear correlation with soil MBP concentration 

suggested a direct release from the microbial biomass (Turner and Haygarth, 2001). Therefore 

the microbial biomass size and composition can substantially determine the significance of the 

“Birch effect” to nutrient availability in different soils (Jarvis, 2007; Gordon et al., 2008; 

Blackwell et al., 2010).  

Different soil properties regulate microbial responses to DRW and the release of P for plant use. 

Soil microbial processes are driven by the availability of organic C (Oberson et al., 2006), such 

as straw and manure additions in arable soils, which largely determines the energy supply to 

microbes, thereby regulating mineralisation rates and P release following DRW (Sparling et al., 

1985). Microbial cell walls also become incorporated into the SOM, and mineralisation releases 

inorganic P which is available for plant uptake and immobilisation by both surviving and new 

microbes (Blackwell et al., 2010; Figure 1.2). Nevertheless, microbial immobilisation of P 

                                                           
1Water-extractable total P (TP) is the sum of water-extractable molybdate-unreactive and –reactive P (MUP and 

MRP, respectively). MUP is adsorbed P (strongly bonded or organic) and therefore has low availability to plants, 

whilst MRP easily transfers to soil solution P and is immediately available (Figure 1.1). Water-soluble TP, MRP 

and MUP are measured via the same method although extracts are more finely filtered (0.45 cf. 2-3 µm) prior to 

analysis (Haygarth and Sharpley, 2000; Turner et al., 2002). References are to the water-extractable forms and 

unless “soluble” or “dissolved” is specified, references to TP, MRP and MUP hereafter refer to the water-

extractable (2-3 µm filtered) fraction. 
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released by DRW, indicated by the strongly reduced C:P ratio of the microbial biomass in the 

DRW soils compared with control soils, can result in some soils showing no change in reactive 

P concentrations following DRW (Butterly et al., 2011b). Furthermore, soil DRW increased 

NaHCO3-P in soils from regions with a lower annual water deficit (< 400 mm) to a greater 

extent than soils with a higher annual water deficit, suggesting microbial adaptation only to 

moderate soil drying (Sparling et al., 1987). Thus, the degree of soil drying is an important 

control on biological P release. Following rapid re-wetting of dry soil, the microbial biomass 

can recover ATP synthesis over relatively short time scales (within 6 hours) (De Nobili et al., 

2006). Since soil microbes and plants take up the same forms of P, the organisms compete; 

therefore enhanced microbial assimilation of P suggests that any benefits to plants from 

increased availability of P following DRW events may be short-lived (Chepkwony et al., 2001). 

Soil oxygen status is also important: under anaerobic conditions, microbial turnover and 

mineralisation rates are usually low compared to aerobic conditions, reducing the rate and extent 

that nutrients are mineralised to plant-available forms (Stoop et al., 2011; Turner, 2006) (Figure 

1.3). Allowing the soil to become aerobic with intermittent irrigation can increase 

mineralisation and therefore P availability, depending on the degree of soil drying. 

Physical processes during DRW events disrupt soil aggregates, which can be an important 

process for nutrient release, often interacting with biological processes. Soil DRW induces 

structural changes which release SOM from microaggregates. No longer protected, this SOM 

is more readily mineralised by soil microbes (Chepkwony et al., 2001; Navarro-Garcia et al., 

2012). After drying clay soils, fractions of plant-available P (both MRP and NaHCO3-P) 

increased (as a proportion of total P), due to structural changes in SOM and physical disturbance 

of microbial cells (Soinne et al., 2010). Furthermore, aggregate stability tests and sodium (Na)-

facilitated dispersion tests suggested that microbial P release during DRW (based on increased 

MRP and MUP concentrations) was sourced from within microaggregates (where it was 

trapped) and became water-extractable when combined with soil dispersion (Bünemann et al. 

2013). Navarro-García et al. (2012) also concluded that soil DRW responses are driven by the 
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physical associations of mineral particles and substrates with biological organisms. Thus, 

physical and biological processes causing and regulating the “Birch effect” are coupled. A 

further physical process caused by DRW is slaking (physical breakdown caused by air 

compression, which is trapped during wetting; Bünemann et al., 2013) which can release MRP 

(largely inorganic) and MUP (largely organic) P (Soinne et al., 2010) (Haygarth et al., 1998) 

(Figure 1.2). Following aggregate stability tests, slaking was identified as the most important 

form of physical disruption to soil structure potentially releasing P (Bünemann et al., 2013).  

Compared to a constantly moist soil, significant (up to 44%) increases of resin-P concentration 

following DRW of a sterilised soil further emphasised the physical processes (Bünemann et al., 

2013). Sterilisation removed potential biological effects, although may have affected the soil 

physical properties. Furthermore, DRW can physically detach soil colloids thereby increasing 

MRP and MUP in leachate due to shrinkage and swelling of soil aggregates (Chepkwony et al., 

2001; Blackwell et al., 2009). These physical processes can significantly contribute to P release 

following DRW (Bünemann et al., 2013; Sun et al., 2017a).  

The effects of DRW on soil P transfers and transformations, in terms of the magnitude of 

increase in P availability and its potential for utilisation by plants, depend on other soil 

properties; principally the availability of soil organic matter, and the cation exchange capacity 

(CEC) and concentrations of iron (Fe), aluminium (Al) and manganese (Mn) oxides, which are 

affected by soil pH (Amery and Smolders, 2012; Rakotoson et al., 2014). The initial soil P 

concentration is also important. The reduction of Fe in particular has gained attention since 

concentrations are often high in tropical soils, where P availability is often low. Fink et al. 

(2016) comprehensively described Fe/P chemical reactions in soils and their interactions with 

organic matter. Despite increases in P availability immediately following DRW, soil P can be 

strongly adsorbed to clay minerals and Fe and Al oxides (Gérard, 2016), becoming unavailable 

to plants.  Thus, the degree to which DRW increases P availability to plants can be highly 

variable according to soil type. 
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Soil P reactions can be profoundly affected by anaerobic conditions created by flooding, and 

alternation of anaerobic and aerobic conditions, in which P interactions with other soil 

properties are distinct (Figure 1.3). In a laboratory experiment with floodplain sediments 

exposed to alternate drying and submergence, soil total P release was greater from sediments 

with longer dry periods before re-wetting and with greater soil drying (soil water content 

decreased by 80 %) (Schonbrunner et al., 2012). The differences between the final and initial 

concentrations (during wetting) of TP and Fe3+ were significantly positively correlated, 

suggesting the role of the reduction of Fe hydroxides in the simultaneous release of Fe3+ with 

TP (Schonbrunner et al., 2012). Similarly, Surridge et al. (2007) attributed P release (MRP) 

following the flooding of a wetland soil to the reductive dissolution of Fe, as occurs in paddy 

rice fields. The same effect has been reported for paddy rice soils, with dependency on other 

soil properties. Flooding can increase pH in acidic soils, affecting P availability (Amery and 

Smolders, 2012). Soils with larger CEC have more cation sorption sites which can scavenge 

Fe2+ in the soil solution, preventing precipitation of new P sorbing Fe(II) minerals, thereby 

decreasing potential P sorbing sites; therefore there are more free (available) P ions in the soil 

solution (Amery and Smolders 2012). Although submergence has increased soil P availability 

in many studies, not all soils have higher P concentrations under anaerobic conditions, 

especially soils with high Fe content (due to re-adsorption); furthermore, applying organic 

matter stimulated the reduction of Fe only if CEC was high (Amery and Smolders, 2012). Since 

P deficiency has been reported in field trials with irrigated rice in various tropical soils 

characterised by high Fe contents, it is likely that flooding soils does not solubilise sufficient P  

to meet crop demand (Dobermann et al., 1998), suggesting that AWD should be further 

investigated as an alternative mechanism for increasing P availability.   
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Figure 1.3: Effects of aerobic and anaerobic conditions on reactions affecting soil P availability. 

 Sources: Amery and Smolders, 2012; Rakotoson et al., 2014; Fink et al., 2016. 
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Soil nutrient availability responses to soil drying and re-wetting: responses and 

applications 

Interacting biological and physical soil dynamics under DRW pose a challenge to determining 

the effects of irrigation management on nutrient availability. This is further complicated by the 

large variability in soil properties and DRW methodologies, but also nutrient analyses, across 

different studies.  To utilise the P released following DRW and manage the response via 

controlled soil drying, the fundamental question is whether soil drying and re-wetting releases 

sufficient P to improve crop P nutrition and yields. To answer this, the key issue is whether soil 

P availability increases to a sufficient level at water contents supporting crop growth.  

Soil water potential (SWP) is the crucial measure of soil water availability to plants (discussed 

later in this chapter), though is often omitted from “soil-exclusive” studies. Studies 

demonstrating changes in P availability in dried compared to moist soils have often only 

reported the drying method (typically temperature and duration) and not a SWP or gravimetric 

water content (GWC) relating to changes in P availability (Venterink et al., 2002; Turner et al., 

2003; Turner and Haygarth, 2003; Soinne et al., 2010; DeLonge et al. 2013). Some studies 

reported the GWC only (e.g. Sparling et al., 1987; Butterly et al., 2011a and b; Sun et al., 2017a) 

or even percentage of the water holding capacity (WHC) (Sun et al., 2017b), but these cannot 

be explicitly compared in the absence of SWP values. Whilst DRW can increase P availability, 

hydraulic flow (therefore nutrient uptake) is limited during the drying period; this highlights the 

need for soil (and root) water potential measures to confirm plant water uptake. Furthermore, 

soil microbial activity responds to drying intensity (Figure 1.2) as changes in SWP. In two soils, 

decreasing SWP from an optimal level for microbial activity (≥ -0.7 MPa) to -2.0 MPa reduced 

the microbial biomass by 35-50 %, and the proportion of remaining (adapted) microbes survived 

at lower SWPs (as low as –6.8 MPa) but with reduced activity (respiration) (Chowdhury et al., 

2011). This suggested that drying soil to -2.0 MPa would cause organic P release due to 

microbial cell lysis whilst maintaining mineralisation rates, increasing P availability, whilst 

drying to lower SWPs releases the same amount of organic P but reduces mineralisation to 
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plant-available forms due to the lower microbial activity. Although many studies have reported 

increased P availability following soil DRW and release from the microbial biomass, greater 

unity is needed to clarify the water potentials to which soils were dried and the amounts of P 

made available to plants.  

Several studies have assigned changes in P concentrations to SWP values. For example, drying 

loamy/ sandy forest soil samples to –100 MPa, whilst maintaining control soil samples at 50 % 

WHC, significantly increased water-soluble P concentrations. Responses varied according to 

soil type and horizon with a maximum increase in water-soluble MRP of 72.6 mg P kg-1 and 

water-soluble MUP of 29.0 mg P kg-1 (Dinh et al., 2016). Measuring P concentrations 

immediately after, and prior to, re-wetting would provide further insights. In a different study, 

air-drying a clay grassland soil from -0.4 MPa (24.2 % GWC) to -78 MPa (0.9 % GWC) 

significantly increased NaHCO3-P by 72 % (8.9 mg kg-1) (Blackwell et al., 2009). However, P 

release at intermediate water potentials was not measured. Gradual P release may have occurred 

as SWP decreased, although “change points” have described the relationship between leachate 

P concentrations and transfer to surface waters with soil P concentrations, with sudden increases 

in P solubilisation indicating threshold values for P release, which vary between soils (Fortune 

et al., 2005). Whether this concept applies to P release in response to threshold SWP values is 

unknown. Thus, further work should prioritize determining whether these P responses occur 

following re-wetting of soils dried to lesser degrees. These two studies demonstrate the value 

of reporting SWP values associated with the P concentrations released by DRW, and represent 

very different soil types and ecological systems. Crop system studies would benefit from the 

same approach to determine the agronomic significance of attained SWPs and available P 

concentrations.  

Temporal dynamics are important to determining whether increased soil P availability 

following DRW is enhanced, sustained or diminished over multiple cycles, and reported 

responses are variable. For example, three additional DRW cycles did not further increase 

water-soluble MRP after an initial increase (Dinh et al., 2016), implying that the initial increase 
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was sustained although not enhanced. In contrast, soil P availability increased more after two 

(NaHCO3-P; Chen et al., 2016), three (resin-P; Butterly et al., 2009) or four (MRP; Scalengheh 

et al., 2012) cycles than after the first, likely due to microbial and non-microbial effects and 

suggesting cumulative benefits of multiple DRW cycles to P availability. However, the 

corresponding SWPs reached by drying were not reported. Determining the effects of multiple 

DRW cycles (to the same SWPs) on soil P availability is necessary to identify the duration (as 

well as magnitude) of potential benefits to plants during a crop cycle. If P availability increases 

following initial DRW and does not rapidly decline, imposing a DRW cycle prior to planting 

(such as during a fallow period) may be considered (Tsujimoto et al., 2010; Bünemann et al., 

2013). 

Determining the SWPs at which P availability increases following DRW in different soils would 

indicate whether plants would survive soil drying and benefit from increased P nutrition. The 

spatial variability in drying intensity and potential P release within a soil profile should also be 

considered. Vertical soil moisture gradients exist with drier soils at the surface due to 

evaporation (Figure 1.4). As discussed, surface drying occurs naturally without continuous 

irrigation in both field and pot experiments (Bünemann et al., 2013). Since P release following 

soil DRW likely depends on the degree of drying, it is likely that more P is released within the 

(drier) surface soil. Whether released P is taken up by plant roots, rapidly assimilated by the 

microbial biomass, sorbed to soil particles or leached to deeper layers is not clear. Determining 

the agronomic relevance of these processes requires that the amounts of P released following 

soil DRW are related to SWPs, considering the spatial variability within the soil profile.   

Analysis of available water and available phosphorus 

Soil water potential 

Although fluctuating soil water status can profoundly affect biogeochemical cycling, it is 

necessary to determine the specific soil water status at which transformations occur. The total 

SWP is the most appropriate measure of soil water availability to plants and microbes. Total 
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SWP (Ψt) comprises three components: gravitational potential (Ψg), osmotic potential (Ψo) and 

matric (pressure) potential (Ψm). It describes the forces on water associated with soil particles, 

determining plant water uptake according to gradients between soil and root water potentials 

(Whalley et al., 2013). The total SWP also determines the accessibility of water to soil microbial 

communities, which are important regulators of the “Birch effect” (Fierer and Schimel, 2003). 

For example, drying soil to -1.5 MPa decreased microbial respiration to 5-8 % of the maximum, 

occurring at c. 0 MPa (Fischer, 2009), suggesting that the low SWP (plant PWP) was 

detrimental to the microbial biomass, but not completely biocidal. Soil microbial resistance to 

decreasing SWP varies widely according to species (Swift et al., 1979). Furthermore, the SWP 

describes water availability to plants and can be critical to understanding their growth and 

development (Whalley et al., 2013). Although measures of water potential in planta vary with 

light, temperature, evaporative demand and  other environmental variables, root and leaf water 

potentials tend to equilibrate with the bulk soil water potential during the night when 

transpiration declines (Schmidhalter, 1997). Therefore the total SWP is the most appropriate 

measure of plant water availability. Correlating SWP values with plant responses is essential to 

determining the effects of given water deficits (and in some cases managing irrigation); critical 

ranges are summarised in Figure 1.4.  
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Figure 1.4: Important ranges of total soil water potential (SWP) and significance to plants, relating 

to the permanent wilting point (PWP).  

 

  

Soil water 

gradient 

SWP (MPa) Relevance 

 

 

 

< -1.5 MPa Below the PWP, but common in surface soils in hot/ dry 

environments without continuous irrigation.  

 

 -1.5 MPa to 

0 MPa 

From PWP to saturation: most crop plants thrive at soil 

water potentials in this range.  

 

-0.01 MPa to 

-0.03 MPa 

 

Field-drained soil. 

0 MPa 

 

 

Saturation: some plant species thrive in flooded conditions, 

principally lowland irrigated rice as a crop plant. As well as 

surface flooding, water exceeding the soil water holding 

capacity and unable to drain (e.g. held by a clayey plough 

pan) increases the water potential to this range, which may 

be detrimental to some species.  
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The soil moisture release curve describes the relationship between the soil matric potential (Ψm, 

MPa) and GWC (%), and this varies according to soil texture and changes in structure (Whalley 

et al., 2013). Estimates of matric potential from GWC are inaccurate since the relationship is 

non-linear, and further complicated by the effect of hysteresis such that the relationship differs 

according to whether the soil is becoming progressively drier or wetter (Whitmore and Whalley, 

2009). Thus soil matric or water potential needs to be measured directly using different 

instruments that vary in their accuracy across different Ψm ranges (Whalley et al., 2013). At 

present, the most accurate instruments (± 0.1 MPa) to measure soil water potential across a wide 

range (-0.1 to -300 MPa) are potentiometers such as the WP4 Dewpoint Potentiometer 

(Decagon Devices, Inc., Pullman, WA, USA), especially where in-situ measurements are not 

practical due to small sample sizes in laboratory experiments. In contrast, tensiometers are more 

accurate in moist soils (between 0 to -0.08 MPa) and can provide continuously-logged in-situ 

measurements in larger soil volumes. Unless soil is constantly irrigated to maintain saturated or 

flooded conditions, SWP inevitably varies along a vertical soil moisture gradient, increasing 

with depth (Figure 1.4). Therefore a further advantage of measuring SWP using a WP4 

instrument is the capability to measure approximately 6 cm3 of soil, substantially more than 

some other instruments (e.g. thermocouple psychrometers) thereby enabling a more 

representative soil sample to be measured, incorporating the heterogeneity of particle size. 

Furthermore, the soil volume required is appropriately small to select samples from precise soil 

depths and at low SWPs (cf. tensiometers), again with multiple samples accounting for 

heterogeneity in soil moisture.  

Soil phosphorus availability 

There are fundamental methodological difficulties in measuring “plant-available P” in different 

soils. A major challenge for accurately recommending P fertiliser rates is the variation in P-

fixing and P buffering capacities of different soils according to their chemical properties (such 

as pH and concentrations of Al), which profoundly affect the amount of applied P that remains 

plant-available (Daly et al., 2015). Yet measuring P availability via different soil tests is 
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important to determine P concentrations in different soil pools (Moody et al., 2013) and to 

estimate or predict crop responses to P supply within cropping systems (Six et al., 2013; Speirs 

et al., 2013).  

Laboratory processes 

The method of quantifying available soil P, as any other soil nutrient or property, is critical 

since methods of soil preparation and P extraction can affect the results and their interpretation. 

This is particularly problematic when measuring soil P dynamics following drying and re-

wetting is the key interest. Air-drying soil is a preparatory step required for the common analysis 

for available P in the UK, Olsen P, a sodium bicarbonate (NaHCO3) extraction, and water-

extractable TP, MRP and MUP. Because air-drying can increase the solubility of soil P (Soinne 

et al., 2010), analyses of air-dried soils are not representative of P solubility in the field. Since 

the rapid re-wetting of dried soils increased both the Olsen extractable P (Turner and Haygarth, 

2003) and the water-soluble P (Turner and Haygarth, 2001), soil P analyses requiring sodium 

bicarbonate, water or other extractant (re-wetting) using dried soils should be questioned.   

Analytical results may also be distorted by filtering the soil and extractant, which occurs in 

some P analysis methodologies. Although the total amount of water-extractable and water-

soluble total P (TP) was unchanged, air-drying increased the proportion of small-sized to large-

sized MRP and MUP fractions (Soinne et al., 2010). This was likely due to structural changes 

in SOM, suggesting that the larger-sized particles were a source of the increase in small-sized 

P. However, filtering removes the larger-sized fractions and therefore its proportion was likely 

underestimated (Soinne et al., 2010). Alternative methods which do not require filtration also 

have constraints; for example anion exchange (resin) membranes mimic plant uptake (DeLonge 

et al., 2013), but the method can require soil wetting which could increase the mineralisation of 

organic P (Chepkwony et al., 2001). Therefore, other soil P tests have the caveat of requiring 

that a solution (or water) is added. Thus, the laboratory procedures for measuring soil P 

concentrations have important implications for assessing its availability.  Ideally soil analyses 

should be carried out on soils at their sampled moisture contents to understand processes 
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occurring under field conditions (Turner and Haygarth, 2003; Styles and Coxon, 2006; Butterly 

et al., 2011b). 

Selecting soil phosphorus tests: intensity versus quantity indices  

Soil tests measure the concentration of orthophosphate in soil solution (intensity) or the amount 

of available P sorption sites on the solid phase (quantity). Various methods are used to measure 

soil P availability (Pierzynski, 2000), and those considered most important are summarised in 

Table 1.1. 

Table 1.1: Summary of common tests for available soil phosphorus 

Soil test Abbreviation Type Extractant/ membrane 

Water-extractable total 

P  

TP Intensity Deionised or milli-Q 

water. 

Water-extractable 

molybdate reactive P 

MRP Intensity Deionised or milli-Q 

water. 

Water-extractable 

molybdate unreactive P  

MUP Intensity   Deionised or milli-Q 

water. 

Sodium bicarbonate-

extractable P (Olsen P if 

conform to analysing 

air-dried soil) 

NaHCO3-P 

(or Olsen P)* 

Intensity + 

Quantity 

0.5 M Sodium bicarbonate 

(NaHCO3), adjusted to pH 

8.5 with sodium hydroxide 

(NaOH). 

Anion exchange 

membrane P 

Resin-P  Intensity  

(+ Quantity, 

depending on 

extraction time 

and extractant) 

AEM/ resin membrane and 

deionsed or milli-Q water.  

Diffusive gradient in 

thin films P (DGT-P) 

DGT-P Intensity  

(+ Quantity, 

depending on 

extraction time 

and extractant) 

Iron oxide membrane with 

diffusive layer. 

 

*Sometimes AEM-P but referred to hereafter as resin-P (Turner et al., 2018).   
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Water-extractable TP, MRP and MUP indicate different operationally defined forms of P and 

potential availability. Sodium bicarbonate (0.5 M) has a larger ionic strength than deionised 

water, collapsing larger soil particles and thus typically measuring more P (Soinne et al., 2010). 

Following a tradition initiated by Olsen et al. (1954), Olsen P remains the principle test used to 

determine plant-available P in the UK. Olsen P test results are used by farmers by consulting a 

Fertiliser Manual, RB209, produced by DEFRA (2017) which recommends fertiliser 

application rates for different crops by assigning indices based on the soil test P concentration. 

Recommendations are also based on soil test results from resin-P extractions, for grass and 

forage crops although not arable crops (DEFRA, 2018a,b). An important methodological note 

is that the indices are based on Olsen P concentrations in mg per litre and whilst the 

recommendations state that direct comparison can be made with soil test results (mg per kg; 

DEFRA, 2017), the comparison assumes a soil bulk density of 1. This applies to most mineral 

soils so the results are very similar (Poulton et al., 2013; Johnston et al., 2013), although may 

not be comparable for organic soils with lower bulk densities.  

The suitability of soil P tests to determining plant-available P depends on the soil type and 

properties. The Olsen P test was developed for calcareous soils with relatively high pH, though 

it remains widely used across soil types (Johnston et al., 2013). In temperate soils which tend 

to have a lower P sorption capacity than tropical soils and where mineral fertiliser is available, 

measurements of available P based on quantity indices may largely explain crop P uptake and/ 

or yields (e.g. Poulton et al., 2013; Johnston et al., 2013). In tropical soils however, with higher 

P sorption capacity and often lacking in mineral P fertiliser, the conventional soil P tests 

(developed for temperate soils) cannot accurately indicate soil P availability (Oberson et al., 

2006). The DGT technique measures soil solution P and also re-supply from the solid phase, by 

binding solution P thereby establishing a diffusion gradient promoting re-supply, with a 

diffusive layer to limit the P flux similarly to P uptake by plant roots. A major benefit of the 

DGT technique is that critical DGT-P values for maize yields did not relate to the P buffering 

capacity, so soil types with different properties affecting P availability could be compared (Six 
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et al., 2013). Resin-P, another intensity measure (Table 1.1), better predicted rice yields in soils 

with low P availability than DGT-P (Six et al., 2013). Therefore it is necessary to measure 

different P pools via various analytical methods to gain a comprehensive understanding of how 

they are affected by DRW and the implications for P availability to plants. Another important 

process affecting soil P availability is the slow mineralisation of organic P (Blackwell et al., 

2012), which may be suggested by changes in microbial biomass P (MBP) concentrations and 

determined through repeated sampling following a soil DRW event. 

 

Thesis objectives 

Many questions regarding how soil drying and re-wetting affects P availability persist, limiting 

the ability to identify optimal irrigation regimes to exploit “windows of opportunity” for 

increased P availability to plants (Chepkwony et al., 2001). This thesis addresses questions 

considered crucial to determining the potential agronomic importance of soil DRW, particularly 

where water and P resources are limited. The aim was to evaluate soil P release and plant uptake 

to test the hypothesis that DRW could release P at soil water potentials (SWPs) that can support 

plant growth, thereby increasing crop P use efficiency and yields. Experiments comprised 

different spatial and temporal scales, from laboratory investigations of effects of soil water 

potential on P availability, through pot experiments to determine spatial variability in soil 

moisture and P availability within soil profiles and effects on plants, to a field trial to determine 

the impacts on P availability, uptake and yields in an extant environmental setting for rice 

cultivation where soil P is limiting.  
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Five main questions were addressed: 

1. Firstly, whether increased soil P availability caused by DRW occurs at soil water 

potentials that can support plant growth (Chapter 2).  

 

2. Secondly, whether the maximum P availability occurs when soil is air-dried and re-wet 

initially, and/ or with multiple DRW cycles (Chapter 3).  

 

3. Thirdly, whether soil P availability following DRW (from saturated conditions) or 

AWD (from flooded conditions) varies spatially within a soil profile in accordance with 

variation in SWP (Chapter 3). 

 

4. Fourthly, whether soil DRW increases plant P uptake and yields due to increased soil 

P availability (Chapters 3 and 4).  

 

5. Finally, whether controlled soil drying, via AWD or post-anthesis drying, decreases 

grain P concentrations and increases P use efficiency whilst maintaining yields 

(Chapter 4).  

 

Chapter 2 explores the change in P forms following air-drying and re-wetting in contrasting 

soils and the likelihood of microbial regulation (Experiment 1); and furthermore determines the 

soil water potentials at which soil P availability significantly increases at thresholds or along a 

continuum between “field-moist” and “air-dried” conditions (Experiment 2).  

 

The hypotheses are that greater increases in available P following DRW occur in the soils with 

higher microbial biomass P (MBP) concentrations (Experiment 1); and increased P availability 

following DRW is correlated with decreased SWP (Experiment 2). 
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Chapter 3 scales up laboratory experiments to determine the change in P availability following 

DRW and AWD at different soil depths (and thus SWPs) within a pot (Experiment 1); and 

furthermore determines the impacts of whole-pot and surface soil DRW on P uptake, growth 

and yields in the model cereal crop Brachypodium distachyon L. (Experiment 2). 

 

The hypotheses are that the greatest soil P availability will occur within the dried and re-wet or 

re-flooded treatments and in the surface soil due to lower soil water potentials upon drying. 

Furthermore, soil P availability will be highest after two DRW cycles compared to one cycle, 

and will be higher in initially DRW compared to continuously moist soil (Experiment 1). Initial 

soil DRW will increase available P concentrations compared to continuously moist soil, and 

reducing irrigation frequency will have additive effects; and the highest P uptake, biomass and 

grain yields will occur in plants grown in soils which were dried and re-wetted prior to planting, 

and irrigated less frequently (Experiment 2).  

 

Chapter 4 scales the laboratory and pot studies to a field trial, determining the impacts of AWD 

on soil P availability and P uptake, growth and yields in the globally-important cereal crop 

Oryza sativa L.  

 

The hypotheses are that under low P supply, soil P availability, plant biomass production and 

grain yields will be higher under AWD compared to CF; and grain P concentrations will be 

reduced under post-anthesis soil drying compared to CF, increasing PUE.  

 

Chapter 5 summarises the key results from these studies and draws conclusions on the likely 

benefits of applying DRW/ AWD to improve water and P efficiencies in crop production, 

highlighting the further work required. 
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Chapter 2: Characterising soil drying and re-wetting effects on phosphorus 

availability. 

Abstract 

Context: Whilst soil drying and re-wetting has previously been shown to increase soil 

phosphorus (P) availability, the degree of drying necessary to release P amounts relevant to 

plant uptake remains unknown. 

Hypotheses: Two experiments aimed to determine whether: greater increases in available P 

following drying and re-wetting (DRW) occurred in soils with higher microbial biomass P 

(MBP) concentrations; and increased P availability following DRW is correlated with decreased 

soil water potential (SWP). 

Strategic approach: Three soils with different MBP concentrations were gradually air-dried, 

and available P concentrations were measured across soil moisture gradients ranging from -0.1 

to -212 MPa. 

Conclusions: Plant-available sodium bicarbonate extractable P (NaHCO3-P) concentrations 

significantly increased at similar SWPs between the soils, which were below plant permanent 

wilting point (PWP) but which can occur in surface soils under field conditions. This suggested 

that soil DRW can potentially increase plant P nutrition due to surface soil drying and/or when 

applied during a fallow period. 

 

Introduction 

Soil drying and re-wetting effects on P availability: importance of the microbial biomass  

Studies of the “Birch effect” have included different soil types from around the world, and the 

increase in P availability following DRW is caused primarily by combined soil physical and 

biological processes (Figure 1.2). Numerous studies have confirmed the role of the microbial 
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biomass in regulating the P response to DRW. For example, across 29 permanent grassland soils 

in England and Wales, varying in P concentrations (9-48 mg kg-1 NaHCO3-P), water-soluble TP 

increased by 1.9–19-fold following DRW. This was primarily (56–100 %) water-soluble MUP, 

and the positive linear relationship with soil MBP concentration suggested a direct release from 

the microbial biomass (Turner and Haygarth, 2001). Furthermore, the potential contribution of 

bacterial cell lysis to released TP was at least 88 %, and to released MUP was 95 % (Turner et 

al., 2003). Although MBP concentrations were not measured, the potential contribution was 

measured by direct bacterial cell counts following extraction, then calculating total P contents 

by assuming a mean (bacterial) volume and P content (Turner et al., 2003). Thus air-drying 

released water-soluble TP, MRP and especially MUP largely due to lysis of bacterial cells, 

indicating the important role of the microbial biomass. More recently, Blackwell et al. (2009) 

also suggested greater release of organic than inorganic P into solution following DRW, 

although the data were not specifically related to MBP concentrations. Therefore despite 

evidence for the important role of the microbial biomass in regulating the “Birch effect”, 

attempts to compare changes in P availability following DRW between different soil types with 

different MBP concentrations in the same study are otherwise limited. 

Effects of the degree of soil drying on P availability following re-wetting 

Whilst previous research has shown that P availability is often increased following DRW, 

determining the potential contribution of this response to plant P nutrition requires soil P 

availability to be related to soil water availability. Greater soil drying (with lower minimum 

SWPs before re-wetting) increases microbial mortality and potentially mineralisable P upon re-

wetting (Blackwell et al., 2012), while also affecting soil structure and other physical properties 

regulating P availability. Whilst various studies have compared changes in soil biogeochemistry 

in “air-dried” and “field-moist” soils, little attention has been given to biogeochemical processes 

and effects at intermediate water contents. An exception is a study of incremental re-wetting on 

the “Birch effect” which measured the responses of respiration, microbial biomass C and net N 

mineralisation (Lado-Monserrat et al., 2014). Rather than observing responses at different 
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stages of drying, responses to several DRW events were monitored. Although it was not 

possible to reproduce SWP values due to hysteresis occurring upon multiple DRW cycles (with 

different relationships between GWC and SWP during drying and wetting processes), GWC 

determined the water status (volumes of water added). Thus, observing effects during a single 

drying event would instead allow SWP measurements. The SWPs were estimated separately for 

the samples before re-wetting, for a sandy loam soil (-0.004 MPa to -1.189 MPa with two 

samples at intermediate SWP) and a clay loam soil (-0.078 MPa to -40 MPa or lower with three 

samples at intermediate SWP). The sensitivity of the soil microbial biomass to drying and re-

wetting intensity (defined as the amount of water added per day; Borken and Matzner, 2009) 

was related to substrate availability and was soil dependent (Lado-Monserrat et al., 2014). Thus 

it was difficult to separate the effects of lower SWP from other soil properties such as texture 

and organic C contents. Furthermore, the two soils were sampled from a pine forest, so their 

responses to DRW may differ from soils under grassland or other agricultural management. 

Whilst this study quantified effects of DRW on microbial dynamics, it did not provide 

information on P availability. More measurements at intermediate SWPs are necessary to 

determine whether increases in P availability can occur within the ranges above PWP that do 

not cause plant mortality.  

Previous studies of the effects of the degree of soil drying on P availability have often measured 

soil moisture as changes in GWC, rather than SWP, making comparisons difficult. After drying 

a silty clay soil from an initial GWC of 40 % to different degrees (2, 5, 10, 15, 20 and 40 % 

GWC) and then re-wetting to 40 % GWC, resin-P significantly increased after drying to 10 % 

GWC or lower, with the maximum increase (by nearly 1000 %, 6.9 mg kg-1) occurring in soils 

that had dried to 2-5 % GWC (Bünemann et al., 2013). Similarly, drying a silt loam from an 

initial GWC of 30% to different degrees (2, 5, 10, 15, 20 and 30 % GWC), then re-wetting to 

30 % GWC, significantly increased NaHCO3-P (by c. 16 %, 1 mg kg-1), but only when soil had 

dried to 2 % GWC (Sun et al., 2017a). Furthermore, in five different soils (two loams, sandy 

loam, silt loam and silty clay loam), the greatest increases in NaHCO3-P (by 26.3 – 48.1 %) 
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occurred when soils were dried from 50 % to 5 % WHC, and generally did not increase until 

dried to 10 % WHC (Sun et al., 2017b). Thus, although the degree of soil drying affected 

NaHCO3-P concentrations following re-wetting, significant increases only occurred in the driest 

soils. However, GWC and WHC are of limited value in understanding plant water uptake, which 

is determined by water potential gradients between soil and roots. There remains a need to 

determine how NaHCO3-P and other measures of P availability change as SWP decreases. 

With few studies reporting how the degree of soil drying affects P release upon re-wetting, it is 

uncertain whether the relationship between P availability and soil moisture can be described by 

a linear, logarithmic or “change point” response (Figure 2.1). Characterising the relationship 

between leachate P concentrations with soil P concentrations has utilised the concept of “change 

points”, with sudden increases in P solubilisation indicating threshold values for P leaching, 

which vary between soils (Fortune et al., 2005).  
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Figure 2.1: Hypothetical change in soil P concentrations with decreasing soil water potential. The 

relationship may be characterised by a logarithmic (a), linear (b), or change point (c) response.  
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In studying the effects of the degree of soil drying, the microbial impacts of the “Birch effect” 

(e.g. respiration) could not be related to an individual threshold value of SWP, due to their non-

linear decrease with the pre- re-wetting SWP (Lado-Monserrat et al., 2014). However, for P, 

change points may have occurred at the lowest GWC and WHC measured, since P 

concentrations only significantly increased from FM levels at those points (Bünemann et al., 

2013; Sun et al., 2017a, b). Nevertheless, more data from different soils at a range of water 

contents is needed to test this proposition. The form of the relationship between SWP and P 

availability (Figure 2.1), and whether significant change points exist, have yet to be determined. 

Knowing whether such soil drying occurs under field conditions, either during or prior to 

initiating a cropping cycle, will inform whether irrigation management may stimulate increased 

P availability, considering the PWP and P requirements of the crop.  

 

Objectives and hypotheses 

Two experiments aimed to determine the role of the microbial biomass and the relationship 

between the degree of soil drying and the magnitude of P release following DRW in five 

different soils, identifying SWPs at which P availability increased upon DRW, by testing two 

hypotheses: 

  

1. Greater increases in available P following DRW occur in the soils with higher 

microbial biomass P (MBP). This is because a substantial component of newly 

available P is the rapidly mineralised P derived from organic P, released from the 

microbial biomass due to cell lysis caused by osmotic shock upon re-wetting.  

