
Research Challenges in Nextgen Service Orchestration

Luis M. Vaquero, Felix Cuadrado, Yehia Elkhatib, Jorge Bernal-Bernabe, Satish N. Srirama, Mohamed Faten Zhani

Abstract

Fog/edge computing, function as a service, and programmable infrastructures, like software-defined networking or
network function virtualisation, are becoming ubiquitously used in modern Information Technology infrastructures.
These technologies change the characteristics and capabilities of the underlying computational substrate where ser-
vices run (e.g. higher volatility, scarcer computational power, or programmability). As a consequence, the nature of
the services that can be run on them changes too (smaller codebases, more fragmented state, etc.). These changes
bring new requirements for service orchestrators, which need to evolve so as to support new scenarios where a close
interaction between service and infrastructure becomes essential to deliver a seamless user experience. Here, we
present the challenges brought forward by this new breed of technologies and where current orchestration techniques
stand with regards to the new challenges. We also present a set of promising technologies that can help tame this
brave new world.

Keywords: NVM, SDN, NFV, orchestration, large scale, serverless, FaaS, churn, edge, fog

1. Introduction

There is a new breed of technologies that are becoming mainstream in current Information Technology (IT) infras-
tructures. Fog computing aims to partially move services from core cloud data centres into the edge of the network [1].
Thus, edge devices are increasingly becoming an essential part of the IT infrastructure that extends from core cloud
data centres to end user devices, allowing some management functions to be offloaded to the vicinity of sensors and
other user devices, while heavy analytics can still happen in the cloud, possibly on aggregated data [2]. This is
especially relevant for resource-constrained churn-prone devices in the Internet-of-Things (IoT).

The fog has also been propelled by the advent of programmable infrastructures, like Software-Defined Networking
(SDN), Network Function Virtualization (NFV) [3, 4], and data centre disaggregation [5, 6, 7]. These have simplified
infrastructure configuration for data centre servers, storage, as well as core and edge networks. As a result, the
infrastructure is able to adapt to the needs of the services that run on it, making the interplay between the services
and the infrastructure more dynamic and complex.

In parallel, recent trends in software such as microservices, foster the utilisation of smaller software functions.
Cloud-based serverless computing, also known as Function-as-a-Service (FaaS), is an attempt to tame complexity by
dividing services into smaller individual functions that can be deployed and executed independently [8, 9].

These technologies, shown in Table 1, gradually blend together to create a new IT environment characterised by
the heterogeneity of equipment, technology and service, large-scale distributed infrastructures, high resource churn,
and scarce computational power at the edge. Works that orchestrate serverless functions in an NFV context or amalga-
mating SDN and NFV orchestration are predominant in the first (left hand size) of the table. The central cell highlights
efforts to blend programmable network techniques with fog orchestrators, while the right hand side cell shows works
that try to make fog and serverless orchestration converge.

These technologies also affect the nature of services incurring smaller code bases and more fragmented state.
The complexity of the resulting IT environment and services makes service orchestration a central task to coordinate
and schedule the operation of a myriad of distributed service components. Orchestration becomes even more chal-
lenging when different technologies are involved, requiring hybrid solutions that coordinate service provisioning and
management taking into account the requirements and the particularities of each technology. While there has been
some work [10, 11, 12] on hybrid orchestration of pairs of these technologies, there has been no attempt to com-

Preprint submitted to Future Generation Computer Systems September 4, 2018



Table 1: Summary of papers where these technology trends are converging

Programmable-FaaS Edge/Fog-Programmable Edge/Fog-Serverless
[13, 14, 15] [16, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 10, 27, 28] [29, 30, 31, 32, 33, 34]

prehensively tackle all of them. The orchestration challenges that result from this hybridisation of technologies are,
therefore, still not fully understood.

In this work, we investigate research challenges in next-generation service orchestration frameworks. In particular,
we present a comprehensive review with the three following main goals:

1. understand how each of the aforementioned technologies relying on orchestrators change requirements for
orchestration

2. reveal challenges for state-of-the-art techniques to meet those requirements

3. discuss potential research directions to tackle new challenges in orchestration systems

The rest of this paper is organised as follows. Section 2 introduces the main technologies where service orches-
tration is central to provision and instantiate services. Section 3 analyses state-of-the-art orchestration techniques
and introduces the main unsolved challenges. Section 4 introduces potential research avenues for these challenges.
Finally, a critical discussion of the main lessons of this review work is presented in Section 5.

2. Recent Technological Trends

As can be observed in Figure 1, most of the efforts around orchestration have happened around the cloud [35]
and its natural expansion to the edge, via the fog [36]. Classic VM scheduling has partially been combined with
edge resource selection and serverless functions in the data centre. As we will see, there are also some efforts on
programmable network orchestration and very few dealing with the hardware, which new technologies make highly
configurable and subject to orchestration too. In summary, orchestration is central at different levels from the data
centre hardware and computing resources orchestration to the network management and service orchestration going
from the core to the edge of the network.

2.1. A Comprehensive Motivating Use Case on the New Technology Landscape

A motivating use case of this technology hybridisation process is that of connected cars, which are estimated to
produce between 4 and 100 TB of data a day [37]. Their potential need for upload bandwidth poses significant stress
in current data and network infrastructures and edge/fog technologies have been postulated as a great starting point to
cope with this huge data overload [38, 30].

These technologies can be complemented by smarter network management techniques, where an SDN controller
may enable some traffic prioritisation for key data streams to nearby fog nodes (e.g. cars uploading updated informa-
tion on road conditions to road side “priority event” relays).

At night, benefiting from classic diurnal periodicity patterns in networks, Telco operators use WAN accelerators
as NFV functions to speed up the offload of parked car data into car vendor-operated cloud services that may be
running in a different continent. In this setting, car-vendor provided specific deduplication and encryption serverless
functions can be used to minimise the amount of information to be uploaded in a secure way. In the same vein
of data management, [24] proposed an architecture that blends edge, fog and IoT to provide analytic mechanisms
for processing (and reducing/aggregating/synthesising) the amount of data that hits cloud servers. [16] proposed a
fog node and IoT hub, distributed on the edge of multiple networks to enhance the implementation of several NFV
services, like a border router, a cross-proxy, a cache, or a resource directory.

Moreover, for cars driving in smart cities, it may be that CCTV cameras on lampposts may automatically detect
blind spots for approaching cars and warn them about people or moving elements that can get into their trajectory.
This is a mix of IoT sensors and SDN technologies. Similar safety features requiring local information and real-time
processing have been achieved by combining an SDN controller with a Fog controller [25]. The fog offers network

2



Figure 1: Current State of the Orchestration Landscape. There is a much higher abundance of works dealing with orchestration as we go higher in
this stack.

context information, location awareness, and ultra-low latency; which could satisfy the demands of future Vehicular
Adhoc Network (VANETs) scenarios.

All of these subsystems are critical to deliver a service where failure, delays, and security issues can be critical.
Failing to synchronise the deployment edge nodes running serverless and NFV functions in a timely manner may
result in critical security (e.g. unencrypted driver data, hacked cars), safety (malfunctioning SDN-enabled traffic
prioritisation for critical events, like revealing moving objects in blind spots), functional (e.g. network clogging due
to lack of deduplication or proper WAN acceleration resulting in outdated road maps) issues.

Each of these technologies per se presents new challenges for orchestrators, but the combination of (programmable)
infrastructure and services creates a novel interplay between infrastructure and service.

In the remainder of this section, we analyse each of currently-deployed technologies separately to extract orches-
tration requirements. Our ultimate goal is to shed the light on the need for comprehensive orchestration techniques
that could coordinate and schedule network services simultaneously through different technologies across the edge-
to-cloud network.

2.2. Programmable Disaggregated Infrastructures

2.2.1. Data Centre Hardware Disaggregation
Classic single computer architectures have gradually been split apart, instead giving rise to disaggregated

computers where CPU, memory, and storage are interconnected over a high-bandwidth network, rather than over a
bus within a single chassis [39, 5].

Such physical separation allows for more flexibility in management and maintenance, catering for different and
varying application needs [40]; it also enables more efficient virtualisation of specific data centre resources [41].
Under this model, data centres would not be composed of traditional servers each of them having its own resources
(disk, memory, etc.), but they would instead consist of racks of specific resource types that are offered as pools of
virtualised resources accessible via the network [42]. The granularity of these resources tends to be more finely
controlled as there are strong incentives for cloud data centres to increase utilisation by encouraging use and release
utilisation patterns, which require smaller execution units [43].