 

2. Increased P availability following DRW is correlated with decreased SWP, and 

the SWP at which P availability increases varies according to soil. Greater increases 

in available P occur with more intense drying measured as GWC (Sun et al., 2017a,b), 

and thus SWP. Since P availability and the response to DRW depend on numerous soil 
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properties (e.g. MBP concentration), and changes in SWP relate to texture (particularly 

clay and organic matter contents), threshold SWP values will differ according to soil 

type and properties.  

 

 

Materials and Methods 

Site, sampling and preparation 

Five different soils were collected from south-west England. One soil was collected from 0-10 

cm depth from the Tadham Moor SSSI in Somerset, UK, and two soils were collected from 0-

10 cm depth at Rothamsted Research, North Wyke in Devon, UK, during May-June 2014. Two 

further soils were collected from 0-20 cm depth (also used for larger experiments; Chapter 3) 

from the Rowden and Whiddon Down sites at North Wyke in October 2014 and February 2017, 

respectively. Soil characteristics are outlined in Tables 2.1 and 2.4. Samples were stored at field 

moisture contents at 4 °C until preparation and analysis. All samples were sieved to 2 mm; then 

the field-moist (FM) gravimetric water contents (GWC) were measured (maintained from 

sampling) and the soils were again stored at 4 °C. Soils were air-dried by spreading them thinly 

on clean trays in an oven at 35 °C until reaching constant weight, then sealing the air-dried (AD) 

soils in plastic bags. For Experiment 1, soil analyses were carried out on FM and AD soils, 

although microbial biomass P was analysed for FM samples only. For Experiment 2, soil 

analyses were also carried out for an intermediate soil moisture range. These experiments 

compared FM to dried then re-wet (DRW) soils, since the analytical procedures require re-

wetting the soils with a fixed volume of extractant for a specified period of time. Analyses on 

FM soils were carried out at similar percentage of water holding capacity (% WHC) (within 

14%) despite the variation in GWC (with a range of 41%) across soil types (Table 2.1).  

  



Chapter 2: Drying and re-wetting effects on P 

52 

 

Table 2.1: Soil characterisation. Field moisture contents (GWC) and percent of the water holding 

capacity (% WHC) are means (± SE) (n = 3). The % WHC was calculated as: ((mass of water in saturated 

soil / dry weight of soil) * 100). 

 

Reference 

(location) 
Soil series Texture Management GWC (%)  % WHC 

Tadham Moor Altcar 1a Peat Low-input 

ungrazed 

grassland reserve 

63 (1.3) 56 (0.7) 

Little Burrows Halstow Clay Grazed grassland 27 (0.4) 64 (0.2) 

Joseph’s Carr  Fladbury Clay Low-input 

ungrazed 

woodland 

38 (0.5) 60 (0.3) 

Rowden Hallsworthb Clay Low-input 

ungrazed 

grassland 

37 (0.3) 66 (0.6) 

Whiddon 

Down 

Hallsworth Clay Grazed grassland 22 (0.2) 70 (1.4)  

 

aEvans et al., 2017; bHarrod and Hogan, 2008. 
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Experimental design 

To test the hypothesis that microbial effects regulate soil P availability following DRW, the 

MBP concentrations were measured in three FM soils, and water-extractable TP, MRP and 

MUP concentrations determined for these soils in FM and DRW conditions (Experiment 1). 

For Experiment 2, three soils were selected for a drying threshold experiment: 

 Tadham Moor since it had the highest MBP concentration; 

 Rowden since it was used previously (Blackwell et al., 2009; 2012), with sufficient volume 

available for larger experiments (Chapter 3); 

 Whiddon Down, selected from a site acquired by Rothamsted Research, North Wyke 

during the development of Experiment 1, since it is similar to the Rowden soil but more 

intensively managed (Table 2.1), and also for its availability for scaled-up experiments 

(Chapter 3).  

The experiment was repeated twice: initially with the Rowden soil (T1) and later to also include 

the Tadham Moor and Whiddon Down soils, and analyse a broader range of P forms (T2).   

Field-moist soils were gradually dried in an oven at 35 C, with sub-samples taken at different 

times to measure P availability at different degrees of drying. For T1, FM soils were weighed 

into 200 mL extraction bottles (with approximate dimensions of 120 mm height x 60 mm 

diameter) which were placed directly and randomly in the oven, with each bottle containing one 

of the triplicate samples for P analysis. Additionally, one bottle per sample time was included 

to determine soil moisture characteristics.  For T2, to increase the drying rate and within-sample 

uniformity, soils were instead dried in randomised tin trays which had a greater horizontal 

surface area (with approximate dimensions of 30 mm height x 120 mm length x 80 mm width). 

Sample times were determined by a preliminary trial that frequently recorded the GWCs for 

each soil type within 48 hours. For T1, soil was sampled at 0, 2, 4, 8, 16 and 24 hours. For T2, 

the Rowden and Whiddon Down soils were sampled at 0, 0.25, 0.5, 0.75, 1, 1.5, 2 and 24 hours 
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and the Tadham Moor soil (with a higher initial GWC and slower drying rate) was sampled at 

0, 1, 2, 3, 4, 5, 6, 7, 8 and 24 hours. Samples taken during T1 were extracted immediately to 

determine NaHCO3-P, whereas samples taken during T2 were stored in sealed plastic bags at 4 

C until analysis of NaHCO3-P and water-extractable TP and MRP.  

Soil moisture characteristics 

Soil moisture contents (%) were determined gravimetrically with a two decimal point balance. 

Soil water potential was determined using a WP4-T Dewpoint Potentiometer (Decagon Devices 

Inc., USA). This method measures the temperatures of the soil sample and of a mirror, which 

is cooled until water condenses on its surface, i.e. at the dewpoint. The relative humidity is then 

calculated which relates to soil water potential according to the Kelvin equation (see Whalley 

et al., 2013).    

Analytical procedures for soil phosphorus 

All analyses were carried out in triplicate following standard procedures as described. All P 

concentrations are expressed on a dry weight equivalent (DWE) basis. Analytical quality 

controls (AQCs) were included with each analytical procedure. A solution and a reference soil 

each with a known concentration of orthophosphate were included with each analytical run so 

it could be confirmed that these known concentrations were measured. Repeats of the blanks, 

AQCs and calibration standards were included within sample runs (within as well as between 

plates), and some repeat samples were also analysed. The limits of detection (LOD) and 

quantification (LOQ) were determined by measuring ten matrix blanks and calculating three 

times and ten times the standard deviation of the blanks, respectively. Samples reading below 

the LOQ were excluded from the results.  

Microbial biomass phosphorus (MBP) 

Soils were incubated at room temperature (approximately 25 °C) for 24 hours prior to MBP 

analysis (Blackwell et al., 2012). MBP was measured according to Brookes (1982), via 
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chloroform fumigation for 24 hours to lyse microbial cells followed by sodium bicarbonate 

extractable P (NaHCO3-P) measurement according to Olsen et al. (1954) and adapted for moist 

soils by Snars et al. (2006). Briefly, the analysis included fumigated and non-fumigated samples 

and a non-fumigated sample spiked with a known concentration of orthophosphate (PO4-P), 

such that the difference could be calculated allowing for P sorption during extraction for each 

individual sample. The NaHCO3 extractant was adjusted to pH 8.5 with sodium hydroxide 

(NaOH). A soil: extractant ratio of 1:20 was maintained, in this case with soil weight of 10 g 

(DWE) and NaHCO3 volume of 200 mL. Samples were agitated on a reciprocating shaker at 

150 rpm for 30 minutes, then filtered through pleated 2-3 µl filter papers (Whatman plc., UK 

or VWR International Inc., UK). Orthophosphate was measured within 24 hours according to 

Murphy and Riley (1962) using an Aquakem 250 Photometric Analyzer (Thermo Scientific, 

UK) at the Rothamsted Research North Wyke analytical laboratory. Incorporating the P 

recovery factor, MBP concentration (mg kg-1) was calculated as:  

 

(25 * (Cf – Cu)) / (0.4 * (Cs – Cu)) 

Where: 

25 is the concentration of the P spike (mg kg-1);  

Cf is the concentration of P in the fumigated sample (mg kg-1); 

Cu is the concentration of P in the unfumigated sample (mg kg-1); 

0.4 is a conversion factor assumed to represent the fraction of MBP extracted following 

fumigation; 

Cs is the concentration of P in the spiked sample (mg kg-1). 

 

For the Whiddon Down soil, MBP was measured via hexanol fumigation and extraction with 

anion exchange resin membranes (Kuono et al., 1995; Bünemann et al., 2013). Chloroform and 

hexanol were equally effective as biocides, with hexanol preferred because it is not carcinogenic 

(McLaughlin et al., 1986), and the hexanol fumigation-resin extraction method was considered 

to be more effective for saturated soils (Chapters 3 and 4). Resin membranes were prepared by 
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shaking at 100 rpm in 1.5 M NaHCO3 for 1 hour, rinsing in Milli-Q water and repeating. Six 

samples of 2.5 g DWE soil were then shaken at 150 rpm for 16 hours in 20 mL Milli-Q water 

with one resin membrane per sample, with the addition of 0.8 mL hexanol to three sub-samples 

for fumigation. Resin membranes were then recovered in 8 mL of 0.1 M hydrochloric acid 

(HCl) and shaken at 150 rpm for 1 hour. Finally the resin membranes were removed and eluates 

analysed using malachite green reagent and a plate reader (MultiskanTM GO Microplate 

Spectrophotometer, ThermoFisher Scientific, USA) at 625 nm absorbance, with sample P 

concentrations determined from a standard curve. For this method, the P recovery factor was 

determined for four samples by adding 1 mL of 5 mg P L-1 P spike solution (and reducing the 

Milli-Q water volume to 19 mL), then applied to the sample results.  

 

P recovery was calculated as:  

 

P Recovery = ((Cs - Cf) * 100) / Cs 

Where: 

Cs is the concentration of P in the spiked sample (mg kg-1); 

Cf is the concentration of P in the fumigated sample (mg kg-1). 

 

The mean P recovery was 46.4 % (SE = 2.6) for the Whiddon Down soil; thus MBP was 

calculated as:  

MBP = ((Cf – Cu) * 0.008) / (SW * 0.464) 

Where: 

Cf is the concentration of P in the fumigated sample (mg kg-1); 

Cu is the concentration of P in the unfumigated sample (mg kg-1); 

0.008 is the volume of HCl in litres;  

SW is the DWE weight of the soil sample in kilograms;  

0.464 is the recovery factor.  
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Water-extractable total phosphorus (TP), molybdate reactive phosphorus (MRP) and 

molybdate unreactive phosphorus (MUP) 

Water-extractable TP and MRP were measured according to the verified method for the North 

Wyke laboratory (Williams, 2007), with appropriate adaptations as advised (M. Blackwell, pers. 

comm.). Soil was extracted with Milli-Q water in a 1:4 DWE soil: water ratio on a reciprocating 

shaker for 30 minutes. Suspensions were centrifuged at 4600 rpm for 5 minutes, then 

supernatants were filtered through 2-3 µm filter papers. For TP, sub-samples of the filtrates 

were taken and the non-molybdate reactive forms (organic, condensed and colloidal P) were 

oxidised with acidified potassium persulphate in an autoclave, thereby converted to 

orthophosphate. Orthophosphate in each set of sub-samples for TP and MRP was measured 

according to Murphy and Riley (1962). All TP samples were measured with an Aquakem 250 

Photometric Analyzer (Thermo Scientific, UK) at the Rothamsted Research North Wyke 

analytical laboratory. The MRP samples were measured with an Aquakem 250 Photometric 

Analyzer (Thermo Scientific, UK) at the Rothamsted Research North Wyke analytical 

laboratory for Experiment 1; an AutoAnalyser (AA3, SEAL Analytical, Porvair Sciences) for 

Experiment 2, T1; and a plate reader (MultiskanTM GO Microplate Spectrophotometer, 

ThermoFisher Scientific, USA) at 880 nm absorbance for Experiment 2, T2. Unreactive P 

is generally considered to be organic P (Haygarth et al., 1998) and was calculated as the 

difference between TP and MRP. 

Sodium bicarbonate extractable phosphorus (NaHCO3-P)  

Sodium bicarbonate extractable P (NaHCO3-P) was measured as described for the 

determination of MBP, according to Olsen et al. (1954) and adapted for moist soils by Snars et 

al. (2006). Soil was extracted with 0.5 M NaHCO3, adjusted to pH 8.5 with NaOH, in a 1:20 

DWE soil: extractant ratio on a reciprocating shaker for 30 minutes. Suspensions were then 

centrifuged at 4600 rpm for 5 minutes, then supernatants were filtered through 2-3 µm filter 

papers. Filtrates were neutralised by adding 0.5 mL of 1.5 M sulfuric acid (H2SO4) to 2.5 mL 
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of sample and swirling until the reaction was complete. Orthophosphate was measured within 

24 hours according to Murphy and Riley (1962) using an AutoAnalyser (T1) and plate reader 

(T2) as described for water-extractable P.  

Statistical analysis 

Statistical analyses were performed using the software SPSS version 23 (IBM, 2014). In all 

cases, a confidence threshold of 0.05 was applied. 

For Experiment 1, significant differences in mean MBP concentration between the soils were 

determined using Welch’s one-way ANOVA and a Games-Howell pairwise test. For water-

extractable TP, MRP and MUP, data were transformed (log base 10) prior to carrying out two-

way ANOVA to determine the effects of soil type, air-drying and their interaction. To determine 

whether air drying significantly increased water-extractable TP, MRP and MUP concentrations 

compared to field-moist samples, independent sample t-tests were carried out, except for the 

MRP data for the Joseph’s Carr soil which required a Welch-Satterthwaite t-test (due to unequal 

variance of the standardised residuals). Linear regression analysis was carried out to determine 

whether the positive relationships between MBP and the percent increases in TP, MRP and 

MUP were significant, where non-significant changes following air-drying were assumed have 

no increase.  

For Experiment 2, significant differences between P concentrations according to water status 

were determined by ANOVA as next described, using drying time (hours) as the dependent 

variable associated with water status. Differences between  GWC were determined using 

Welch’s one-way ANOVA with Games-Howell pairwise tests (Rowden, T1 and Whiddon 

Down and Tadham Moor, T2) and one-way ANOVA with Tukey’s pairwise test (Rowden, T2). 

Differences between SWP were determined using Welch’s ANOVA with Games-Howell 

pairwise test (all soils, T1 and T2). Differences in NaHCO3-P were determined by one-way 

ANOVA with Tukey’s pairwise test (Rowden, T1) and Welch’s ANOVA with Games-Howell 

pairwise test (all soils, T2). Differences in TP and in MUP were determined by Welch’s 
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ANOVA with Games-Howell pairwise test (Rowden and Whiddon Down, T2; data unavailable 

for Tadham Moor). Differences in MRP were determined by Welch’s ANOVA with Games-

Howell pairwise test (Rowden and Tadham Moor soils, T2) and by one-way ANOVA with 

Tukey’s pairwise test (Whiddon Down, T2).  

For T1 and T2, logarithmic regression analysis was performed on the means of the water status 

variables and NaHCO3-P to characterise the relationships and their significance. ANCOVA was 

carried out to determine whether the effect of (log) SWP on NaHCO3-P differed according to 

soil type (Rowden and Whiddon Down). Piecewise regression was used to determine the 

significance of two fitted linear regressions at assumed change points for SWP, with the original 

SWP values and the differences from assumed change points as independent variables and 

NaHCO3-P as the dependent variable in linear regression models.  

Results 

Experiment 1 

Soil microbial biomass phosphorus concentration 

The MBP concentration differed significantly across a 10-fold range between five soils (p < 

0.001; Table 2.2).  
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Table 2.2: Microbial biomass P concentrations in five soils. Different upper case letters indicate 

significant differences between the three soils reported in Experiment 1 (p = 0.003) and different lower 

case letters indicate significant differences between the five soils reported in Experiments 1 and 2 (p < 

0.001). Significant differences are according to Welch’s ANOVA with Games-Howell pairwise test 

(measured once for each soil; p ≤ 0.05). Data are means (± SE) (n = 3). 

 

Soil Microbial biomass P (mg kg-1)  Experiment 

Tadham Moor 361.1  (38.1)     A  1, 2 

Little Burrows  40.0    (3.2)       C  b 1 

Joseph’s Carr 82.9    (0.8)       B  a 1 

Rowden 32.8    (4.3)      b 2 

Whiddon Down 45.3    (0.9)      b 2 
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Effects of air-drying on TP, MRP and MUP concentrations 

Air-drying affected P concentrations differently, according to P fraction and soil (Table 2.3; 

Figure 2.2 a-c). For the Tadham Moor soil, air-drying significantly increased all measured forms 

of P compared to concentrations in FM soils. Mean TP increased by > 1000 % (11.26 mg kg-1) 

(p < 0.001), within which the proportions of mean MRP increased the most substantially, by > 

10000 % (1.14 mg kg-1) (p < 0.001) despite lower overall concentrations, whilst mean MUP, 

the dominant form by mass, increased by 912 % (10.12 mg kg-1) (p < 0.001). For the Little 

Burrows soil, air-drying significantly increased TP by 148 % (2.85 mg kg-1) (p = 0.001). MRP 

decreased by 30 % (0.07 mg kg-1) (p = 0.008) following air-drying, whereas MUP increased by 

171 % (2.91 mg kg-1) (p = 0.001). Soil drying did not significantly increase TP of the Joseph’s 

Carr soil. Although air-drying increased MRP significantly by 329 % (0.23 mg kg-1) (p = 0.002),  

MUP (which was the dominant P form) did not significantly increase. 

 

Table 2.3: Significant effects of soil type and moisture status (air-dried compared to field-moist 

samples) and their interaction for water-extractable total P (TP), molybdate reactive P (MRP) and 

molybdate unreactive (MUP) according to two-way ANOVA following transformation (log base 10) (n 

= 3). 

Model term p-values 

 TP MRP MUP 

Soil    0.027    0.021    0.023 

Moisture < 0.001 < 0.001 < 0.001 

Soil * Moisture < 0.001 < 0.001 < 0.001 
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Figure 2.2: Water-extractable (a) total P, (b) MRP and (c) 

MUP concentrations in three soils, at field-moist (FM) and air-dried 

(AD) moisture contents and expressed on a dry-weight basis. Data 

are means (± SE) and n = 3 (except Little Burrows, AD: n = 2). 

Different letters above the columns indicate significant differences 

(p ≤ 0.05) between the FM and AD moisture status for each soil, 

according to independent samples t-tests (except Joseph’s Carr, 

MRP: Welch-Satterthwaite t-test).  
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Effects of air-drying on phosphorus availability related to MBP concentration 

For the Tadham Moor, Little Burrows and Joseph’s Carr soils, the average increases in TP, 

MRP and MUP following air-drying were strongly positively (R2 = 0.933, 0.991 and 0.913, 

respectively; n = 3) though not significantly related to the average MBP concentrations.  

In summary, MUP was the dominant form by mass in all FM soils, comprising 90–99 % of TP. 

Air-drying significantly increased TP, MRP and MUP in the Tadham Moor soil, and TP and 

MUP in the Little Burrows soil whereas only MRP in the Joseph’s Carr soil (Figure 2.2). The 

effects of air-drying were distinct for the Tadham Moor soil for increasing TP overall as well 

as both the more and less available MRP and MUP fractions, respectively. Although the greatest 

increases in P caused by air-drying occurred in the Tadham Moor soil, which also had the 

highest MBP concentration (Table 2.2), regressions between the increases in TP, MRP and 

MUP with MBP after air-drying were not significant.  

 

Experiment 2 

The major soil properties for the Rowden, Whiddon Down and Tadham Moor soils are outlined 

in Table 2.4. 
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Table 2.4: Major soil physical and chemical properties for the three soils used in Experiment 2. 

Analyses were carried out by NRM Laboratories, UK and Rothamsted Research, UK.  

Soil 

property 

Result 

Units Method 
Rowden 

Whiddon 

Down 

Tadham 

Moor 

Texture 

class 
Clay Clay Peat 

 

Particle size 

distribution via 

laser diffraction 

Sand 13 8 7 % w/w 

Silt 37 41 35 % w/w 

Clay 50 51 58 % w/w 

Organic 

Matter 
11.5 7.6 No data % w/w 

Loss on ignition 

(LOI) 

pH 4.9 4.9 5.9  In water (1:2.5) 

Total C 4.79 2.97 28.58 % w/w Combustion 

catalytic 

oxidation  

Total N 0.48 0.32 1.99 % w/w 

C:N Ratio 10.0:1 9.3:1 14.36:1  

Total P 674 640 1026 mg kg-1 
Aqua-regia 

soluble elements 

: HCl and HNO3 

digestion with  

analysis via ICP-

OES 

Total K 1572 1450 3064 mg kg-1 

Total Mg 730 1570 4141 mg kg-1 

Total Mn 986 239 647 mg kg-1 

Total Fe 39336 37283 19066 mg kg-1 

Available Fe 171 181 7578/ 7970 mg L-1 

DTPA 

extraction, or 

dithionite/ 

ammonium 

oxalate 

extraction 

(Tadham Moor) 

 

For the first sampling time (T1), air-drying the Rowden soil significantly decreased GWC (p = 

0.002) and SWP (p = 0.046) over time, reaching minimum values of 6.4 % and –34.4 MPa 

respectively after 24 hours. The NaHCO3-P concentrations significantly increased as GWC and 

SWP decreased (p = 0.001 and p = 0.009 respectively). NaHCO3-P increased by 518 % over 

this period (by 7.09 mg kg-1; p < 0.001), with significant differences from FM soil detected after 
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16 hours (when GWC and SWP had decreased to 16.3 % and -3.0 MPa) (Table 2.5). Therefore 

air-drying significantly increased NaHCO3-P when SWP was -3.0 MPa or lower.  

 

Table 2.5: Effect of drying time on GWC and SWP (n = 2) and NaHCO3-P (n = 3) in T1. Data are 

means (± SE). Different letters indicate significant differences (≤ 0.05) within each column according to 

one-way ANOVA with Tukey’s or Games-Howell pairwise tests.  

 

Drying time 

(hours) 

GWC   

(%) 

SWP  

(MPa) 

NaHCO3P  

(mg kg-1) 

0 31.2 (0.04) a -0.1 (0.24) a 1.37 (0.27) cd 

2 31.4 (0.00) a -0.1 (0.94) a 1.00 (0.18) d 

4 29.5 (0.02) ab -0.2 (0.06) a 1.96 (0.12) c 

8 27.4 (0.05) a -0.6 (0.36) a 1.93 (0.12) c 

16 16.3 (0.66) b -3.0 (0.57) a 3.02 (0.17) b 

24 6.4 (11.62) c -34.4 (0.65) a 8.46 (0.16) a 

 

 

For T2, air-drying the Rowden soil significantly decreased GWC and SWP over time (p < 

0.001), reaching minimum values of 5.3 % and -142.9 MPa respectively after 24 hours. 

NaHCO3-P significantly increased as GWC and SWP decreased (p = 0.001 and p < 0.001 

respectively; Figure 2.3). NaHCO3-P increased by 252 % over this period (by 3.88 mg kg-1; p < 

0.001), with significant differences from FM soil detected after 2 hours (when GWC and SWP 

had decreased to 12.1 % and -26.3 MPa) (Table 2.6). However, a significant change point for 

NaHCO3-P concentration occurred at -2.9 MPa. Above and below this change point, slopes of 

the regressions were 0.014 and 0.995 mg kg-1 MPa-1 respectively (change = -0.981, p = 0.013). 

At the higher SWP of -1.9 MPa, the change in slope was not significant (p = 0.052) suggesting 

that a change point may have occurred between these values but was first detected at -2.9 MPa. 

After 24 hours, air-drying significantly increased soil TP (by 1100 %), MRP (by 71 %) and 

MUP (by 2540 %) (p < 0.001; Table 2.6). These regressions remained significant even after 

removing the data at 24 hours, though not 2 hours (for TP, MRP and MUP, p = 0.006, p = 0.016 
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and p = 0.008 respectively), suggesting that P increased when SWP decreased to -26.3 MPa 

(Table 2.6). Therefore air-drying increased TP, MRP and MUP only when SWP was -26.3 MPa 

or lower, but NaHCO3-P when SWP was -2.9 MPa or lower.  

Air-drying the Whiddon Down soil significantly decreased GWC and SWP over time, reaching 

minimum values of 1.3 % and -150.9 MPa respectively after 24 hours (p < 0.001). NaHCO3-P 

significantly increased as GWC and SWP decreased (p < 0.001; Figure 2.3). NaHCO3-P 

increased by 257 % over this period (by 4.71 mg kg-1; p < 0.001), with significant differences 

from FM soil detected after 0.5 hours (when GWC and SWP had decreased to 14.7 % and -2.3 

MPa) (Table 2.6). A significant change point occurred for NaHCO3-P at -13.1 MPa, above and 

below which slopes of the regressions were 0.020 and 0.178 mg kg-1 MPa-1 respectively (change 

= -0.158, p = 0.004). However, whether the significant increase in NaHCO3-P occurred when 

SWP was -2.3 MPa (Table 2.6) could not be tested because there were only two data points 

above that value. The change at -3.1 MPa was not significant; therefore NaHCO3-P significantly 

increased when SWP was -2.3 MPa (Table 2.6) but more data are required for SWPs below -

3.1 MPa, and between -2.3 MPa and -13.1 MPa, to clearly distinguish any change point(s). TP 

increased by 589 % (1.06 mg kg-1; p < 0.001), with significant differences from FM soil detected 

only after 24 hours (Table 2.6). MRP concentrations did not significantly increase with drying, 

whilst MUP increased by 3433 % (1.03 mg kg-1; p < 0.001), detected only after 24 hours (Table 

2.6). However, overall TP and MUP significantly increased as GWC (p < 0.001) and SWP (p = 

0.001) decreased over 24 hours, and also as SWP decreased over 2 hours (p = 0.002) and 1.5 

hours (TP: p = 0.023, MUP: p = 0.022) though not 1 hour, suggesting that P increased when 

SWP decreased to -56.9 MPa (Table 2.6). Therefore air-drying increased TP and MUP only 

when SWP was -56.9 MPa or lower, but NaHCO3-P when SWP was -2.3 MPa or lower. 

Air-drying the Tadham Moor soil significantly decreased GWC and SWP over time (p < 0.001), 

reaching minimum values of 9.8 % and -212.3 MPa respectively after 24 hours. NaHCO3-P 

significantly increased as GWC and SWP decreased (p < 0.001). NaHCO3-P increased by 106 

% after 24 hours although by 201 % after 8 hours (by 4.25 mg kg-1; p < 0.001), with significant 
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differences from FM soil detected after 6 hours (when GWC and SWP had decreased to 35.3 % 

and -2.6 MPa). No significant change point was detected indicating a consistent rate of P release 

as the soil dried. MRP significantly increased as SWP decreased over 24 hours (by 310 %; p < 

0.001) and 8 hours (by 103 %; p = 0.010) though not 7 hours, suggesting that MRP increased 

when SWP decreased to -7.0 MPa (Table 2.6). Therefore air-drying increased MRP only when 

SWP was -7.0 MPa or lower, but NaHCO3-P when SWP was -2.6 MPa or lower. 
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Table 2.6: Effect of drying time on GWC and SWP and NaHCO3-P and water-extractable TP, MRP and MUP (all n = 3) in T2. Data are means (± SE). Data 

were not available for TP and MRP for the Tadham Moor soil. Different letters indicate significant differences (≤ 0.05) within each water status and P concentration 

variable for each soil according to one-way ANOVA with Tukey’s or Games-Howell pairwise tests. Asterisks indicate the highest P concentrations that yielded 

significant logarithmic regression versus SWP when included in the analysis, showing significant increases over time.  

Drying 

time 

(hours) 

GWC  

 (%) 

SWP  

 (MPa) 

NaHCO3-P  

 (mg kg-1) 

Water-extractable 

TP (mg kg-1)  

Water-extractable 

MRP (mg kg-1) 

Water-extractable 

MUP (mg kg-1) 

Rowden 

0 31.4  (0.63) a -0.6 (0.02)   a 1.54 (0.07) b  0.12 (0.01) a 0.07 (0.00) a 0.05 (0.01) a 

0.25 25.4  (0.71) ab -0.8 (0.05)   a 1.58 (0.04) b  0.14 (0.01) a 0.06 (0.00) a 0.08 (0.01) a 

0.5 21.7 (2.12) bc -1.4 (0.31)   a 2.09 (0.25) b 0.12 (0.02) a 0.09 (0.00) a 0.03 (0.01) a 

0.75 21.9 (2.94) bc -1.9 (0.73)   a 2.43 (0.48) ab 0.15 (0.02) a 0.07 (0.00) a 0.09 (0.02) a 

1 17.2 (1.46) ce -2.9 (0.54)   a 3.10 (0.37) ab 0.14 (0.04) a 0.08 (0.01) a 0.06 (0.04) a 

1.5 15.6 (2.30) cd -5.2 (2.28)   a 3.48 (0.51) ab 0.34 (0.23) a 0.09 (0.01) a 0.24 (0.22) a 

2 12.1 (0.58) def -26.3 (11.93) a 5.17 (0.05) a 0.89 (0.53) a* 0.11 (0.02) a* 0.78 (0.52) a* 

24 5.3 (0.63) f -142.9 (6.54)   b 5.42 (0.21) a 1.44 (0.50) a* 0.12 (0.01) a* 1.32 (0.50) a* 

 

[Continues] 
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Drying 

time 

(hours) 

GWC 

(%) 

SWP 

(MPa) 
NaHCO3-P 

(mg kg-1) 

Water-extractable 

TP (mg kg-1) 

Water-extractable 

MRP (mg kg-1) 

Water-extractable 

MUP (mg kg-1) 

Whiddon Down 

0 23.7 (0.44) a -0.7 (0.00) a 1.83 (0.02) ef 0.18 (0.01) b 0.14 (0.01) ab 0.03 (0.02) b 

0.25 21.0 (0.28) a -1.2 (0.09) ac 2.00 (0.09) de 0.12 (0.01) b 0.12 (0.02) abc 0.00 (0.02) b 

0.5 14.7 (0.61) b -2.3 (0.17) bc 2.39 (0.05) cd 0.12 (0.01) b 0.08 (0.00) c 0.04 (0.00) b 

0.75 17.2 (2.32) abc  -3.1 (0.60) ac 2.56 (0.21) cde 0.13 (0.01) b 0.10 (0.01) bc 0.03 (0.02) b 

1 5.6 (1.18) c -13.1 (3.48) ac 3.78 (0.22) cf 0.30 (0.06) b 0.15 (0.02) ab 0.15 (0.05) b 

1.5 2.9 (0.51) c -56.9 (4.90) d 5.53 (0.11) b 0.80 (0.14) ab* 0.12 (0.01) abc 0.68 (0.15) ab* 

2 2.9 (0.58) c -129.8 (5.45) e 6.65 (0.15) a 0.98 (0.26) ab* 0.16 (0.01) ab 0.82 (0.26) ab* 

24 1.3 (0.32) c -150.9 (5.00) e 6.54 (0.25) ab 1.24 (0.03) a* 0.17 (0.01) a 1.06 (0.04) a* 

Tadham Moor 

0 67.5 (1.26) a -0.6 (0.04) a 2.11 (0.04) b   0.31 (0.06) a   

1 65.4 (0.94) a -0.4 (0.09) a  2.27 (0.06) b   0.29 (0.15) a   

2 61.9 (1.12) a -0.6 (0.04) a 2.33 (0.12) b   0.16 (0.00) a   

3 55.3 (3.12) ab -0.3 (0.05) a 2.97 (0.36) b   0.19 (0.01) a   

4 46.2 (3.66) ab -1.2 (0.44) a 4.06 (0.79) ab   0.21 (0.02) a   

5 44.8 (7.57) abc -2.3 (1.47) a 3.82 (0.73) ab   0.34 (0.21) a   

6 35.3 (1.34) b -2.6 (0.48) a 5.57 (0.26) a   0.23 (0.04) a   

7 32.5 (2.95) bc -5.9 (2.69) a 6.28 (0.75) ab   0.61 (0.20) a   

8 31.3 (0.99) b -7.0 (2.66) a 6.36 (0.37) a   0.63 (0.06) a*   

24 9.8 (0.42) c -212.3 (6.01) b 4.35 (0.52) ab   1.27 (0.16) a*   
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(a) 

 

 

(b) 

 

Figure 2.3: Significant logarithmic regression between (a) GWC (%) and NaHCO3-P (mg kg-1); 

and (b) SWP (-MPa) and NaHCO3-P (mg kg-1) for the Rowden and Whiddon Down soils (T2). The 

significant change point (-2.9 MPa) for the Rowden soil is illustrated by a red marker (b). Data are means 

(± SE) (n = 3). The slopes for SWP did not significantly differ between the soil types (p = 0.332). 
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In summary, air-drying significantly increased soil P concentrations. The magnitude of the 

response depended on the P form and (to a lesser extent) the soil type, as well as the degree of 

drying. Most notably, (plant-available) NaHCO3-P consistently increased with decreasing 

GWC and SWP in both experiments (T1 and T2) and the different soils, increasing by the same 

magnitude with the same decrease in SWP for the Rowden and Whiddon Down soils as shown 

by the same regression slopes (Figure 2.3). The increase in TP (for Whiddon Down) was 

dominated by the MUP proportion, suggesting air-drying caused changes in the organic P 

fraction. Threshold water potentials at which P concentrations significantly increased above FM 

levels varied according to the soil type. Most notable were the similar SWPs for NaHCO3-P at 

-3.0 MPa averaged across T1 and T2 for Rowden, -2.3 MPa for Whiddon Down and -2.6 MPa 

for Tadham Moor; lower at -7.0 MPa for MRP for Tadham Moor; whilst much lower at -56.9 

MPa for TP and MUP for Whiddon Down. Therefore air-drying significantly increased P 

availability in three different soils, although only when SWP was -2.3 MPa or lower. The key 

results are summarised in Figure 2.4.  
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Figure 2.4: Summary of key results illustrating the percentage change in soil P concentrations 

following air-drying and re-wetting in relation to the hypotheses.  

Percent increases in water-extractable TP, MRP and MUP in air-dried compared to field-

moist soils (Experiment 1). 

 

 

 

 

 

 

 

1.  

Hypothesis: 

Greater increases in available P following DRW occur in soils with higher MBP. 

Consistent with the hypothesis: 

Soil DRW significantly increased TP and MUP in the Tadham Moor and Little Burrows soils, 

and MRP in the Tadham Moor and Joseph’s Carr soils. The greatest increases occurred in the 

Tadham Moor soil which had the highest MBP concentration. 

Contrary to the hypothesis: 

Soil DRW decreased MRP in the Little Burrows soil and did not affect TP and MUP in the 

Joseph’s Carr soil. Regressions between the increases in TP, MRP and MUP with MBP after 

air-drying were not significant. 

 

Soil 
Water-extractable P 

TP MRP MUP 

Tadham Moor    

Little Burrows    

Joseph’s Carr    

 

 

 

Percent change (Experiment 1) Increase Decrease 

10000 +   

500 - 9999   

100 - 499   

1 - 99   

No significant difference from field-moist soil   

NA   
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Percent increases in water-extractable TP, MRP and MUP, and plant-available NaHCO3-

P, in soils dried to the SWP threshold (for increased NaHCO3-P) and the minimum SWP, 

compared to field-moist concentrations (Experiment 2). 

 

 

 

 

 

 

 

 

 

2. 

Hypothesis: 

Increased P availability following DRW is correlated with decreased SWP, and the SWP at 

which P availability increases varies according to soil. 

Consistent with the hypothesis: 

Soil P availability increased as SWP decreased in three soils. The SWP at which P availability 

(TP, MUP) increased (threshold) varied between the soils. 

Contrary to the hypothesis: 

The SWP at which P availability (NaHCO3-P) increased (threshold) was similar between the 

three soils. 

 

Soil 
Degree of 

drying 

SWP   

(MPa) 
Water-extractable P 

Plant-

available P 

TP, 

MRP, 

MUP 

NaHCO3-P TP MRP MUP NaHCO3-P 

Rowden 

T1 

Threshold  -3.0     

Minimum  -34.4     

Rowden 

T2 

Threshold -26.3 -2.9     

Minimum -142.9 -142.9     

Whiddon 

Down 

Threshold -56.9 -2.3     

Minimum -150.9 -150.9     

Tadham 

Moor 

Threshold -7.0 -2.6     

Minimum -212.3 -212.3     

Percent change (Experiment 2) Increase 

1000 +  

500 - 999  

200 - 499  

100 - 199  

1 - 99  

No significant difference from field-moist soil  

NA  
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Discussion 

Soil drying and re-wetting effects on phosphorus availability: importance of the 

microbial biomass  

Microbial biomass P (MBP) concentrations differed significantly between the three soils 

reported in Experiment 1, likely reflecting their different types and land uses (Table 2.1). A 

similar range in MBP concentrations across an order of magnitude occurred in 29 UK 

permanent grassland soils (31 - 239 mg kg-1) (Turner et al., 2001). Although MBP 

concentrations for the Joseph’s Carr and Rowden soils fell within this range, the Tadham Moor 

soil exceeded it, probably associated with its organic texture and low-input management (Evans 

et al., 2017). Joseph’s Carr had twice the MBP concentration as Rowden and although both 

have clay textures, the soils were under woodland and grassland respectively, so microbial 

community structure and composition, as well as biomass P concentrations, likely differed. For 

example, across 32 UK soils the MBP concentration was an order of magnitude higher in soils 

from moorland and woodland sites compared to grassland or arable soils, demonstrating that 

land use as well as soil type influences the abundance of different P forms (Stutter et al., 2015). 

Whether these differences in MBP concentration caused variation in P responses to DRW was 

tested, to determine the likely magnitude of DRW response in these particular soils and to aid 

in in soil selection for larger-scale experiments.  

For the three soils, the increases in water-extractable TP, MRP and MUP following air-drying 

were strongly positively (R2 > 0.91) though not significantly (p = 0.060 to 0.191) related to 

MBP concentration. Therefore, contrary to the hypothesis, there was no evidence that a greater 

increase in available P following DRW occurred in soils with higher MBP concentration. In 

contrast, water-soluble TP (which was mostly MUP) was significantly positively correlated 

with MBP concentration across 29 UK soils (Turner and Haygarth, 2001). Measuring more soils 

in the present study may have resulted in significant regressions between different P fractions 

and MBP. Alternatively, the lack of significant regression may genuinely indicate that the MBP 
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concentration was not the most important driver of P responses to DRW, or reflect that the 

effects can be highly variable in different soils. As well as the greater sample number, an 

important difference was that Turner and Haygarth (2001) measured water-soluble P; separating 

this fraction from combined soluble and particulate water-extractable P (via finer filtering) may 

alter the results (and relationship) provided that the microbial biomass had a stronger effect on 

dissolved P forms. For example, a different study showed that soil DRW increased TP and MUP 

in leachate in the water-soluble forms, but there were no consistent effects on the particulate 

forms (Blackwell et al., 2009). However, the same study found that increases in P could not be 

related to decreases in MBP caused by drying, and similarly the greatest increase in water-

extractable TP and MUP in leachate following DRW occurred in the soil with the lower MBP 

concentration (Blackwell et al., 2012), suggesting that other (non-microbial) sources were 

important to P release.  

The greatest increase in water-extractable P following DRW occurred for the Tadham Moor 

soil, dominated by the increase in the MUP form (by mass; Figure 2.2), suggesting P release 

from an organic source, likely the soil organic matter (SOM) (Butterly et al., 2009). This can 

be released from microaggregates by DRW (Chepkwony et al., 2001; Navarro-Garcia et al., 

2012) depending on aggregate stability (Bünemann et al., 2013). The results were consistent 

with other studies showing greater quantities of water-extractable or –soluble MUP released 

after drying than MRP. Thus DRW produced MUP concentrations that were up to four times 

higher than MRP (Bünemann et al., 2013), attributed to release of MUP from the microbial 

biomass (Turner and Haygarth, 2001; Turner et al., 2003). Nevertheless, sterilising soils 

indicated non-microbial contributions to the P increases with DRW, with up to 44 % higher 

resin-P following DRW compared to a constantly moist soil, whereas non-sterilised soil showed 

a smaller change of 34 % (Bünemann et al., 2013). Thus microbial effects contributed more 

than physical effects. Similarly, increased NaHCO3-P following DRW was not consistent with 

reductions in MBP and occurred regardless of whether the soil was initially sterilised, 

emphasising the influence of non-microbial factors (Sun et al., 2017). Therefore a combination 
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of microbial and soil structural sources of MUP was likely important, as well as the greater 

immobilisation of released MRP by microbes and fixation by soil minerals (Blackwell et al., 

2009; Butterly et al., 2011b; Bünemann et al., 2013), particularly Fe/ Al oxides (Figure 1.2). 

Also, soil C content was positively associated with greater microbial P release following DRW 

(Sparling et al., 1985). Thus, P release from organic sources in the Tadham Moor soil (with 

comparatively high MBP) likely caused the greater increase in MUP compared to MRP, and 

compared to the other soils, following DRW. Measuring MBP following re-wetting would be 

useful, where a decrease could suggest that lysed cells were the source of released P whereas a 

stable concentration could suggest either alternative sources or rapid recovery (Chapter 3). 

The substantial proportional increase in MRP (> 100-fold) following DRW in the Tadham Moor 

soil should not be overlooked. Tadham Moor was the only soil for which TP, MRP and MUP 

increased following DRW, suggesting mineralisation of released organic P, or direct release of 

inorganic P. The Little Burrows and Joseph’s Carr soils released only MUP or MRP 

respectively, perhaps suggesting lower mineralisation in the Little Burrows soil due to its 

significantly lower MBP concentration. However, mineralisation may not have contributed to 

MRP over the experimental duration (re-wetting occurred during a 30 minute extraction period), 

and a higher contribution of MUP due to microbial cell lysis would be expected for the Joseph’s 

Carr soil, with higher MBP. Similar to the response of the Little Burrows soil,  MRP decreased 

following DRW despite increases in TP and MUP in two (of five) soils in a distinct series, 

which were the only clay soils (Turner et al., 2002; 2003). Soil texture may have been the most 

important factor, because the soil was highly P-fixing and the decrease in MRP was thought to 

result from increased soil sorption capacity for orthophosphate following drying (Turner et al. 

2002; 2003; Haynes and Swift, 1985). Similar to the response of the Joseph’s Carr soil, a lack 

of change in water-extractable TP following DRW was attributed to microbial immobilisation 

of the released P, due to the reduced C:P ratio of the microbial biomass in the DRW soils 

compared with control soils (Butterly et al., 2011b). In contrast, increased water-soluble MRP 

following DRW was positively correlated with microbial biomass C concentration (Dinh et al., 
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2016). High soil organic C concentration (> 20 g kg-1) was considered necessary for DRW to 

increase P availability (Sparling et al., 1985). Therefore soil properties and land use (pasture or 

cropping) had a greater effect than water regime on P availability (Butterly et al., 2011b), likely 

explaining the different responses of the three presently studied soils.  

Effects of the degree of soil drying on phosphorus availability following re-wetting  

 Re-wetting stimulated greater increases in NaHCO3-P concentrations of drier soils in all cases, 

and TP, MRP and MUP concentrations in two soils, consistent with previous studies 

(Bünemann et al., 2014; Lado-Monserrat et al., 2014; Sun et al., 2017a,b). The SWPs at which 

water-extractable P forms increased varied between soils, although were very similar for 

NaHCO3-P. The increase in NaHCO3-P with decreasing SWP was characterised by significant 

change points for two soils, suggesting that P release occurred at thresholds of SWP rather than 

gradually. This was similar to relationships between leachate P concentrations with soil Olsen 

P concentrations (Fortune et al., 2005). The change points indicated threshold values for SWP 

at which changes in NaHCO3-P from the concentrations in FM soils became significant, which 

were -2.9 MPa (Rowden) and –13.1 MPa (statistically) although more likely -2.3 MPa 

(Whiddon Down) but this could not be tested. Since the Rowden and Whiddon Down soils 

showed highly significant regressions between -0.6 and -150.9 MPa (Figure 2.3), further studies 

should measure P concentrations more frequently during  drying, especially between -2.3 MPa 

and -13.1 MPa (Whiddon Down soil) and between  -0.6 MPa and -3.0 MPa, to more precisely 

determine change points (Figure 2.3). This is particularly important since the range includes -

1.5 MPa, commonly the plant permanent wilting point (PWP). Whereas the similar changes in 

NaHCO3-P with SWP between the Rowden and Whiddon Down soils (Figure 2.3b) was 

expected since the soils are of the same series and share similar properties (Table 2.4), the 

Tadham Moor soil was of a different series and was a peat soil with comparatively high total C 

content and MBP concentration (by an order of magnitude; Table 2.4 and Table 2.2 

respectively), slower drying rate, and lacked a significant change point. The logarithmic 

relationship for the Tadham Moor soil suggested more gradual P release with reducing SWP, 
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although more measures of NaHCO3-P concentrations below -2.6 MPa may discriminate a 

significant change point.  

In all soils, water-extractable TP, MRP and MUP significantly increased at lower and more 

variable SWPs than NaHCO3-P. Consistent with the present study (Table 2.6), air-drying soil 

from the Rowden site (to -78 MPa) and re-wetting increased NaHCO3-P (by 8.9 mg kg-1, 72 %) 

whilst MRP in leachate did not change (Blackwell et al., 2009). This suggested that P was 

released but became fixed, so would not be measured in the soil solution until all adsorption 

sites became occupied or an equilibrium concentration was reached (Blackwell et al., 2009), 

related to the P buffering capacity of different soils. Compared to water-extracts, NaHCO3-P 

was higher because the extraction increases the solubility of calcium phosphates, extracting 

approximately half the surface-sorbed P whilst minimising secondary adsorption reactions 

(Olsen et al., 1954). Change points could not be distinguished for TP, MRP and MUP because 

increases from FM soil occurred at the lowest two or three SWPs (Table 2.6). Although soil 

drying for different durations caused change points (with time) for increased soluble MRP in 

leachate for three grassland and arable UK soils, they were not detected for changes in SWP 

(Forber et al., 2017). This result occurred despite soils drying within a similar SWP range (-

0.24 to -158 MPa) as the present study, likely because the greatest decrease in SWP occurred 

after the first two or three sampling points (to between -139 and -146 MPa). Therefore this 

relationship remains unknown. Whilst Experiment 2 has determined change points for plant-

available P, further studies within the most relevant SWP ranges identified are needed.  

Soil drying and re-wetting effects on phosphorus availability according to the magnitude 

of drying: agronomic relevance 

Measuring soil water potential in agricultural fields  

Determining the SWP values at which DRW significantly increased P availability was 

fundamental to identifying whether plants may benefit. Since P availability increased as SWP 

decreased, the greatest increase occurred in the driest soils (-34.4 to -212.3 MPa), far lower than 
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plant PWP. However, significant increases in NaHCO3-P first occurred when soils dried to -2.3 

to -2.9 MPa, much nearer to the PWP (Table 2.6; Figure 2.3b). Previous studies of the effects 

of soil DRW on P availability have primarily compared P concentrations in field-moist soils to 

those from soils dried to very low SWPs, without exploring agriculturally relevant ranges. For 

example, DRW significantly increased water-extractable TP and MUP in leachate from soil 

dried to -78 MPa (0.9 % GWC) whilst the field-moist controls were -0.4 MPa (24.2 % GWC) 

(Blackwell et al., 2009). However, air-drying (to 8 or 11% of the field-moist GWC) was 

considered representative of surface soils during the southern Australian summer, and therefore 

the field conditions of their sample sites (Butterly et al. 2011b). Similarly, Sun et al. (2017a) 

based the lowest GWC (5 %) in their study on field measurements of as low as c. 3 % at the 

sampling site. Based on soil moisture release curves for most agricultural soils, these low GWCs 

indicate water potentials below PWP. Numerous studies have shown that once established, 

plants can survive mild water deficits (e.g. -0.02 MPa; Carrijo et al., 2017) if imposed spatially 

(vertically or horizontally) or temporally (avoiding the most sensitive phenological growth 

stages, typically anthesis) such that sufficient roots maintain access to water (Dodd, 2009; Dodd 

et al., 2015; Carrijo et al., 2017). Therefore the identified threshold SWPs for increased plant-

available NaHCO3-P suggested that soil DRW could benefit plants, depending on the spatial 

and temporal management (Chapter 3).  

Whether P release following soil DRW is beneficial depends on the effects on microbial 

communities, as well as plants. Soil water potential affects soil microbial processes, partially 

driving P release in response to DRW. Fischer (2009) questioned how dry a soil must be to 

stimulate respiration following re-wetting, measuring SWP as the key determinant of water 

availability to microbes. After drying to below -0.63 MPa, re-wetting substantially increased 

microbial respiration. At plant PWP (-1.5 MPa), respiration reduced to 5-8 % of the maximum 

(occurring at > -0.001 MPa), indicating that the reduced SWP diminished microbial function 

yet was not completely biocidal (Fischer, 2009). Specific mineralisation (mineralised P / total 

P) declines with decreasing SWP, indicating that lower water potentials limit P mineralisation 
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(Grierson et al., 1999). Thus changes in SWP, and not only the absolute SWP values, cause cell 

lysis upon DRW (Fischer, 2009). Microbial effects on P release depend on the resilience of the 

microbial community to low SWPs, and the soil moisture history (Evans et al., 2012), which 

vary according to soil type and cropping system. Therefore soil P availability increased 

following DRW at agriculturally relevant SWPs if they are carefully managed, and determining 

the effects on microbial biomass P at these SWPs is important (Chapter 3).  

Magnitude of increase in phosphorus and plant relevance 

In addition to the SWP range, the other key question was whether soil P concentrations 

increased sufficiently to potentially benefit plant P nutrition and yields. Crop P requirements 

vary according to species and genotype, availability of other nutrients and anticipated yields, 

and many other biotic and abiotic factors. The target for arable, grassland and forage crops in 

the UK is 16-25 mg L-1 NaHCO3-P (Index 2; DEFRA, 2017). In context, from the minimum 

SWP, DRW increased NaHCO3-P to total concentrations of 5.42 to 8.46 mg kg-1. The maximum 

increases in NaHCO3-P were by 7.09 mg kg-1 (T1) and 3.88 mg kg-1 (T2) for the Rowden soil, 

when soil was dried to -34.4 MPa and -142.9 MPa, respectively; 4.71 mg kg-1 when SWP was -

150.9 MPa for the Whiddon Down soil; and 4.24 mg kg-1 when SWP was -212.3 MPa for the 

Tadham Moor soil. These suggested substantial increases in absolute concentrations of 

available P as well as large proportional increases (up to 518 %). Nevertheless, for all soils, 

even when the soil was air-dried (to < -34.4 MPa) as in conventional soil P tests and 

classification into indices, the NaHCO3-P concentrations remained within the lowest range, for 

Index 0 soils (0-9 mg kg-1). These values show the maximum potential increases in P availability 

which, given the very low SWPs, could be achieved provided DRW is imposed prior to planting.  

Lesser degrees of drying (-2.3 to -3.0 MPa) could potentially be carefully controlled spatially 

and/ or temporally to support plant growth (Chapter 3). These more moderate reductions in 

SWP significantly increased NaHCO3-P by 1.65 and 1.56 mg kg-1 (to 3.02 and 3.10 mg kg-1), 

0.56 mg kg-1 (to 2.39 mg kg-1) and 3.46 mg kg-1 (to 5.57 mg kg-1) in the Rowden (T1 and T2), 

Whiddon Down and Tadham Moor soils, respectively (Tables 2.5 and 2.6). Whilst these 



Chapter 2: Drying and re-wetting effects on P 

81 

 

increases were more conservative than occurring after greater degrees of drying, benefits to 

plant P uptake and growth in P-limited conditions may be detected by plants (explored in 

Chapters 3 and 4).  

Overall, air-drying significantly increased NaHCO3-P by similar absolute values across all soils. 

The increase for Rowden at T1 seemed unusually high compared to T2 and the other soils. 

Compared to the effects of DRW (to -78 MPa) on P availability previously reported for the 

Rowden soil (Hallsworth series; Blackwell et al., 2009), at T1 NaHCO3-P increased by a greater 

magnitude (518 % rather than 72 %) although by a similar absolute concentration (7.08 rather 

than 8.90 mg kg-1). A later study similarly showed that following DRW (to -117 MPa) NaHCO3-

P increased by 70 % (7.79 mg kg-1) (Blackwell, 2012). All these studies (including Experiments 

1 and 2) took soil from the Rowden site but from plots under different fertiliser management 

regimes, and sampled in different months (and seasons) and from different depths, explaining 

different NaHCO3-P concentrations following DRW. The greater magnitude of P increase 

following DRW at T1 compared to T2 was most likely because of the shorter storage time after 

soil was collected from the field. Soil microbial phosphorus concentrations decreased after 

storage at 4 C for more than two weeks (Turner and Romero, 2010). Therefore the soil 

microbial biomass likely declined by T2, diminishing P release from DRW due to a lesser 

contribution from microbial cells, although this should be confirmed by measuring MBP at both 

time points. As well as its relevance to P fertiliser recommendations (DEFRA, 2017), the greater 

sensitivity of NaHCO3-P to changes in SWP, by extracting P from exchange surfaces (where 

released P becomes sorbed, e.g. Ca-P, FeO-P) as well as the soil solution (Moody et al., 2013), 

suggested its usefulness at detecting P release following DRW. 

Changes in water-extractable P concentrations gave insight into changes in P forms following 

DRW. Increases in water-extractable TP in the soil solution result from inorganic P (MRP) 

released from soil surfaces, and organic P (MUP) released from organic matter and the 

microbial biomass (Figure 1.1). Thus an increase in TP enhances P availability, provided the 

MRP fraction increases, although some plants can also utilise organic P and sorbed inorganic P 
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by excreting organic acids (Stutter et al., 2012; Nash et al., 2014). Despite large proportional 

increases, water-extractable P remained low in an agronomic context, except for an increase in 

MUP in the Tadham Moor soil by 10.12 mg kg-1 (Experiment 1), which could potentially 

enhance plant P nutrition. Further studies should determine the SWP (change point or 

otherwise) at which MUP increased, and the impacts of that SWP threshold on soil-, microbe- 

and plant- mediated mechanisms regulating the plant-availability of organic P.  

 

Conclusions 

Greater increases in available P following DRW tended to occur in soils with higher MBP 

concentrations, although other soil factors likely contributed to the different responses between 

soils and warrant further study. Further research should combine more soil types (as Turner and 

Haygarth, 2001), and multiple techniques such as direct bacterial counts (Turner et al., 2001) 

and sterilisation experiments (Bünemann et al., 2013; Sun et al., 2017). Moreover, soils should 

be sampled at different times of year to understand how P responses to DRW change seasonally, 

along with other regulatory soil properties. Studying soils from contrasting soil moisture regime 

histories would enrich this understanding (Evans et al., 2012).  

Consistent with the hypothesis, increased P availability following DRW was correlated with 

decreased SWP, indicating greater P release in drier soils. Plant-available NaHCO3-P increased 

with decreasing SWP with significant change points occurring at -2.9 MPa and -13.1 MPa 

(although likely -2.3 MPa if it could be tested) in the Rowden and Whiddon Down soils 

respectively. The SWPs at which NaHCO3-P significantly increased above FM levels were 

similar across soil types (-2.3 to -3.0 MPa), whilst the water-extractable TP, MRP and MUP 

forms increased at lower SWPs (-7.0 to -56.9 MPa). The SWP thresholds for increased P 

availability indicated that careful soil moisture management at larger scales could increase soil 

P availability to plants. Drying soils to lower SWPs (-34.4 to -212.3 MPa) would maximise P 

release, but would need to occur prior to planting to prevent seedling mortality, such as during 

a fallow period. Although the maximum NaHCO3-P release (3.88–7.08 mg kg-1) from a single 
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DRW event did not increase the soil classification above Index 0 (DEFRA, 2017), it is uncertain 

whether multiple DRW events have greater effects. Moreover, the effects of vertical soil 

moisture gradients on soil P availability requires further study within the context of crop P 

nutrition.
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Chapter 3: Effects of variation in soil water potential on phosphorus 

availability in soil, uptake by plants, and impacts on yields. 

Abstract 

Context: The spatial and temporal dynamics of phosphorus (P) release following soil DRW 

need to be determined, to potentially benefit crop plants via strategic irrigation management. 

Hypotheses: It was hypothesised that drying and re-wetting (DRW) would increase soil P 

availability, with more intense soil drying and multiple DRW cycles having the greatest effect. 

Strategic approach: A first experiment dried and re-saturated or re-flooded soils to determine 

the spatial and temporal effects on soil P concentrations. A second experiment initially air-dried 

soil to -38 MPa, then measured the effects on growth and yields in Brachypodium distachyon 

under different levels of P supply. 

Conclusions: More intense drying at the soil surface did not maximise P availability following 

DRW, likely due to vertical P leaching occurring within the soil profile. Nevertheless, initial 

DRW doubled grain yields in Brachypodium, implying an important agronomic benefit. 

 

Introduction 

In laboratory experiments, soil drying and re-wetting increased P availability at soil water 

potentials that can occur in agricultural fields (Chapter 2). Determining the magnitude and 

duration of increases in P availability following DRW at a larger scale is essential to understand 

potential benefits to plants.  

Increased phosphorus release from drier soils: effects of initial air-drying 

In Chapter 2, P availability increased with soil drying with maximum increases of 4 to 7 mg kg-

1 of plant-available NaHCO3-P occurring at the minimum SWPs of -34 to -212 MPa. If similarly 

intense drying occurred between consecutive crops, re-wetting the soil profile prior to planting 
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may benefit plant P nutrition. To interpret maximum potential increases in P availability 

following DRW, pot experiments have studied the effects of fully air-drying soil prior to 

planting on P availability and uptake. When a Cambisol from permanent grassland was air-dried 

from 40 %  to 4 % GWC, resin-P increased from 0.5 to 4.2 mg kg-1 (740 %) and remained at 

least 50 % higher than continuously moist soil for 22 days (Bünemann et al. 2013). Maize plants 

grown in unfertilised soil exposed to this initial DRW cycle had significantly higher biomass 

than plants grown in fertilised (5 or 10 mg P kg-1) continuously moist soil (by approximately 70 

% and 20 % respectively for each fertiliser rate), corresponding to higher shoot P concentrations 

(by approximately 90 % and 30 % respectively). Thus, intense soil drying prior to planting 

increased available P, enhancing plant P uptake and yields above fertilised levels. Similarly, 

using six highly weathered Ferralsols from irrigated rice fields in Madagascar, Tsujimoto et al. 

(2010) compared the effects of a transition from initial air-drying (GWC or SWP was not 

reported) to continuous soil flooding on P uptake by rice. In unfertilised soil that was initially 

air-dried, P uptake increased (by 250 %) and was positively correlated with soil P availability, 

suggesting initial air-drying caused both to increase. This effect was greater in soils with higher 

available P contents due to NPK fertiliser application, likely because of combined nutritional 

effects (Tsujimoto et al., 2010). Therefore air-drying soil before planting enhanced P nutrition 

in aerobically- and anaerobically-grown crops, likely at least in part because soil drying was 

sufficiently intense to release substantial quantities of plant-available P. However, neither 

experiment determined the effects of subsequent, less intense DRW cycles on P availability and 

uptake.  

Multiple cycles of soil drying and re-wetting: effects on phosphorus availability 

An initial flush of nutrient availability following DRW (the “Birch effect”) was associated with 

increased microbial respiration, indicating enhanced microbial activity stimulated by greater 

organic matter availability and mineralisation (Figure 1.2). However, whether the pulse of 

nutrient availability is sustained over time is uncertain. In two grassland soils,  microbial 

respiration doubled following drying (to -5 MPa) and re-wetting compared to continuously 
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moist controls, and was highest initially (at one and three days after DRW) compared to later 

(up to 50 days) (Gordon et al., 2008). The flush of microbial respiration can be limited by 

substrate availability over multiple cycles of DRW (Yu et al., 2014; Shi and Marschner, 2017). 

This suggests that the increase in soil P availability following DRW, caused by P release from 

the microbial biomass and subsequent mineralisation, can also diminish with multiple cycles of 

DRW. 

Whilst the initial flush of available P following DRW has been widely documented, whether 

the same response occurs over more than one DRW cycle remains uncertain. Repeatedly drying 

a forest loam soil to –100 MPa whilst control soils remained continuously moist (at 50 % WHC) 

increased soluble MRP but the number of DRW cycles (one, two or three) had no effect on P 

release (Dinh et al., 2016). In contrast, soluble MUP increased after the first, but not the second 

or third, DRW cycle. It was likely that the microbial biomass did not recover following the first 

DRW cycle, thereby decreasing the magnitude of P release following subsequent cycles; or that 

the microbial biomass adapted such that cell lysis was reduced following subsequent DRW 

cycles (Dinh et al., 2016). Within a sandy Luvisol, soluble MUP similarly increased after one 

but not two DRW cycles, although the greatest increase occurred after three DRW cycles 

(Butterly et al., 2009). In this soil, resin-P released by DRW was higher after the second and 

third than the first DRW cycle, whereas MBP decreased after one DRW cycle, but not after a 

second or third, suggesting non-microbial sources of released P. When a loam soil was 

incubated over 90 days, the MBP increased by c. 41 %, 9 % and 21 % over three consecutive 

drying cycles (to < 5 % GWC; Chen et al., 2016). Soil DRW increased NaHOC3-P by 10-18 % 

compared to soil maintained continuously moist (at 50 % WHC) and the greatest increase 

occurred after two DRW cycles, similarly to the response of resin-P reported by Butterly et al. 

(2009). Therefore MBP and NaHOC3-P were affected differently after one, two and three DRW 

cycles, with the greatest increase in NaHOC3-P corresponding with the greatest decrease in 

MBP suggesting that P was released from the microbial biomass (Chen et al., 2016). However, 

the duration of drying was similar (one day) for all cycles but whether equivalent SWPs were 
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reached was not specified. These studies provided contradictory evidence of whether multiple 

cycles of DRW reduced or enhanced P release compared to the effects of the first cycle. Whether 

different forms of P respond similarly to multiple cycles of DRW requires further investigation.  

Soil P transformations are distinct under the flooded, anaerobic conditions unique to rice 

production (Figure 1.3), although less studied than the “Birch effect” in aerobic systems. 

Nevertheless, 12 soils with contrasting properties were exposed to 11 redox cycles (with 20 

days of saturation followed by one day of oxidation and one day of further drying) over 220 

days to determine the effects on P availability (Scalenghe et al., 2012). The maximum increase 

in MRP occurred after the fourth redox cycle (80 days). Compared to initial values, MRP 

concentrations increased by an order of magnitude additionally supplying 10 to 24 mg P kg-1, 

although changes were not detected in NaHCO3-P concentrations (samples were dried before 

analysis). Exceptionally, in soil collected from a paddy rice field, MRP increased 30-fold 

suggesting that the previous exposure to periodic redox cycles amplified the effects on P 

availability. This result contradicts the idea that the soil microbial community adapts to redox 

cycles, decreasing P release from microbial cell lysis compared to the other soils, suggesting P 

was released from non-microbial sources (Figure 1.3). Alternatively, perhaps the rapid 

oxidation and drying in laboratory experiments poorly represented field scenarios and thus rapid 

desiccation (rather than re-wetting) had a biocidal effect on these microbial communities, due 

to osmotic shock and cell lysis. Importantly, soil solution MRP concentrations were greater 

under pulsed rather than continuously reducing conditions, implying that fluctuating water 

contents caused P release. Whilst field drainage systems are important to avoid reducing 

conditions and P solubilisation to reduce P losses and pollution at the catchment scale 

(Scalenghe et al., 2012), redox cycles within alternate wetting and drying (AWD) irrigation may 

alter P availability to plants. Nevertheless, better understanding of the effects of multiple AWD 

cycles on soil P dynamics is needed.  
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Differential soil drying with sampling depth  

Although more severe soil drying maximised increases in soil P availability following DRW, 

significant increases occurred at SWPs of -2.3 to -3.0 MPa, contributing 0.56 – 3.46 mg kg-1 of 

NaHCO3-P (Tables 2.5 and 2.6). Whilst SWPs as low as -100 MPa may occur in forest floor 

soils during dry summer periods (Dinh et al., 2012), crop plants cannot survive such extreme 

water deficits within the entire root zone during their development. However, unless soils are 

maintained flooded or saturated, vertical soil moisture gradients exist with drier soils at the 

surface due to surface evaporation (Figure 1.4) and higher root length density in the upper layers 

that takes up water to support plant transpiration requirements (Dodd et al., 2011). Partial drying 

thus occurs naturally in rainfed and some irrigated systems, whilst is also managed via 

controlled vertical or horizontal water deficits. Although the spatial distribution of P in the soil 

profile under different irrigation regimes (furrow, surface drip and subsurface irrigation) has 

been quantified, P availability was not specifically related to corresponding SWPs (Yang et al., 

2011), or determined at SWPs below -0.063 MPa (Wang and Zhang, 2010). Furthermore, in a 

pot experiment investigating DRW effects on P availability and plant growth, Bünemann et al. 

(2013) reported a soil moisture gradient of 4 to17 % GWC from the surface 2 cm to the lower 

portion of soil in 480 ml pots which likely affected soil P availability and uptake. Thus 

quantifying P release needs to consider vertical changes in SWP by differentiating between 

surface and bulk soils in pot studies. 

Relevance of initial soil phosphorus concentrations to the magnitude of phosphorus 

release 

Initial soil phosphorus concentrations can affect the impact of DRW events on P release, 

although reports are inconsistent. For example, the magnitude of increased P extractability 

(Bray-P) following DRW was greater in soils supplemented with inorganic P (monocalcium 

phosphate) compared to unfertilised soils, most likely due to higher adsorption of applied P 

during soil drying such that newly mineralised P was less readily adsorbed (Chepkwony et al., 
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2001). Similarly, the relative increases in soluble TP increased as soil NaHCO3-P concentration 

increased, which was attributed to the corresponding increase in the degree of P sorption site 

saturation (Styles and Coxon, 2006). Furthermore, DRW caused greater P mineralisation in 

fertilised than unfertilised soils (Grierson et al., 1998). Changes in response to environmental 

variables or treatments (including soil DRW) have been expressed as the ratio of net mineralised 

P to total soil P concentration, termed specific mineralisation (Grierson et al., 1998; 1999). 

Therefore to determine whether increased soil P availability relative to initial concentrations is 

sufficient to increase plant P uptake and yields, especially under P-limiting conditions, absolute 

as well as proportional changes (which can exaggerate the relevance of the increase) should be 

reported. Similarly, to determine whether plant P uptake increases in response to newly released 

soil P where initial P availability and plant biomass differ, comparing both plant P 

concentrations and P contents (concentrations x biomass) is necessary. 

Temporal dynamics of re-wetting on soil phosphorus availability to plants 

Multiple DRW cycles have variable effects on soil P availability, with the time between re-

wetting soil and sampling for P analysis critical. Whilst the “Birch effect” can initially stimulate 

P release from the microbial biomass, a lag can exist with no additional P mineralisation until 

sufficient microbial recovery mineralises soil organic matter (Grierson et al., 1998), and 

physical responses to DRW occur (Chepkwony et al., 2001; Blackwell et al., 2009). For 

example, dissolved MRP, MUP and resin-P concentrations peaked within two hours of re-

wetting air-dried soil, but disappeared after 49 hours (Butterly et al., 2011a). Similarly, the 

maximum increase in soluble MRP concentrations in leachate occurred in air-dried soils that 

were re-wet over 1.5 hours, rather than sooner or up to 24 hours later (Blackwell et al., 2012), 

and DRW increased P availability when soil was sampled 1 hour after re-wetting (Bünemann 

et al., 2013). Sampling within this time is important to determine the optimal P release after 

DRW and potential to exploit these “windows of opportunity” for increased soil P availability 

to plants (Chepkwony et al., 2001). 
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Objectives and hypotheses  

To determine how soil moisture dynamics affect P release spatially and temporally, two 

experiments aimed to test five hypotheses: 

1. Soil P availability will be higher in initially air-dried and re-wet soils compared to 

continuously moist soils, because a lower SWP will be reached than for control soils 

or with subsequent DRW cycles. 

 

2. Soil P availability will be higher in soils exposed to drying and re-wetting or re-

flooding compared to soils maintained under continuously saturated or flooded 

conditions, because soil P availability increases as SWP decreases, partially due to P 

release from the microbial biomass.   

 

3. Multiple DRW cycles will cause a greater increase in soil P availability than a 

single cycle, without plant uptake. The microbial biomass will recover after soil DRW, 

so increased P availability caused by a pulse of mineralisation will be additive over 

repeated DRW cycles.  

 

4. Soil P availability will be higher in the surface compared to the bulk soil within 

the drying treatments, because the surface soil will be exposed to lower SWPs upon 

drying.  

 

5. Increases in soil P availability at the whole-pot level will be sufficient to increase 

plant P uptake, biomass and yields in drying compared to continuously moist 

treatments. 
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Materials and methods 

Experiment 1 

Site, sampling and preparation of soil  

Soil was sampled from 0-20 cm depth from three sampling pits within a grazed pasture at the 

Whiddon Down site at Rothamsted Research, North Wyke (50° 44' 8.67"N, -3° 50' 56.29"W), 

in January 2017 (ungrazed at the time of sampling). It is a slowly permeable clay of the 

Hallsworth series in the Soil Survey of England and Wales system (Clayden & Hollis, 1984) 

(Table 2.1). Soil physical and chemical properties are outlined in Table 3.5. The soil was passed 

through a 10 mm sieve to remove large stones and pieces of organic matter, and stored at field 

moisture content at approximately 10 C before establishing the experiment. Soil taken from 

the three pits was thoroughly mixed to create one composite sample. Soil was pre-incubated at 

25 C in a controlled environment room for 24 hours prior to establishing the different 

treatments, to stimulate the microbial biomass following storage. Each bag of soil was closed 

with an elastic band and a breathable plug made from tissue, to allow air transfer but minimise 

moisture loss.  

Experimental design 

A 2 (P level, P) x 2 (initial water treatment, W) x 4 (irrigation regime, I) factorial design with 

sixteen different soil treatments was established, with four replications. The P levels were low-

P (no P added) and high-P (110 kg P2O5 ha-1); the initial water treatment was soil maintained 

field-moist (FM) or air-dried for 48 hours and re-wet (DRW); and the irrigation treatments were 

continuously saturated (CS), dried from saturation and re-saturated (DRW), continuously 

flooded to a water level of 1 cm above the soil surface (CF), and dried from flooding and re-

flooded (AWD). In addition, soil from a field trial described in Chapter 4 was included, which 

was collected from a rice paddy field in central Madagascar (19°10'46.5"S, 47°29'49.4"E) and 

is a clay soil of the Gleysol group, characterised by saturation for extended periods resulting in 
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reducing conditions (IUSS Working Group WRB, 2015; Table 3.5). Figure 3.1 clarifies the 

difference between soil drying as part of the initial water treatment, W (initial DRW) and as 

part of the irrigation regimes, I (subsequent surface DRW).  

Establishing treatments 

To establish the high P treatment, KH2PO4 was applied at a concentration of 4.0 g L-1 and 

volume of 50 mL, to supply 200.3 mg per pot (11 cm diameter x 12 cm height; 1 L volume). 

This rate of 48.0 kg P ha-1 (based on the pot surface area) was equivalent to the RB209 

recommendation for a cereal crop (of 110 kg P2O5 ha-1; DEFRA, 2018b).  The low P treatment 

comprised soil at the P content sampled in the field, to which the equivalent amount of 

potassium (K) as for the high P treatment was added as potassium chloride (KCl), at a 

concentration of 2.2 g KCl L-1 and volume of 50 mL per pot. Chloride dissolves in the soil 

solution and does not associate with soil minerals including P (Schulte, 1999). Nutrient 

solutions were applied by spreading eight pots of soil (6400 g) thinly over a plastic sheet and 

applying 400 mL nutrient solution evenly over the surface using a spray bottle and regularly 

mixing thoroughly. Soil was immediately placed in a labelled plastic bag. This process was 

repeated three times for each nutrient solution, with KCl applied first using a spray bottle which 

was then thoroughly cleaned with deionised water. Based on the adjusted water content, the 

new weight of field-moist (FM) soil added to each pot was approximately 800 g.  