Several recent efforts follow this disaggregated model of data centre organisation, focusing specifically on flash [6]
and traditional storage [44]. While storage disaggregation is common practice (e.g. most cloud vendors offer some
volume or elastic block store service), memory disaggregation is another novel trend [7, 45, 46]. Ideas on accessing
remote memory were extensively studied 20 years ago and now they are getting revived due to the massive improve-
ment in network latency (3 orders of magnitude). As memory latency has not improved as much, there is a gradual
convergence of performance [47].

Several hardware solutions are currently under development both as research projects [39, 48, 49] and industry
efforts, such as CCIX [50], Gen-Z [51], OpenCAPI [52], and Omni-Path [53]. However, as data centres expand to the
edge of the network, there will be a larger number of edge devices serving as infrastructure. This seems to indicate
new protocols to access remote memory with limited (or none) hardware support are needed [47]. Edge devices and
cloud will have to adapt to support more abstract configuration and programmability mechanisms.

3



2.2.2. Programmable Memory and Storage
Disaggregated service infrastructures aim at increasing the utilisation of available resources by separating re-

sources in different pools. This is common in current data centres.

These disaggregated elements are also becoming configurable by software. For instance, storage volumes are
dynamically attached to the memory/cpu of a VM when users request it.

Storage systems have improved in speed significantly in recent years [54]. This is largely thanks to low-latency
storage (e.g. flash) that moves the bottleneck to be the CPU and network instead of storage where it has traditionally
been. Additionally, the rise of de facto APIs for network-attached storage systems, such as OpenKinetic key-value
stores1, further contribute to this recent development.

Recent work has focused on developing programmable storage systems that allow the composition of new storage
services through the reuse of existing storage interfaces [55]. This is different from the notion of Software Defined
Storage (SDS) [56] where storage racks are assembled from commodity hardware.

Memory disaggregation together with the advent of non-volatile memory (NVM) technologies and optical inter-
connects [57] are also requiring higher memory programmability – see Table 2. In some systems, like HPE’s ‘The
Machine’2 or FluidMem [46], compute resources can access additional memory in a data centre on demand. In
general, the “softwareisation” of the infrastructures enables multi-tenant usage, which will have to be considered by
orchestrators when planning resource allocation (see ‘multi-vendor / -domain’ in Table 2). The possibility of accessing
byte addressable memory in nearby edge devices over wireless communications seems less feasible due to excessive
latency in current technologies.

As indicated in Figure 1, the number of works dealing with systematic orchestration of disaggregated and pro-
grammable hardware is very limited, mainly due to their recent appearance and limited industrial adoption at scale.

Programmable storage systems allow encapsulating storage functionality as reusable building blocks, leveraging
storage capabilities through new interfaces. However, the composition of interfaces is complex, and it is important to
limit the usage of object interfaces, as is the sandboxing of the runtime space [55].

2.2.3. Programmable Networks
A few years ago, network service management used to be highly manual, resulting in extensive capital and opera-

tional costs. A good illustration showing how daunting is to manage network services is the example of provisioning
network service chains in traditional networks. A network service chain is an ordered series of network functions
(e.g., routers, Firewalls, intrusion detection systems) that process incoming traffic. Traditionally, provisioning such
a chain requires a lot of endeavour from IT operators to acquire and deploy networking equipment and to manually
configure the network to steer the incoming traffic across the service chain components. These tasks not only require
weeks to months to be implemented by also need knowledgeable human resources and a lot of effort. Furthermore, the
need for new hardware equipment and human resources incur high capital and operational costs, making this simple
service provisioning operation extremely daunting, costly and time-consuming.

The advent of SDN and NFV technologies brought provisioning time from the scale of weeks and months to
that of minutes and significantly reduced human intervention by automating all the service chain provisioning steps.
On one hand, SDN has succeeded to revolutionise the way network components are configured and managed. In
traditional networks, each networking equipment consists of: (i) a control plane, that is mainly responsible for taking
routing decisions; and (ii) a data plane, that is in charge of forwarding traffic according to the decisions made by
the control plane. SDN technology moves the control plane from the network equipment to a logically-centralised
software-based controller, making it possible to manage the whole network from a single point of control. This offers
network operators the programmability and the flexibility, allowing to easily configure their networks and dynamically
adapt their routing paths to applications’ performance requirements. In addition, SDN provides the tools to set up
bespoke control over the traffic, allowing to define fine-grained flow forwarding rules (e.g., flow definitions are easily
performed by the network operator using diverse information in packet header fields).

1https://www.openkinetic.org/
2https://github.com/FabricAttachedMemory/tm-librarian

4



On the other hand, NFV is a new technology that leverages server virtualisation technology to turn network func-
tions (e.g., routers, firewalls, proxies) that traditionally used dedicated hardware (middleboxes or network appliances)
into software that run on top of general purpose hardware such as virtual machines (VMs) [4]. NFV inherits all the
advantages of virtualisation [58]. For instance, it offers the possibility to create different types of network functions
whenever needed and to adjust their processing capacity to the varying demand. It also allows to easily create a copy
of a network function or simply migrate it to another location if and when required.

The combination of SDN and NFV technologies makes it now possible to provision within very short timescales
a fully-fledged network service chain. In this context, service chain provisioning and orchestration is one of the most
challenging problem as it requires solving several optimisation problem simultaneously (e.g., [59]. Challenges include
placing virtual machines, connecting them and steering the traffic through the ordered chain of the network functions.
This is a non-trivial task as it requires finding the best compromise between VMs’ hosting costs, bandwidth costs, and
performance requirements in terms of the chain end-to-end delays [60, 61].

The orchestration framework needs also to manage other features like multi-tenancy, fault-tolerance and availabil-
ity management. Multi-tenancy allows multiple users to share the same infrastructure and hence requires resource iso-
lation between different service chains and better performance management to satisfy each tenant’s requirements. The
orchestrator needs also to ensure high service chain availability through efficient fault-management (e.g., [62, 63, 64]).
This requires leveraging SDN and NFV technologies to put forward a set of solutions allowing to handle different types
of failures (e.g., node, link and software failures) and mitigate their impact on service chain availability.

2.3. Edge and Fog Computing

Edge and fog technologies shift centralised cloud computations toward edge devices in order to decrease latency,
improve spectral efficiency, enable enhanced context-specific functionality, and support the massive

machine-to-machine type of communication. They also allow for localised functions such as processing that benefit
from p2p-style communications and exploiting nearby resources [65], exploiting data locality to obtain faster results.

This is driven by the explosion in the number of connected devices and services, and the increasing demands of
applications for low latency and interactive experiences [32, 36].

Additionally, fog computing is facilitated by the availability of suitable hardware in the form of small, affordable,
low-power computers [30], along with improvements in virtualisation technologies that enable slicing resources be-
tween different users to provide isolated environments. This contributes to a need to support highly heterogeneous
hardware and software stacks that emanates from fog/edge environments and is improved thanks to the usage of
programmable infrastructures (Table 2).

There is a need for a close interplay between cloud and network resources, where resources can be dynamically
instantiated. For example, [66] describes how to dynamically deploy cloud storage services in core networks to
simplify data backups across data centres. This example requires: (i) Partial view of the capabilities of other ISPs
(ability to select services and providers); (ii) Dynamically instantiate/select virtual resources (e.g. virtual routers
and storage VMs); (iii) Ability to guarantee predetermined QoS levels across all the services composed to deliver a
network function [29]; (iv) Monitor quality metrics and automatically re-configure the VNF, if needed.

Similar techniques are being deployed at the edge. The main cloud vendors (such as Amazon and Microsoft)
are making it easy to integrate IoT devices into their clouds mainly by providing gateway management and tight
integration with their other cloud services [67, 68, 69, 70].

While there are interesting works coping with resource provisioning, deployment, and scaling of applications on
edge devices [71, 72], there is still a gap that needs to be filled before accomplishing the vision of a more decentralised
infrastructure where the devices can synchronise themselves without the need of central cloud services [1]. This is
where the usage of serverless functions may come in handy, since they can be run at the edge on locally generated
data, and rely on the cloud for management, analytics, and durable storage [67]. The orchestration of these small
functions that run scattered across the edge of the network and the interaction with centralised cloud services is still a
challenge [32] (larger-scale and finer-grain required – see Table 2).

While serverless frameworks provide facilities to define dataflow orchestration [73, 74], they generally ignore how
to enable inter device communication. For instance, a set of devices may choose another, more powerful, neighbouring
machine to do some aggregation before sending the data to the cloud. Also, current orchestration approaches do not

5



cope well with device churn (another essential requirement for orchestrators – see Table 2), shadow devices being one
of the few solutions out there [67].

[75] defined fog cells, as single IoT devices coordinating a group of other IoT devices and providing virtualised
resources. These resources are located close to the edge of the network next to the data sources or sinks, instead of
involving the cloud. They build on the idea of fog colonies (also referred to as edge clouds by [1]), which are micro
data centres made up from an arbitrary number of fog cells. Fog colonies distribute task requests and data between
individual cells, allowing for cloud offloading and multi-cloud deployment [76].

We envision colonies and cells as dynamic entities that can be formed based on short term convenience: for
instance, summer campers establishing a mesh network with nearby devices to enable local connectivity in areas with
poor service (e.g. each phone relays nearby messages) [32]. We refer to these dynamic and transient cells and colonies
as fluid distributed organisations. A fog node can start autonomously, and become the lead orchestrator or part of a set
of distributed orchestrators reaching some quorum before making decisions and dynamically leave the colony without
warning [77].

In this setting, hierarchical approaches tend to fall quite short; their scalability and manageability become harder
as scale, distribution, and churn increase [78]. Also, most prior approaches tend to assume that a device participates in
a single cell or colony, while in reality it may belong to several of them at the same time. Moreover, multi-tenancy is a
very uncharted land (see Table 2). As edge devices access the network via different ISPs and potentially operate across
various administrative domains [79], the ability to deal with multi-organisation/multi-tenant environments becomes a
must for any orchestration technology.

Edge/fog devices run on energy-efficient low spec’ed hardware running smaller execution units. The basic units
of execution have continuously shrank: from VMs to containers, microkernels, and serverless functions. Such smaller
execution units are dictated by the need for increased flexibility and control, and also the strong economic incentives
to increase resource utilisation under usage variability [43]. As a consequence, the number of lines of code associated
with each unit of execution, the duration of each execution unit, and the amount of state it keeps have all greatly
decreased. More devices (larger scale) come together with finer grained units of execution (data and code) (see
Table 2).

Radio access, network transport, and cloud resources are coordinated by a higher level orchestration layer [20,
21, 22, 27]. These three different resource types are a simplification of a much more complex mixture of networking
technologies and protocols [80]. Fog and edge computing create a scenario of unbounded heterogeneity, or hyper-
heterogeneity as it affects devices, software stack, communications, and data management, and hardware technologies.

Orchestrating the security in Edge-Fog computing and IoT is a huge challenge. It encompasses different tech-
nologies from different fields, including, among others, wireless-cellular networks, distributed systems, virtualisation,
and platform management [81]. It imposes new models of interaction among different heterogeneous clouds, which
require mobility handover and migration of services at both, local and global scale. The threats from all those build-
ing blocks are inherited in the edge-fog paradigm. Different layers are affected by diverse technologies that need to
interoperate to achieve holistic and confidential connectivity [82].

At the edge, services and devices can be compromised through different attacks such as privilege escalation,
service manipulation or even physical damages in unprotected edge/fog/IoT environments. At the network level,
edge-fog and IoT impose additional threats, as wireless connections might provoke man-in-the middle attacks [83],
spoofing attacks, eavesdropping or traffic injection, or authentication [84] to name a few. Privacy leakage is also an
important threat at the edge, as mobile devices can be tracked without user awareness. In this sense, Roman et al. [85]
have recently identified main security threats and challenges in mobile edge and fog computing.

Aspects such as certification of virtualised applications, tenants data isolation and sharing, resource usage control
still require the definition of edge device policies and specific access control mechanisms [86, 87]. It is hard to
establish a chain of trust with edge devices under different organisational boundaries. Dynamic and multidimensional
trust and reputation access controls mechanisms have been suggested [88]. Also, privacy-preserving mechanisms,
satisfying ”unlinkability” and minimal disclosure properties [87], as well as data aggregation schemes to conceal user
data, are needed in computing-enhanced IoT applications [89].

Expressive languages for defining high level security policies and models could serve as input for orchestrators to
organise and choreograph the aforementioned security services.

6



Table 2: Emerging Orchestration Needs in New Technologies

Technology Functional Orchestration Needs Requirement

NFV

quick routing adaptation [20, 90, 91] Dynamism and Speed

heterogeneity in infrastructure and VNFs [20] Heterogeneity

reduced human involvement [20] Automation

comprehensive NF, lifecycle management; virtual tenants [90, 92, 93] Multi-tenant

coordination across orchestrators [91, 92], move to edge [91] Multi-domain

single function scheduling [92, 31] Finer grain

function splitting [92, 31], deployment & config checks [22] Larger scale

Virtualisation issues [94], security scalability, [95]

availability [96], vulnerable applications [97], topology validation [96] Security

SDN

controller planning [98, 92, 93], move to edge [19] Multi-domain

heterogeneous network [93], end-to-end connectivity [99], move to edge [19] Heterogeneity

end-to-end connectivity [99], move to edge [19], global path computation [17] Larger scale

east-west confidentiality [100], availability [101] Security

blend SDN/NFV orchestration [92, 93] Multi-technology

Programmable
storage/memory

composition of storage service though separate storage modules [55] Scalability, Finer-grain

remote/disaggregated (edge) memory [57, 46, 47] Multi-vendor, Multi-domain

protection of new programmable storage interfaces, sandboxing [55] Security

Fog/Edge
computing

dynamic coalitions of edge devices and cloudlets [75, 1, 77, 32, 102, 103, 65, 104, 36]
Dynamism, Churn,

Scalability, Locality-awareness

going beyond shadow devices for reliability [67, 77, 32, 102] Churn

dynamic end-to-end service availability [66, 77] Multi-tenant, Multi-domain

smaller execution units [43, 32, 103, 72] Larger scale, Finer grain

diversity [21, 22, 27, 80] Heterogeneity

M2M confidentiality, wireless-based attacks [85], trust management [88] Security

AAA [84] [83], privacy-leakage [89]. privacy

ensure quality-of-service on a variety of infrastructure elements [29, 36] Heterogeneity, Multi-domain

Serverless
computing

reduce latency in function execution and state handling [105, 9] Speed, Locality-awareness

going beyond shadow devices for reliability [67] Churn

FaaS and Serverless security issues [106] Security

smaller execution units, smaller state [8, 107] Larger-scale, Finer-grain

7



2.4. Serverless Computing

For over a decade, large-scale complex computations have shifted to a high-level, function-oriented model in
which computation is expressed as functions that are composed into dataflows, and automatically deployed and man-
aged by a cluster [108, 109]. From the point of view of a developer, this level of abstraction splits the jobs that are to
be executed from the way they are provisioned. Resources are automatically freed when computing jobs are done.

Similarly, the concept of “serverless computing” (FaaS) refers to server-side logic written by the application
developer, running in fully managed stateless compute containers that are event-triggered, and ephemeral (may only

last for one invocation).

Fundamentally, the serverless paradigm completely decouples running code from the management of the support-
ing server applications. This is a key difference compared to other modern architectural trends like containers and
Platform as a Service (PaaS). PaaS/Containers applications are not geared towards bringing entire applications up and
down for every request, whereas FaaS platforms do exactly this.

From the provider’s perspective, many cloud deployments tend to be very static as users deploy VMs for long
periods of time. In contrast, the variation in memory and CPU utilisation tends to be much more variable [43], and thus
offers a better way to optimise resource usage and to bill users. Therefore, cloud vendors have strong incentives for
services to be built on serverless architectures as opposed to following fixed-price model for long-running VMs [8].
The billing model is based on the number of function invocations and how many GB-s the function uses. Thus,
developers have strong incentives to build smaller functions that minimise execution time and memory consumption.
This is a factor contributing to the ‘finer-grain/large-scale’ requirement in Table 2.

Function initialisation and state recovery/storage are key elements that may slow down function execution, result-
ing in potentially more expensive executions or totally failed function chains [105]. These contribute to the “Speed”
and “locality awareness” requirements of next generation orchestrators (see Table 2).

Delivering cloud applications typically means composing different tasks (hence the need to orchestrate function
composition that comes as a requirement in Table 2). One way to deliver cloud applications in a serverless way
would be creating a function for each task. However, orchestrating those small functions (finer granularity than a
microservice) could be really hard to debug and optimise [107].