To impose the initially air-dried soil treatment (DRW), half the soil from each bag was spread 

thinly (to ensure even drying) across plastic sheets in four separate batches, keeping the two 

nutrient treatments separate and dried at 25 °C for 48 hours. Sub-samples were taken and the 

SWP was determined as: LP -61.7 MPa (SE = 2.71; n = 2) and HP -53.0 (SE = 4.60, n = 2); the 

difference was not significant (p = 0.27). The same batch was weighed before and after drying 

to calculate water loss, and this volume was replaced for each batch as deionised water applied 

slowly across the surface using a spray bottle and mixed regularly (as described by Jarrell et al., 

1999). Meanwhile the FM soil was maintained in plastic bags each closed with an elastic band 
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and a breathable plug made from tissue, as during pre-incubation (Figure 3.1 a). Sub-samples 

were taken from each bag to measure initial moisture and P contents and stored in sealed plastic 

bags at 4 C. At this stage, the four treatments had slightly different GWCs (p = 0.032) but 

differences were not significant between the treatments (Table 3.1). The Madagascar soil was 

maintained at low-P and the soil was initially DRW (n = 3).  

Table 3.1: Initial gravimetric water contents (GWC) of soils after different P and water treatments 

(before irrigation regimes) were established. FM is maintained field-moist and DRW is air-dried and re-

wet. Data are means (± SE); n = 2. The treatment differences were significant overall according to 

Welch’s one-way ANOVA (p = 0.032) although not distinguished according to a Games-Howell post-

hoc test. 

Initial P Initial water GWC (%) 

Low FM 28.6            (0.8) 

Low DRW 29.9      (0.0) 

High FM 25.9            (0.4) 

High DRW 26.9            (0.9) 

Low: Madagascar DRW: Madagascar 26.1            (0.7) 

 

To establish the irrigation treatments whilst setting up the pots, 800 g of FM soil (which 

included initial water for FM or replacement deionised water to the DRW treatment, plus added 

nutrient solution) was weighed into each labelled and pre-weighed pot, uniformly to 

homogenise bulk densities. For saturated treatments, soil was slowly brought to saturation with 

deionised water applied to the surface and the new weight recorded. This was repeated for the 

remaining saturated treatments, adding the same volume of water to ensure equivalent pot 

weight. For flooded treatments, the process was repeated but once saturated, the water level was 

brought to 1 cm above the surface. The flooded pot was re-weighed and other flooded treatments 

brought to the same weight. After recording initial weights, pots were placed in an incubator 
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(Sanyo MIR-553) at 35 C in randomised blocks (separating the four replications across four 

shelves) and their positions and the time recorded (Figure 3.1 c). Pots were incubated in 

darkness to prevent algal growth and higher temperatures nearer to the light sources. 

Evaporation was only from the soil/ water surface (Figure 3.1 b).  

Monitoring 

After approximately 24 hours, all pots were weighed and the flooded control treatments (CF) 

were re-watered with deionised water to reach water levels of 1 cm above the soil surface. Since 

many of the saturated soils maintained surface water (and thus were oversaturated), the ponded 

surface water was allowed to evaporate, thereby establishing new starting weights. Deionised 

water was then replaced in the saturated control treatments (CS) according to individual 

requirements. Thereafter, all pots were weighed and evaporated water replaced in the controls 

every two days (or three days, twice). Pots were replaced in the incubator in the same blocks 

but their positions changed randomly within each block, and the shelf allocated to each block 

changed every two days to avoid pseudoreplication.  

Sampling  

Sufficient soil was sampled from the surface 0-2 cm for analysis, and from the remaining bulk 

soil (2 cm to approximately 8 cm depth). The degree of soil drying was determined by the SWP 

corresponding to target weights, based on the upper 2 cm reaching below -1.5 MPa, because 

increases in P availability are greater as SWP decreases (SWP < -2.3 MPa significantly 

increased available P of this soil; Table 2.6).  Although soil was dried to a target SWP, this 

could only be directly measured by removing soil. Therefore whole pot GWC (from regular 

weighing) was correlated with SWP values. After a flooded soil was allowed to dry, the upper 

2 cm reached -4.35 MPa while the bulk soil remained at -1.34 MPa. This pot had a water: soil 

ratio of 0.22 and whole pot GWC of 17.8 %. Thus whole pot GWC could inform soil sampling, 

calculated from the weights of remaining water and soil. All pots within a treatment were 

sampled at the same time, with pots reaching the target GWC before other replicates covered 
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lightly with lids to reduce further desiccation until all replicates could be sampled (as in 

Venterink et al., 2002; Dinh et al., 2016). Sampling after the first drying and re-wetting cycle 

(S1) occurred after 29 (CS, DRW) and 31 and 33 (CF, AWD) days of incubation. Sampling 

after the second cycle (S2) occurred after 49 (CS, DRW) and 57 and 59 (CF, AWD) days.  

Sampling occurred according to the schedule outlined in Table 3.2. Samples were taken at the 

end of drying to determine GWC and SWP. Other samples were taken 1.5 hours after re-

saturating or re-flooding the soil, to measure the reasonably immediate impact of re-wetting. 

Previous increases in available P following DRW were greatest initially after re-wetting and 

then declined with time, with maximum soluble MRP in leachate reached when soil re-wetting 

occurred over 1.5 hours (Blackwell et al., 2012) and peak dissolved MRP, MUP and resin-P 

concentrations occurring within two hours of re-wetting (Butterly et al., 2011a).  

Table 3.2: Sampling schedule and analyses at the two sampling depths. Cells marked with “X” 

indicate the sampling time, or depth, associated with each analysis. The surface soil was 0-2 cm depth 

and the bulk soil was 2-8 cm depth.  

Analysis 
End of first/ 

second drying 

1.5 hours after 

first/ second  

re-wetting 

Surface  Bulk  

Whole pot GWC X X X X 

Soil sample GWC X X X X 

SWP X  X X 

NaHCO3-P  X X X 

Water-extractable 

MRP and TP 
 X X X 

Microbial biomass P  X  X 

Resin-P    X 

 

To sample saturated soil, an acid-washed syringe (50 mL) with the end removed was used 

(Figure 3.1 c, i). This was more effective in maintaining intact cores than a soil corer. Since 

sampling flooded cores disrupted the remaining soil, the surface water was first removed using 
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a syringe to allow core removal, and was then returned to the pot. The vacant spaces left by soil 

cores were each plugged with an acid-washed 12 cm section of 32 mm diameter PVC-U pipe 

(Figure 3.1 c, ii, iii), which surrounded the coring syringe (Figure 1 c, iv). Samples were sealed 

in plastic bags and stored at 4 C until analysis (Figure 3.1 c, v). After the first sampling, new 

target weights for the second drying cycle were determined by subtracting the weights of cores 

removed and the pipes included from the original starting weights.  
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(a) Initial water treatment  

     FM       DRW 

                                                                                

 

 

 

(b) Subsequent surface DRW 

 

 

 

 

(c) Sampling procedures 

 

 

 

 

 

Figure 3.1: Summary of soil drying and re-wetting procedures as part of the initial water treatment 

(a) and the irrigation treatment (b), and the sampling procedure (c). FM is field-moist and DRW is dried 

and re-wet. 

  

SURFACE 0-2 cm  

 

 

BULK 2-8 cm 

Surface drying via evaporation 

SOIL PROFILE 

 More intense drying at the exposed surface 

than the bulk soil. 

 Soil maintained in bags (i). 

 Bags closed with breathable plug (ii) to allow  

air exchange, held in place with rubber band  

(iii). 

 Soil spread thinly (< 1 cm deep) (iv) on plastic sheets (v). 

 Maintained in stable environment for 48 hours, with 

frequent mixing to facilitate uniform drying.  

 Re-wet by spraying evenly with deionised water.  

i 

ii 
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iv 
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Experiment 2 

Site, sampling and preparation of soil  

Soil was sampled from 0-20 cm depth from three sampling pits within a 1-hectare field plot of 

permanent grassland on the Rowden experimental platform at Rothamsted Research, North 

Wyke in Devon, UK (50° 46' 47.12"N, -3° 54' 59.23"W), in October 2014. The soil is a clayey 

pelostagnogley of the Hallsworth series in the Soil Survey of England and Wales system 

(Clayden & Hollis, 1984), classified as a Dystric Gleysol in the FAO (2006) system (García-

Marco et al., 2014). It is very similar to the Whiddon Down soil, though taken from low-input 

ungrazed grassland (Table 2.1; physical and chemical properties outlined in Table 3.10). The 

Rowden soil was selected for its moderate microbial biomass P content and increased P 

availability in response to DRW (Chapter 2), and also previous research which showed that 

DRW increased P availability and losses in leachate (Blackwell et al., 2009; 2012). After 

sampling, the soil was maintained in the field-moist condition during storage at 10–16 °C for 

10 days and approximately 4 °C thereafter. It was was passed through a 10 mm sieve to remove 

large stones and pieces of organic matter, and soil taken from the three pits was thoroughly 

mixed to create one composite sample. Soil was pre-incubated at 25 C for 24 hours as described 

for Experiment 1.  

A preliminary experiment mixed this soil with sand in different ratios (volumetrically) to 

determine the effects on plant growth (Brachypodium distachyon L.). Since maximal shoot dry 

weight and near-maximal grain number occurred when soil and sand was mixed in a 3:1 ratio 

(Table 3.3), this substrate (hereafter termed soil) was adopted for the main experiment to 

optimise plant growth.  
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Table 3.3: Shoot dry weights and grain number. Data are means (± SE) (n = 3). Shoot dry weights 

and grain number were not significantly different according to one-way ANOVA with Tukey’s pairwise 

test, and Welch’s ANOVA with Games-Howell pairwise test respectively. Bold text indicates the selected 

composition. 

 

Soil: sand composition 

Shoot dry weight (g) Grain number 

100:0 0.022 (0.001) 5.3 (0.3) 

75:25 0.031 (0.004) 7.7 (1.2) 

50:50 0.027 (0.004) 8.0 (1.5) 

 

Crop species selection 

The grass species Brachypodium distachyon L. (hereafter Brachypodium) was selected for its 

comparatively short cycle and small stature. It is a model grass for aerobic crop research in 

controlled environment studies due to these traits, in contrast to grasses such as rice which pose 

the challenges of large size (limiting high replication), long generation times and more 

demanding cultivation requirements including soil flooding (Brkljacic et al., 2011). 

Brachypodium has a similar genome to rice and is considered a typical grass (International 

Brachypodium Initiative, 2010). Therefore the selected species provides a model grass for the 

majority of plant traits including development, stress tolerance and yield (Brkljacic et al., 2011). 

Seeds of the standard sequenced line Bd21 were acquired from the John Innes Centre, UK.  

Experimental design  

A 2 (P level, P) x 2 (initial water treatment, W) x 2 (irrigation frequency, I) factorial design with 

eight different treatments was established, with ten replications minus any failed plants. The P 

levels were: low-P (no P added) and high-P (16 mg P kg-1); the initial water treatment was soil 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165879/#bib19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165879/#bib19
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maintained field-moist (FM) or air-dried for 48 hours and re-wet (DRW); and the irrigation 

frequencies were high-I (irrigated daily) and low-I (irrigated every three days).  

Establishment of treatments 

Firstly, the initial water treatment was established by spreading the soil thinly and evenly on 

trays at 25 °C and air-drying for 48 hours. The GWC and SWP of the air-dried (AD) soil were 

determined (described below). At this stage the FM and AD soils had GWC of 20.3 % and 1.5 

%, respectively, and the FM soil was maintained moist (c. 0 MPa) whilst the AD soil had dried 

to -37.6 MPa (SE = 0.56; n = 3). The AD soil was then re-wet to 40 % water holding capacity 

(WHC) by adding the precise volume of deionised water required to the surface (Jarrell et al., 

1999), creating DRW soil. Meanwhile the remaining FM soil was maintained in plastic bags 

closed with a breathable plug and maintained at 25 C. The FM soil was also brought to 40 % 

WHC. Air drying did not change the WHC (FM: mean = 69.8 %, SE = 1.0, n = 3; AD: mean = 

69.4 %, SE = 1.7, n = 3) so the soils were brought to the overall mean WHC (69.6 %, SE = 0.9, 

n = 6). Thus the starting GWC was 27.8 % for both soil treatments. Sub-samples were taken 

from each bag to determine initial moisture and P contents and stored in sealed plastic bags at 

4 C. Soils were transferred to pots (12 cm top diameter and 8.5 cm bottom diameter x 11 cm 

height), uniformly to ensuring equal amounts and bulk densities, and the total weights of each 

pot and tray, identity label and the soil were recorded.  

Brachypodium seeds were pre-germinated on moist filter paper at 4 °C for five days, then 

maintained in the dark at 25 °C for two days. Germinated seeds were selected for uniform root 

length and transplanted (with one seed per pot). An additional 10 mL of deionised water was 

then supplied to each pot to facilitate soil-root contact. After observing dry soil on the pot 

surface two days later, they were maintained at a higher % WHC. Using non-experimental 

unplanted pots, 30 mL was identified as the maximum volume of deionised water that could be 

easily applied to each pot without drainage, for both FM and DRW treatments, corresponding 

to new start weights at approximately 50 % WHC. Plants were grown in a controlled 
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environment room under LED lights (Valoya B100 (102 W) and B150 (144W), NS1spectrum, 

Valoya Oy, Helsinki) providing a 20 hour light/ 4 hour darkness photoperiod at 25 C during 

light/ 18 C during darkness (guided by Hong et al., 2011). The pot position on the bench was 

rotated daily in randomised blocks to avoid pseudoreplication. 

The initial P concentrations comprised the low-P treatment. The high-P level was initiated eight 

days after transplanting (DAT), to ensure similar plant development between treatments at that 

time. High-P treatment plants were supplied with approximately 16 mg kg-1 P, as 30 mL of a 2 

mM solution of KH2PO4. This brought the soil from Index 0 to Index 2 for P nutrition for 

grasslands and arable crops according to RB209 and assuming a soil bulk density of 1 (since 

the recommendations are given according to volume rather than mass) (Defra, 2017). Unlike 

Experiment 1, the pot diameter varied with depth, so the applied P concentrations were not 

determined by the pot surface area. The low-P plants received the same amount of K as KCl 

(supplied as 30 mL of a 2 mM solution). However, NaHCO3-P analysed at 31 DAT indicated 

that the high-P treatment soils were at the lower end of the range for Index 1, suggesting 

depletion due to P uptake and/ or adsorption of some of the applied P. Therefore the same doses 

of KH2PO4 and KCl were supplied again to the high- and low-P plants respectively at 40 days 

DAT (Figure 3.2).  

Different irrigation frequencies were stablished at 54 DAT. Throughout the experiment, 

irrigation volumes were calculated for each pot to replace water loss via evapotranspiration 

(water use, WU) individually, or based on the mean of the same four plants representing both 

initial water treatments. To establish different irrigation frequencies, half of the plants continued 

to be watered daily with deionised water (high irrigation frequency) whilst half of the plants 

were allowed to partially dry and were irrigated every three days (low irrigation frequency), 

until drying before the final harvest.  
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Monitoring 

Phenological development of each plant was monitored according to the BBCH scale for 

Brachypodium (Hong et al., 2011). This involved documenting principal and secondary growth 

stages, eight times during the first 38 DAT (leaf and tiller development) and twice thereafter 

(flowering and grain ripening). At 24 DAT, chlorosis was observed in c. 75 % of the plants in 

the initially FM soil treatment. Thus full Hoagland nutrient solution, without P, was supplied to 

all plants at this stage (supplying 30 mL per pot of solution containing 12 mM NO3, 1 mM NH4, 

6 mM K, 3.5 mM Ca, 1 mM Mg and 1 mM SO4). It was first confirmed that soil electrical 

conductivity (EC, measured using a WET sensor, Delta-T Devices, UK) was within an 

acceptable.range (0.52 – 1.20 dS m-1; n = 8) to avoid osmotic stress across all treatments (i.e. < 

6.0 dS m-1 tolerated by wheat; Maas and Hoffman, 1977).  

Sampling 

Soil was sampled from the surface 0-1 cm depth (to minimise disruption to roots compared to 

sampling to 2 cm depth, Experiment 1), once during crop growth and at the final harvest, 

occurring at 31 and 89 DAT. Bulk soil (1-8 cm depth) was also sampled at the final harvest, 

avoiding roots which were then carefully separated from adhering soil particles by gently 

washing with water over a sieve (1 mm). The sampling schedule related to phenological 

development is summarised in Figure 3.2, and the analyses conducted are summarised in Table 

3.4.  

Total water use (WU) was the total cumulative irrigation supplied, which was equivalent to 

evapotranspiration. Water use efficiency (WUE = total biomass / WU) and water productivity 

(grain yield / WU) were calculated after harvest based on water supplied (evapotranspiration).  
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Hoegland 
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supplied.  

 31 DAT: 
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appropriate P 

supply. 

40 DAT: 

Nutrient 
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supplied: 

KH2PO4 (high-

P) and KCl 

(low-P). 

 
54 DAT: 
Initiate 

irrigation 

frequency 

treatment. 
  

  
  

  
  

89 DAT: 
Harvest;  
Soil and plant 

sampling.  
  

 

Figure 3.2: Irrigation treatments and schedule of treatments and sampling during the experiment, based on the phenological growth stages and Biologische Bundesantalt, 

Bundessortenamt and CHemische Industrie (BBCH)-identification keys of Brachypodium distachyon (Hong et al., 2011). High-I and Low-I refer to the high and low irrigation 

frequency treatments, respectively. DAT is days after transplanting.  

Note: Irrigated and drying periods are represented by shaded and open cells, respectively. Low-I treatment within a growth period is represented by occurrence of a shaded 

and open cell. Column width does not represent relative time of growth stage. 
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Table 3.4: Sampling schedule and analyses for Experiment 2. Cells marked with “X” indicate the 

sampling time, or depth of soil where relevant, associated with each analysis. DAT is days after 

transplanting. The surface soil was 0-1 cm depth and the bulk soil was 1-8 cm depth.  

Analysis 31 DAT 54 DAT 89 DAT 

 
Surface  Bulk  Surface  Bulk  Surface  Bulk 

NaHCO3-P X  X  X X 

Water-extractable 

MRP and TP     X X 

Plant tissue TP 
  X 

Plant biomass 
  X 

 

Experiments 1 and 2 

Soil and plant analyses 

Soil moisture characteristics 

Soil moisture contents (%) were determined gravimetrically, based on sample weights before 

and after oven-drying at 105 C to constant weight. Soil water potential was determined using 

a WP4-T Dewpoint Potentiometer (Decagon Devices Inc., USA).  

Soil phosphorus concentrations 

For Experiment 1, separate analyses were conducted on soil samples taken after re-wetting from 

each depth, apart from MBP (Table 3.2), at the GWCs at which the soils were sampled. For 

Experiment 2, samples were air-dried at 35 C for 24 hours to constant weight prior to analysis. 

Although air-drying increased NaHCO3-P for this soil (Figure 2.3), this was required to 

standardise the GWC between the drier samples taken from the surface and the wetter bulk soil 

samples. Otherwise, analysing soil at the GWC at which they were sampled would show higher 

NaHCO3-P at the surface because the soil sample was drier. This contrasted with Experiment 



Chapter 3: Irrigation effects at pot scale 

105 

 

1, when soils were re-wet prior to sampling ensuring comparable water contents. For both 

experiments, all samples were passed through a 2 mm sieve and analyses were carried out in 

triplicate following standard procedures as described. All P concentrations are expressed on a 

dry weight equivalent (DWE) basis.  

Microbial biomass phosphorus (MBP): Experiment 1 

Microbial biomass P (MBP) was measured via hexanol fumigation and extraction with anion 

exchange resin membranes, as described in Chapter 2. The mean P recovery for the Madagascar 

soil was 60.3 % (SE = 1.13); thus the P recovery factor was 0.603. 

Resin-phosphorus: Experiment 1 

Resin-P was simultaneously determined with MBP as the P concentrations of unfumigated 

samples (mg kg-1), and calculated as:  

(Cu * 8.00) / SW 

Where:  

Cu is the concentration of P in the unfumigated sample (mg kg-1); 

8.00 is the volume of HCl in millilitres; 

SW is the dry weight equivalent of the soil sample in grams. 

Water-extractable total phosphorus (TP), molybdate reactive phosphorus (MRP) and 

molybdate unreactive phosphorus (MUP): Experiments 1 and 2 

Water-extractable TP and MRP were measured as described in Chapter 2, although MRP was 

measured with malachite green reagent because it is more sensitive in detecting orthophosphate 

in low concentrations (Irving and McLaughlin, 1990), using a plate reader at 625 nm 

absorbance. TP was measured at the Rothamsted Research North Wyke analytical laboratory. 
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Sodium bicarbonate extractable phosphorus (NaHCO3-P): Experiments 1 and 2 

The NaHCO3-P concentrations were analysed as described in Chapter 2. For Experiment 1, 

samples were measured with malachite green reagent using a plate reader at 625 nm absorbance. 

For Experiment 2, orthophosphate was measured with molybdate blue reagent according to 

Murphy and Riley (1962) using an autoanalyser (AA3, Seal Analytical, UK) for samples taken 

at 31 and 54 DAT, and the plate reader at 880 nm absorbance for samples taken at the start of 

the experiment and at the final harvest (89 DAT). Malachite green is considered to be the more 

sensitive reagent in detecting low concentrations of orthophosphate.  

Shoot total phosphorus (TP) concentration: Experiment 2 

Plant tissue total P concentration was analysed with mature and immature (green) components 

combined per plant (since Brachypodium tends to produce new tillers after reaching maturity 

under favourable conditions; P. Nicholson, JIC, pers. comm. 04/08/2015), excluding roots. 

Grain and straw were oven-dried at 65 C until constant weight, then ground using a ball mill 

(MM 400, Retsch, Germany) and analysed via acid digestion and ICP-OES (Thermo Scientific 

iCAP 6300 analyser) by research staff at the Lancaster Environment Centre. Briefly, 

approximately 0.1 g dry weight per plant was weighed into tubes and digested in 5 mL of 100 

% HNO3 in a microwave. Following appropriate dilution, samples were analysed via ICP-OES, 

then final concentrations were calculated based on the standard curves and dry weights.  

Plant biomass and yields: Experiment 2 

At maturity, plants were harvested and the total biomass was separated into roots, shoot (stems, 

leaves and husks = straw) and grains, and dried in an oven at 65 C until constant weight to 

determine dry biomass and grain yield. Mature and immature components were combined per 

plant. The number of grains per plant was counted. The root-to-shoot ratio was calculated, and 

harvest index (HI) calculated as the ratio of grain weight to total biomass. Total dry biomass 

was used to calculate P concentrations and contents.  
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Statistical analysis 

Data were analysed using SPSS version 23 (IBM, 2014) and R Studio. In all cases, a confidence 

threshold of 0.05 was applied. 

Experiment 1 

For samples taken at the start of the experiment, two-way ANOVA determined whether P 

concentrations differed according to P level and initial water treatment (with bootstrap analysis 

for NaHCO3-P and resin-P; n = 1000). For the samples taken at the first and second sampling 

times, the CS and CF controls were managed such that water contents did not change; therefore 

the GWCs were measured at re-wetting whilst SWP was assumed to be 0 MPa. To compare 

treatment effects on water and P responses, analyses were carried out separately on each 

response for each sampling time and depth; i.e. four separate ANOVA models were fitted for 

each response. Because of the overall difference in GWC before irrigation (p = 0.032; Table 

3.1), the initial GWC (mean for each P and W treatment) was included as a covariate in the 

analysis of variance models. Soil GWC and SWP were analysed across treatments separately to 

determine differences between the sample depths and sample times, using a paired samples t-

test and a Wilcoxon matched-pair signed-rank test respectively. To determine differences 

between GWC and SWP between the irrigation treatments, 3-way ANCOVA with bootstrap 

analysis was performed (n = 1000) with Tukey’s pairwise comparison. The same approach 

determined effects of P level, initial water treatment and irrigation regime and their interactions 

on all P forms at each sampling time and depth. To determine differences between P 

concentrations according to the irrigation regime at each P level, ANOVA with bootstrap 

analysis was performed (n = 1000) with Tukey’s pairwise comparison. To determine differences 

between P concentrations in the surface and bulk soils, according to irrigation regime and P 

level but averaged across the initial water treatment and sample time, paired sample t-tests were 

carried out (n = 6-16). To determine differences between P concentrations at the two sampling 

times S1 and S2 according to irrigation regime, P level and initial water treatment but averaged 
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across the sample depths, paired sample t-tests were carried out (n = 8 except for MBP and 

resin-P, n = 4; and the Madagascar soil, n = 6).  TP and MUP were excluded due to low and 

uneven sample sizes due to limited filtrate volumes. Data from the Madagascar soil were 

analysed separately from the data from main experiment and described within the relevant 

results sections. 

Experiment 2 

To determine differences in P concentrations at the start of the experiment (following initial 

DRW but before P application), Kruskal-Wallis independent samples tests were carried out. To 

determine treatment differences, 3-way ANOVA with Tukey’s pairwise test was carried out for: 

soil P concentrations; plant biomass and yields; plant tissue TP concentrations; total P content 

of plant biomass (P concentration x biomass); P use efficiency (PUE: grain yield / total P 

content); cumulative water use (evapotranspiration), water use efficiency (WUE: biomass / 

water use) and water productivity (WP: grain yield / water use). Data were first transformed 

(log base 10) for: NaHCO3-P (bulk soil), TP (surface and bulk) and MRP (surface); otherwise 

bootstrap analysis was performed (n = 1000). To determine whether NaHCO3-P and plant 

biomass differed between the three treatments, one-way ANOVA (with the treatment groups 

coded) with Tukey’s pairwise test was carried out.  

 

Results 

Experiment 1 

The major soil properties for the Whiddon Down and Madagascar soils are outlined in Table 

3.5. 
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Table 3.5: Major soil physical and chemical properties for the two soils used in Experiment 1. 

Analyses were carried out by NRM Laboratories, UK and Rothamsted Research, UK.  

Soil property 

Result 

Units Method Whiddon 

Down 
Madagascar 

Texture class Clay Clay  

Particle size 

distribution via laser 

diffraction 

Sand 8 27 % w/w 

Silt 41 33 % w/w 

Clay 51 40 % w/w 

Organic 

Matter 
7.6 9.4 % w/w 

Loss on ignition 

(LOI) 

pH 4.9 4.8  In water (1:2.5) 

Total C 2.97 2.10 % w/w 
Combustion catalytic 

oxidation  
Total N 0.32 0.16 % w/w 

C:N Ratio 9.3:1 13.1:1  

Total P 640 285 mg kg-1 

Aqua-regia soluble 

elements : HCl and 

HNO3 digestion with  

analysis via ICP-

OES 

Total K 1450 175 mg kg-1 

Total Mg 1570 392 mg kg-1 

Total Mn 239 65 mg kg-1 

Total Fe 37283 33667 mg kg-1 

Available Fe 181 115 mg L-1 

DTPA extraction, or 

dithionite/ 

ammonium oxalate 

extraction (Tadham 

Moor) 

 

 

Summary of treatment effects on soil phosphorus availability 

The P level, initial water treatment and irrigation regime, along with their interactions, had 

different effects on the different P forms (Table 3.6). Particularly notable were: the significant 

differences in P availability between the control (CS, CF) and drying (DRW, AWD) irrigation 

treatments according to the P level and initial water treatment; and differences in treatment 

effects between sampling times and depths. 
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Table 3.6: Main effects of P level (P), initial water treatment (W) and irrigation regime (I) and all 2- and 3-way interactions on P concentrations (results from ANCOVA 

with bootstrap analysis, n = 1000, and initial GWC as a covariate). S1 and S2 refer to sampling times 1 and 2, whilst S and B refer to surface (upper 2 cm) and bulk soil (2-8 

cm depth) respectively. Treatment differences are: not significant (ns), p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***). Data are for all treatments and replications (n = 64).  

Model Significance of effect of model term on P concentration 

 TP MRP MUP NaHCO3-P Resin-P MBP 

 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

 S B S B S B S B S B S B S B S B B B B B 

P * * ns ns ** *** *** ** ns * ns ns *** *** *** *** *** *** ns ns 

W ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns * ns 

I *** *** * *** *** *** *** *** *** *** * *** ns ns ns ns ns * *** *** 

P * W * * ns ns ** *** ** * ns * ns ns *** *** *** *** *** *** * ns 

P * I *** *** ** *** *** *** *** *** *** *** * *** *** *** *** *** *** *** *** *** 

W * I *** *** ** *** *** *** *** *** *** *** * *** ns ns ns ns ns * *** *** 

P * W * I *** *** ns * *** *** *** *** * ** ns * *** *** *** *** *** *** ns ns 
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Effects of initial air-drying and re-wetting on phosphorus availability  

Pre-irrigation phosphorus concentrations  

Adding dissolved KH2PO4 at the start of the experiment to FM soil in the high-P treatment 

significantly increased all P forms by 42 to 1214 % (except for MUP which decreased) (Table 

3.7). The water-extractable TP, MRP and MUP concentrations were low for both initial water 

treatments. Initial air-drying (to -57.4 MPa averaged across the P treatments) and re-wetting 

significantly reduced MRP by 0.02 and 0.06 mg kg-1 (22 % and 23 %), and MBP by 15.43 and 

30.87 mg kg-1 (34 % and 48 %) at low-P and high-P respectively. In contrast, initial DRW 

increased pre-irrigation NaHCO3-P and resin-P concentrations, although the magnitude 

depended on the P level (P*W; Table 3.7). The greater proportional increases occurred at low-

P for NaHCO3-P (by 0.96 mg kg-1, 35 %) whereas high-P for resin-P (by 1.85 mg kg-1, 11 %). 

Thus, initial DRW affected the P forms differently, significantly increasing NaHCO3-P and 

resin-P.  
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Table 3.7: Phosphorus concentrations at the start of the experiment by P level (P) and initial water 

treatment (W). For each P form, p-values indicate significant differences between P, W and P*W 

according to two-way ANOVA. Data are means (± SE) and n = 3 except: HP, FM (MRP, n = 2) and HP, 

DRW (NaHCO3-P and MRP, n = 2; Resin-P and MBP, n = 1).  

P form 
P 

level 

Mean (± SE) (mg kg-1) p-values 

Field-moist 
Air-dried and re-

wet 
P W P*W 

TP Low 0.25 (0.03) 0.25 (0.01) 

0.018 0.105 0.085 

 High 0.36 (0.01) 0.27 (0.02) 

MRP Low 0.09 (0.02) 0.07 (0.01) 

<0.001 0.031 0.170 

 High 0.26 (0.02) 0.20 (0.01) 

MUP Low 0.16 (0.03) 0.18 (0.02) 

0.021 0.975 0.469 

 High 0.10 (0.02) 0.08 (0.02) 

NaHCO3-P Low 2.77 (0.05) 3.73 (0.05) 

<0.001 0.471 <0.001 

 High 16.33 (0.23) 19.59 (0.40) 

Resin-P Low 1.29 (0.07) 1.34 (0.03) 

<0.001 0.405 <0.001 

 High 16.95 (0.44) 18.80 (NA) 

MBP Low 45.32 (0.88) 29.89 (1.90) 

0.004 <0.001 0.019 

 High 64.31 (2.73) 33.44 (NA) 
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Post-irrigation phosphorus concentrations 

The initial water treatment had limited effects on P concentrations in isolation from the P level 

and irrigation treatments (Table 3.6). Averaged across the P levels and irrigation regimes, MBP 

was still significantly lower in initially DRW compared to FM soils, at S1 but not by S2 (Table 

3.6) because the decrease was more pronounced at S1 (by 5.84 mg kg-1, 31 %). This reflected 

the greater decline in MBP between sample times in the FM soil (by 32 %) than the DRW soil 

(by 20 %), as well as the lower concentrations following initial DRW at both sampling times.  

The effects of the initial water treatment otherwise depended on interactions with the P level 

and irrigation regime, and varied according to sample time and depth (Table 3.6). The increases 

in NaHCO3-P and resin-P caused by initial DRW remained significant at S1 and S2 (Tables 3.6 

and 3.7), although decreased overall from the initial concentrations.  Initial DRW increased 

NaHCO3-P by just 8 % (by 0.5 mg kg-1 to 7.5 mg kg-1) at low-P and 2 % (by 0.3 mg kg-1 to 14.2 

mg kg-1) at high-P, and resin-P by 7 % (by 0.3 mg kg-1 to 5.0 mg kg-1) at high-P only (averaged 

across irrigation regimes and sampling times and depths). Therefore the higher NaHCO3-P and 

resin-P concentrations in initially DRW compared to FM soil were most pronounced when 

measured at pre-irrigation treatment. In contrast to pre-irrigation effects, water-extractable P 

concentrations were all affected and the greater increases caused by DRW occurred at low-P 

for TP and MRP (by 16 % and 60 % respectively, both 0.2 mg kg-1), whereas high-P for MUP 

(by 9 %, 0.1 mg kg-1) (averaged across the irrigation regimes and sampling times and depths). 

Thus the increases in all P forms (except MBP) caused by initial DRW depended on the P level. 

The interaction between the initial water treatment and irrigation regime was significant for all 

P forms at both sampling times, except for NaHCO3-P (S1 and S2) and resin-P (S1) (Table 3.6). 

Whereas under CS irrigation TP and MUP were increased by initial DRW (by 28 %, 0.8 mg kg-

1 and 23 %, 0.5 mg kg-1 respectively), under CF they were decreased (by 16 % and 21 % 

respectively, both 0.5 mg kg-1), compared to concentrations in initially FM soil (averaged across 

P levels and sample times and depths). Therefore increased P availability caused by initial DRW 
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depended on the irrigation regime, with different effects according to the P form. Overall, the 

most prominent effects of initial DRW were increased NaHCO3-P and decreased MBP, at both 

P levels, before the irrigation regimes were established.  

Effects of irrigation regime on soil moisture and phosphorus availability  

Gravimetric water content and soil water potential 

Whilst the control soils remained continuously saturated (CS) or flooded (CF) throughout the 

experiment, the GWC and SWP of dried and re-wet (DRW) and re-flooded (AWD) soils 

decreased gradually until sampling. In all cases, GWC and SWP were affected by the irrigation 

treatment according to the P level and initial water treatment (Table 3.8). Between the control 

treatments, mean pre- re-wetting GWC across sampling times and depths was 4.2 % higher for 

the CF compared to the CS treatment (Table 3.8), suggesting that the soil was not entirely 

saturated under CS. The mean pre- re-wetting GWC and SWP did not differ significantly 

between the DRW and AWD treatments, except for the lower SWP by -3.3 MPa (54 %) for the 

AWD treatment at sampling time S2 in the surface soil (Table 3.8). Thus apart from one 

exception, the soil was exposed to the same drying degree in both drying treatments across 

sample times and depths. Averaged across the P and initial water treatments for DRW and 

AWD, GWC and SWP were significantly lower (p < 0.001) for the surface 2 cm than the bulk 

soil (by 4.4 % and -3.4 MPa respectively), and did not differ between the two sample times. 

Thus both drying treatments (DRW, AWD) imposed similar soil water status, which was lower 

at the soil surface. Overall, the bulk soil remained above the SWP threshold (for increased 

NaHCO3-P) for this soil (-2.3 MPa; Table 2.6) whereas the surface soil was wetter (Table 3.8).  
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Table 3.8: Pre- re-wetting gravimetric water content (GWC) and soil water potential (SWP) according to P level (P), initial water treatment (W) and irrigation regime 

(I), and between two sampling times and depths. Irrigation regimes are: continuously saturated, CS; dried and re-wet from and to saturation, DRW; continuously flooded to 1 

cm surface water, CF; or dried and re-wet from and to flooding to 1 cm surface water. Data are means (± SE); n = 4. Within all columns, GWC and SWP differed significantly 

according to I and the P*I and W*I interactions according to 3-way ANCOVA (p < 0.001) with the initial GWC as a covariate. Different letters indicate significant differences 

between the I treatments within each column, averaged across P and W (only DRW and AWD for SWP; p ≤ 0.05). 