Initialisation latency, state push/pull, and availability problems become significantly worse as we move to an
edge/fog computing arena [8, 105, 9]. Being able to control co-location of fine-grained code with tiny subsets of the
data may prove essential to deliver appropriate orchestration capabilities in serverless environments (see Table 2). The
ubiquity of edge devices and the advent of fog computing, together with the finer-grained nature of typical serverless
functions, have changed the options available for orchestrators to play a key role.

FaaS moves some of the security concerns from the user to the platform provider. As it is remarked in [106],
users do not need to take care of OS patches anymore, but security updates to 3rd party dependencies of applications
remains the same. In FaaS servers are immutable and short lived, minimising the possibility of a long lived compro-
mised server. However, security monitoring and accounting and debugging becomes more difficult [9], as traditional
monitoring agents need to be exposed by FaaS providers.

2.5. Current Standardisation Efforts

The term orchestration is used pervasively in the literature reviewed so far. The end result is a myriad of often
incompatible standards that tend to cover one of the new technological trends. In this subsection we present the most
prominent approaches related to these trends.

The ETSI NFV Management and Orchestration (MANO) is one of the most solid pieces of work in terms of
NFV standardisation [110]. [77] have suggested that NFV should be the starting point for new standardisation efforts
beyond NFV, given the need to define, for each application domain, the scope, properties, and requirements of service
orchestration concepts is not different in the Fog Computing environment. This suggestion has also been followed by
project Tacker in an attempt to integrate a MANO-compliant orchestrator on top of one of the most widely-used cloud
management suites, OpenStack3. ETSI MANO deals with computing nodes where only CPU, memory, network,

3https://wiki.openstack.org/wiki/Tacker

8



hypervisor, and Operating System can be chosen. In the edge/fog, devices are much more heterogeneous and have
capabilities other than that(e.g. sensors and actuators). These unreliable devices play a major role in the process and
need to be taken into consideration in the architecture or an orchestrator.

The ETSI Mobile Edge Computing (MEC) Reference Architecture [111] emphasises the need to consider a com-
prehensive set of constraints, and also refers to triggered application instantiation and relocations, one of the char-
acteristics of our solution, similar to a fog orchestrator [77]. However, a detailed specification or/and Reference
Architecture for the orchestrator is still missing.

The Open Networking Foundation (ONF) has been working on SDN standardisation for quite some time. Most of
their documents treat orchestration as an external (client-driven) coordinator of several SDN controllers [112]. This
is similar to the recently released OpenFog Reference Architecture [38], which mainly focuses on the fog node.

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is turning into the de facto stan-
dard for modelling service orchestration [113]. TOSCA is especially suited for defining services, their building blocks,
requirements and capabilities, but it still does not help solve problems like device churn, multi-domain/multi-tenanted
orchestration of tiny functions at scale. In addition to TOSCA, there are a few others like the IETF NETCONF Data
Modelling Language (NETMOD) WG, together with recent expansions for VNF network services (following the
ETSI MANO architecture). More acronyms would be needed for a top-down end-to-end solution (e.g. cloud VM
configuration languages, network traffic engineering configurations, etc.).

Current trends for service description and modelling are very prescriptive and fragmented. Recent standardisa-
tion efforts for the new technologies presented in this section are poorly specified and cannot cope with all the new
requirements.

3. Current Orchestration Challenges

Building on the previous section, here we analyse the requirements in Table 2 in depth, trying to systematically
unveil orchestration challenges and attempts to tackle them.

3.1. Churn and Unreliability

Edge resources are inherently volatile. The advent of the fog extends the cloud to the edge to a point where end
user devices could be employed as infrastructure to deploy services or service functions [65]. Moreover, as the fog
is increasingly being used to support transient FaaS, e.g. to support context-specific mobility functions, functions are
ephemeral which imposes a rate of change much higher than in cloud environments.

Such nature poses significant challenges on different functions that enable orchestration. Description of resources
and functionality might not always be accurate as it could quickly be outdated, which complicates reliable deployment
and service level agreement (SLA) guarantees. Similarly, discovery must be dynamic in order to take advantage of
new resources as they become available, as well as move away from decommissioned/failed resources (see Table 3).
Further, monitoring needs to always seek up-to-date information, avoiding obsolete data and empirically complement-
ing self declaration from devices.

Discovering mobile edge devices by scanning all connected communication interfaces and enlisting all locally
available mobile edge devices is a first common approach [24]. An example of this prevalent approach is Foggy [23],
that relies on a centralised orchestration server and a container registry for deployment. However, high churn may
advise against this practice since it may exhaust remote device batteries or increase the energy bill of the infrastructure
provider(s).

In contrast to the highly stable resource provisioning in cloud data centres, edge devices can be switched off

dynamically, in order to cater to edge workloads and latency-, location- and privacy-specific requirements. As such,
the edge is a highly volatile operational environment where resource availability is liable to significant changes over
time and is divided across multiple domains of those operating the edge resources. The fog acts as a stabilisation
layer, offering more reliable infrastructure in the proximity of the edge devices. Still, dealing with orchestration in
unreliable environments comes with specific challenges to each of the phases of the orchestration process.

9



3.2. Heterogeneity
Inherent in the task of orchestration is the dealing with resources of varying nature and access methods, and

that are managed under different administrative domains. Furthermore, the fog paradigm offers an alternative to the
centralised model of the cloud. As such, any attempt to resolve the above challenges through central elements to
handle monitoring, scheduling, configuration, etc. would undermine the benefits of disaggregation [73, 77].

These challenges call for two main approaches to orchestration. First, distributed orchestration is essential to
deliver the potential of the fog paradigm, where orchestration elements manage different edge domains and inter-
coordinate in a hierarchical or peer-to-peer fashion. Currently available tools, such as IBM Node-RED4, offer high-
level developer tools for creating interconnected flows. However, they are tailored specifically towards IoT functions.
More generic tools are needed in order to support rich and customised coordination between a distributed network
of orchestrators. Second, a sophisticated level of abstraction is needed to hide away the complexity of heterogeneity
from application development and deployment processes. Toolsets are needed to not just simplify the tasks of resource
discovery and monitoring, but also end-to-end lifecycle management, and to compose elaborate adaptive migration
policies and mechanisms.

Managing heterogeneous resources across distinct administrative domains is already a challenge, but the inde-
pendence between resource management and workload scheduling on fog devices increases the difficulty of their
orchestration.

3.3. Dynamism
The IoT brings ad-hoc devices at the edge of the network as infrastructure to run services. The quickly changing

network conditions at the edge bring a significant amount of additional dynamism to service-based applications, in
contrast with the relative stability of large data centres. Dynamic adaptation mechanisms, including runtime configu-
ration, deployment, switch-over will be vital to be orchestrated across the infrastructure.

Dynamic deployment is achieved by integrating continuous deployment technology on the edge of the network
while coping with IoT’s intrinsic heterogeneity [23, 72]. As IoT devices may be offline for quite some time, an
orchestrator needs to gracefully cope with loss of connectivity [95] and increased likelihood of failing devices [32].

Meeting the need of dynamic reconfiguration at the network level can increase network incidents and temporary
malfunctions. A service orchestrator will also have to provide network diagnosis and root cause analysis during ser-
vice disruptions [95]. In parallel, the orchestrator must support network resource scheduling that can adapt to near
real-time service demands [114]. [102] focus on reliability of orchestration for IoT domains, proposing autonomous
mechanisms that enable the “analysis and management of: (i) the overall system goals describing the required appli-
cations, (ii) the composition and requirements of applications, and (iii) the constraints governing the deployment and
(re)configuration of applications”.

Service oriented orchestrators for network functions have been proposed [20, 29]. New techniques aim at inte-
grating application information into orchestration decisions [115]. Responding and adapting to specific application
needs, while optimising resource usage can be an impossible mission and has been tried before with little success in
practice.

IoT services can often be choreographed through workflow or task graphs to assemble different IoT applica-
tions [116, 104]. In some domains, the orchestration is supplied with a plethora of candidate devices with different
geographical locations and attributes. In some cases, orchestration would typically be considered too computation-
ally intensive, as it is extremely time-consuming to perform operations including pre-filtering, candidate selection,
and combination calculation while considering all specified constraints and objectives. Static models and methods
become viable when the application workload and parallel tasks are known at design time. In contrast, in the pres-
ence of variations and disturbances, orchestration methods typically rely on incremental scheduling at runtime (rather
than straightforward complete recalculation by rerunning static methods) to decrease unnecessary computation and
minimise schedule makespan [32].

[117] propose a semantically enhanced mechanism to define quality-of-service for web services (see Table 3).
Similar techniques are likely to become more pervasive, but creating, adapting, and adhering to fixed ontologies has
not proven highly effective.