I P W 

GWC (%) SWP (MPa) 

Sampling 1 Sampling 2 Sampling 1 Sampling 2 

Surface Bulk Surface Bulk Surface Bulk Surface Bulk 

CS 

L 

FM 
38.4 

(0.30) 

37.1 

(0.55) 

35.2 

(0.45) 

35.8 

(0.47) 
0.0 0.0 0.0 0.0 

DRW 
37.7 

(0.94) 

34.7 

(0.78) 

33.0 

(1.07) 

35.1 

(0.48) 
0.0 0.0 0.0 0.0 

H 

FM 
40.7 

(0.41) 

38.2 

(0.26) 

35.9 

(0.70) 

37.2 

(0.17) 
0.0 0.0 0.0 0.0 

DRW 
39.2 

(0.67) 

36.4 

(0.65) 

34.8 

(0.48) 

36.3 

(0.56) 
0.0 0.0 0.0 0.0 

Overall 
39.0 b 

(0.40) 

36.6 b 

(0.42) 

34.7 b 

(0.43) 

36.1 b 

(0.28) 
0.0  0.0  0.0  0.0  

 

[Continues] 
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I P W 

GWC (%) SWP (MPa) 

Sampling 1 Sampling 2 Sampling 1 Sampling 2 

Surface Bulk Surface Bulk Surface Bulk Surface Bulk 

DRW 

L 

FM 
11.5 

(2.65) 

15.1 

(1.44) 

12.9 

(1.42) 

17.3 

(0.88) 

-3.5 

(0.74) 

-1.8 

(0.28) 

-2.8 

(0.73) 

-1.3 

(0.26) 

DRW 
7.7  

(0.44) 

11.0 

(0.58) 

9.8 

(1.42) 

13.9 

(1.49) 

-6.6 

(0.90) 

-2.9 

(0.34) 

-4.7 

(0.97) 

-1.9 

(0.38) 

H 

FM 
13.6 

(0.69) 

16.3 

(0.60) 

8.3  

(1.03) 

13.9 

(1.27) 

-2.2 

(0.26) 

-1.4 

(0.15) 

-6.1 

(1.38) 

-2.4 

(0.44) 

DRW 
8.5  

(0.61) 

12.3 

(0.46) 

7.7  

(1.07) 

13.3 

(1.02) 

-5.8 

(0.96) 

-2.4 

(0.23) 

-4.3 

(1.67) 

-2.0 

(0.35) 

Overall 
10.3 c 

(0.88) 

13.7 c 

(0.67) 

9.7 c 

(0.76) 

14.6 c 

(0.67) 

-4.5 a 

(0.57) 

-2.1 a 

(0.18) 

-4.5 a 

(0.63) 

-1.9 a 

(0.19) 

            

               [Continues] 
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I P W 

GWC (%) SWP (MPa) 

Sampling 1 Sampling 2 Sampling 1 Sampling 2 

Surface Bulk Surface Bulk Surface Bulk Surface Bulk 

CF 

L 

FM 
42.3 

(0.60) 

39.8 

(0.85) 

42.2 

(0.49) 

39.5 

(0.86) 
0.0 0.0 0.0 0.0 

DRW 
41.2 

(0.39) 

38.5 

(0.60) 

40.5 

(0.35) 

39.6 

(0.33) 
0.0 0.0 0.0 0.0 

H 

FM 
41.6 

(0.84) 

39.4 

(0.50) 

43.1 

(0.27) 

41.8 

(0.19) 
0.0 0.0 0.0 0.0 

DRW 
41.2 

(0.75) 

37.8 

(0.59) 

42.7 

(0.58) 

41.4 

(0.46) 
0.0 0.0 0.0 0.0 

Overall 
41.6 a 

(0.32) 

38.9 a 

(0.36) 

42.1 a 

(0.33) 

40.6 a 

(0.36) 
0.0  0.0  0.0  0.0  

 

[Continues] 
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I P W 

GWC (%) SWP (MPa) 

Sampling 1 Sampling 2 Sampling 1 Sampling 2 

Surface Bulk Surface Bulk Surface Bulk Surface Bulk 

AWD 

L 

FM 
9.5  

(1.01) 

12.8 

(0.87) 

8.4  

(1.05) 

12.7 

(1.08) 

-5.3 

(1.59) 

-2.3 

(0.18) 

-7.0 

(1.89) 

-2.4 

(0.30) 

DRW 
7.3  

(0.96) 

11.1 

(1.12) 

7.3  

(0.73) 

14.0 

(0.58) 

-7.7 

(1.74) 

-3.3 

(0.71) 

-7.3 

(1.32) 

-1.7 

(0.16) 

H 

FM 
13.4 

(0.67) 

16.3 

(0.33) 

8.3  

(2.33) 

13.2 

(2.32) 

-2.2 

(0.18) 

-1.3 

(0.09) 

-8.9 

(2.47) 

-2.5 

(0.83) 

DRW 
8.8  

(0.53) 

13.7 

(0.45) 

6.4  

(0.57) 

12.4 

(0.61) 

-5.2 

(0.88) 

-1.8 

(0.16) 

-8.0 

(1.27) 

-2.1 

(0.16) 

Overall 
9.7 c 

(0.69) 

13.5 c 

(0.60) 

7.6 c  

(0.64) 

13.1 c 

(0.62) 

-5.1 a 

(0.76) 

-2.2 a 

(0.25) 

-7.8 b 

(0.83) 

-2.2 a 

(0.22) 
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Effects of irrigation regime according to phosphorus level and initial water treatment 

Compared to the pre-irrigation treatment P concentrations (Table 3.7), the irrigation regimes 

had different effects on the different P forms according to the P level and initial water treatment 

(Table 3.6). Soil P concentrations changed from pre-irrigation regime values under all irrigation 

regimes, with notable reductions in NaHCO3-P, resin-P and MBP (Tables 3.7 and 3.9). 

Irrigation regime effects on P concentrations were significantly affected by the initial water 

treatment, except for NaHCO3-P and resin-P at S1 (Table 3.6). The most consistent treatment 

response was the significant interaction between the P level and irrigation regime across all P 

forms and sampling times and depths (Table 3.6). Averaged across the initial water treatment 

and the sampling times and depths, at the low-P level NaHCO3-P was decreased by DRW 

compared to CS (by 1.06 mg kg-1, 14 %) and by AWD compared to CF (by 2.13 mg kg-1, 25 

%), whereas in the high-P treatment differences between the control and drying irrigation 

treatments were not significant (Table 3.9). In contrast, resin-P significantly increased under 

DRW compared to CS at both P levels (by 0.49 mg kg-1, 26 % at low-P and 2.48 mg kg-1, 62 % 

at high-P), although concentrations did not differ between CF and AWD at either P level (Table 

3.9). Between the drying treatments, NaHCO3-P and resin-P were both significantly higher 

under DRW compared to AWD (by 11 % and 25 % respectively) under high P conditions only 

(Table 3.9). Furthermore, the drying treatments reduced TP compared to the controls at both P 

levels (by 52-91 %). Whereas MRP and MUP were significantly lower under DRW compared 

to CS at both low-P/ high-P (MRP by 77 / 86 %; MUP by 78 / 93 %), these P forms were lower 

under AWD compared to CF at high-P only (MRP by 74 %; MUP by 85 %). The decrease in 

MBP from pre-irrigation concentrations was greatest under CS and CF, suggesting the drying 

regimes were more favourable to the soil microbial biomass. Therefore P concentrations were 

generally higher under the control (CS and CF) compared to the drying (DRW and AWD) 

irrigation regimes, except resin-P (highest under DRW) and MBP (highest under DRW and 

AWD).  
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Table 3.9: Phosphorus concentrations by P level and irrigation regime across the different sampling times and depths and across the initial water treatment. The irrigation 

regimes are continuously saturated (CS), dried (from saturated) and re-wet (to saturation) (DRW), continuously flooded (CF) and dried (from flooded) and re-wet (to flooded 

with the water level 1 cm above the soil surface) (AWD). Different letters represent significant differences between the irrigation treatments within each row according to two-

way ANOVA with bootstrap analysis (n = 1000; p ≤ 0.05). Data are means (± SE) (TP, MUP: n = 103; MRP, NaHCO3-P: n = 128; resin-P, MBP: n = 64).  

P form P level 
Irrigation regime 

CS DRW CF AWD 

TP 
Low 2.00 (0.32) ab 0.41 (0.05) c 2.05 (0.26) a 0.98 (0.16) bc 

High 4.43 (0.65) a 0.41 (0.03) b 4.03 (0.42) a 0.73 (0.09) b 

MRP 
Low 0.48 (0.09) a 0.11 (0.01) b 0.49 (0.05) a 0.26 (0.03) ab 

High 1.40 (0.20) a 0.20 (0.02) b 1.40 (0.14) a 0.37 (0.03) b 

MUP 
Low 1.37 (0.23) a 0.30 (0.05) b 1.50 (0.22) a 0.72 (0.15) ab 

High 2.94 (0.44) a 0.20 (0.01) b 2.86 (0.29) a 0.44 (0.06) b 

NaHCO3-P 
Low 7.45 (0.29) b 6.39 (0.09) c 8.62 (0.25) a 6.46 (0.12) bc 

High 14.16 (0.36) ab 15.00 (0.24) a 13.76 (0.32) ab 13.30 (0.16) b 

Resin-P 
Low 1.91 (0.050) b 2.40 (0.07) a 1.80 (0.05) b 2.16 (0.07) ab 

High 4.02 (0.19) b 6.50 (0.17) a 3.87 (0.16) b 4.91 (0.13) b 

MBP 
Low 7.25 (0.72) b 20.67 (0.83) a 4.06 (0.55) b 18.12 (0.71) a 

High 9.04 (0.97) b 24.59 (0.63) a 5.52 (0.67) b 22.12 (0.54) a 
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Multiple drying cycles: phosphorus availability at different sampling times  

The different treatments significantly affected P concentrations across the two sampling times, 

S1 and S2, which each occurred 1.5 hours after a drying and re-wetting or re-flooding cycle 

(Table 3.6). Where NaHCO3-P significantly differed, concentrations were higher at S1 than S2 

in all cases. There was no consistent response according to the P level, initial water treatment 

or irrigation regime, including between the control and drying treatments. The opposite effect 

was observed for MRP, which had higher concentrations at S2 compared to S1 in all cases in 

which the differences were significant. Similarly to NaHCO3-P, there was no consistent effect 

of the P level, initial water treatment and irrigation regime. Resin-P was significantly higher at 

S2 than S1 in one case, with no other significant differences between sampling times. Similarly 

to NaHCO3-P, MBP was significantly higher at S1 compared to S2 in all cases in which the 

difference was significant, suggesting the microbial biomass declined during the experiment. 

There were no consistent treatment effects, except that the higher MBP concentration at S1 was 

significant at all P levels and initial water treatment combinations under CF (by 3.37 - 8.06 mg 

kg-1), suggesting that the adverse effect of CF irrigation on MBP over time dominated the 

treatment effects. Amongst the treatment combinations with significantly different P 

concentrations at S1 and S2, four were common for the NaHCO3-P, MRP and MBP forms, but 

without any unifying treatment levels.  

Mean NaHCO3-P concentration in the Madagascar soil, which was maintained at low-P under 

initial DRW and AWD, was also significantly higher at S1 (1.21 mg kg-1, SE = 0.04) than at S2 

(0.99 mg kg-1, SE = 0.04) (p = 0.028). MRP was not significantly different between the sample 

times, and sampling time did not appear to affect mean resin-P (0.31 mg kg-1 ± 0.03 and 0.02 

respectively for S1 and S2) or mean MBP (4.64 mg kg-1 ±0.43 at S1 and 5.30 mg kg-1 ± 0.50 at 

S2). Thus, in the main experiment changes in soil P concentrations between S1 and S2 occurred 

in both the control and the drying treatments, implying changes occurred with time not 

necessarily related to soil drying and re-wetting.  
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Soil moisture gradient: phosphorus availability at different sample depths 

Averaged across the initial water treatment and sample times, but according to each P level and 

irrigation regime, soil P concentrations were significantly higher in the bulk compared to the 

surface soil in most cases, including the control as well as the drying treatments (Figure 3.3). 

Exceptions to this dominant trend were the lack of difference between surface and bulk P 

concentrations for: TP and MUP under CS, DRW and AWD at low-P; NaHCO3-P and MUP 

under DRW at high-P; TP under CF at high-P; and NaHCO3-P under AWD at high-P (Figure 

3.3). These exceptions for TP and MUP were likely due to lower sample numbers and 

comparatively high standard errors, but suggested different soil responses affecting NaHCO3-P 

in both of the drying treatments under high P. Thus, P concentrations were not higher at lower 

pre- re-wetting SWPs, unless undetected because P was released at the surface but readily 

transferred vertically within the soil profile. 
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Figure 3.3: Phosphorus concentrations in the surface and bulk soils for each irrigation regime and P level. CS is continuously saturated, DRW is dried and re-

wet (from and to saturation), CF is continuously flooded to 1 cm of surface water and AWD is dried and re-flooded (from and to flooding). P concentration data are 

means (mg kg-1) ± SE; n = 6-16 and SWP data for DRW and AWD (MPa) are means (± SE); n = 16.  Different letters indicate significant differences between the 

surface and bulk soils for each P form within a P*I treatment according to paired samples t-tests (p ≤ 0.05).  
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Summary of treatment effects on phosphorus availability at the whole-pot scale 

Plant-available NaHCO3-P concentrations varied significantly according to the P level, initial 

water treatment and irrigation regime. Figure 3.4 illustrates the differences at Sampling 1 

averaged across the surface and bulk soil, to show the maximum P potentially available to plants 

during the experiment at the whole-pot scale. At low-P, all irrigation regimes increased 

NaHCO3-P above the pre-irrigation treatment level, and the greatest increase (by 6.84 mg kg-1, 

247 %) occurred in soil following initial DRW and maintained under continuous flooding. At 

high-P, NaHCO3-P decreased after the irrigation regimes were established, especially under 

AWD (by up to 6.23 mg kg-1, 32 %), and did not significantly increase under any combination 

of the initial water treatment or irrigation regime (Figure 3.4). Thus, initial DRW and continuous 

flooding slightly increased NaHCO3-P at low-P but the treatments did not increase NaHCO3-P 

at high-P; and P application was the dominant treatment effect. 
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Figure 3.4: NaHCO3-P concentrations according to P level (low and high), the initial water treatment (maintained continuously field-moist, FM; or air-dried and re-wet, 

DRW) and irrigation regime (pre-irrigation treatment, pre-I; continuously saturated, CS; dried and re-wet from and to saturation, DRW; continuously flooded to 1 cm surface 

water, CF; or dried and re-wet from and to flooding to 1 cm surface water), averaged across the sampling depths at Sampling 1. Data are means (± SE) (n = 8 except pre-I: n = 

2-3). Different letters indicate significant differences between the treatments according to Welch’s ANOVA and Games-Howell pairwise test (p ≤ 0.05).  
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In summary, initial soil air-drying (to mean -57.4 MPa) and re-wetting significantly reduced 

MBP whilst increasing (plant-available) NaHCO3-P and resin-P concentrations at the start of 

the experiment (Table 3.7), suggesting that microbial cells may have been the source of released 

P initially. Despite lower GWCs and SWPs in the drying compared to control irrigation regimes 

(Table 3.8), P concentrations were generally higher under CS and CF than DRW and AWD 

apart from MBP, suggesting drying did not cause P release (Table 3.9). Changes in soil P 

concentrations between S1 and S2 occurred in both the control and the drying treatments, 

implying changes occurred with time not necessarily related to soil drying and re-wetting. The 

higher NaHCO3-P after one compared to two drying and re-wetting cycles was unaffected by 

initial DRW, and was also observed in the Madagascar soil. Despite significantly lower SWPs 

in the surface than the bulk soil at maximal soil drying (by -3.4 MPa averaged across P levels 

and initial water treatments; Table 3.8) at both sample times, soil P concentrations were 

significantly higher in the bulk compared to the surface soil in most cases, including the control 

irrigation regimes, suggesting that P availability was not increased due to lower SWPs with 

surface drying (Figure 3.3). All irrigation regimes significantly increased initial NaHCO3-P 

concentrations at low-P, particularly in initially DRW soils under CF, whilst the irrigation 

regimes tended to decrease NaHCO3-P at high-P, particularly AWD (Figure 3.4). Although P 

level dominated the treatment effects, initial DRW and CF may be the most promising water 

management treatments for increasing soil P availability.  

 

Experiment 2 

The major soil properties for the Whiddon Down and Madagascar soils are outlined in Table 

3.10. 
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Table 3.10: Major soil physical and chemical properties for the soil used in Experiment 2. Analyses 

were carried out by NRM Laboratories, UK and Rothamsted Research, UK. 

Soil property 
Results 

Units Method 
Rowden 

Texture class Clay  

Particle size 

distribution via laser 

diffraction 

Sand 13 % w/w 

Silt 37 % w/w 

Clay 50 % w/w 

Organic 

Matter 
11.5 % w/w 

Loss on ignition 

(LOI) 

pH 4.9  In water (1:2.5) 

Total C 4.79 % w/w 
Combustion catalytic 

oxidation  
Total N 0.48 % w/w 

C:N Ratio 10.0:1  

Total P 674 mg kg-1 

Aqua-regia soluble 

elements : HCl and 

HNO3 digestion with  

analysis via ICP-

OES 

Total K 1572 mg kg-1 

Total Mg 730 mg kg-1 

Total Mn 986 mg kg-1 

Total Fe 39336 mg kg-1 

Available Fe 171 mg L-1 

DTPA extraction, or 

dithionite/ 

ammonium oxalate 

extraction (Tadham 

Moor) 

  

Effects of initial air-drying and re-wetting on soil phosphorus concentrations 

At the start of the experiment, following the initial water treatment but before P application, 

initial air-drying (to -37.6 MPa) and re-wetting (DRW) increased NaHCO3-P by 1.39 mg kg-1 

(39 %) compared to the continuously moist (FM) soil (p = 0.050) but decreased TP (p = 0.050) 

and MRP (p = 0.046) by 0.48 and 0.16 mg kg-1 (52 % and 73 %) respectively (Table 3.11). This 

indicated that whilst concentrations of water-extractable P forms decreased, the greatest 

magnitude of absolute change caused by DRW was the increased (plant-available) NaHCO3-P. 
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Table 3.11: Soil P concentrations at the start of the experiment (mg kg-1). The initial water treatment 

comprised field-moist (FM) and air-dried and re-wet (DRW) soils. Different letters indicate significant 

differences within columns according to Kruskal-Wallis independent samples tests (p ≤ 0.05). Data are 

means (± SE) (n = 3). 

Initial water 

treatment 

 
TP MRP MUP NaHCO3-P 

FM  0.92 (0.13) a 0.22 (0.01) a 0.70 (0.13) a 3.56 (0.07) b 

DRW  0.44 (0.08) b 0.06 (0.01) b 0.38 (0.09) a 4.95 (0.25) a 

 

Soil moisture gradient: phosphorus availability at different sample depths 

Adding dissolved KH2PO4 to the soil surface significantly increased plant-available NaHCO3-

P in the surface and bulk soil, by 2.6 and 0.3 mg kg-1 respectively averaged across the initial 

water (W) and irrigation (I) treatments, measured at harvest. NaHCO3-P concentrations 

increased from the start of the experiment to harvest (Table 3.11 and Figure 3.5). In the surface 

soil, the interactions between P level and W and I were significant (Table 3.12). In the low-P 

soil, NaHCO3-P was significantly lower in the DRW compared to FM soil under both irrigation 

regimes (by 1.5 mg kg-1, 23 %), whilst under high-P, NaHCO3-P was only lower in the DRW 

soil when the irrigation frequencies were low (by 1.3 mg kg-1, 14 %) (Figure 3.5). Thus, low 

irrigation frequency significantly increased NaHCO3-P (by 0.7 mg kg-1, 11 %), but only in low-

P soil that was initially maintained FM. In contrast, in the bulk soil initial DRW increased 

NaHCO3-P above the level in FM soil, although only in the high-P treatment with low irrigation 

frequency (by 0.8 mg kg-1, 14 %) (Figure 3.5). Notable treatment effects on other P forms were 

that the P addition increased TP and MRP only in the surface soil (by 0.08 mg kg-1, 33 % and 

0.12 mg kg-1, 71 %); and W affected all P forms except for MUP, whilst I only affected MRP 

in the surface soil (Table 3.12). Therefore the effects of the initial water treatment and irrigation 

frequency on P concentrations depended on the P level and soil depth, and overall, initial DRW 

only reduced plant-available NaHCO3-P at harvest in the soil surface.  
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Table 3.12: Main effects of P supply level (P), initial water treatment (W) and irrigation regime (I) 

and all 2- and 3-way interactions on soil P concentrations according to three-way ANOVA (with log-

transformed data or bootstrap analysis, n = 1000). Significant differences are: not significant (ns), p ≤ 

0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001. Data are for all harvested treatments and replications (n = 69).  

Model Significance of effect of model term on soil P concentration 

TP MRP MUP NaHCO3-P 

S B S B B S B 

P *** ns *** ns ns *** ** 

W * * *** *** ns * *** 

I ns ns ** ns ns ns ns 

P*W ** ns ns *** ns *** ns 

P*I ns ns ns ns ns *** * 

W*I * ns ns *** ns * * 

P*W*I ns ns ns ns ns *** ns 
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Figure 3.5: Effects of the initial water treatment (W) and irrigation frequency (I) at the low-P and high-P levels on plant-available NaHCO3-P concentrations, at the surface 

(S; white columns) and bulk (B; grey columns) soils, measured at harvest. Data are means (± SE) (n = 7-10).  Different letters represent significant differences between the 

treatments according to one-way ANOVA with Tukey’s pairwise tests (p ≤ 0.05) within the surface (upper-case letters) and bulk (lower-case letters) soils.
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Soil drying and re-wetting effects on plant yields and phosphorus uptake 

Grain yields and plant biomass were significantly affected by the initial water treatment and its 

interactions with P level and irrigation frequency (Table 3.13). Averaged across the irrigation 

treatments, grain yield increased with DRW by 230 % and 206 % at low-P and high-P 

respectively (Figure 3.6). Total biomass (root and shoot) was similarly 251 % and 222 % higher 

when soil was initially DRW compared to maintained FM in the low-P and high-P treatments 

respectively. The tendency for the initial water treatment to affect HI (p = 0.051) resulted in a 

significant P*W interaction (Table 3.13). Therefore initial soil DRW more than doubled grain 

yields and total biomass production compared to plants grown in continuously FM soil. 

 

 

 

Figure 3.6: Effects of the initial water treatment (W) and irrigation frequency (I) at the low-P and 

high-P levels on grain yield. Data are means (± SE) (n = 7-10).  Different letters represent significant 

differences between the treatments according to one-way ANOVA with Tukey’s pairwise test (p ≤ 0.05).  
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Table 3.13: Main effects of P level (P), initial water treatment (W) and irrigation regime (I) and all 2- and 3-way interactions on plant biomass (dry weights), 

root to shoot ratio, harvest index (grain yield / total biomass), shoot P concentration (conc.), total shoot P uptake (shoot P content = shoot P concentration * shoot 

biomass), and PUE (grain yield / total P uptake, mg mg-1) (results from three-way ANOVA with bootstrap analysis, n = 1000). Shoot was total above-ground 

biomass and straw was total above-ground biomass minus the grain. Significant differences are: not significant (ns), p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 

(***). Data are for all harvested treatments and replications (n = 69).  

Model Significance of effect of model term on plant yields and P concentration and content  

 

Total 

shoot 

biomass 

(mg) 

Grain 

(mg) 

Straw 

(mg) 

Root 

(mg) 

Shoot 

(mg) 

Root/ 

Shoot 

ratio 

Harvest 

Index 

Shoot 

P conc.  

(mg kg-1) 

Total 

shoot P 

uptake 

(mg) 

PUE 

for 

grain 

yield 

P ns ns ns ns ns ns ns ns ns ns 

W *** *** *** *** *** ns ns *** *** *** 

I ns ns ns ns ns ns ns ns ns ns 

P*W *** *** *** *** *** ns * ** *** *** 

P*I ns ns ns ns ns ns ns ns ns ns 

W*I *** *** *** *** *** ns ns ** *** *** 

P*W*I ns ns ns ns ns ns ns ns ns ns 
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Total P uptake showed similar treatment effects as grain yields since both variables were only 

affected by the initial water treatment and interactions (Table 3.13; Figures 3.6 and 3.7), and 

they were significantly positively correlated (R = 0.930, n = 67, p < 0.001). This indicated that 

the increases in grain yields (and similarly total biomass) and P uptake caused by initial DRW 

were proportional. Averaged across the irrigation treatments, initial DRW increased total P 

uptake by 302 % at low-P and 316 % at high-P (Figure 3.7). Therefore there was little variation 

in shoot TP concentrations between the treatments (Figure 3.8). Shoot TP concentrations were 

significantly higher (by 48 %) at high-P in initially DRW soil regardless of irrigation frequency, 

compared to FM soil under high irrigation frequency, but did not vary otherwise (Figure 3.8). 

The lack of variation in shoot TP concentration at low-P suggested that the significantly 

increased grain yields in initially DRW soil at both P levels (Figure 3.6) resulted from factors 

other than a direct increase in P uptake. Initial DRW significantly reduced PUE (Table 3.13), 

by 38 % averaged across the P level and irrigation frequency treatments, because DRW 

similarly increased total P uptake as well as grain yields (Figures 3.6 and 3.7). Therefore the 

higher yields under DRW were not associated with more efficient P use.  

 

Figure 3.7: Effects of the initial water treatment (W) and irrigation frequency (I) at the low-P and 

high-P levels on total P uptake. Data are means (± SE) (n = 5-10).  Different letters represent significant 

differences between the treatments according to one-way ANOVA with Tukey’s pairwise test (p ≤ 0.05).  
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Figure 3.8: Effects of the initial water treatment (W) and irrigation frequency (I) at the low-P and 

high-P levels on shoot total P concentration. Data are means (± SE) (n = 5-10).  Different letters represent 

significant differences between the treatments according to one-way ANOVA with Tukey’s pairwise test 

(p ≤ 0.05).  

Treatment effects on plant water use 

Total cumulative water use (irrigation volume) was significantly higher for plants with high 

compared to low irrigation frequency (p < 0.001), but was unaffected by P level and the initial 

water treatment. However, water use efficiency (WUE) and water productivity (WP) were 

significantly affected by the initial water treatment and its separate interactions with P level and 

irrigation frequency (p < 0.001). Plants grown in soil that was initially DRW had 254 % higher 

WUE compared to continuously FM soil in the low-P treatment, and 227 % higher WUE in the 

high-P treatment. The WUE was 215 % and 279 % higher for plants grown in initially DRW 

compared to FM soil when irrigation frequency was low and high, respectively. These changes 

in WUE and WP reflected significantly higher biomass production and grain yields when soil 

was initially DRW with no change in cumulative water use (total evapotranspiration) compared 

to continuously FM soil.  
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Summary 

In summary, initially air-drying (to -37.6 MPa) and re-wetting the soil prior to planting 

significantly increased plant-available NaHCO3-P compared to continuously moist soil (Table 

3.11). By harvest the NaHCO3-P concentration was lower in soil that had been initially DRW 

compared to continuously FM, only in the surface soil under low P conditions (Figure 3.5). 

Initial DRW increased grain yields (by up to 230 %; Figure 3.6), biomass (by up to 251 %) and 

total P uptake (by up to 316 %; Figure 3.7) regardless of the P level and irrigation regime. 

However, across all treatments shoot P concentrations showed little variation (Figure 3.8), 

suggesting that factors other than P likely caused the increased yields. These results also 

indicated that increased shoot P uptake caused by initial DRW did not entirely explain the 

decreased soil NaHCO3-P concentrations. Grain yields were not limited in the low P soil 

compared to the high P soil (Figure 3.6). Although the P level was the dominant treatment 

affecting soil P concentrations (Figure 3.5), similarly to Experiment 1 (Figure 3.4), the initial 

water treatment dominated the effects on grain yields and total P uptake (Figures 3.6 and 3.7). 

Initial DRW decreased PUE for grain yield (by 38 %) although increased the WUE (by up to 

279 %), indicating greater efficiency of water but not P during the crop cycle. Key results from 

Experiments 1 and 2 are summarised in Figure 3.9. 
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Figure 3.9: Summary of key results in relation to the hypotheses, expressed as percent change 

caused by soil drying and re-wetting as described. 

 

1. 

Hypothesis: 

Soil P availability will be higher in initially air-dried and re-wet compared to continuously 

moist soil. 

Consistent with the hypothesis: 

Measured at the start of the experiments, initial DRW increased immediately available P 

(NaHCO3-P, resin-P). After initiating other treatments, initial DRW increased immediately 

(NaHCO3-P, resin-P, MRP) and potentially (TP, MUP) available P. 

Contrary to the hypothesis: 

Measured at the start of the experiments, initial DRW decreased immediately (MRP) and 

potentially (TP, MBP) available P. After initiating other treatments, initial DRW decreased 

immediately (NaHCO3-P) and potentially (TP, MUP, MBP) available P under certain 

treatment combinations. 

 

Percent change Increase Decrease 

100 +   

67 - 99   

34 - 66   

1 - 33   

No significant difference   

Most important result shown elsewhere within column   
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Percent changes caused by initial soil drying and re-wetting, Experiments 1 and 2. 

Treatment TP MRP MUP NaHCO3-P Resin-P MBP 

Experiment 1 2 1 2 1 2 1 2 1 2 1 2 

INITIAL 

W NA  NA  NA  NA  NA NA NA NA 

W*P 
LP  NA  NA  NA  NA  NA  NA 

HP  NA  NA  NA  NA  NA  NA 

EXPERIMENTAL (Sampling 1 and 2) 

W          NA  NA 

W*P 

LP        
Surface 

 NA  NA 
 

HP        
Surface 

    
Bulk 

W*I  
CS          NA  NA 

CF          NA  NA 
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2. 

Hypothesis: 

Soil P availability will be higher in soils exposed to drying and re-wetting or re-flooding 

compared to soils maintained under continuously saturated or flooded conditions. 

Consistent with the hypothesis: 

DRW increased immediately available P (resin-P), and both DRW and AWD increased 

potentially available P (MBP). 

Contrary to the hypothesis: 

DRW and AWD decreased immediately (NaHCO3-P, MRP) and potentially (TP, MUP) 

available P. 

 

Soil P availability in drying compared to saturated or flooded treatments, Experiment 1. 

 

Treatment 
TP MRP MUP NaHCO3-P Resin-P MBP 

Irrigation P level 

DRW vs CS  
Low       

High       

AWD vs CF 
Low       

High       
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3. 

Hypothesis: 

Soil P availability will be increased by DRW, with multiple DRW cycles causing a greater 

increase than a single cycle. 

Consistent with the hypothesis: 

Immediately available P (resin-P) did not change with time in the continuously saturated or 

flooded soils. Immediately available P was increased after two cycles compared to one cycle 

following DRW (MRP) and AWD (MRP and resin-P). 

Contrary to the hypothesis: 

Immediately and potentially available P increased (MRP) or decreased (NaHCO3-P, MBP) 

with time in the continuously flooded and saturated soils. Immediately (NaHCO3-P) and 

potentially (MBP) available P was lower after two cycles compared to one AWD cycle, and 

did not change under DRW (NaHCO3-P, resin-P, MBP). 

 

Maximum significant differences at S2 (two cycles) compared to S1 (one cycle), 

Experiment 1. 

 

Irrigation treatment MRP NaHCO3-P Resin-P MBP 

CS     

DRW     

CF     

AWD     
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4. 

Hypothesis: 

Soil P availability will be higher in the surface compared to the bulk soil within drying 

treatments. 

Consistent with the hypothesis: 

Immediately and potentially available P was not different between the surface and the bulk 

soil in the control treatments (CS: TP, MUP at low-P; CF: TP at high-P). 

Contrary to the hypothesis: 

Immediately and potentially available P was otherwise lower in the surface compared to the 

bulk soil within drying treatments and also control treatments. 

 

Differences at surface compared to bulk soil, Experiment 1. 

 

Irrigation P level TP MRP MUP NaHCO3-P 

CS 
Low     

High     

DRW 
Low     

High     

CF 
Low     

High     

AWD 
Low     

High     
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5. 

Hypothesis: 

Increases in soil P availability at the whole-pot level caused by DRW will be sufficient to 

increase plant P uptake, biomass and yields. 

Consistent with the hypothesis: 

In soils that were initially DRW, shoot P concentrations (at high-P) and total P uptake, 

biomass and grain yields were significantly increased. 

Contrary to the hypothesis: 

Initial DRW or reduced irrigation frequency did not affect shoot P concentrations at low-P. 

 

Effects of initial DRW compared to initially maintained FM, Experiment 2.  

 

Treatment 

 

Total biomass 

(g) 

 

Grain  

(g) 

Shoot P 

concentration  

 (mg kg-1) 

Total shoot P 

uptake 

 (mg) 

W*P 
Low-P     

High-P     

W*I 
Low-I     

High-I     
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Discussion 

Effects of initial soil drying and re-wetting on phosphorus availability 

Air-drying the Whiddon Down (Experiment 1) and Rowden (Experiment 2) soils to -57.4 MPa 

and -37.6 MPa respectively, prior to re-wetting, was expected to increase NaHCO3-P by 3.70 

and up to 7.09 mg kg-1 respectively, based on Chapter 2 (Tables 2.6 and 2.5, respectively). In 

Experiment 1, initial DRW increased NaHCO3-P in low-P treatments by 0.96 mg kg-1 (35 %) 

and in high-P treatments by 3.26 mg kg-1 (20 %). The increase was less compared to in Chapter 

2, for which the soil was also at low-P, possibly due to increased storage time causing reduced 

MBP concentrations (Turner and Romero, 2010). In contrast to Chapter 2, MRP significantly 

reduced, although by a low magnitude (0.02 mg kg-1 at low-P), perhaps indicating another effect 

of increased storage time. The reduction in MBP (by 15.4 mg kg-1 at low-P, 34 %; Table 3.7) 

compared to continuously FM soil suggested that the microbial biomass may have been a partial 

source of released P. Similarly, MBP concentrations reduced by 31 % in soil dried to 2 % GWC 

and then re-wet (measured after 1 hour) compared to soil maintained at 40 % GWC (Bünemann 

et al., 2013). Whether re-wetting results in complete microbial recovery depends on the soil 

drying intensity (Sun et al., 2017 a,b; Figure 1.2) and the microbial community composition 

(Fierer et al., 2003). In Experiment 2, initial DRW also increased NaHCO3-P, by 1.39 mg kg-1 

(39 %) whilst decreasing TP by 0.48 mg kg-1 (52 %) and MRP by 0.16 mg kg-1 (73 %) (Table 

3.11), in contrast to Chapter 2 where MRP increased in the Rowden soil (Figure 2.3). An 

important distinction is that the soil was mixed (3:1) with sand to create a substrate more 

suitable for Brachypodium growth; thus the concentrations could be expected to be 

approximately 25 % higher in soil without sand. The greatest magnitude of absolute change 

caused by initial DRW was decreased MBP (Experiment 1) and increased NaHCO3-P 

(Experiments 1 and 2), suggesting benefits for P availability to plants. 

Another important distinction for Experiment 2 was the inclusion of plants, to determine 

whether P uptake, biomass and yields were affected by initial DRW. Despite increased P 
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availability immediately following initial DRW, at harvest the NaHCO3-P concentration was 

lower in soil that had been initially DRW compared to continuously FM under low P conditions 

(Figure 3.5). This suggested that released P was taken up by the plants and because of the greater 

biomass production and grain yields in DRW soil, P demand (and uptake) were higher. Initial 

DRW was the dominant cause of increased biomass and grain yields, which were not affected 

by P level or irrigation frequency within the initial water treatment (Figure 3.6). Similarly, DRW 

increased biomass at low-P compared to plants grown in FM soil at high-P (by 218 %). 

Increased plant biomass caused by initially air-drying soil (to 4 % GWC) prior to planting was 

previously reported, with approximately 70 % and 20 % increase in maize production when the 

FM soils had received 5 or 10 mg P kg-1 fertiliser respectively (Bünemann et al., 2013). In 

contrast to Brachypodium, increased maize biomass corresponded to increased shoot P 

concentrations by approximately 90 % and 30 % respectively for each fertiliser rate. Since other 

nutrients were well-supplied, the increased P uptake and biomass were attributed to increased 

P availability caused by soil DRW (Bünemann et al., 2013). The maize plants were harvested 

after just 22 days so whether the benefit to biomass production also increased yields, as for 

Brachypodium in Experiment 2, is unknown. Furthermore, initial DRW increased rice P 

contents by 250 % compared to plants grown under continuously flooded conditions, although 

P concentrations reduced because biomass increased in response to higher available N 

(Tsujimoto et al., 2010), which was not measured in the soil or plant tissue for Brachypodium. 

The greater effect at high-P compared to unfertilised soils was likely because P was applied as 

part of a NPK fertiliser treatment, indicating the importance of combined nutritional effects 

(Tsujimoto et al., 2010). Therefore initial DRW significantly increased biomass production and 

yields in Brachypodium, but plants at low-P were unlikely P-limited (Figure 3.6) and it remains 

unclear whether the response was caused by increased soil P availability.  
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Effects of subsequent soil drying and re-wetting on phosphorus availability 

It was hypothesised that since soil P availability increased as SWP decreased (Chapter 2), soils 

exposed to drying with lower SWPs would have higher P availability compared to soils 

maintained saturated or flooded in Experiment 1. Despite significantly lower SWPs under 

drying irrigation regimes (DRW and AWD) (Table 3.8), P availability was generally higher 

under the control (CS and CF) regimes (Table 3.9). Similarly, reduced irrigation frequency in 

Experiment 2 (imposing partial soil drying at the soil surface) had no distinct effects on soil P 

availability that were independent of the other treatments: low irrigation frequency significantly 

increased NaHCO3-P (by 0.7 mg kg-1), but only in low-P soil that was initially maintained FM 

(Figure 3.5). These results contrasted with other studies reporting increased P availability 

following soil drying and re-wetting under both aerobic and anaerobic conditions. For example, 

DRW significantly increased resin-P, MRP and MUP compared to continuously moist soils due 

to the destruction of aggregates (slaking) and microbial cell lysis (Bünemann et al., 2013; Figure 

1.2). Furthermore, soluble MRP concentrations increased under pulsed compared to 

continuously reducing conditions, indicating that alternately flooded and drying conditions 

caused P release (Scalenghe et al., 2012). This response was attributed to the repeated reduction-

oxidation of Mn- and Fe-oxides, releasing adsorbed/ occluded P, whilst substantial changes to 

organic P concentrations likely involved initial oxidation of organic matter and subsequent 

mineralisation and release of P, indicating coupled biological and physical sources. In 

Experiment 1, MBP was higher under soil DRW and AWD (Table 3.9), suggesting that 

exposure to lower SWPs did not cause cell lysis and P release from the microbial biomass. Since 

the MBP concentrations averaged across S1 and S2 were lower than before the irrigation 

regimes were established, regardless of the initial water treatment (Tables 3.7 and 3.9), the 

drying treatments did not stimulate the microbial biomass but caused a lesser decrease than the 

CS and CF treatments. Possibly the CS and CF treatments reduced the microbial populations 

thereby releasing P to the soil, explaining the higher MRP, MUP and NaHCO3-P concentrations. 

Alternatively, the lower P availability under DRW and AWD may have resulted from the higher 
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MBP concentration, because soil microbes assimilated available P in the absence of plant 

competition. Isotope studies could be used to test these hypotheses, to determine the P cycling 

dynamics in different pools including the microbial biomass.  Studying the oxygen isotope 

composition of phosphate in soils showed available P was sourced from the microbial biomass 

(Tamburini et al., 2012), and tracing 32P in soil pools and plants showed different sensitivities 

of soil microbes and plants to P uptake under drought conditions (Dijkstra et al., 2015). Such 

studies could be carried out across a range of SWPs.  

The responses to the irrigation regimes varied according to the P level. The initial P 

concentrations in Experiment 1 confirmed that all P forms were increased by the addition of P 

in solution; and that the low-P and high-P soils would be classified as indices 0 and 2 

respectively based on the NaHCO3-P concentrations (DEFRA, 2017). All irrigation regimes 

significantly increased the pre-irrigation NaHCO3-P concentrations at low-P, particularly 

initially DRW soils under CF, whilst NaHCO3-P was decreased by the irrigation regimes at high 

P supply, especially AWD (Figure 3.4). Therefore the P level dominated the treatment effects. 

Several studies have also reported different responses to DRW according to initial soil P 

concentrations. For example, DRW caused a higher magnitude of increased extractable P (Bray-

P) in P-fertilised compared to unfertilised soils, suggesting that higher adsorption of the applied 

P during soil drying meant that newly mineralised P following DRW was less readily adsorbed, 

thus more available (Chepkwony et al., 2001). In Experiment 1, NaHCO3-P was decreased 

rather than increased by DRW (by 1.06 mg kg-1, 14 %) and AWD (by 2.13 mg kg-1, 25 %) at 

low-P but was unaffected at high-P. This suggested that P was adsorbed during drying but not 

released or mineralised following re-wetting, so at low-P the NaHCO3-P decreased whilst at 

high-P the adsorption sites were saturated and so NaHCO3-P did not change. Similarly, relative 

increases in soluble TP following DRW increased with NaHCO3-P concentration, and also with 

the degree of sorption saturation (Styles and Coxon, 2006). This indicated that the magnitude 

of P increase was dependent on (and thus could be limited by) how saturated the P sorption sites 

were, emphasising the relevance of soil P concentration to release following DRW. The 12 soils 
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studied by Scalenghe et al. (2012) received at least double the recommended P fertiliser rates, 

so the greater magnitude of increased MRP reported under AWD compared to CF compared to 

the Whiddon Down soil in Experiment 1 may have been caused by greater saturation of sorption 

sites. Measuring the P sorption capacity of the soil, and degree of saturation of P sorption sites 

according to treatment, is needed to support this idea. This is particularly relevant since DRW 

can stimulate the P sorption capacity of some soils, decreasing P availability under drying but 

which may recover to initial levels following re-wetting (Haynes and Swift, 1985); and sorption 

is also affected by alternately flooded and dried soil conditions (Phillips and Greenway, 1998). 

Thus, the P level was important and increased P availability following DRW is likely greater in 

soils with low P sorption capacities, or with saturated sorption sites.  

The soil P concentration also affects microbial activity, since P mineralisation was increased in 

fertilised compared to unfertilised soils following DRW (Grierson et al., 1998). However, MBP 

was higher under DRW and AWD compared to the controls at both P levels in Experiment 1, 

suggesting the effects of P level were not microbial. Stability of available P concentrations 

following DRW or AWD compared to CS or CF is suggested to result from a methodological 

reason (Butterly et al. 2011b). Since soil P was measured following DRW at their re-wetted 

moisture contents, which was the same for the CS and CF soils, any increases in P would likely 

be lower compared to measurement of air-dried soils (for which the measurement procedures 

impose re-wetting). Whereas some studies have measured air-dried soils (e.g. Turner et al., 

2002; 2003), which is useful to standardise water contents which differ between samples 

(Experiment 2), measures of P availability are more realistic (and more comparable to 

continuously moist soils) when DRW effects are measured at re-wetted water contents (Styles 

and Coxon, 2006). In summary, soil drying and re-wetting from and to saturated or flooded 

conditions (Experiment 1) or by reducing irrigation frequency (Experiment 2) did not clearly 

increase soil P availability, partially due to interactions with P level. The greater effects of site 

management, such as fertiliser application, than DRW on soil P availability (Butterly et al., 
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2011b) indicated that environmental conditions unrelated to water management also determine 

whether DRW increases soil P availability.  

Effects of multiple cycles of soil drying and re-wetting on phosphorus availability 

It was hypothesised that soil P availability would be increased by DRW, with multiple DRW 

cycles causing a greater increase than a single cycle (without plant uptake) due to additive 

effects of P release caused by microbial cell lysis. However, changes in soil P concentrations 

between S1 and S2 occurred in both the control and the drying treatments, with no consistent 

effects of the initial water treatment or P level as well as irrigation regime. Therefore an initial 

and more intense DRW cycle (-57.4 MPa rather than -1.9 to -7.8 MPa) also did not affect P 

release during subsequent DRW cycles. The GWCs and SWPs were reduced in the drying 

regimes and did not significantly differ between S1 and S2 (with just one exception; Table 3.8), 

so the results were comparable. This implied that changes occurred with time not necessarily 

related to soil drying and re-wetting, contrasting with reports of recurrent DRW or AWD cycles 

increasing P availability (Jarvis et al., 2007; Scalenghe et al., 2012; Chen et al., 2016). 

Interpreting the effects of soil DRW on P release from the microbial biomass needs to consider 

the timescale of measurement. Whereas soil samples were taken to measure MBP 

concentrations 1.5 hours after re-wetting the soil in Experiment 1, MBP recovered to c. pre-

DRW levels within seven days after re-wetting (Chen at al., 2016). Thus, sampling at different 

timescales after re-wetting would better indicate microbial survival and recovery, such as before 

as well as after a second DRW cycle. 

Similarly to the responses to irrigation regime, the comparative P concentrations between the 

two sampling times depended on the P form. Where NaHCO3-P and MBP significantly differed, 

concentrations were higher at S1 than S2 in all cases, whereas the opposite effect was observed 

for MRP. These results suggested that the microbial biomass declined during the experiment, 

which particularly occurred under CF, likely because the soil was collected from a grassland 

site and the microbial community was not adapted to flooded conditions. This was consistent 
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with a previous report of decreased MBP caused by DRW cycles during a longer incubation 

period (90 days) at lower temperature (25 C) compared to Experiment 1 (Chen et al., 2016), 

but contrasted with reportedly increased MBP with soil DRW over a shorter incubation period 

(26 days) at a similar temperature  (38 C) (Grierson et al., 1998).  The result that both MBP 

and NaHCO3-P were higher at S1 than S2 was consistent with reports that changes in NaHCO3-

P did not relate to MBP (Chen et al., 2016), and fluctuations in MBP did not correlate with P 

mineralisation (Grierson et al., 1998). Thus it appeared that decreased MBP caused by DRW 

did not contribute to increased NaHCO3-P following mineralisation, although it is possible that 

decreased MBP contributed to the increased MRP at S2 compared to S1. Consistent with 

Experiment 1, MRP concentrations also increased with multiple AWD cycles in 12 soils, with 

the maximum increase occurring after four redox cycles (Scalenghe et al., 2012). As well as 

due to higher P concentrations as discussed, the higher magnitude of increase in MRP compared 

to Experiment 1 may have been artefactual because Scalenghe et al. (2012) dried soil more 

intensely, by freeze-drying, with rapid drying causing greater effects (Figure 1.2) and freezing 

and thawing soils having similar effects on P release as DRW (Blackwell et al., 2012). 

Nevertheless, the much larger increase in MRP reported for a paddy rice soil (Scalenghe et al., 

2012) was not observed in the Madagascar soil in Experiment 1 (data not shown), although 

higher NaHCO3-P at S1 compared to S2 was observed (as for the Whiddon Down soil), 

indicating that plant-available P declined even in a soil frequently exposed to alternate drying 

and flooding. Thus, the varying effects of multiple cycles of DRW on P availability according 

to P form reflected varying reported responses, suggesting the relevance of soil properties and 

management.  

In Experiment 2, the lack of significant effect of reduced irrigation frequency on soil P 

concentrations suggested that multiple cycles of DRW did not increase P availability compared 

to the initial, more intense (-37.6 MPa) soil DRW. This contrasted with the idea that deficit 

irrigation regimes via controlled soil drying managed throughout different stages of crop 

phenological development can stimulate nutrient uptake (Wang et al., 2012; 2017). However, 
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the SWP was not measured and it is possible that insufficient amounts of soil reached low SWPs 

(-3.0 MPa for the Rowden soil; Table 2.5) to increase P availability. Overall, there was no 

consistent effect of the number of drying cycles on soil P availability according to the P level, 

initial water treatment and irrigation regime, suggesting that these treatments had stronger 

effects.  

Differential soil drying: relevance of soil depth to phosphorus availability 

It was hypothesised that soil P availability would be higher in surface compared to bulk soil 

within the drying treatments, because SWPs would be lower in the surface soil due to 

evaporation. In Experiment 1, despite significantly lower SWPs in the surface than the bulk soil 

at maximal soil drying (by -3.4 MPa averaged across P levels and initial water treatments) at 

both sample times, soil P concentrations were significantly higher in the bulk compared to the 

surface soil in most cases, suggesting that P availability was not increased due to lower SWP. 

Furthermore, P concentrations were also higher in bulk than surface soils in the control (CS and 

CF) irrigation regimes, suggesting that the effect was independent of surface soil drying. This 

result was unexpected since NaHCO3-P significantly increased by 0.56 mg kg-1 (31 %) when 

the Whiddon Down soil was dried to –2.3 MP (Table 2.6). Similarly to the different results 

between sampling times, the exceptions to higher P concentrations in bulk compared to surface 

soils occurred for different P forms and were inconsistent across all treatments (Figure 3.3), 

suggesting that the effect was not dominated by any single treatment. In contrast, the P level 

dominated the differences between P concentrations in surface and bulk soils in Experiment 2 

because P fertiliser was applied to the soil surface. Thus, P concentrations were not higher at 

lower pre-re-wetting SWPs, unless undetected because P was released at the surface but readily 

transferred vertically in the soil profile in Experiment 1. Vertical leaching of P is widely 

documented; for example through lysimeters as demonstrated by TP, MRP and MUP 

concentrations measured in leachates from four UK grassland soils (Turner and Haygarth, 

1999). Therefore further study of the effects of vertical soil drying via reduced irrigation 

frequency, such as AWD irrigation, is needed (Chapter 4).  
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Effects of soil drying and re-wetting on plant phosphorus uptake, biomass production 

and yields 

It was hypothesised that increases in soil P availability caused by soil drying and re-wetting 

would be sufficient to increase plant P uptake, biomass and yields. In Experiment 1, drying 

from and re-wetting to either saturated or flooded conditions did not significantly increase P 

availability above continuously flooded or saturated levels (Figure 3.4). From the pre-irrigation 

concentration at low-P (2.77 mg kg-1 FM; 3.73 mg kg-1 DRW), NaHCO3-P was increased 

sufficiently to be classified above Index 0 (0-9 mg kg-1) at Index 1 (10-15 mg kg-1) according 

to RB209 (DEFRA, 2018b) only in soil that was initially DRW and maintained under 

continuous flooding (to 9.61 mg kg-1; the classification is integer-based). This suggested 

benefits of that treatment combination compared to others; yet recommended P fertiliser rates 

for arable, grassland and forage crops aim to increase concentrations to within the range for 

Index 2 (16–25 mg kg-1). At high-P, all treatments reduced NaHCO3-P from the pre-irrigation 

levels within Index 2 to concentrations within Index 1, except for soil that was initially 

maintained FM and was continuously saturated (Figure 3.4). However, RB209 

recommendations use air-dried soil whereas determining the effects of DRW on P availability 

requires that soils are measured at their re-wetted moisture contents (Styles and Coxon, 2006; 

Butterly et al., 2011b), as in Experiment 1. Therefore RB209 cannot compare soils at different 

water contents. The changes in P concentrations could be also calculated at the field scale from 

results of laboratory experiments. In 12 soils, increased MRP concentrations caused by AWD 

represented increases by 15-36 kg P ha-1 within the surface 10 cm of soil (Scalenghe et al., 

2012); whilst for forest soils, Dinh et al. (2016) calculated that 2-3 kg P ha-1 could be released 

following a DRW cycle. However, they cautioned that although low SWPs (-100 MPa) may be 

reached in surface soils during the summer, conditions in the laboratory were likely 

unrepresentative of field conditions due to the rapid and complete re-wetting, whereas at the 

field scale preferential flow pathways exist. Although this concern related to forest soils and 

preferential flow may be slightly less relevant to arable soils, the cautioning that their 
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calculations represented the theoretical maximum values hold true; therefore further studies at 

the field scale are needed (Chapter 4).  

Since it is difficult to accurately compare NaHCO3-P concentrations at plant-relevant SWPs to 

guide P fertiliser requirements, direct measurements of plant nutrient contents are needed to 

appraise the relevance of DRW. In Experiment 2, initially air-drying (to -37.6 MPa) and re-

wetting the soil prior to planting significantly increased NaHCO3-P compared to continuously 

moist soil. Although by the harvest the NaHCO3-P concentration was lower in soil that had been 

initially DRW compared to continuously FM under low P conditions, this was not clearly related 

to differences in P uptake (Figure 3.5). Across all treatments the main effect on grain yields 

(and biomass) was the significant increase caused by initial soil DRW (Figure 3.6). One 

explanation may be that the increased soil P concentrations caused higher biomass production 

and yields as a direct result of increased P nutrition. However, shoot TP concentrations showed 

little variation across treatments (Figure 3.8). Furthermore, based on statistically similar yields 

between the equivalent initial water treatments, yields were not limited in the low-P soil 

compared to the high-P soil (Figure 3.6), further suggesting that differences in P availability 

and uptake could not explain the variation in biomass and yields. If DRW caused higher plant 

biomass for alternative reasons (discussed below), plant P demand would be increased; 

therefore increased P uptake (allowing for the similar shoot TP concentrations between 

treatments; Figures 3.7 and 3.8) would have caused NaHCO3-P to be lower under DRW when 

supply was low, as observed (Figure 3.5). Furthermore, with significantly higher root biomass 

when grown in soil that was initially DRW (by 329 %, averaged across the P level and irrigation 

frequency treatments), plants were able to access more soil P (as well as other nutrients). 

Therefore increased P nutrition caused by soil DRW unlikely explained the significantly 

increased biomass and > doubled grain yields. 

Soil physical changes caused by DRW affect nutrient release and plant growth. For example, 

soil DRW can disrupt aggregate structure, decreasing mean aggregate diameter in dry compared 

to wet soils (increasing P availability), whilst re-wet soils had intermediate diameter aggregates 
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suggesting partial recovery (Bünemann et al., 2013). In a silt loam, aggregates became stable 

and resistant to slaking after two DRW cycles when soils were air-dried to 1-2 % GWC (Denef 

et al., 2001). This suggested that initial DRW had more profound effects on aggregate size and 

related processes (including decomposition of SOM and P release) than subsequent DRW; 

therefore these processes related to the number of preceding DRW cycles and not only SWP. 

In contrast, NaHCO3-P concentrations and total P uptake by lettuce and soybean was higher 

from soils with larger aggregate size because of reduced P fixation in three highly weathered 

soils, with reduced exposure of P sorption sites (Wang et al., 2001). However, shoot biomass 

was also increased in these species when grown in soil with larger aggregates so it was unclear 

whether greater P uptake could be isolated as the cause. Soil DRW can also physically shrink 

soil volume, which affects soil water release characteristics and availability to plants (Gregory 

et al., 2010). In Experiment 2, mean soil evaporation (calculated from unplanted pots) tended 

to be higher in initially DRW compared to FM soil (data not shown), which could be further 

explored with higher replication (> n = 3) to determine whether this was caused by altered 

aggregate size and resulted in reduced plant transpiration, whilst increasing yields. Therefore 

changes in aggregate size distribution caused by DRW, affecting P sorption and water retention, 

may have contributed to the greater root growth, biomass production and yields in 

Brachypodium. Since initial DRW increased biomass and yields without requiring higher water 

use, initial DRW also increased the WUE and WP. However, overall more water was used to 

replace the water lost via evaporation during initial air-drying and re-wetting. Nevertheless, at 

the field scale, where soil drying occurs without continuous irrigation, allowing soil to dry prior 

to planting a crop may not require more irrigation water to re-wet the soil compared to 

maintaining constant irrigation, but this would need to consider hysteresis (Whitmore and 

Whalley, 2009) and be tested for specific scenarios.  
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Conclusions 

This chapter reported two experiments aiming to determine whether soil DRW would increase 

P availability with realistic drying regimes. Initial soil DRW significantly increased P 

availability, although contrary to expectations, soil P availability was not increased over time 

by surface soil drying under irrigation treatments imposing drying and re-wetting from and to 

saturation or flooding. Under low-P conditions in Experiment 1, the greatest increase in soil P 

availability from pre-irrigation levels, thus highest NaHCO3-P concentration, occurred in soil 

that was initially DRW then maintained under continuous flooding. Managing crops under 

continuous flooding is relevant to lowland irrigated (paddy) rice cultivation. Although air-

drying the full root zone may not be practical at the field scale, partial (surface) soil drying 

occurs under AWD, and the greatest challenges to soil P availability occur in soils which are 

highly P-fixing (Chapter 4). Growing crop plants makes it difficult to disentangle effects of 

different irrigation regimes on soil P availability caused by soil dynamics and differences in 

plant P uptake (Yang et al., 2011), and different water use as biomass production varies. 

However, determining the agronomic effects of soil DRW by measuring plant biomass and 

yields, as well as P uptake, is also essential. Soil DRW significantly increased biomass and 

more than doubled grain yields in the model cereal crop Brachypodium, although this was likely 

not a direct effect of increased soil P availability and uptake since shoot TP concentrations 

hardly varied between the treatments. Changes in the availability of other nutrients, combined 

with changes in soil aggregate size, were likely important. Temporal changes in P 

concentrations in unplanted pots (data not shown) within control as well as drying treatments, 

particularly the decrease in NaHCO3-P, emphasised the importance of the limited window in 

which P is available for uptake by plants (Chepwonky et al., 2001), which are in competition 

with other biogeochemical processes (microbial immobilisation and P sorption) (Grierson et al., 

1998; Bünemann et al., 2013; Chen et al., 2016). Variation in SWP, via initial and subsequent 

drying and re-wetting or re-flooding cycles, affected soil P availability in two soil types and 

increased biomass and yields in Brachypodium; therefore managing P availability via irrigation 
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in accordance with crop demand and uptake targets may increase P efficiency and yields 

(Chapter 4).  
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Chapter 4: Effects of alternate wetting and drying irrigation on phosphorus 

availability, uptake and partitioning, and biomass and grain yields, in 

lowland irrigated rice (Oryza sativa L.) 

Abstract 

Context: Whether alternate wetting and drying (AWD) irrigation improves phosphorus (P) use 

efficiency of rice at the field scale, compared to continuous flooding (CF), remains uncertain. 

Hypotheses: A field trial aimed to determine: whether AWD increased rice yields compared to 

CF due to increased soil P availability; and whether post-anthesis soil drying reduced luxury P 

uptake. 

Strategic approach: A factorial design with three irrigation treatments (conventional 

continuous flooding, CF; continuous flooding until anthesis and drying thereafter, CFA; and 

AWD until anthesis and drying thereafter, AWD) and three P supply levels (0, 10, 25 kg P ha-

1) was established on a farmer’s paddy field in central Madagascar. 

Conclusions: AWD tended to increase P uptake (by up to 60 %) whilst P fertiliser application 

increased rice yields (by up to 202 %).  

 

Introduction 

Rice is amongst the crops providing the majority of calories globally (Fischer et al., 2014) whilst 

its production uses the most water after wheat, together consuming 45 % of freshwater used by 

126 crops globally due to the large cropping areas as well as water footprints (Mekonnen and 

Hoekstra, 2010). Another estimate suggests that irrigated paddy rice, grown under flooded 

conditions, uses approximately 25 - 33 % of global total freshwater resources (Bouman, 2009). 

Additionally, rice uses the third highest share (14 %) of nitrogen (N), potassium (K) and 

phosphorus (P) fertilisers amongst global crops (Heffer, 2013). Therefore reducing water and 

fertiliser inputs in these systems without compromising yields, by alternately flooding and 
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drying soil to limit irrigation water input whilst stimulating P release (Chapters 2 and 3), could 

greatly increase water and P use efficiencies. 

Alternate wetting and drying irrigation: principles and context 

Where soil P limits rice production and fertiliser is inaccessible, agronomic practices which 

increase its availability are necessary. The System of Rice Intensification (SRI) was originally 

developed in Madagascar to increase the productivity of agricultural systems characterised by 

poor soil fertility and low access to resources (Stoop et al., 2002). The SRI approach emphasises 

the importance of field-based research to determine how the interaction of multiple factors may 

be managed to maximise rice yields. In SRI, various non-conventional practices are applied in 

flexible combinations including: transplanting younger seedlings at lower density, applying 

organic fertilisers (compost and manure), and employing more frequent mechanical weeding, 

as well as intermittent irrigation (Stoop et al., 2002). Contrary to the SRI approach, studies 

aiming to improve integrated nutrient management in lowland irrigated rice production largely 

exclude the effects of irrigation on nutrient, including P, availability (e.g. Dobermann et al., 

1998). Controlling nutrient availability by managing irrigation, meeting P and water 

requirements of the crop to maximise yields, is a knowledge-intensive, integrated management 

approach consistent with SRI. Whereas lowland irrigated rice is traditionally cultivated under 

continuously flooded (CF) conditions, the International Rice Research Institute (IRRI) has 

developed an alternative irrigation system termed alternate wetting and drying (AWD) which 

involves periods of intermittent flooding followed by periods of soil drying.  IRRI’s guidelines 

for applying “safe” AWD (to minimise yield loss) suggest that the water table should drop no 

lower than 15 cm below the soil surface (Bouman and Lampayan, 2009). The AWD technique 

is a main component of SRI (Stoop et al., 2002; Uphoff et al., 2011) and these water demanding 

rice systems require further research to determine optimal irrigation regimes for P and water 

use efficiencies as well as yields. 
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Alternate wetting and drying effects on rice biomass and yields 

The effects of AWD on biomass production and grain yields vary widely according to when it 

is implemented during crop phenological development and the extent to which soil dries (Price 

et al., 2013; Carrijo et al., 2017). For example, compared to daily irrigation to maintain 

continuously flooded conditions, rice grain yields were not affected when irrigation was applied 

every 3 days, whereas decreased by 12 % when irrigated every 5 days (Hazra and Chandra, 

2014). A meta-analysis of 56 studies, involving 528 comparisons of adjacent CF and AWD 

treatments, indicated that the effects of AWD on yield depended on the extent of the water 

deficit (Carrijo et al., 2017). Applying “safe” AWD guidelines (Bouman and Lampayan, 2009) 

did not limit yield while reducing water use by 23.4 %, implying improved water use efficiency. 

However, more severe drying (SWP < -0.02 MPa) reduced yields by 22.6 % compared to CF. 

Whereas AWD is often applied during the entire crop cycle (Yang and Zhang, 2010; Carrijo et 

al., 2017), it is sometimes applied from approximately two weeks after transplanting to the onset 

of flowering (Price et al., 2013; Carrijo et al., 2017). Prolonging AWD throughout the crop life 

cycle (spanning vegetative and reproductive stages, rather than solely during either stage) 

exacerbated yield losses, implying that AWD cycles had a cumulative negative impact (Carrijo 

et al., 2017). Nevertheless, post-anthesis soil drying can stimulate stem-to-grain carbohydrate 

remobilisation, improving grain-filling and harvest index (Yang and Zhang, 2006; 2010; Li et 

al., 2016). Thus, careful scheduling of AWD is important to maintaining optimal yields.  Further 

study is required to determine whether increased P availability under AWD also contributes to 

the variable effects on grain yields.  

Alternate wetting and drying irrigation and soil phosphorus availability 

Phosphorus transformations under soil drying and re-wetting are distinctive under flooded, 

anaerobic conditions compared to aerobic conditions (Figure 1.3), and distinct chemical P 

transformations occur in alternately flooded and dried soils. Flooding decreases microbial 

turnover and mineralisation rates, limiting the rate and extent of P mineralisation (Turner, 
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2006). Intermittent irrigation allows the soil to dry out and become aerobic, increasing 

mineralisation and therefore P availability. It was reasoned that this soil DRW effect, 

accelerating turnover of organic P, may improve P uptake of rice grown under SRI compared 

to conventional cultivation (Turner, 2006). However, under aerobic conditions, despite higher 

rates of microbial activity and turnover increasing mineralisation and P availability (Turner, 

2006), P fixation by oxidised iron, Fe(III), is also higher thereby lowering P availability. In 

contrast, flooding can increase soil pH and reduce Fe(III), releasing adsorbed P thus making it 

more available (Amery and Smolders, 2012).  For example, in a paddy soil, flooding increased 

resin-P by 0.8 mg kg-1 (from 2.66 to 3.45 mg kg-1, 30 %) compared to the concentration in non-

flooded (aerobic) soils (Rakotoson et al., 2014).  Another pot study with a different unfertilised 

clay soil from a lowland rice field reported 1.8-fold higher resin-P under flooded compared to 

saturated conditions (Huguenin-Elie et al., 2009). Thus, anaerobic conditions limit microbial P 

release and mineralisation whilst increasing the availability of already mineralised P, whereas 

aerobic conditions accelerate microbial turnover and mineralisation but fix mineralised P. By 

intermittently imposing both conditions, AWD may increase P availability compared to 

conventional, continuously flooded conditions. Although the potential contribution of large 

pools of organic P from soil microbial biomass in response to alternate flooding and drying was 

specifically mentioned as an important effect of SRI (Stoop et al., 2002), the effects of AWD 

in isolation from other management practices need to be determined (cf. Pan et al., 2015). More 

broadly, whilst the effects of soil DRW on P availability have been widely documented, there 

are few reports from lowland irrigated rice systems. 

Alternate wetting and drying effects on phosphorus uptake and partitioning 

Optimising rice yields in soils with low P availability is a major challenge, since increased P 

uptake clearly enhances rice yields (Dobermann and Fairhurst, 2000). However, luxury P uptake 

(above the critical concentrations that increase yields) at grain-filling represents a loss of P from 

the agricultural system that should be avoided (Rose et al., 2013). With sufficient available soil 
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P, uptake adjusts with crop phenological development according to its changing demand, with 

source-to-sink translocation in planta becoming important after flowering. At maturity, P in 

grain is largely stored as phytate, the role of which in the human diet is unclear, with both 

positive and negative effects reported (Haileslassie et al., 2016). For example, phytate can 

reportedly benefit human health by decreasing blood lipids and cholesterol levels and positively 

affecting the immune system (Shi et al., 2004), whilst phytate also binds zinc and iron, 

sometimes contributing to human micronutrient deficiency (Gemede, 2014). Since P supplied 

in food is not limiting to humans and is largely wasted, achieving high P concentrations in rice 

grains (grown for human consumption) without increasing yields is considered unnecessary and 

reduces P available for subsequent crops (Rose et al., 2013). Therefore low grain P 

concentration is an attractive and important plant breeding target in addressing agricultural P 

limitation (Rose et al., 2013). Furthermore, rice P uptake and yields strongly depend on 

environmental conditions (including P and other nutrient availability), thereby regulating grain 

P concentrations (Vandamme et al., 2016), indicating the role of agronomic management in 

meeting this target. 

Applying AWD to increase P availability and uptake during establishment and throughout 

vegetative growth, whilst withholding irrigation during grain-filling to avoid luxury P uptake, 

may increase P use efficiency. In rice maintained under fully flooded field conditions, total P 

was largely sourced from P acquired from soil post-anthesis (Julia et al., 2016). The high 

contribution of P taken up post-anthesis to total plant P at maturity could be specific to flooded 

rice, at 70 % in two separate field studies (Ye et al., 2014; Julia et al., 2016) compared to 40% 

in upland (aerobic) rice (Rose et al., 2010). This discrepancy suggested that drying topsoil 

during grain-filling likely enhanced the contribution of remobilised P (taken up before and 

during anthesis) to grain P (Julia et al., 2016). Thus avoiding flooding during grain-filling might 

reduce the post-anthesis P uptake, thereby improving P use efficiency for grain yield (PUE = 

grain yield / P uptake). The P balance is the difference between P fertiliser inputs and P outputs 

in plant material, and is a useful indicator of P efficiency in rice production where negative 
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values indicate depletion of soil P reserves (Andriamananjara et al., 2016), emphasising the 

benefit of reducing P uptake whilst maintaining grain yields.  

The effects of soil flooding on rice P concentrations are inconsistent. For example, increased 

resin-P concentrations in flooded compared to non-flooded soils did not increase shoot P 

concentrations, likely because the increase was only marginal (Rakotoson et al., 2014), whereas 

greater increases in P availability have occurred under pulsed redox cycles rather than 

continuous flooding (Scalenghe et al., 2012). Alternatively, flooding increased shoot P uptake 

by 2.5 to 3-fold (Huguenin-Elie et al., 2009), possibly due to the greater relative increase in 

resin-P, and/ or greater extraction of less soluble P forms by roots in flooded soils. Flooding 

also increases diffusion of P to the root surface (Dobermann and Fairhurst, 2000) by increasing 

the volume of soil solution. However, the SWP of -0.02 MPa which decreases rice yields 

(Carrijo et al. 2017) is unlikely to release significant amounts of P upon re-wetting (Chapters 2 

and 3). Thus, further study of the impacts of “safe” AWD on soil P availability, uptake and rice 

yields is needed. 

Objectives and Hypotheses 

Applying AWD irrigation potentially increases P availability and uptake, benefiting yields.  

Under high P supply allowing optimal growth and yields, withholding irrigation during grain-

filling may potentially avoid luxury P uptake. Key uncertainties are: whether AWD increases 

soil P availability and plant P uptake in lowland irrigated rice compared to continuously flooded 

(CF) conditions; and whether post-anthesis soil drying during grain-filling reduces grain P 

concentrations whilst maintaining yields, increasing P use efficiency at the field scale. A field 

trial aimed to address three hypotheses: 

1. Soil P availability will be higher under AWD compared to CF. Microbial biomass 

(and thus MBP concentrations) will be stimulated by drying and re-wetting via AWD 
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irrigation, with P release from cell lysis and mineralisation following AWD cycles 

increasing soil P availability.  

2. Biomass production and grain yields will be higher under AWD compared to CF. 

This response will be due to increased soil P availability and uptake; therefore effects 

will be most pronounced under low P supply.  

3. Soil drying during grain-filling will decrease grain P concentrations compared to 

CF, without affecting yield. Withholding irrigation during grain-filling (via AWD and 

via continuous flooding only until anthesis, CFA) will reduce P availability and 

stimulate stem-to-grain translocation of P, thereby avoiding luxury P uptake. 

Materials and methods 

Site and conditions 

A field trial was established near to the town of Behenjy, in the Andramasina region, within the 

central highlands of Madagascar (19°10'46.5"S, 47°29'49.4"E; 1361 masl), between October 

2015 and April 2016. During this period, the region has a mean temperature of 19.3 °C 

(minimum 10.9 °C and maximum 25.4 °C) and mean total rainfall of 1283 mm (climate-

data.org, 2017). The trial was conducted on land rented from a farmer, on which rice was the 

previous crop and zebu cattle had grazed subsequently. The land was prepared traditionally, by 

ploughing aided by a zebu. The soil is a clay soil of the Gleysol group, characterised by 

saturation for extended periods resulting in reducing conditions (IUSS Working Group WRB, 

2015). A bulked soil sample was taken from the field site and air-dried prior to further analysis 

of soil physical and chemical characteristics. The main properties were a clay content of 40 %, 

total carbon (C) and nitrogen (N) contents of 2.10 % and 0.16 % respectively, total P content of 

285 mg kg-1, and pH 4.8 (see Table 4.4 for further soil properties). Before transplanting, a soil 

sample was taken at 0-15 cm depth in the middle of each sub-plot and bulked into one composite 

sample per main block (replication), resulting in four composite soil samples which were 
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analysed by research staff at the Laboratoire des Radioisotopes (LRI), Antananarivo. Mean soil 

organic carbon (SOC) was 29.95 g kg-1 and cation exchange capacity (CEC) was 2.27 cmol kg-

1 (therefore classified as low; Dobermann and Fairhurst, 2000). The P sorption index (PSI) is 

the amount of P adsorbed to the solid phase at a given soil solution P concentration (0.2 mg P 

L-1) (Six et al., 2013). The soil at the Behenjy site had a PSI of 367 mg P kg-1 (T. Rakotoson, 

unpublished), and was therefore considered a high P sorbing soil (Sanchez and Goro, 1980).  