4https://nodered.org/

10

https://nodered.org/


There are operational needs about the speed at which the orchestrator solver can process incoming monitoring
information and return a fast and accurate enough decision. [103] focus on softening the orchestration decision
making process to cope with scale. [102] to formulate Satisfiability Modulo Theories (SMT) constraints that define
desired system properties, enabling the use of SMT solvers to adaptively compute optimal system (re)configuration at
runtime (see Table 3).

3.4. Large(r)-scale and Fine(r) Grain
As more devices are connected to edge networks and fog environments and the size of the unit of execution

decreases (as described above) [36], it will be more difficult for cloud orchestrators to make a decision before the
information they rely on becomes obsolete.

Service description must support aggregation/abstraction of resources in some ways to help with scalability (e.g.
using hierarchical models), but the descriptions will have to be more abstract to cope with more devices and finer-
grained execution units (with smaller state) – see Table 3. [26] offer a high level declarative language to describe
implementation heterogeneous devices. Abstracting masses of IoT devices with heterogeneous capabilities remains a
hard problem.

The scale that the fog/IoT impose on next generation orchestrators calls for mechanisms to describe the way data is
handled, as the interplay between the swarm of devices executing the application and the data becomes more critical to
achieve the required performance goals (see Table 3). [26] suggested a design-driven approach that can be leveraged in
two ways: first, design declarations are used by a compiler to generate a customised programming framework. These
declarations can be supplemented with information to expose parallelism and allow efficient processing of large data
sets.

Fog colonies/edge clouds may be distributed across a rather large area, interconnected through heterogeneous
networks, while cloud resources are usually placed in centralised data centres. Discovering, selecting, and deploying
devices can be built in 3 different ways: 1) hierarchical name system (like the Domain Name Service); 2) in an
unstructured P2P flooding fashion (“ask your neighbour”); 3) hybrid (P2P at the edge), hierarchical there after (relying
on nearby cloudlets [118] and using central cloud services as a last resort).

Declarative model-based languages have been there for a long while and they are used by developers to express
their resource needs and define preferred configurations in a more generic manner, rather than specifying the individual
configuration of millions of devices [119, 120]. Mapping from these high-level configuration languages into finer-
grained tiny units of execution is an open research challenge, but some solutions are already under way: [26] defined
DiaSpec, a declarative language to describe the functionality of an IoT device, abstracting over the specific hardware
and implementation. These declarations consist of source and action facets depending of the functionalities to be
described. Each device of that type needs to conform to the interface and implement the sources and action operations.
They also define a set of higher level constructs to work with large masses of sensors.

Since resources are disaggregated, there is more flexibility and less cross-configuration interactions (e.g. a net-
working configuration affecting storage read/write throughput) but orchestrators need to become more robust.

Configuration consistency also becomes an issue. An example would be setting up a high-speed channel between
two functions executed in two different continents by orchestrating serverless environments as well as network control
plane (say some traffic engineering is needed) and modifying VNFs along the data path (e.g. opening firewalls
transiently). If the changes are not properly orchestrated, a sending function may send data through a data path that
may filter or slow down that type of traffic. Synchronised clocks can be used to reduce the probability of having
a violation of external consistency [121], but atomic clock synchronisation may be required for extremely latency
sensitive orchestrations [122].

[33] define virtual fog functions (VFF) and several strategies to deal with mismatches between VFF and the
capabilities of the underlying hardware in the IoT devices. This work suggests that a more interactive generation of
orchestrators is needed, where the developer is in the loop at least at deployment/configuration time.

Osmotic computing considers computational infrastructure as a chemical solution whose properties can change
over time, the focus is on identifying the properties of what constitutes a solute and solvent, which is then operated
on the principle of osmosis to manage and control services [18] (see Table 3). Identifying how microservices can be
migrated from edge resources to cloud-based resources (and vice versa), and what are characteristics influencing such
migration, remains a challenge. The right formats and protocols for this to happen and cope with churn are not yet
clear [123].

11



3.5. Speed

FaaS allows fine-grained, highly dynamic configuration. FaaS divides microservices in smaller software chunks
that can be executed very quickly (price based on cpu/mem usage is a strong incentive to optimise function execution).

Smaller execution units that complete in seconds are a better fit for short lived resources, where failure is common-
place. This is a challenge for orchestrators, that need to decide where to execute a given FaaS function and reschedule
(or take preemptive executions) to cope with failure. Slow, batch-style global optimisation is no longer an option.
Instead, online-style techniques, with deadlines need to be explored in order to take advantage of the flexibility of
functions.

A main feature of serverless computing architectures is the ability/need to deploy new instances in the time scale
of ms [8]. This is also true for supporting flash events where millions of customers hit a website for a specific sales
promotion, for instance. NFV functions need to be deployed/undeployed in sub-second time periods.

Containers are the basic unit of deployment for serverless and many NFV functions. Container-based FaaS ser-
vices tend to reuse the same container to execute multiple functions, even with this optimisation, serverless functions
are significantly slower than containers at low request volumes [8]. Some tricks to avoid the overhead of using per-
sistent block stores to fetch data and configuration are possible. A scheduler aware that two different functions rely
heavily on the same packages can make better placement decisions.

Session locality is an important factor (see Table 3): if a function invocation is part of a long-running session
with open TCP connections, the orchestrator should run it on the machine where the TCP connections are maintained
(avoiding traffic diversion by proxies). Mobility management however brings additional challenges to the orchestrator.

Also, data locality will be important for running serverless functions pulling/pushing or scanning through massive
state (see Table 3). Orchestrators may require prediction capabilities to anticipate what data a particular function will
read, making sure it is available to be function on time.

All these problems with data and code locality exist at a data centre level, but they become more critical at the
edge of the network. Advanced techniques to determine which edge nodes should be used to share the workload with
and how much of the workload should be shared to each node are needed, heterogeneity and churn being the main
deployment challenges [14].

3.6. Chaining Heterogeneous Functions and Storage

IoT infrastructures are often modelled as a dynamic graph [32]. IoT configurations can be seen as a graph where
the nodes represent the configuration and the edges the dependencies between task. Graphs are also used to describe
virtual functions in NFV environments (see the NFV Management and Orchestration spec) and some serverless en-
vironments too (e.g. Oracle’s Flow Fn serverless orchestration). This feels like a very intuitive approach, but some
other serverless vendors orchestrate functions using pre-defined state machines (e.g. [124, 107]).

In principle a similar approach can be used to declaratively describe the high-level features of function compo-
sitions in a fog environment, delegating lower level details to the orchestrator. The orchestrator would need to map
these high-level descriptions to vendor specific implementations (e.g. ‘key-value store’ would map to different AWS
or Google Cloud products). Locality and heterogeneity however bring additional challenges to the orchestrator.

The standard model of cloud data stores abstracts the physical location where information is stored. However, in a
fog environment, together with the mentioned architectures that disaggregate storage from computation, information
will be more fragmented than before, and the actual location where these (potentially small) data elements reside can
be critical. Hence, location information needs to be included into the high-level descriptions used by orchestrators.

Blending out together FaaS and NFV functions and their interactions with storage can be difficult (e.g. server-
less does not support the same conventions that MANO NFV does). An orchestrator will need to not only have a
compatible high-level description for all these elements, but also will need to have the right network access rights for
interacting with each sub element of the system.

3.7. Fine-grained Locality

As the way to develop applications changes towards microservices, and FaaS, these concepts bring additional
questions to how to discover existing functionality.

The discovery of ad-hoc services and available computing resources in the fog/edge needs to go beyond beyond
predefined contracts and addresses. The probability of trying to contact a device that is no longer available is much

12



higher at the edge, making device/service registries very ineffective. Mechanisms to initiate local p2p-style resource
discovery at the edge have been suggested [32], getting inspiration from the world of ad-hoc networks.

Addressing end point mobility with session continuity is another solution to the problem of naming an churn [125].
The Locator Identifier Separation Protocol (LISP) allows an endpoint to switch between networks while keeping its
Identifier (IP address) intact by maintaining the Routing Location (RLOC) of each Identifier in a mapping system,
which is updated by its control plane. Also, Multi-Path TCP (MPTCP) defines TCP sub-flows at the transport layer
based on the IP addresses of all the enabled interfaces on a device. Under mobility, whether the device changes its IP
or switches radio technologies (e.g., WiFi to 4G), the new IP address is registered and a new sub-flow is opened. This
strategy allows for seamless mobility of the device across networks and radio technologies (see Table 3).