Experimental design 

Treatments and layout 

A split-plot design was used, with water supply (managed with irrigation and drainage) 

comprising the main plots and P supply as the sub-plot treatment.  Sub-plots were 3 x 4 m, with 

0.8 m spacing between plots, and there were four replications. After ploughing the field, plots 

were marked out and the bunds and irrigation and drainage channels created. Nitrogen (N) and 

potassium (K) were applied to attain optimal levels, as urea (CH4N2O) and potassium chloride 

(KCl) respectively, as follows: at transplanting 30 kg N ha-1 and 25 kg K ha-1; at maximum 

tillering (2-3 weeks before panicle initiation) 25 kg N ha-1; and at panicle initiation 25 kg N ha-

1 and 25 kg K ha-1. The local rice genotype X265 was selected for its tolerance of a wide range 

of soil moisture contents (Rabeharisoa et al., 2012) including flooded and non-flooded 

conditions (Rakotoson et al., 2015) and promotion in the region by agricultural support 

programmes (FAO/ WFP, 2016). Seeds were sown on the 22nd of October in a seedbed adjacent 

to the plots with the same soil type amended with organic manure, then transplanted on the 20th 

of November at two seedlings per hill (planting space within a row) at the two-leaf stage at 20 

cm spacing between hills. These are common local practices to promote tillering and are also 

part of SRI (Stoop et al., 2002), except for the extended period between sowing and 

transplanting (29 days after sowing - DAS) due to slow growth caused by cold weather in the 

trial. Weeds were manually removed in the early growth stages with uniform intensity. The 

experimental layout is illustrated in Figure 4.1.  
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Figure 4.1: Experimental layout and photographs. (a) Illustrates the layout and key features (adapted from Dr. Arisoa Rajaona, unpublished), where R1-4 are the 

four replications, I1-3 are the continuous flooding (CF), continuous flooding until anthesis (CFA) and alternate wetting and drying (AWD) irrigation regimes, 

respectively, and P 0, 10 and 25 are the P fertiliser application rates (kg ha-1); (b) is a photograph showing part of the layout and an irrigation/ drainage channel (note 

CF vs AWD plots); (c) is a photograph of the seed bed taken during transplanting; and (d) is a photograph of one of the perforated tubes installed in an AWD plot to 

measure the water table height.
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Irrigation 

Three irrigation treatments were applied: continuous flooding throughout the crop cycle (CF), 

continuous flooding until the end of anthesis with no irrigation thereafter (CFA), and alternate 

wetting and drying from establishment (43 DAS; 14 days after transplanting, DAT) until the 

end of anthesis with no irrigation thereafter (AWD) (Figure 4.2). Maintaining continuously 

flooded conditions initially, from 0 to 14 DAT, also allowed uniform diffusion of the fertiliser 

granules within the irrigation treatments.  
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Figure 4.2: Irrigation treatments. Based on the phenological growth stages and Biologische Bundesantalt, Bundessortenamt and CHemische Industrie (BBCH)-

identification keys of rice (Oryza sativa L.); Lancashire et al., 1991. 

Note: Flooded and drained periods are represented by shaded and open cells, respectively. AWD treatment within a growth period is represented by occurrence of a shaded 

and open cell. Column width does not represent relative time of growth stage. 
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Within the AWD periods, IRRI’s recommendations for drainage and re-flooding to manage 

“safe” AWD were followed (Bouman and Lampayan, 2009), with wet (anaerobic) periods 

maintaining a standing water depth of approximately 5 cm, and dry (aerobic) periods allowed 

to dry, or intentionally drained (by opening the bund), to a soil water depth of 15 cm below the 

soil surface. Perforated plastic tubes (diameter 140 mm) were installed in one plot for the CF 

and CFA water treatments and each plot for the AWD treatment, and water level recorded daily 

(Figure 4.1d). Water treatments were managed at the sub-plot level via irrigation and drainage 

channels. To prevent lateral water seepage from the CF and CFA to AWD plots, the main plots 

were separated by a subsurface layer of plastic placed vertically at the edges to approximately 

50 cm depth. The irrigation application procedures are further described in Table 4.1.  
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Table 4.1: Irrigation application procedures. 

Treatment Directions 

CF CF with a water layer of 5 cm maintained by daily irrigation as needed. 

CFA CF with a water layer of 5 cm maintained by daily irrigation as needed until 

one week after 50 % flowering. The plots were then drained daily until 

maturity, and allowed to drain naturally even if the depth dropped below 15 

cm. 

AWD From establishment onwards up to the onset of flowering (first appearance of 

flowers), 2 weeks of CF was alternated with a period of drainage when plots 

were drained continuously (via opening bunds to drainage channels) until a 

water depth of 15 cm below the soil surface was reached; periods of drainage 

did not exceed 2 weeks. From the onset of flowering until 1 week after 50 % 

flowering, CF with a water layer of 5 cm was maintained by irrigation as 

needed to avoid adverse impacts of drying on yields. From 1 week after 50 % 

flowering onwards, the plots were drained daily until maturity.  

 

Phosphorus supply 

Initial soil tests were carried out by T. Rakotoson in May 2015 (unpublished) in order to select 

a suitable site for the trial. An initial soil test showed that the field site had Olsen P of 3.0 mg 

kg-1 (SE = 0.3; n = 2) and resin-P of 6.0 mg kg-1 (SE = 0.1; n = 2); therefore rice would highly 

likely respond to increased available P according to the IRRI nutrition guide (Fairhurst et al., 

2007). Previous field experiments on P deficient paddy soils in Madagascar showed that under 

CF, good yields and optimal P balance were achieved when 20 kg P ha-1 was supplied, whilst 

the P balance was inefficient at higher rates (40 and 80 kg P ha-1) (Andriamananjara et al., 2016). 

To determine whether potential increases in soil P availability caused by AWD were sufficient 

to mitigate P deficiency, three rates of inorganic P fertiliser (0, 10 and 25 kg ha-1) were supplied 
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at transplanting, as triple superphosphate (TSP) (supplied by SEPCM, Antananarivo) (Table 

4.2).  

Table 4.2: Phosphorus treatments and descriptions.  

ID P application rate 

(kg P ha-1) 
Description 

P-0 0  Low P: 

P supplied from soil only. 

P-10 10 Intermediate P:   

“Maintenance” P application to offset P removal with 

grains, based on anticipated grain yield of 4-5 t ha-1 and 

P removal of 2-3 kg ha-1 per ton of grain yield 

(Dobermann and Fairhurst, 2000). 

P-25 25  Optimal P:  

Sufficient for optimal growth and yields.  

 

Sampling procedures 

The outer two rows of border plants were avoided during sampling. Therefore the net plot size 

was 2.2 x 3.2 m with a maximum of 176 hills per plot.  

Soil sampling  

Soil samples for P analyses were taken twice from each plot: before any nutrient or water 

amendments (referred to as before flooding, BF); and at flowering (FL), which occurred at 

different times according to the P supply. Samples were taken at 0-15 cm depth by bulking sub-

samples from five points (along an imagined “X” design; Abawi and Gugino, 2007) within the 
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plot. Samples were sealed in plastic bags to maintain field moisture contents and stored at 

approximately 4 C until preparation and analysis. 

Plant sampling 

Plant sampling, preparation and analytical procedures were conducted by staff and students at 

LRI. The highest P fertiliser rate (P-25) accelerated phenological development compared to the 

other P rates across irrigation treatments, so these plants were sampled at the first of two final 

harvest times. Within each sampling event (covering all P treatments), two sub-samples allowed 

detailed measurements of yield components; then the remaining net plot was also sampled. 

Table 4.3 summarises the parameters measured for each sub-sample.   
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Table 4.3: Parameters measured in different sub-samples taken at the final harvest.  

Sub-sample Number of hills Parameters measured 

1 

10 

Randomly selected.  

 

Growth components: 

 Plant height; 

Yield components: 

 Number of panicles per hill; 

 Number of grains per hill (filled and empty); 

 Oven-dry weight of 1000 grains. 

2 

6 x 6 

In a 1.2 x 1.2 m 

area with no 

missing hills. 

 

 

 

 

Yield components: 

- Grain P concentration; 

- Straw P concentration; 

- Air-dried total grain weight; 

- Air-dried filled grain weight after winnowing; 

- Grain moisture content (oven-dried); 

- Oven-dried straw weight; 

- Harvest index. 

Remaining 

net plot 

130  

Maximum. 

Yield components: 

- Number of missing hills; 

- Air-dried total grain weight. 
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Plant sampling for phosphorus concentration 

At flowering, plants of two neighbouring hills at two random locations in the plot (resulting in 

four harvested hills, representative of the whole plot assuming a similar mean tiller number for 

the respective treatment) were cut and stored together in a sampling bag. The plants were dried, 

weighed, ground and shoot P concentration determined. At maturity, the straw and grains from 

sub-sample 2 were separately prepared for P analysis. 

Plant sampling for yield parameters 

At maturity, the numbers of missing and harvested hills were recorded. To harvest, 10 hills were 

randomly selected and plants were cut at the soil level. The panicles were separated from the 

remaining biomass and the numbers of panicles in the sub-samples were recorded. 

Subsequently, the spikelets were separated (from the peduncle and rachis) and stored in a paper 

bag. The peduncles and the rachis were added to the plant stem and leaves, and the total (above-

ground) biomass other than grains (hereafter referred to as ‘straw’) was stored in a paper bag. 

For all remaining panicles, spikelets were separated from the peduncle and rachis. Unfilled 

grains were removed from the grains by winnowing. Moisture contents were determined with a 

grain moisture meter.  

Sample analyses 

Soil sample preparation 

Soil sample preparation and analytical procedures were conducted at the Lancaster 

Environment Centre. Soil samples were passed through a 2 mm sieve, with stones and plant 

roots removed. Gravimetric water contents were determined by drying two replicates per sample 

to constant weights in an oven at 35 C for 24 hours and then 105 C for 24 hours, for air-dried 

and oven-dried water contents respectively, and calculating the replicate mean. This procedure 

was repeated if the difference between the replicates was greater than 10 % of the water content 
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(occurring on two occasions). All analyses were conducted on soils at their sampled GWCs 

(20.4 to 39.2 %) in triplicate and are expressed on a dry weight equivalent (DWE) basis.  

Soil phosphorus concentrations 

Microbial biomass phosphorus (MBP) 

Microbial biomass P (MBP) was measured via hexanol fumigation and extraction with anion 

exchange resin membranes, as described in Chapter 2.  The 16 soil samples comprising the most 

extreme treatments (CF and AWD; P-0 and P-25; n = 4) from both sampling times (BF and FL) 

were analysed.  

Water-extractable total phosphorus (TP), molybdate reactive phosphorus (MRP) and 

molybdate unreactive phosphorus (MUP) 

Water-extractable TP, MRP and MUP concentrations were determined as described in Chapter 

2, although for MRP using malachite green reagent and a plate reader at 625 nm absorbance (as 

Chapter 3). The following modifications were made: due to higher moisture contents, samples 

were shaken at 200 rpm for greater agitation, and the samples taken at flowering (FL) were 

centrifuged for 15 minutes.  

Sodium bicarbonate extractable phosphorus (NaHCO3-P)  

NaHCO3-P was measured as described in Chapter 2, using malachite green reagent and a plate 

reader at 625 nm absorbance. 

Measurement using Diffusive Gradient in Thin Films (DGT-P) 

DGT-P concentrations were determined in soil samples following the established protocol 

(Zhang, 2010). Soil samples were prepared by weighing 25 g DWE (BF samples, n = 1) and 60 

g DWE (FL samples, n = 3) of field-moist soils into pots and brought to 80 - 100% of water 

holding capacity with Milli-Q water. Samples were left sealed in this condition (as “slurries”) 
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for 24 hours to equilibrate. Slurries were then transferred to petri-dishes and spread evenly to 

ensure uniform depth and a smooth surface. Assembled DGT devices (DGT® Research, UK) 

each comprising a membrane filter covering a 0.08 cm diffusive gel overlying a 0.06 cm Fe-

oxide binding gel within a plastic housing, were deployed on the samples. These DGT devices 

were rinsed with Milli-Q water before a small amount of the sample was spread on the surface 

(filter membrane), to ensure contact when deployed gently using a twisting action. The room 

temperature was recorded. Deployed DGTs were placed on moistened blue roll and covered 

with clean plastic sheets and a plastic box, to maintain moisture. After 26 hours, DGTs were 

eluted by rinsing the surface to remove soil particles, breaking open the plastic casing, 

discarding the filter paper and diffusive membrane, and carefully placing each Fe-oxide 

membrane (using clean plastic tweezers) into a separate Eppendorf tube containing 1 mL of 

0.25 M H2SO4. These samples were left at least overnight, then the eluates were analysed using 

malachite green reagent and a plate reader (MultiskanTM GO Microplate Spectrophotometer, 

ThermoFisher Scientific, USA) at 625 nm absorbance. DGT-P concentrations were calculated 

according to the equations described by Zhang (2010), first determining the mass of P 

accumulated by the Fe-oxide gel (M): 

M= Ce (Vacid + Vgel) / fe                                                                   

Where: 

Ce is the concentration of P in the 0.25 M H2SO4 elution solution;  

Vacid is the volume of 0.25 M H2SO4 elution solution added to the Fe-oxide gel; 

Vgel is the volume of the Fe-oxide gel;  

fe is the elution factor for P (= 1).  

The concentration of P measured by DGT (CDGT) was then calculated: 

CDGT = MΔg / (DtA)            
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Where:  

Δg is the thickness of the diffusive gel plus the thickness of the filter membrane (0.08 cm + 

0.014 cm);  

D is the diffusion coefficient of phosphate in the gel (based on temperature);  

t is deployment time; 

A is exposure area (=3.14 cm2).  

Additionally, since air-drying affects soil P availability, the effects of air-drying prior to 

deploying the DGT devices (as usually applied in the literature, e.g. Mason et al., 2010) was 

compared with deployment on field-moist (in some cases near-saturated) soil, since it was 

important to determine DGT-P concentrations for soils under field-moist conditions. Four soil 

samples were selected (20.4 % to 25.5 % GWC), representing each replication and based on 

greatest sample availability, and were analysed in triplicate. Samples were air-dried at 35 C 

for 48 hours until constant weight, then brought to 50 - 60 % WHC with deionised water and 

left for 48 hours to equilibrate, as per the standard protocol. Replicates samples were analysed 

at field moisture contents. However, the DGT-P concentrations were below the detection limit.  

Plant samples 

Plant tissue phosphorus concentrations  

The straw sub-samples were oven-dried at 65 °C for 3-5 days (until constant weight), and sub-

sample straw dry weight was determined. The grain sub-sample was stored pending grain 

separation (filled, partially filled and unfilled grains). Total P concentrations were determined 

separately for grain and straw samples at LRI by acid digestion followed by P determination 

via spectroscopy, using a spectrophotometer.  
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Biomass and yield 

Total grain weight was measured and grain moisture content was determined with a grain 

moisture meter. Grain yields at 14 % moisture content were calculated following convention, 

as a more realistic measure than oven-dried weights for the rice grains that are harvested, sold 

and bought (E. Vandamme, pers. comm., 25/10/2017).  

Calculations 

The following calculations were made as indicators of agronomic productivity and efficiency: 

   

Grain P content (kg ha-1) = grain P concentration * grain yield at 14 % moisture 

content  

 

Harvest index (HI) = grain yield / total shoot biomass (grain + straw) 

 

Total P uptake (kg ha-1) = grain P content + (straw P concentration * straw 

biomass)  

 

P use efficiency (PUE) for 

grain yield (kg ha-1) 

= grain yield at 14 % moisture content / total P uptake  

 

P balance (kg ha-1) = P concentration applied – total P uptake 
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Data analysis 

All data were analysed using SPSS version 23 and R Studio. In all cases, a confidence threshold 

of 0.05 was applied. Where relevant, all data transformation was log base 10 and for all 

bootstrap analysis, n = 1000. Two-way ANOVA determined the effects of the P and irrigation 

treatments and their interactions on soil and plant P concentrations and biomass and yields. For 

the initial P concentrations, transformation for MRP and DGT-P, and bootstrap analysis for 

NaHCO3-P and MBP were performed. For the P concentrations at anthesis, transformation for 

NaHCO3-P and MBP, and bootstrap analysis for TP, MRP, MUP and DGT-P were performed. 

Related-samples Wilcoxon signed rank tests determined whether P concentrations significantly 

differed between sampling times. For the plant P variables, transformation for grain P 

concentration and content and PUE for grain yield at maturity, and bootstrap analysis for the 

shoot P concentration at anthesis, straw P concentration at maturity and the P balance were 

performed. Linear regression determined the significance (or otherwise) of relationships 

between grain P content and total P uptake, and grain weight and grain P concentration. 

ANCOVA determined whether these relationships were significantly affected by P level or 

irrigation treatment. Logarithmic regression determined the significance (or otherwise) of 

relationships between soil NaHCO3-P concentration and shoot P concentration at anthesis. 

Pearson’s correlation was used for total shoot biomass and total P uptake. One-way ANOVA 

with Tukey’s pairwise tests determined differences between the P*I treatment combinations for 

grain yield, straw biomass, total P uptake and the P balance.  

 

Results 

The major soil properties for the Madagascar soil are outlined in Table 4.4. 
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Table 4.4: Major soil physical and chemical properties for the field soil. Analyses were carried 

out by NRM Laboratories, UK and Rothamsted Research, UK. 

Soil property 
Result 

Units Method 
Madagascar 

Texture class Clay  

Particle size 

distribution via laser 

diffraction 

Sand 27 % w/w 

Silt 33 % w/w 

Clay 40 % w/w 

Organic 

Matter 
9.4 % w/w 

Loss on ignition 

(LOI) 

pH 4.8  In water (1:2.5) 

Total C 2.10 % w/w 
Combustion catalytic 

oxidation  
Total N 0.16 % w/w 

C:N Ratio 13.1:1  

Total P 285 mg kg-1 

Aqua-regia soluble 

elements : HCl and 

HNO3 digestion with  

analysis via ICP-

OES 

Total K 175 mg kg-1 

Total Mg 392 mg kg-1 

Total Mn 65 mg kg-1 

Total Fe 33667 mg kg-1 

Available Fe 115 mg L-1 

DTPA extraction, or 

dithionite/ 

ammonium oxalate 

extraction (Tadham 

Moor) 

 

Soil phosphorus concentrations 

Pre-treatment P concentrations were first measured per plot, to determine there were no 

systematic differences across the field before the treatments were implemented. Soil P 

availability was very low and did not differ significantly according to the phosphorus level (P) 

or irrigation regime (I) treatments established after this initial soil sampling (Table 4.5). When 

sampled at anthesis, there were also no significant effects of P level, irrigation treatment and 

their interaction on soil P concentrations. Furthermore, the plant-available NaHCO3-P and resin-
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P concentrations did not change between the sampling times. These results indicated that the 

applied P fertiliser had been assimilated by plants or soil microbes, or sorbed to soil minerals. 

Between the sampling times, MRP increased over two orders of magnitude whilst MBP 

decreased by one-third (Table 4.5), possibly indicating that the microbial biomass was partially 

a source of released MRP. The DGT-P concentrations were below the limit of detection (data 

not shown). Thus available P concentrations were very low and the greatest treatment effect 

measured at anthesis was increased MRP with decreased MBP across all P levels and irrigation 

regimes.  

 

Table 4.5: Mean P concentrations of soil samples taken pre-treatment and at anthesis. For resin-P 

and MBP, only the P-0 and P-25 (P) and CF and AWD (I) levels were analysed. Data are means (± SE) 

(NaHCO3-P and MRP: n = 36; TP and MUP: n = 17; resin-P and MBP: n = 16). Different letters indicate 

significant differences between the sampling times for each P form according to related-samples 

Wilcoxon signed rank tests (p < 0.001).  

P form 
P concentration  (mg kg-1) 

Pre-treatment Anthesis 

TP NA  1.50 (0.19) 

MRP 0.04 (0.01) b 1.50 (0.24) a 

MUP NA  0.48 (0.09) 

NaHCO3-P 1.19 (0.05) a 1.36 (0.10) a 

Resin-P 0.51 (0.03) a 0.54 (0.02) a 

Microbial biomass P (MBP) 4.28 (0.37) a 2.85 (0.16) b 
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Plant biomass and yields 

At harvest, grain yield increased with P fertiliser application (Table 4.6), with a 202 % variation 

between the lowest (P-0, CF) and the highest (P-25, CFA) treatments (Figure 4.3). In contrast, 

supplemental P fertiliser did not increase the straw biomass, which varied by 144 % and 124 % 

between the lowest (P-10, CF) and the highest (P-0, CFA and P-25, AWD) treatments (Figure 

4.4). Grain yield was not affected by irrigation (Table 4.6; Figure 4.3) whilst straw biomass was 

increased by AWD and CFA compared to CF but only across P levels (Table 4.6; Figure 4.4). 

The HI (grain yield / total shoot biomass) was not affected by irrigation but increased with 

supplemental P fertiliser by 83 % (P-10) and 70 % (P-25), compared to unamended soil 

(averaged across irrigation treatments) (Table 4.6). Higher HI at P-10 was likely because of the 

lower straw biomass at P-10 under CF compared to P-25 under AWD (Figure 4.4). Thus, grain 

yield was only enhanced by increasing P application whilst the highest HI occurred at the 

intermediate P level, without significant irrigation effects. 

Table 4.6: Main effects of P level (P), irrigation regime (I) and their interaction on rice growth 

and yields according to two-way ANOVA (n = 36). Data are from oven-dry weights and grain yield was 

determined at 14 % moisture content. Treatment differences are: not significant (ns), p ≤ 0.05 (*), p ≤ 

0.01 (**) and p ≤ 0.001 (***).  

Model 

Significance of effect of model term on biomass and grain yield 

Shoot biomass  

(kg ha-1) 

Straw biomass 

(kg ha-1) 

Grain yield 

(kg ha-1) 
Harvest index 

P level *** ** *** *** 

Irrigation ** ** ns ns 

P*I ns ns ns ns 
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Figure 4.3: Effects of P level and irrigation regime on total grain yield. The P levels are application 

rates of 0, 10 and 25 kg P ha-1 respectively; irrigation regimes are continuous flooding (CF), continuous 

flooding only to anthesis (CFA), and alternate wetting and drying to anthesis (AWD). Data are means (± 

SE) (n = 4). Different letters represent significant differences between the treatments according to one-

way ANOVA with Tukey’s pairwise test (p ≤ 0.05). 

 

Figure 4.4: Effects of P level and irrigation regime on total straw biomass. The P levels are 

application rates of 0, 10 and 25 kg P ha-1 respectively; irrigation regimes are continuous flooding (CF), 

continuous flooding only to anthesis (CFA), and alternate wetting and drying to anthesis (AWD). Data 

are means (± SE) (n = 4). Different letters represent significant differences between the treatments 

according to one-way ANOVA with Tukey’s pairwise test (p ≤ 0.05).  
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Phosphorus uptake by rice 

Grain yield and shoot biomass determined variation in P uptake, since P content but not 

concentration was affected by the P level (Table 4.7). Furthermore, grain P content was 

significantly correlated (positively) with grain yield (R = 0.842, n = 35, p < 0.001) and the total 

shoot biomass (R = 0.563, n = 35, p < 0.001). Grain P content increased with supplemental P 

fertiliser by 106 % (P-10) and 169 % (P-25) compared to unamended soil, averaged across 

irrigation treatments. Total P uptake was affected by irrigation as well as P (Table 4.7), tending 

to increase under AWD (and CFA) compared to CF, by up to 60 % (Figure 4.5). However, total 

P uptake was only significantly increased by P fertiliser at P-25 under AWD, compared to plants 

at P-0 under CF (by 214 %) and AWD (by 106 %), and at P-10 under CF (by 84 %) (Figure 

4.5). This was also driven by the total shoot biomass (Figures 4.3 and 4.4 combined) as 

emphasised by the significant positive correlation (R = 0.671, n = 34, p < 0.001). Therefore 

grain P content and total P uptake increased with P application, with irrigation only significantly 

affecting P uptake across P levels.  

The P use efficiency (PUE) for grain yield was significantly affected by the P level (Table 4.7). 

In contrast to grain yield and P content, the highest PUE occurred in plants at the P-10 level, 

which was 37 % higher than for plants at P-0 and 2 % higher than plants at P-25. This was likely 

caused by the higher total P uptake at P-25 under AWD than at P-10 under CF (Figure 4.5), 

whilst grain yield did not significantly vary between these P levels when analysed between 

irrigation regimes (Figure 4.3). Thus, PUE was likely affected by differences in P uptake 

occurring between P levels and irrigation treatments, and was highest at the intermediate P level.  

The P balance is the amount of applied P taken up by the plants, or in the case of P-0 application 

the amount of P depletion from soil P reserves. The mean P balance varied by 369 % from -6.7 

to 17.9 kg ha-1 and significantly increased with P application (Figure 4.6). The P balance tended 

to be highest under CF at all P levels, and lowest under CFA at P-0 whereas AWD at P-10 and 

P-25, explaining the significant interaction between P level and irrigation regime (Table 4.7; 
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Figure 4.6).  Therefore the P balance increased with P application whilst was not affected by 

irrigation.  
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Table 4.7: Main effects of P level (P), irrigation regime (I) and their interaction on P uptake according to two-way ANOVA (n = 36) or with transformation (log base 

10) or bootstrap analysis (n = 1000). P balance is (P applied - total P uptake), P use efficiency (PUE) for grain yield is (grain yield / total P uptake) and conc. is concentration. 

Treatment differences are: not significant (ns), p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001. 

Model 

Significance of effect of model term on P uptake 

Anthesis Harvest 

Shoot P 

conc.    

(mg kg-1) 

Straw P 

conc.    

(mg kg-1) 

Grain P 

conc.   

(mg kg-1) 

Grain P 

content 

(kg ha-1) 

Total P 

uptake 

(kg ha-1) 

PUE for 

grain yield 

(kg ha-1) 

P balance 

(kg ha-1) 

P ns ns ns *** ** * *** 

I ns ns ns ns * ns ns 

P*I ns ns ns ns ns ns *** 
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Figure 4.5: Effects of P level and irrigation regime on total P uptake (grain + straw P contents). 

The P levels are application rates of 0, 10 and 25 kg P ha-1 respectively; irrigation regimes are continuous 

flooding (CF), continuous flooding only to anthesis (CFA), and alternate wetting and drying to anthesis 

(AWD). Data are means (± SE) (n = 4). Different letters represent significant differences between the 

treatments according to one-way ANOVA with Tukey’s pairwise test (p ≤ 0.05). 
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Figure 4.6: Effects of P level and irrigation regime on P balance (P applied – total P uptake). The 

P levels are application rates of 0, 10 and 25 kg P ha-1 respectively; irrigation regimes are continuous 

flooding (CF), continuous flooding only to anthesis (CFA), and alternate wetting and drying to anthesis 

(AWD). Data are means (± SE) (n = 3-4). Different letters represent significant differences between the 

treatments according to one-way ANOVA with Tukey’s pairwise test (p ≤ 0.05).  
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The significant positive linear regression between grain P content and total P uptake (R2 = 0.822, 

p < 0.001) did not vary according to P level or irrigation regime, indicating that neither treatment 

significantly affected P partitioning to the grain. Furthermore, variation in grain weight 

according to grain P concentration did not differ according to the P level or irrigation regime. 

Therefore altering the P supply or irrigation regime did not decrease P concentrations whilst 

maintaining grain yields. 

Soil phosphorus concentrations as predictors of rice phosphorus uptake 

At anthesis, the P application did not affect soil NaHCO3-P, or shoot P concentrations (Table 

4.7). Nevertheless, shoot P concentration at anthesis increased logarithmically as NaHCO3-P 

decreased (R2 = 0.338, p < 0.001), suggesting that this pool of available P contributed to total P 

uptake and the increased shoot biomass and P balance (Figures 4.3 - 4.6). Therefore NaHCO3-

P measured at anthesis was statistically equivalent to the pre-treatment concentration (Table 

4.5), and at P-0 the P balance was negative (Figure 4.6), suggested that this pool was replenished 

from soil P reserves replacing P taken up by the plants. 

In summary, soil P availability was very low in the field and P fertiliser application at the rates 

of 10 and 25 kg ha-1 did not increase soil P concentrations measured at anthesis. This was likely 

due to sorption to soil minerals as well as assimilation by plants, because there was little 

variation in total P uptake between the P levels except the increase at P-25 under AWD (Figure 

4.5). Grain yields were limited by P availability and were only enhanced by increased P fertiliser 

application (Figure 4.3), whilst the highest HI occurred at the intermediate P level (Table 4.6; 

Figures 4.3 and 4.4). Similarly, whilst grain P content increased with the P fertiliser rate, the 

highest PUE also occurred at the intermediate P level, without significant irrigation effects. 

Thus, applying P fertiliser had the greatest effect on grain yields, and AWD increased total P 

uptake compared to CF but only between P levels. Key results are summarised in Figure 4.7. 
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Figure 4.7: Summary of key effects of P level (P) and irrigation regime (I) on: (A) soil P 

availability, (B) biomass and yields, and (C) rice P uptake. Different colours represent the percent change 

as described. The corresponding text shows the treatment (P or I) or combination (P*I) with maximum 

change from the lowest level (P-0 or CF) and all significant changes were increases.  

 

 

 

1. 

Hypothesis: 

Soil P availability will be higher under AWD compared to CF. 

Contrary to the hypothesis: 

Soil P availability and MBP concentrations did not differ according to the irrigation treatment. 

 

(A) SOIL PHOSPHORUS CONCENTRATIONS (mg kg-1) 

Treatment 
Water-extractable P Plant-available P Microbial P 

TP MRP MUP NaHCO3-P Resin-P MBP 

Phosphorus 

level 
      

Irrigation 

regime 
      

 

  

Percent change 

100 +  

50 –99   

1 – 49   

No significant difference from P-0 or CF  
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2. 

Hypothesis: 

Biomass production and grain yields will be higher under AWD compared to CF. 

Consistent with the hypothesis: 

Biomass production was higher under AWD compared to CF, with 25 kg ha-1 P fertiliser 

supplied. 

Contrary to the hypothesis: 

Grain yields only increased with P fertiliser. 

 

(B) PLANT BIOMASS PRODUCTION AND YIELDS  

Treatment 
Biomass  Yield  Efficiency 

Straw (kg ha-1) Grain (kg ha-1) Harvest Index 

Phosphorus level P0, CFA 

and 

P-25, AWD 

P-25 P-10 

Irrigation regime   

 

  



Chapter 4: Irrigation effects at field scale 

189 

 

3. 

Hypothesis: 

Soil drying during grain-filling will decrease grain P concentrations compared to CF, without 

affecting yield. 

Contrary to the hypothesis: 

Grain P concentrations were not affected by the irrigation regime. 

 

(C) PHOSPHORUS UPTAKE BY RICE  

Treatment 

Anthesis Maturity 

Concentrations  

(mg kg-1) 

Content 

(kg ha-1) 

P uptake and efficiency 

(kg ha-1) 

 

Shoot P 

 

 

Straw P 

 

 

Grain P 

 

Grain P 
Total P 

uptake 

P 

balance 

PUE 

for 

grain 

yield 

Phosphorus 

level 

   
P-25 

P-25 

AWD 

P-25 P-10 

Irrigation 

regime 
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Discussion 

Alternate wetting and drying irrigation and soil phosphorus availability 

The field site was selected for low available P concentrations, which both the pre-treatment and 

the P-fertilised soil samples confirmed. Soil containing less than 5 mg kg-1 Olsen P has been 

classified as infertile for rice production (Dobermann and Fairhurst, 2000), and although this 

classification is based NaHCO3 extraction of air-dried samples it applies to the field soil, since 

the site was selected based on low Olsen P concentration (3 mg kg-1). A field survey of central 

and eastern Madagascar revealed that all six soils sampled (mostly Oxisols with low pH and 

low CEC) from rice-growing regions were P-deficient with Olsen P concentrations below 10 

mg kg-1, and below levels of detection at the two sites nearest to the present study site at Behenjy 

(Turner, 2006). This emphasised widespread P depletion in the region consistent with the low 

concentrations measured, with DGT-P below the limit of detection.  

It was hypothesised that AWD would increase soil P availability compared to CF, by 

accelerating mineralisation under aerobic conditions and releasing P from microbial cell lysis 

upon re-flooding. However, at anthesis there were no significant effects of the irrigation regime 

(or P level) on soil P concentrations. The lack of increase in the plant-available NaHCO3-P and 

resin-P concentrations between the sampling times, despite P fertiliser application, suggested 

that the applied P had been sorbed to soil minerals and/ or assimilated by plants. Similarly, the 

P fertiliser application did not increase water-extractable TP, MRP and MUP concentrations, as 

previously reported for MRP (Rakotoson et al., 2015), likely due to high P fixation. The lack of 

effect of irrigation on soil P concentrations, and the decrease in MBP between sampling times 

under AWD as well as CF, suggested that AWD did not increase mineralisation of organic P. 

Broadly, the ratio of MUP to TP indicates the proportion of potentially available P that is 

organic, and ranged from 3.7 % to 48.2 % (mean 32.0 %) whilst neither P form was affected by 

irrigation (Table 4.5). Similarly, across 13 rice fields in six locations in Madagascar the ratio of 

organic P to total P was 6.7 % to 28.5 %, amongst which there were no differences in the 
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amounts (or forms) of organic P according to whether the field was managed under conventional 

flooding or SRI (Turner, 2006), which often involves AWD. The low MBP concentrations, 

ranging from 1.12 to 8.37 mg kg-1 (means in Table 4.5), likely reflected a decrease during 

storage since maintenance at 4 C for longer than two weeks decreased MBP concentrations 

(Turner and Romero, 2010). Measuring MBP within two weeks of sampling, and sampling near-

immediately after re-wetting (as Chapter 3) throughout the AWD period as well as at anthesis 

(and maturity), would provide further insight into the microbial P dynamics over multiple 

cycles. Nevertheless, MBP and other P forms were not affected by AWD over the time scale 

measured.  

The Gleysol at the field site was also classified as infertile for rice based on low pH (< 6.5) and 

low CEC (< 10 cmol kg-1) (Dobermann and Fairhurst, 2000), indicating that these properties 

contributed to the low available P concentrations. In aerobic soils, pH had little influence on 

organic P forms and concentrations above pH 4 (Turner and Blackwell, 2013), whereas flooding 

can increase soil pH  and result in the reductive dissolution of Fe(III) and Mn(IV) oxyhdroxides, 

thereby releasing sorbed P (Amery and Smolders, 2012). However, whether this mechanism 

increases P availability to plants depends on the soil having high CEC, so that cation sorption 

sites bind the Fe2+ resulting from reductive dissolution of Fe(III) oxyhydroxides to decrease 

potential P sorbing sites (Amery and Smolders, 2012). The CEC of the field soil was very low 

(2.27 cmol kg-1), which likely contributed to low available P since the potential for P release 

was limited, and soil CEC was the major factor limiting P release from two other Gleysols (pH 

4.5 and 4.6, CEC 2.7 and 5.4 cmol kg-1) and a Histosol (pH 4.4, CEC 4.1 cmol kg-1) from paddy 

rice fields in Madagascar (Amery and Smolders, 2012). Measuring the pH of soil samples paired 

with P concentrations would inform whether it decreased under AWD compared to CF, causing 

the lack of increase in soil P concentrations.  
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Alternate wetting and drying effects on rice biomass and yields 

It was hypothesised that rice biomass production and grain yields would be higher under AWD 

compared to CF, particularly under low P supply. The straw biomass was highest under AWD 

and CFA, at P-25 and P-0 respectively (Figure 4.4), indicating that it did not increase with the 

P supply and the irrigation effects were only significant across P levels. Furthermore, only 

fertiliser application increased grain yields and HI, with maximum yields at the highest rate 

although maximum HI at the intermediate rate (Figure 4.3). Therefore AWD did not increase 

soil P concentrations thereby increasing grain yields. Similarly, P release caused by flooding 

was unlikely to ameliorate P deficiency in six different paddy soils in Madagascar (including 

two Gleysols) because of continued rice yield response to applied P (Rakotoson et al., 2014), 

and evidence that achieving 80 % of maximal yield required c. 19 mg kg-1 resin-P (Six et al., 

2013; Rakotoson et al., 2014). This concentration far exceeded the initial P concentrations in 

the present study, indicating AWD (and other management practices as in SRI) would need to 

greatly increase P concentrations to achieve optimal yields without mineral P fertiliser. The 

result was consistent with the principles of SRI, whereby combining various management 

practices can enhance long-term yields, although SRI advocates organic rather than inorganic 

nutrient fertilisers (Stoop et al., 2002). Adding organic matter (cattle manure and rice straw) to 

a Histosol from a Madagascan paddy field increased rice P uptake and yields, in flooded but not 

aerobic soils, likely because inorganic P was immobilised under aerobic conditions (Rakotoson 

et al., 2015). Nevertheless, the authors also concluded that increased biomass and yields 

depended on fertiliser application, because OM addition and flooding increased P availability 

only marginally (Rakotoson et al., 2015). Since rice farmers do not typically apply inorganic 

fertilisers in the region (pers. comm. with J. R. Raveloson, landowner and A. Rajaona, 

AfricaRice scientist, October 2015), further studies with unfertilised soils should determine 

whether the tendency towards increased grain yields and straw biomass under AWD, and 

particularly CFA, compared to CF was significant (Figures 4.3 and 4.4). Thus, AWD could not 

be considered an alternative to P fertiliser application, although the highest HI occurred at the 
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intermediate rate suggesting greater efficiency, which may be relevant where some P fertiliser 

can be accessed. 