The selection of the most appropriate function to be used is going to depend on where it needs to be executed.
For instance, mobile services change physical locations and may require resources en route. Thus, more expressive
description mechanisms are needed to define these situations (e.g. hardware dependencies).

As for deployment and configuration, edge devices also need to be able to self-manage with little coordination
from a central cloud location. [126] have recently developed a system based on edge communications with minimal
cloud-driven coordination. The authors rely on edge (locally cached) content as clustering classifier, where a local
leader coordinates communications for data retrieval and update. In a fog environment, a coordinator can be in the
nearby fog layer, so as to cope with edge device churn.

As mentioned above, deploying lightweight monitoring modules that interact with the orchestrator, but do not
overburden the edge devices, seems essential to reach a fair balance between synchronisation and network load.

3.8. Multi -organisation/-tenant Orchestration

Next generation clouds have to orchestrate resources from multiple administrative domains, this can be seen
as an extension to the edge/fog and volunteer computing paradigms. While there are companies providing single
domain facilities, the need to cross administrative orchestration has become much more pressing to take advantage
of these latest trends. Cloud standards have failed to gain traction, but the need to find mechanisms for bridging the
heterogeneity gap between platforms, and enabling data integration are more relevant than ever.

Most orchestration technologies working across administrative domains use a broker to orchestrate resources at
different levels within a provider (e.g. the cloud and the edge network) and across providers (see [127] for a recent
example). Broker models across providers and multi-stage schedulers and optimisers have been quite common in
distributed computing and networking since at least 20 years ago [128].

Brokers have also been recently suggested as a viable model for cloud orchestration [129, 130]. As the number
of cloud vendors is limited, it is possible to build adapter and brokering layers that tried to homogenise access to
different clouds. However, the hyper-heterogeneity and massive scale of edge/fog deployments makes this approach
unfeasible.

Network functions can be dynamically discovered, negotiated and elastically composed as services, application
service providers may lease VNF chains with given communication capabilities from different ISPs and compose
them to operate an end-to-end virtual service infrastructure to offer value-added application services to users (e.g.,
delay-optimised infrastructure for high-definition video applications [131].

One open question in most academic works is how to handle multi-tenancy and how to scale identity management
services to a global scale [87] (see Table 3). Another often overlooked aspect is that at any point in time, some devices
may belong to multiple organisations at once (not all users from the same organisation).

3.9. Security and Privacy

SDN-based IoT and Fog networks are vulnerable to the new-flow attacks, which can disable the SDN-based IoT
by exhausting the switches or the controller. In this sense, [142] authors present a smart security mechanism (SSM)
to defend against New-Flow Attack in SDN-Based IoT differentiating new-flow attack from the normal flow burst by
checking the hit rate of the flow entries.

Regarding security in SDStorage, in [137], a software defined based secure storage framework is proposed. Every
storage control and security mechanisms are abstracted out from the hardware devices in the data plane and set inside
the controller, enabling a centralised decision point based on security policies. Thus, when a host sends storage control

13



Table 3: Mapping of how recent research contributions in the area of orchestration can contribute to the requirements identified above (in brackets).
* means it applies to all requirements above.

Recent Accomplishment
Expressive declarative descriptions

[heterogeneity, dynamism, churn, larger-scale, finer-grain] [119, 98, 26]
State-machine based function orchestration definitions
[dynamism, churn, larger-scale, finer-grain] [107]
Dataflow-based function composition [*] [105, 74]

Decoupling name from resource (LISP/ROC/MPTCP) [*] [105, 74]
Semantic quality of service [dynamism, larger-scale] [117]

Spliting services into finer grained functions (“FaaSification”) [finer-grain] [31, 132]
Data-aware config [*] [31, 24]

Trust-management, AAA, Channel-Protection [Security] [87, 133, 134, 135]
Serverless/FaaS isolation [Security] [136]

Security coordination (e.g. AAA, Trust) in Software Defined Storage [Security] [137]
Fluid (edge-fog-cloud) resource allocation/coordination [*]

[18, 4, 92, 93, 32, 125, 127, 25, 16, 24, 11, 12]
Working under different communication models (edge - p2p; fog - hierarchical; cloud - centralised)

[dynamism, churn, larger-scale, multi-domain] [32, 24]
State (device and service) prediction [dynamism, churn, larger-scale] [32, 14]

Softened goals in service/function composition/configuration [larger-scale]
[119, 60, 103, 138, 32]

Fluid (edge-fog-cloud) resource allocation/coordination [*]
[18, 4, 92, 93, 32, 125, 127, 25, 16, 24, 11, 12, 139]

Failure-tolerant orchestrator, cope with stagglers [dynamism, churn, larger-scale, muti-domain] [77]
Brokered (multi-domain) hierarchical orchestration [129, 20, 21, 22, 27, 127]

Service support in orchestration decisions[*] [115]
Developer support in orchestration decisions(“device in the loop”) [*] [33, 26]

Self-protection, self-healing, self-repair, DoS protection [Security] [140, 141, 142, 143]
Universal identity management [dynamism, churn, larger-scale, multi-tenancy, privacy] [87]

packets and data traffic to another host in the network, the security controls such as authentication and filtering take
place at the control layer instead of at the device level.

Regarding serverless and FaaS security, some initial works are starting to provide isolation at microservices and
Serverless computing. Recently, Bila et al. [143] propose a policy-based improvement in the serverless architecture to
guarantying and rebuilding vulnerable containers, that can be included as part of the security orchestration. Containers
might have built-in vulnerabilities because of wrong configurations or just by the fact of including executable bina-
ries with security flaws. In [136], authors propose a Security-as-a-Service approach for microservices-based cloud
applications, providing a flexible monitoring and policy enforcement infrastructure for network traffic to secure cloud
applications. Unfortunately, there exist still few research and solutions aimed to cope with the emerging security
issues in that field.

With regard to Edge and Fog computing, [133] identified authentication at different levels of the gateways as the
main security issue in fog computing. Multicast authentication [135] or decoy information technology technique [144]
have also been proposed to withstand malicious insiders by disguising information to prevent attackers from identify-
ing customer’s real sensitive data.

In [87] authors explore the idea of privacy-preserving global identities that are universally valid for an entity. Such
a feature is essential for handling authorisation in a large-scale distributed environment.

[145] authors present a lightweight privacy-preserving data aggregation scheme, for fog computing-enhanced
IoT that can aggregate hybrid IoT devices’ data into one in some real IoT applications, so that user private data is
concealed.

Recently, authors in [146] identified main attacks that can occur at the Edge-Fog and IoT, including, among others:
DDoS, Routing attack, Sink node attack, Direction misleading attack, Black hole attack, Flooding attack, Sybil attack
or Spoofing attack. To cope with those attacks the main countermeasures at network layer, focus, nowadays, on ensur-
ing confidentiality, integrity and availability. To this aim, novel end-to-end encryption mechanism specially devised
for IoT at different levels (e.g. 6LowPANs encryption, IPsec tunnels, DTLs), including Peer to Peer authentication
and key negotiation management, can be orchestrated and configured on demand at the edge as security VNFs.

Trust-management in distributed scenarios such as inter-clouds have been addressed recently [147], where a
semantic-web approach is followed to quantify dynamically trustworthiness and reputation among different clouds
and services in order to establish reliable federations and communications among the parties.

14



Malicious and curious adversaries (e.g. MEC data centres) can represent a privacy threat to the Edge/Fog users as
they can gain some user-related information in the decentralised ecosystem.

In addition, new cybersecurity orchestration will need to provide self-protection, self-healing and self-repair capa-
bilities through novel enablers and components [141] [140] at the Edge. To achieve those properties, services running
in this environment need to work together with a lightweight (potentially distributed) watchdog that sends events to
the orchestrator (e.g. compromised device triggers removal of keys and migration of data), to make reconfiguration
decisions accordingly.

3.10. Grouping Challenges
The text in bold in Table 3 shows a list of requirements that will be needed by next generation orchestrators. Most

of these requirements have been tested in isolation. A more comprehensive orchestration approach joining all of them
(and a few others that we highlight in the next section) would still be needed.

This conclusion arises from how orchestration has evolved in the last 20 years: orchestration challenges have
evolved over time but mostly in separated areas that are now increasingly more unified due to the ”softwareisation” of
IT. The orchestration needs can thus be classified in several waves:

1. 1st wave: software placement and communication in distributed (sometimes across domains) environments.

2. 2nd wave: same as 1st wave but including edge and for resources in the IoT together with programmable
networks and serverless functions.

3. 3rd wave: same as 2nd wave but adding hardware programmability and disaggregation also at the edge and
simplified data management (e.g. [148]).

4. 4th wave: same as 3rd wave but with abstracting the underlying heterogeneity, complexity and dynamism of the
IT infrastructure making it easier for human administrators and developers to use.

Taking this classification and Table 3 into account, one could say that we are still in 2nd wave orchestration
technologies.

The works in Table 1 show how technologies are being integrated in pairs, with no efforts trying to cope with
more than two at a time. This is a key characteristic of 2nd wave orchestration technologies. Combining more
than two orchestration comes with an exponential increase in complexity, which calls for new approaches towards
comprehensive orchestration.

The next section presents some approaches to help us make the transition to 4th wave orchestration faster and
smoother.

4. New and Revisited Orchestration Approaches

4.1. Learning to Orchestrate
Machine learning (ML) techniques are starting to be applied to different aspects of the orchestration process in

the cloud, such as data centre scheduling [154, 157, 158], IaaS instance selection [130], optimising resource scala-
bility [159, 151, 153], network flow classification [160, 161], network performance prediction [162], and software
defect classification [163]. When fed with the enormous amount of logs kept by data centre and network operators,
ML models are able to select the best configuration and location of resources.

These could be applied to making better and faster resource selection and configuration in edge/fog/IoT environ-
ments, but the amount and quality of data required and the need to pull these data out of many different organisations
make it less workable, at least for now. Additionally, technologies for combining ML models trained for different do-
mains (NFV in a telco with SDN in a data centre and SDN in a backbone network, for instance) into a single workable
solution need to be explored.

The combination of models does not need to be in a hierarchical fashion [20, 95], however. For instance, in
the case of a local ML model trained to optimise optical interconnects in the transport network and getting requests
from a peer data centre model to open up connections with minimum latency for a set of VMs hosting a bulk data
transfer or a WAN acceleration VNF. A transport network-associated neural network and the data centre-associated

15



Table 4: Pending challenges mapped to the requirements identified above (in brackets). * means it applies to all requirements above.

Pending Element Potential Solution

Abstract failure [churn, dynamism]
Data availability [churn]

Automated execution units description [larger-scale, finer-grain]
Hyper- heterogeneity [*]

Plain-English searches [*]

QoS enabled deployments, describe tolerable availability
Data-aware deployments [148]

Automated software splitting [132]
Self-describing components

Information extraction and NLP

Device/service/function registries [*]
Data directory [*]

Matching resource requests and results [dynamism,heterogeneity]
Potentially O(N2) negotiation

[churn, scale, multi-domain] [149]
Registry scalability

discovery/sharing functionally similar functions

–
–

Ontology-based searches [150]
–

Decentralised (P2P) registries
creating libraries and packages of functions

Slow selection [dynamism, speed, larger-scale]
Universal naming beyond LISP/ROC/MPTCP [churn, multi-domain]

Redundancy and “high availability” [churn, dynamism]

Improve selection based on previous runs [151]
Logical resource names [152]

–

Edge-fog-cloud coordination [*]
Orchestration always catching up [churn, dynamism]

Automated adaptation [heterogeneity]
Isolation in FaaS/Serverless [security]

Cloud/Edge/Fog Security Coordination through
NFV/SDN (Trust, AAA, ChannelProtection, key-management) [security]

Emergent behaviours, Asymptotic configurations [119, 60, 103, 138]
Unsupervised learning of configuration options

—
—

Slow resource provisioning
[large-scale, finer-grain]
Deployment obsolescence

[dynamism, churn, larger-scale, finer-grain]
Stateful workflows

[dynamism, locality]
Across provider federation
[multi-domain, multi-org]

Accessing byte addressable memory beyond data centres
[*]

Predictive resource estimation [151, 153]
Predictive scheduling [154]

Delegation, asymptotic deployment [155, 138]
Data access prediction

Workflow delegation/handover
–

Data lifecycle management [*]
Global workflow [multi-domain, -org, larger-scale]

Balance synchronisation and network load
[dynamism, speed, churn]

Secure orchestration [*]
Automated control loop-based monitoring/re-config [15]

Limited programming models
[dynamism, data lifecycle, churn] [156, 105, 26]

Ability to debug and explain [*]
Autonomic security reconfiguration and orchestration

in SDN-NFV-enabled Fog and IoT [security]
Monitoring, accounting in FaaS/Serverless [9]

[security]

Data-aware orchestrator
Delegation

Statistical-monitoring -
operate on aggregated monitoring information
Constant influx of security/privacy watchdog

Automated loop constraint generation
HEBs [13]

Abstract description and heavy delegation
–

IA-driven contextual monitoring/reaction
–

16



neural network can automatically negotiate the best setup for that VNF based on prior instances of setting up that
(or a similar) connection. These trained models can handle multiple objectives, like optimisation [60] and resiliency.
Feature-Weighted Linear Stacking or buckets of models are commonly used techniques to combine models. We
envision these neural net models can learn to talk to each other without specifying the details of the communication
protocol (e.g. unsupervised learning of configuration protocols in Table 4).

Service discovery is more difficult to solve using ML techniques alone: services would need to be registered in
some form of discovery service and tagged so that they can be found. This labelling needs to be done by highly
qualified individuals, which makes the process tedious and not scalable.

Device churn, on the other hand, would require highly generalisable models, trained under an incredible variety
of circumstances in order to minimise runtime overfitting-derived errors resulting from training with a very specific
snapshot of the system.

While standards are needed, forcing humans to use these often results in no-standard usage or the development of
yet another new “standard”. Higher level languages are needed to solve this standard proliferation problem.

Declarative model-based languages focus on configuration of resources and services [119, 120, 98, 26], but they
are less useful when it comes to service discovery and composition. Developers rely on the usage of web search
engines to find compatible services. Information extraction, natural language processing, data and mining and similar
technologies will help in this regard, as indicated in Table 4.

4.2. P2P/Agent-based Orchestration
P2P systems have traditionally excelled at delivering robust applications on vast numbers of edge devices with

high volatility across multiple domains, but also within a single data centre for specific services (e.g. HPE Smart
SAN5). P2P orchestration means independent agents that are capable of making autonomous decisions about a set
of resources they control. These decisions are not necessarily prescribed by a set of immutable rules, but the agents
adapt their strategies based on the state of the resources and the value of the applications they try to run on them.

Descriptions tend to be based on pre-established ontologies [150]. Thus, it is very complicated to make agent-
based systems negotiate about a new type of request or resource they have never seen before (not in the ontology),
requiring constant updates and maintenance. Hence, coping with hyper-heterogeneity still seems like a hard mission
(Table 4).

In the case of a fog coalition where individual devices all negotiate how to orchestrate a running application, agents
negotiating in pairs may take long (potential poor scalability, O(N2) for a full mesh – see Table 4) so some structure
needs to be imposed to prevent long negotiation rounds. Moreover, high device churn would require negotiations to
re-start. Also, discovering peers for negotiation can be complex under different domains [149].

A key goal for any orchestrator is to capitalise on low-level interfaces and synthesise new service-oriented abstrac-
tions that minimise human interaction and provision service in the order of minutes or seconds [20]. Taming service
description and composition so that developers do not trade standardisation for convenience will drive a few research
works in forthcoming years.

P2P orchestrators have also been tried as an alternative to centralised brokered orchestrators for quite a long
time [164], but they have found very limited success in practice. For instance, Netflix have decided not to use P2P
task choreography in their Conductor microservices orchestration engine. P2P systems tend to create implicit contracts
that result in poorly documented tight coupling around input/output, SLAs, etc, making it harder to adapt to changing
needs. Controlling the deployment/management of a myriad of individual controlling agents and creating a hierarchy
for debugging/delegation/escalation is a complicated task (Table 4).

There is a wealth of knowledge about P2P/agent based systems and security, but some aspects introduced by the
amalgamation of NFV/SDN/disaggregated data centres/FaaS are not well explored. Storing data from nearby devices
may expose peers to legal liabilities that may hinder further developments.