Although AWD did not increase yields, neither were they decreased compared to CF.  Since 

soil drying below -0.02 MPa significantly reduced rice grain yields by 22.6 % (Carrijo et al., 

2017), this suggests that yield-limiting SWP thresholds were not reached in this trial. The 

irrigation was intentionally managed such that AWD and soil drying occurred only during 

vegetative growth and grain-filling respectively, whilst all treatments remained flooded during 

anthesis. Applying AWD from two weeks after transplanting until the onset of anthesis is a 

common approach (Price et al., 2013) that maintains yields (Carrijo et al., 2017). In contrast to 

previous reports of soil drying during grain-filling increasing yields and HI by stimulating stem-

to-grain carbohydrate remobilisation (Yang et al., 2007; Yang and Zhang, 2006; 2010; Li et al., 

2016), AWD and CFA did not increase grain yields or HI. Nevertheless, the maintenance of 

yields under AWD and CFA at the same levels achieved under CF indicated increased water 

use efficiency (WUE) and water productivity (WP) (although irrigation volume data were not 

available, discussed in Chapter 5).  Conditions for achieving the multiple benefits of increased 

grain yields, HI and WUE in rice grown under controlled soil drying previously reported (Yang 

and Zhang, 2010) should be defined by determining optimal SWP ranges and scheduling for P 

release and yields for different soils.  

Alternate wetting and drying effects on phosphorus uptake and partitioning 

It was hypothesised that soil drying during grain-filling (AWD and CFA) would decrease grain 

P concentrations compared to CF. Although AWD can stimulate the translocation of 

photoassimilates from the stem to grain (Yang and Zhang, 2010; Li et al., 2016), aerobic 

conditions can fix soil P thereby decreasing P uptake. For example, AWD reduced tissue P 

concentrations compared to CF, likely via increased P sorption in drying soils (Ye et al., 2014). 

Contrary to the hypothesis, withholding irrigation during grain-filling via AWD and CFA did 

not affect grain and straw P concentrations (Table 4.7). Furthermore, the irrigation treatment 
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did not affect the relationship between grain P content and total P uptake, or between grain 

weight and grain P concentration, indicating that AWD or CFA did not reduce the partitioning 

of P to the grain or maintain grain yields with reduced P concentrations. However, determining 

whether straw-to-grain P translocation was affected would require more advanced methods than 

measuring tissue P concentrations (discussed in Chapter 5). Avoiding continued uptake from 

the soil after anthesis is a target to increase P efficiency (Julia et al., 2016); thus further study 

is required.  

Greater efficiency occurred at the intermediate P fertiliser level. Similarly to biomass 

production and yields, the P fertiliser application affected grain P content, PUE for grain yield 

and the P balance whereas irrigation did not (Table 4.7). Increasing the P fertiliser rate increased 

grain P content, although it was not clear whether this indicated luxury P uptake since yields 

also increased. Nevertheless, the highest PUE occurred at the intermediate P supply. This 

suggested that reduced fertiliser input may be considered if maximal PUE (as well as HI) rather 

than yields was the target, for example if it was more financially economical or necessary to 

meet environmental standards (e.g. the EU Water Framework Directive; WFD, 2013). Although 

yields should also be maintained or enhanced, increased PUE is a key target for cereal 

production globally (Dhillon et al., 2017). 

Determining optimal irrigation and P fertiliser strategies likely requires further measurements 

of the effects of AWD and P level on P uptake and partitioning. That the P balance remained 

below 10 and 25 kg ha-1 at the respective P application rates suggested that averaged across the 

irrigation treatments, 7 and 9 kg ha-1 of the applied fertiliser at P-10 and P-25 respectively was 

not utilised by the plant, despite yield increasing with fertiliser application. This was likely 

caused by high P fixation (discussed below), but also because the total P uptake did not account 

for the P concentrations in roots. A recent study showed that in rice grown hydroponically, 45 

% of the 33P tracer applied at 9 days after anthesis remained in the roots at maturity under 

deficient as well as optimal P levels (Julia et al., 2016). This suggested that providing roots 

remain unharvested under field conditions, P taken up during grain-filling largely remained 
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within the soil organic matter, providing a source of mineralisable organic P. Nevertheless, 

management practices are also important under field (rather than hydroponic) conditions. 

Whilst post-anthesis P accumulation contributed approximately 70% of total plant P at maturity 

in flooded rice in two separate field studies (Ye et al., 2014; Julia et al., 2016), the proportion 

was 40% in upland (aerobic) rice (Rose et al., 2010) and was decreased by topsoil drying during 

grain-filling (Julia et al., 2016). These results suggested that aerobic conditions decreased post-

anthesis P uptake. The lack of significant treatment effects on shoot P concentrations at anthesis, 

as well as grain and straw P concentrations at harvest (Table 4.7), confirmed that P uptake was 

not affected by AWD, rather than that effects of AWD were ameliorated by flooding during 

anthesis and/ or drying during grain-filling. Further research should focus on the grain-filling 

period to reduce P uptake and straw-to-grain P translocation, via breeding (Rose et al., 2010; 

2013; 2016; Rose and Wissuwa, 2012; Julia et al., 2016) and genotype by environment 

interactions (Vandamme at al., 2016), to determine optimal irrigation regimes (and 

complimentary management practices) for yields as well as PUE and HI.   

Were soil phosphorus concentrations explained by plant phosphorus uptake?  

The soil P concentrations were more likely explained by sorption to soil minerals than by plant 

P uptake. Statistically, there was little variation in total P uptake across the range of 0, 10 and 

25 kg ha-1 of applied mineral P fertiliser and different irrigation regimes (Figure 4.5), consistent 

with the lack of significant variation in soil P concentrations (Figure 4.7A). Nevertheless, the 

large (although not significant according to the conservative Tukey test applied throughout this 

thesis) irrigation effect on total P uptake, which increased by c. 50 % by rice under AWD 

compared to CF, warrants further study with higher replication to determine the significance 

and potential application of this response. Furthermore, the negative P balance at P-0 showed 

that up to a mean of 6.7 kg P ha-1 was acquired from the soil P reserves, and a similar amount 

was also acquired by plants at P-10 and P-25 (Figure 4.6) whilst the differences likely 

contributed to the increased grain yields (Figure 4.3). Since NaHCO3-P measured at anthesis (at 

all P levels) was the same as the pre-treatment concentration, this pool was replenished from 
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soil P reserves replacing P taken up by the rice plants. This effect was previously reported from 

paddy rice fields (Gleysol and Histosol soils) in Madagascar, with the same genotype (X265) 

with organic amendment (farmyard manure) (Andriamananjara et al., 2016). These results 

suggested that plant P assimilation and soil P concentrations may have been in dynamic 

equilibrium, whereby sorbed P was released to replace P assimilated by plant roots. Another 

study showed a higher P content in rice tissue than could be explained by the available soil P 

concentration, suggesting that rice roots exuded P-solubilising agents (e.g. organic acids) and 

could therefore access otherwise inaccessible P (Huguenin-Elie et al., 2009). Therefore it 

appeared that the majority of applied P became sorbed and did not increase immediately 

available P, indicating the challenge of determining soil P availability when concentrations are 

very low and the soil is highly P-fixing, and it may be partially plant-regulated. Thus AWD may 

have increased soil P availability but it was rapidly sorbed, so was undetected within the 

measurement period. Further, better replicated studies should determine whether the tendency 

for higher P acquisition from soil reserves (higher P uptake and lower P balance) under CFA 

and AWD compared to CF was significant (Figures 4.5 and 4.6). As well as soil properties, 

further research should determine the effects of AWD on plant exudation of P-solubilising 

compounds and P-mineralising enzymes, root architecture, and P-mobilising mycorrhizal 

associations, which are important to P availability and uptake (Stutter et al., 2012). 

 

Conclusions 

Soil P availability was very low and the lack of influence of P fertiliser application or irrigation 

on soil P concentrations suggested that soil physical properties (low pH and CEC, high PSI) 

strongly regulated P availability. However, the P balance indicated that applied P was not 

depleted, suggesting that although soil P concentrations were low, a dynamic equilibrium 

existed whereby sorbed P was released to replace P acquired by plants and that plants readily 

acquired newly available P. Nevertheless, grain yields were limited by P since they increased 
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with P fertiliser application, averaged across the irrigation treatments which did not affect grain 

yields (Table 4.6). Although applying AWD and CFA did not decrease yields, contrary to the 

hypothesis they did not achieve equal grain yields at reduced P concentrations compared to CF 

(Table 4.7). This target should be studied further for a range of genotypes and environments. 

The highest HI and PUE occurred at the intermediate P application rate, suggesting that the P 

supply could be reduced to meet these efficiency targets, although limiting grain yields. 

Whether this is economically viable depends on P fertiliser prices, and future studies need to 

establish on-farm economic optimum fertiliser rates. However, when farmers cannot access P 

fertiliser, different management strategies are needed to optimise yields and P and water use 

efficiencies and secure long-term increases in rice productivity.  
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Chapter 5: General Discussion 

Water and phosphorus are essential resources for crop production, yet both are increasingly 

limited, threatening global food security (Wang et al., 2016; Cordell, et al., 2009). Thus, both 

resources need to be managed to optimise water and P use efficiencies, as well as enhance crop 

yields to meet increasing demand. The effects of different irrigation schedules on crop yields 

(Carrijo et al., 2017) and of soil drying and wetting on P availability (Dodd et al., 2015) are 

well-documented, although their integration remains limited as they are often studied by distinct 

science communities. Although soil DRW has reportedly increased P availability in numerous 

soils, many of these results have used much drier soils than plants would be able to tolerate. 

Furthermore, these “soil-exclusive” studies have often emphasised the magnitude of P release 

following DRW as proportional to field-moist reference conditions, which can exaggerate the 

relevance of the effect, especially in soils in which available P concentrations are already low.  

In parallel, few studies have related crop responses to soil water deficits to the corresponding 

changes in soil nutrient availability. Therefore this research primarily determined the SWPs at 

which P availability increased in different soils; and whether the increases in concentrations 

resulting from DRW likely had agronomic relevance based on typical guidelines for crop 

nutrient management (DEFRA, 2017) and empirical effects on plant P uptake and yields. Five 

key questions were addressed by experiments carried out across a range of scales, from 

laboratory studies, through pot experiments, to a field trial, reported in Chapters 2, 3 and 4 

respectively. The five main questions, different approaches, and key results are summarised as 

a flow chart in Figure 5.1. The following discussion draws upon the new knowledge that has 

been generated in relation to these five research questions, the limitations including questions 

that arose, and ideas for future studies.  
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Figure 5.1: Summary of knowledge generated by this. Boxes for research questions are pink, for 

approaches or processes are blue, and for key findings and research linkages are yellow.
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Phosphorus availability increased as soil water potential decreased 

Key results and comparisons 

It was hypothesised that decreased SWP would increase P availability following DRW, and the 

SWP at which P availability increased would vary according to the soil type. This study showed 

that the SWP threshold at which NaHCO3-P significantly increased was similar for the three 

soils investigated. Although it was hypothesised that greater increases in available P following 

DRW would occur in soils with higher MBP, no correlation was found. This contrasted with 

previous research and was likely due to the limited number of soil types (3 rather than 29) 

(Turner and Haygarth, 2001). The principal measure of plant-available P used throughout the 

study was NaHCO3-P, and resin-P showed similar responses to DRW (Figures 3.9 and 4.7). An 

exception was the increased resin-P but not NaHCO3-P under DRW compared to continuously 

saturated (CS) (Figure 3.9). This reinforced that although fertiliser recommendations are given 

based on both measures for grass and forage crops, the values are not equivalent (DEFRA, 

2018a) because these tests measure different pools of soil P (Moody et al., 2013) and vary in 

their ability to predict plant yields (Six et al., 2013). Therefore this study used different soil P 

measures to indicate DRW effects on organic, adsorbed and solution P concentrations (Figure 

1.1). 

There was some discrepancy in the SWPs at which P availability increased following DRW, 

and the magnitude, within and between the experiments reported in Chapters 2 and 3. In the 

Rowden soil, the increase in NaHCO3-P was greatest at T1 (by 7.09 mg kg-1), at nearly double 

the increase at T2 despite lower SWP (Chapter 2), and seven times the increase in Experiment 

2 (Chapter 3) despite similar SWP. In the Whiddon Down soil, at similar SWP, NaHCO3-P 

increased five times more following DRW in Chapter 2 than Chapter 3. Between Chapters 3 

and 4, P concentrations in the Madagascar soil were similar. It is likely that increased soil 

storage time decreased MBP (Turner and Romero, 2010), thereby limiting the increases in P 

availability following DRW. Since the maximum P release occurred at SWPs far below the 
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plant PWP (-1.5 MPa), there are two soil management possibilities that may allow plants to 

utilise this resource: 

 Air-drying and re-wetting the soil prior to planting (during fallow periods);  

 Allowing only the surface soil to dry beyond the change points (via irrigation or by 

manipulating surface coverage by crop residue).  

Limitations and further work 

The variable results between soils likely resulted from inherently different properties (Appendix 

1), and between experiments likely resulted from changes in microbial communities due to 

differences in soil sampling depths and times and the pre-experiment storage time. Whereas the 

Tadham Moor, Little Burrows and Joseph’s Carr soils were collected from 0-10 cm depth in 

May, the Rowden soil was collected in October and the Whiddon Down soil in February, both 

at 0-20 cm depth, and microbial biomass concentrations and mineralisation rates change 

markedly throughout the year (Yao et al., 2011). Soil was collected from 0-20 cm depth to 

acquire sufficient volumes for the pot experiments (Chapter 3), so it was important to also 

determine SWPs at which P availability increased (Chapter 2) at this depth. Microbial biomass 

P concentration is commonly measured in the surface 0-10 cm in grassland soils (Turner and 

Haygarth, 2001; Blackwell et al., 2009; 2012); therefore another sample of the Tadham Moor 

soil from 0-20 cm depth should have been used for Experiment 2. Future study would reduce 

pre-experiment storage time to less than two weeks (Turner and Romero, 2010), and increase 

sampling frequency during soil drying to allow greater precision in determining change points. 

Further experiments are also needed to determine the underlying mechanisms causing P release 

following DRW in different soils. Nevertheless, demonstrating that NaHCO3-P increased 

logarithmically with decreasing SWP, with a significant change point at -2.9 MPa, suggests 

there may be times during the cropping cycle when similar SWPs are reached in surface soils. 
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Highest phosphorus availability was caused by initial soil drying and re-wetting 

Key results and comparisons 

It was hypothesised that soil P availability would be higher in initially air-dried and re-wet soils 

compared to continuously moist soil, because a lower SWP would be reached than for control 

soils or with subsequent DRW cycles (which aimed to maintain SWPs in the bulk soil above 

the change point). This was based on the conclusion that the maximum increase in NaHCO3-P 

occurred at the lowest SWPs for these soils (Chapter 2). Consistently, initial DRW increased 

NaHCO3-P in both experiments in Chapter 3, whereas subsequent DRW cycles (with less soil 

drying) did not (Experiment 1). Although change points in the SWP versus P availability 

relationship were exceeded during subsequent DRW, only initial DRW increased P availability. 

This result likely occurred because whereas in Chapter 2 soil re-wetting occurred as part of the 

soil P extraction process, in Chapter 3 soils were re-saturated or re-flooded 1.5 hours before 

sampling. This time may have allowed re-adsorption or microbial immobilisation, suggested by 

the higher MBP concentrations in the drying soils than the control soils (Table 3.9), thereby 

limiting P release to the soil.  

It was also hypothesised that soil P availability would be higher after two subsequent DRW 

cycles compared to one cycle (without plant uptake), because the microbial biomass would 

decline after DRW (releasing P) but recover such that a subsequent cycle would have additive 

effects. Previous studies have reported inconsistent effects of multiple DRW cycles on P 

availability, due to differences in soil type, incubation period, and likely the degree of drying 

(Scalenghe et al., 2012; Chen et al., 2016; Dinh et al., 2016). This study showed that the initial 

increase in P availability was not sustained, possibly due to DRW increasing access to 

adsorption sites due to shrinkage and swelling of soil aggregates (Chepkwony et al., 2001; 

Blackwell et al., 2009), or because substrate availability reduced, limiting mineralisation (Yu et 

al., 2014; Shi and Marschner, 2017). Therefore consistent with the hypothesis, soil P availability 

was highest following initial DRW. 
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Limitations and further work 

In contrast to Chapter 2, experiments in Chapter 3 imposed multiple cycles of soil DRW, 

although the effects of soil moisture release curve hysteresis (Whitmore and Whalley, 2009) 

were not considered. Hysteresis indicates that the relationship between SWP and GWC differs 

according to whether the soil is becoming progressively drier or wetter (Whitmore and Whalley, 

2009), and effects are important over several DRW cycles. Re-wetting volumes were previously 

determined based on whole-pot GWC, because reproducing changes in SWP was considered 

less accurate due to hysteresis with repeated DRW (Lado-Monserrat et al., 2014). However, 

hysteresis possibly explained the slight differences in the relationships between GWC and SWP 

in the Whiddon Down soil between Chapter 2 with one DRW cycle (Table 2.6), and Chapter 3 

with multiple DRW cycles (Table 3.8). Hysteresis affects soil water availability to plant roots, 

relating to physical soil properties such as porosity and shrink-swell characteristics, especially 

in clay soils such as those used here, which are affected by repeated DRW (Whitmore and 

Whalley, 2009). Therefore SWP should be measured directly following each drying (and re-

wetting) event, since it cannot accurately be deduced from the GWC (Whitmore and Whalley, 

2009). Although SWP can be continuously monitored using tensiometers within larger soil 

volumes over a restricted SWP range (Whalley et al., 2013), accounting for hysteresis would 

likely be necessary over more DRW cycles at a similar scale to Chapter 3, Experiment 1. This 

would have required larger soil volumes to sample more cores during the experiment. 

Measuring SWP within Experiment 2 was not possible due to soil and root disturbance within 

small soil volumes, further indicating the need for larger-scale studies of spatial variations in 

SWP and P availability. Furthermore, microbial competition with plants for P (and other 

nutrient) acquisition at low water potentials is another important field of research with regard 

to nutrient cycling (Dijkstra et al., 2015), particularly considering temporal dynamics to 

determine the potential crop acquisition of released soil P.  
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Spatial variation in phosphorus availability was not related to soil water potential 

Key results and comparisons 

Soil P availability increased with decreasing SWP, but fully air-drying soil is not always 

practical in the field, such as where fallow periods are not used or planting seasons occur during 

high rainfall. Therefore it was hypothesised that soil P availability would be higher in soils 

exposed to drying and re-wetting or re-flooding compared to soils maintained under 

continuously saturated or flooded conditions, particularly at the surface compared to the bulk 

soil. A pot experiment enabled the relationship between P availability and SWP to be 

investigated within the soil profile. Contrary to the hypothesis, P availability was not affected 

by irrigation and was instead higher in bulk than surface soil. This implied that surface soil 

drying did not increase NaHCO3-P, although this contradicted Chapter 2’s conclusions. More 

likely, P was transferred vertically in the soil profile, regardless of irrigation regime. Vertical P 

transfer may have occurred with water via leaching (Turner and Haygarth, 1999), as saturated 

flow in the control treatments (over days), whilst unsaturated (preferential) flow through 

fissures may have occurred in the drying treatments over a shorter timescale following re-

wetting (minutes to hours) (Haygarth and Sharpley, 2000). In contrast, DRW increased resin-

P, so the implications for plant-availability were contradictory. These results emphasised the 

importance of the measurement method (Moody et al., 2013), and the timescale for studies of 

soil P availability and transfer. Released P is only plant-available if the crop takes it up before 

it is acquired by microbes or fixed by soil minerals (Grierson et al., 1998; Bünemann et al., 

2013). Returning soil moisture to pre-DRW levels provides a time-restricted window when 

plants compete with soil biogeochemical processes to access available P (Chepwonky et al., 

2001; Chen et al., 2016). Thus, although decreased SWP increased soil P availability in 

laboratory experiments, other factors (such as leaching) are important at larger spatial (trays to 

pots) and temporal (24 hours in Chapter 2 to 59 days in Chapter 3) scales.  
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Limitations and further work 

Future studies, aiming to determine the soil factors regulating the effects of DRW on P 

availability, should also consider: the SWP, spatial variation in P availability and other 

properties within a soil profile, and temporal variation with multiple DRW cycles, ideally with 

soil samples taken during different seasons to determine whether the microbial contribution is 

greater during warmer seasons. Under soil flooding (Chapter 3, Experiment 1 and Chapter 4), 

studies should use redox/ oxygen sensors to determine whether anaerobic conditions can explain 

chemical changes affecting P availability. Additionally, measuring anaerobic soils under 

anaerobic conditions as far as possible (using a glove box) would more accurately determine 

soil P availability at specific sampling times. To determine the sources of released P, a 

comprehensive analysis of other (sometimes also changing) soil properties under DRW would 

be required (outlined in Appendix 2).  

Along with SWP measurements, measuring root water potentials at different depths in the soil 

profile would determine whether plants may access water and nutrients. For example, SWP 

increased with depth in a soil under drip-irrigation supplied every three days, such that mild 

surface soil drying increased absolute water uptake rates from deeper layers (Li et al., 2002). 

Therefore if DRW increased soil surface P availability, it would be essential for root water 

potential near the soil surface to also increase (recover) with SWP upon re-wetting to acquire 

newly available P (unless vertical P transfer by leaching was substantial). Nevertheless, tracing 

isotopes is a more specific technique to determine the fate of soil P (discussed below).  

Plant responses to soil drying and re-wetting were unlikely related to increased 

phosphorus availability 

Key results and comparisons 

It was hypothesised that whole-pot increases in soil P availability caused by initial DRW would 

increase P uptake, biomass and yields in Brachypodium; and that AWD would increase rice 
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biomass production and grain yields compared to conventional continuous flooding. These 

responses were anticipated to be most pronounced under low P supply. The two studies reported 

in Chapters 3 (Experiment 2) and 4 contradicted this hypothesis. In Brachypodium, although 

initial DRW significantly increased biomass production and doubled yields, plant P 

concentrations and soil P availability were only increased by P fertiliser application (Figure 3.9) 

unlike previous studies (Tsujimoto et al., 2010; Bünemann et al., 2013), and reducing irrigation 

frequency had no effects. Similarly in rice, shoot P concentrations were not affected by 

irrigation whilst grain P contents were only increased by P fertiliser, and soil P concentrations 

were not affected by the treatments (Figure 4.7). Whereas soil P availability was expected to 

increase due to reduced irrigation frequency at a time of high P demand (anthesis) in 

Brachypodium, in rice the aim was to avoid luxury P uptake during grain-filling. Therefore soil 

was sampled at rice anthesis when all treatments were flooded, allowing treatments to be 

compared at their field moisture contents. In contrast, soil was sampled at maturity for 

Brachypodium, requiring the soil samples to be air-dried to be comparable between treatments. 

Regardless of these differences, DRW and AWD did not increase plant P uptake due to 

increased soil P availability. High P-fixing by the soils likely played a large role in determining 

the results, such that small increases in P availability following DRW and AWD were not 

detected by the methods used (Bünemann et al., 2004). This effect was particularly evident in 

the field soil which had a high P sorption index, since soil P concentrations and rice P uptake 

hardly varied between the P fertiliser rates (Figures 4.5 and 4.7A). Thus, the potential role of P 

release by DRW may have been undetected. Nevertheless, the doubling of yields following 

initial DRW demonstrated a major agronomic benefit, irrespective of whether the mechanisms 

were P-related. 

Limitations and further work 

Further study is needed to identify the cause of increased yields following initial DRW and the 

role of P availability along with other regulatory factors. Firstly, directly relating plant P uptake 

to soil P concentrations in different pools would be valuable. Since changes in P concentrations, 
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especially small additions, can be undetected in weathered, highly P-sorbing soils, isotope 

labelling would be more sensitive in tracing applied P in different pools (Bünemann et al., 

2004). Isotope labelling studies allowed applied 32P labelled inorganic P to be related to wheat 

P acquisition and total dry matter yields under DRW cycles (Chepkwony et al., 2001); 32P to be 

traced in soils, microbes and plants (Dijkstra et al., 2015); and 33P to be traced from the soil to 

grain in rice (Julia et al., 2016). Additionally, the concentrations of other nutrients should be 

determined for soils and plant tissue, since soil DRW increased soil N levels and increased N 

uptake in potato (Wang et al., 2009) and maize (Wang et al., 2012). Therefore determining why 

Brachypodium grain yields doubled when grown in soils that were initially exposed to DRW 

requires more precise and comprehensive measurement of nutrient availability and uptake.  

Alternate wetting and drying increased biomass and phosphorus uptake only when 

phosphorus fertiliser was applied 

Key results and comparisons 

It was hypothesised that soil drying during grain-filling (via AWD and via continuous flooding 

only until anthesis, CFA) would decrease grain P concentrations compared to CF, thereby 

avoiding luxury P uptake. The field trial reported in Chapter 4 was designed to test this 

hypothesis in a region where soil P availability is low (limiting rice yields) and farmers do not 

apply P fertiliser; therefore improving PUE is necessary for continued rice production. Contrary 

to the hypothesis, grain P concentrations were not affected by the irrigation regime, and total P 

uptake (shoot and grain P contents) was highest under AWD only in combination with the 

highest P fertiliser application rate. Therefore the P fertiliser dominated the treatment effect. 

Importantly, reducing the P fertiliser application rate increased the HI and PUE, which are key 

efficiency targets for crop production, indicating that benefits can be achieved where farmers 

can access a limited amount of P fertiliser (10 kg ha-1 in this case). Increased HI and PUE are 

useful targets for long-term production, although the lower fertiliser rate reduced the grain yield 

by one-fifth in a single crop cycle (which was not improved by AWD). Therefore this study 
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importantly isolated AWD as a separate factor to other SRI (and other) practices such as organic 

matter amendment. Increased PUE with reduced fertiliser application is a key result to develop, 

likely combined with other practices to optimise yields.  

Limitations and further work 

Field scale trials throughout a crop cycle are ultimately needed to determine the effects of DRW 

on soil P availability and plant P uptake, varying with depth in the soil profile and over time 

with multiple DRW cycles and crop development. Although field trials are the most relevant 

approach to determining the impacts of agronomic management strategies on site-specific water 

and P use efficiencies and yields, they are less controlled than laboratory and pot scale studies. 

The trial reported in Chapter 4 would have benefited from several experimental improvements 

to determine altered P concentrations and agronomic benefits. The very low P concentration of 

the soil meant that P fertiliser had the greatest effect on P availability, uptake and yields; and 

that DGT-P concentrations were below the limit of detection. Whilst DGT-P is sometimes better 

correlated with plant P concentrations than other soil P measures (Six et al., 2013), the 

relationship has not been reported for lowland irrigated rice but this could not be achieved from 

the field trial. Further studies should measure DGT-P in-situ over a longer (> 26 hour) 

deployment period, due to the high P-fixing properties of the soil. As well as available P, soil 

total P was 58 % and 55 % lower than the Rowden and Whiddon Down soils, respectively 

(Appendix 1), indicating that potentially available P (released by DRW) was more limited.  

As well as determining P concentrations, measuring irrigation and rainfall volumes was planned 

(to determine irrigation water productivity as crop yield per unit of applied irrigation water; 

Sadras, 2009) but eventually not possible. These measures would be valuable since AWD and 

CFA irrigation dried the soil without decreasing grain yields or HI, perhaps representing an 

opportunity to increase WUE.  Measuring SWP was also planned but not possible due to 

practical restraints but would have contributed important information, perhaps allowing SWPs 

in the field to be related to soil P concentrations (as in Figure 2.3). Future field trials studying 
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AWD should include tensiometers placed both above and below the water height limit for AWD 

of 15 cm (IRRI, 2009) (and/ or measure SWPs of soil cores). Furthermore, trials should consider 

irrigation scheduling based on P-releasing, and yield-maintaining SWPs (Carrijo et al., 2017) 

rather than water level, to more directly relate soil and plant processes regulating water and 

solute (nutrient) uptake. Since the highest P-releasing SWP in the soils measured (-2.3 MPa, 

Chapter 2) was not compatible with yield-maintaining SWPs (-0.02 MPa, Carrijo et al., 2017), 

determining the spatial variation in SWP and P availability at different depths within the soil 

profile (discussed above) should be a priority for future studies. 

More complex challenges than practical considerations persist for field studies of crops, both 

academic and organisational. This trial importantly studied the effects of AWD at different P 

levels in isolation from other factors e.g. SRI practices; yet most likely a range of practices 

interacting with AWD have the greatest potential to increase P availability and yields where 

farmers cannot access P fertiliser (Stoop et al., 2002). It would be more relevant to exclude the 

P fertiliser application treatment and instead determine the effects of AWD and CFA on P 

availability and uptake combined with more locally-accessible organic fertiliser treatments, 

such as manure and rice straw from previous crops, to increase soil CEC and potential P release 

(Amery and Smolders, 2012; Rakotoson et al., 2014; 2015). To determine the most appropriate 

practices to include as experimental factors, designing on-farm collaborative research 

potentially has major benefits, since soils at research sites cannot accurately represent the soils 

of a particular localised agronomic system (Stoop, 2003). On-farm research is primarily how 

SRI developed (Dobermann, 2003) and continues to produce yield benefits amongst Malagasy 

communities (I. Rajaona, pers. comm., April 2016). As understood (Stoop et al., 2002; Glover, 

2011) yet rarely implemented, future studies would undoubtedly benefit from involving local 

farmers, as well as researchers, in field trials from the outset, to ensure that practices enhancing 

efficiency and yields are feasible in the long-term.  
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Conclusions 

Through experiments at laboratory, pot and field scales, this research has shown:  

 Soil P availability increased as SWP decreased in three soils. Soils need to be drier 

than plant PWP for P availability to increase upon re-wetting, but not as dry as often 

reported in soil-exclusive studies. To my knowledge, this is the only study 

characterising a logarithmic increase in plant-available NaHCO3-P with decreasing 

SWP, and reporting significant change points. 

 

 Highest P availability was caused by initial soil air-drying and re-wetting. This 

confirmed that more P was released at the lowest SWPs compared to subsequent cycles 

of DRW at the soil surface. Thus, there is the potential for DRW during a fallow period 

to produce a P pulse from which crops may benefit. 

 

 Spatial variation in P availability within the soil profile was not related to SWP. 

This implied that the results derived from laboratory experiments could not be scaled 

up spatially since soil P availability increased with soil depth, even without changes in 

SWP. Since P-releasing and yield-maintaining SWPs are incompatible, P leaching 

within root zones is a key priority for future research.  

 

 Initial soil DRW more than doubled grain yields. Proportional increases in grain 

yields and biomass production with total P uptake, whilst shoot P concentration hardly 

varied, suggested Brachypodium yields likely increased due to beneficial effects of soil 

DRW other than P availability. This significant beneficial DRW effect requires further 

research under P-limiting conditions. 
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 Increased rice grain yields depended on P fertiliser, with optimal efficiency at an 

intermediate rate. Thus, benefits of P release under controlled soil drying regimes 

were marginal compared to the effects of applying P fertiliser, in a highly P-fixing soil 

with low available P. Nevertheless, HI and PUE were highest at the intermediate P 

fertiliser rate, indicating an opportunity to improve resource efficiency which should 

be developed.  

Thus, key progress was made with the knowledge generated:  

(1) Soil drying and re-wetting clearly increased P availability within a SWP range that is 

agronomically relevant, if carefully controlled since change points occurred below the 

plant PWP. More severe soil drying was needed to maximise soil P release upon re-

wetting. 

 

(2) Pre-planting soil DRW doubled grain yields, demonstrating a significant benefit to 

plants which could be applied during a fallow period to increase crop yields. 

 

(3) The highest HI and PUE for grain yields occurred at an intermediate P fertiliser rate, 

indicating greater long-term efficiency of P fertiliser use in food production.  

Finally, for crop plants to benefit from increased soil P availability following drying and re-

wetting, integration with other locally-relevant agronomic practices which stimulate the 

response will be essential. Further research to determine optimal practices is urgently required 

to increase water and phosphorus use efficiencies and crop yields. 
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Appendix 1 

Soil physical and chemical properties for the four principal soils used in these studies. Analyses 

were carried out by NRM Laboratories, UK and Rothamsted Research, UK.  

Soil property 

Result 

Units Method Tadham 

Moor 
Rowden 

Whiddon 

Down 
Madagascar 

Texture class Peat Clay Clay Clay  

Particle size 

distribution via 

laser diffraction 

Sand 7 13 8 27 % w/w 

Silt 35 37 41 33 % w/w 

Clay 58 50 51 40 % w/w 

Organic Matter No data 11.5 7.6 9.4 % w/w 
Loss on ignition 

(LOI) 

pH 5.9 4.9 4.9 4.8  In water (1:2.5) 

Total C 28.58 4.79 2.97 2.10 % w/w 

Combustion 

catalytic oxidation  
Total N 1.99 0.48 0.32 0.16 % w/w 

C:N Ratio 14.36:1 10.0:1 9.3:1 13.1:1  

Total P 1026 674 640 285 mg kg-1 

Aqua-regia soluble 

elements : HCl and 

HNO3 digestion 

with  analysis via 

ICP-OES 

Total K 3064 1572 1450 175 mg kg-1 

Total Mg 4141 730 1570 392 mg kg-1 

Total Mn 647 986 239 65 mg kg-1 

Total Fe 19066 39336 37283 33667 mg kg-1 

Available Fe 7578/ 7970 171 181 115 mg L-1 

DTPA extraction, 

or dithionite/ 

ammonium oxalate 

extraction 

(Tadham Moor) 
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Appendix 2  

For a comprehensive analysis of changes in P availability with other (sometimes also changing) 

soil properties under DRW to determine the sources of released P, the following properties 

should be analysed:  

 Microbial biomass C and N (Gordon et al., 2008); 

 Microbial activity (respiration and mineralisation) (Grierson et al., 1999; Gordon et 

al., 2008); 

 Organic C content, which largely determines mineralisation rates (Sparling et al., 

1985; Jarvis, 2007; Gordon et al., 2008; Blackwell et al., 2010); 

 Microbial community structure and composition, e.g. PLFAs (Sun et al., 2017a); 

 P sorption index (PSI) (Six et al., 2013);  

 Degree of sorption saturation (Styles and Coxon, 2006); 

 Elemental concentrations (e.g. Fe, Mn, Ca, Mg, Al, Zn) and Fe/ Al oxides; 

 Aggregate stability (Bünemann et al., 2013); 

 Organic P forms (Turner, 2006; Turner and Blackwell, 2013); 

 Where plants are present, their effects on P cycling need to be considered, depending 

on species and genotype and associated root traits including P-solubilising exudates 

(Oberson et al., 2006; Stutter et al., 2012). 

 

Additionally, under AWD:  

 Soil pH, which can change with flooding (Amery and Smolders, 2012);  

 Cation exchange capacity (CEC) (Amery and Smolders, 2012); 

 Redox potential (Kirk et al., 1998); 

 Organic matter content, an electron donor in redox reactions (Amery and Smolders, 

2012; Rakotoson et al., 2014). 
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Analyses should consider: 

 Effects of filtration (Soinne et al., 2010); 

 Soil bulk density (DEFRA, 2017); 

 Soil moisture regime history (Sparling et al., 1985; Evans et al., 2012); 

 Drying and re-wetting rates (Blackwell et al., 2009; 2012); 

 Timescale of measurement following re-wetting.  

 

 