4.3. Eventually Consistent/Probabilistic Orchestration
To ensure near-real-time intervention during IoT application development, one approach is to use correction mech-

anisms that could be iteratively applied even when suboptimal solutions are deployed initially. In this setting, the good

5http://h20195.www2.hpe.com/V2/getpdf.aspx/a00001440enw.pdf

17

http://h20195.www2.hpe.com/V2/getpdf.aspx/a00001440enw.pdf


old asymptotic and declarative management techniques [155, 138] may likely be applicable to manage these highly
complex scenarios. In the same vein, differential consistency techniques, where devices get serializable consistency
only in their neighbourhood (vs eventual consistency for further devices) have been suggested for distributed data
stores [28]. Similarly, [15] suggest the use of several concurrent control loops that are automatically generated from
a simple description language, as a mechanism to achieve eventual consistency between a desired state of the re-
sources and their actual state (Table 4). Manual constraint generation no longer seems feasible in the light of current
multi-domain, hyper-heterogeneous, IoT scale trends.

Massive scales, time uncertainty, resource dynamism, and delayed monitoring can all be coped with by applying
asymptotic management techniques, as long as the application tolerates delays and performance does not degrade (or
cost does not spike) quickly. Most current orchestration frameworks do not easily tolerate partial failure or undeter-
mined delays to make resources gradually available and, thus, progressively take the system closer to the desired state
(Table 4).

[165] provide a theoretical framework for the allocation of batch and service jobs in a set of constrained resources
where some resources can be attacked or fail. Achieving a target reliability level can simply be a matter of placing
extra replicas in different failure domains [166]. Defining failure domains at the edge, especially with end-user
devices, can be difficult and requires proper observability and late characterisation of the failure modes of the devices.
Also, resource definition languages need to be made in terms of tolerable availability and needed capacity, so that the
orchestrator can factor these in. Orchestrators would also benefit from some historical knowledge to apply correction
factors depending on previously seen churn and failure rates.

4.4. Hierarchical Delegation
The presence of a common data model (semantically rich enough for expressing the required goals) and a common

mechanism for labelling the entities in the model (so that information can be fed backwards once a delegated operation
has been materialised) enables this information exchange. Delegation approaches rely on declarative languages used
by developers to express their resource needs [120].

Once the user specifies a set of elements to be deployed and how they are connected, the infrastructure labels
each element with a unique name (Table 4). There is a degree of information that remains unknown for the user (e.g.
underlying infrastructure details or topology of the virtual infrastructure, i.e. administrative domains and contract
terms with each of these ones).

Some works use delegated workloads that are then analysed and scored before their allocation [167]. In spite
of Google’s workload and server heterogeneity, these are not comparable to the hyper-heterogeneity scenarios we
described above. Also, dealing with orchestration of containers in a single domain helps make pragmatic decisions
that work at scale in a well-confined administrative/security domain.

In a NFV/SDN/Serverless/Edge/Fog/IoT scenario descriptions are refined, transformed, and split (e.g. across sev-
eral domains). It is possible that the configuration details for the edge nodes cannot be completed without information
from the neighbouring domain. For example, they may need to exchange ports, IP address or tags depending on the
nature of the connection. They may also need to agree which edge nodes to use. It is likely that this is information that
they will not be willing to share with anyone other than their neighbouring domain. This implies the information will
be obtained by interaction between providers and needs to be referenced differently as the model gets refined [152, 19].

Model refinement and splitting has a direct implication over the way things are referenced in the data model.
For instance, when a user specifies she desires a VM in the UK and another one in the US, she is (likely) indirectly
generating a split of her request across multiple administrative domains. When her request is split and refined, the VM
in the UK is referring to a VM in the US whose final name (e.g. its host name) would only be known after deployment.

Hierarchical delegation models work well across administrative domains and their divide and conquer approach
tends to enable larger scalability. Service discovery happens within a single administrative domain, where classic
registry and search approaches have proven to work. However, implementing these systems in the light of hyper-
heterogeneity is very difficult and expensive. They also fall short when it comes to coping with fluid dynamic organi-
sations and high resource churn (Table 4).

4.5. No Orchestration
The best of orchestration might be having to do no orchestration at all. Large scale production systems call for

very simple orchestration techniques where developers and operators can rapidly debug things gone badly (e.g. most

18



cloud schedulers use simple round robin for resource allocation). Even if the right abstractions are provided, building
resource requests in high-level declarative languages can prove to be tedious and error prone for most developers.
Several approaches try to bring the orchestration problem closer to developers and expose interfaces that let program-
mers specify behaviour, while concurrency and access control are individually dealt with by different devices (see
Table 4).

[168] propose a framework where each device publishes a global log (time series of data and events) that is readily
available for actuators to use. The framework is, however, too high level and does not really define how it would cope
with trillions of time series.

Swarmlets are presented as an elegant way to use the actor model to wrap access to sensor devices [156]. Thus, de-
velopers would simply instantiate accessors on devices, reducing the orchestration needs. Either resources themselves
or developers would have to control access, especially when modifying configurations. Indeed, it seems, Swarmlets
add one level of indirection but similar questions as to how to publish, register and search for accessors; accessor
security or lifecycle remain.

Fn Flow and PyWren [105] agree that the best approach to orchestrating FaaS is using familiar programming
models (Java 8 lambdas and BSP or M/R, respectively). The description of the code functions would be done in the
development environment and selection will come as using any library with dot autocomplete, leaving configuration,
monitoring, and deployment to the underlying middleware. There are questions as how these libraries of functions
could get organised and be made accessible for thousands of remote development environments without damaging
developers’ experience (see Table 4). There are also question marks on how this approach could cope with hyper-
heterogeneity and edge deployments.

Beyond devices (or infrastructure) themselves, there is the problem of discovering many small fine-grained func-
tions that could be (re)-used by multiple applications. There are no well-defined patterns for discovery across FaaS
functions. While some of this is by no means FaaS specific the problem is exacerbated by the granular nature of FaaS
functions and the lack of application / versioning definition. In this sense, building on classic software engineering
practices (creating libraries and packages of functions) may be the way ahead (see Table 4).

Fog Dataflow programming frameworks have also recently appeared that support developers in dealing with scal-
ability, heterogeneity, and mobility [169]. They do not support the levels of device autonomy, churn and hyper-
heterogeneity (while keeping low levels of human intervention) we have described above.

Moreover, all of these approaches are very interesting for small homogeneous deployments confined to a single
domain. The levels of complexity we will see in hyper-heterogeneous large scale fluid distributed organisations seem
too complex for any single unassisted developer to cope with.

4.6. Security Orchestration
New context-aware holistic security orchestrators are needed to allow interfacing with NFV managers, SDN con-

trollers and Edge-Fog controllers, thereby providing security chaining, as well as dynamic reconfiguration and adap-
tation of the virtual security appliances at the edge, in case of deviation from the expected behaviour.

In this sense, new security orchestration approaches are appearing recently. Open Security Controller (OSC)[170]
is an open source project that tries to provide consistent security across a multi cloud environments. It aims to
automate the deployment of virtualised network security functions to protect east-west traffic inside the data centre.
It orchestrates the deployment of virtual network security policies, applying the correct policy to the appropriate
workload.

Security Orchestrator [171] proposes a design of a Security Orchestrator in the context of the ETSI NFV Reference
Architecture, defining the interfaces required to interact with the existing MANO entities. The Security orchestrator
is placed outside the architecture to achieve a holistic end-to-end security view in case of a hybrid network.

In order to mitigate cyber-threats, latest research efforts focus on providing dynamic, intelligent and context-aware
security orchestration in Fog/Edge and IoT by relying on NFV/SDN-enabled networks. This approach allows chaining
and enforcing policy-based security mechanisms while providing run-time reconfiguration and adaptation of security
enablers, and therefore, endowing the ecosystem with intelligent and dynamic behavior. In this sense, the H2020 EU
project Anastacia [140] is also devising a security orchestrator to take autonomous decisions in MEC, Cloud and IoT
scenarios, through the use of networking technologies such as SDN-NFV and intelligent and dynamic security policy
enforcement and monitoring methodologies. In the Anastacia project, different virtual security appliances such as
vFirewall, vIDS, vAAA, vSwitch/Router, vHoneynet, vVPN are orchestrated dynamically at the edge of the network.

19



In order to achieve a context-aware autonomic security orchestration in SDN/NFV-enabled Fog and IoT, we envis-
age the proliferation of cyber-situational awareness frameworks in which the security orchestration can dynamically be
adapted according to the context obtained from agents and sentinels, mitigating and countering cyber security threats
at the edge, by deploying and orchestrating Virtual Security Functions and services even in constrained Fog and IoT
devices. Such awareness framework could be endowed with monitoring and reaction tools as well as innovative al-
gorithms and techniques based on machine learning, for threat analysis, data fusion and correlation from different
sources, and big data analysis. It would allow to increase the overall security, including self-repair, self-healing and
self-protection capabilities, not only at the core, but also at the edge of the network.

4.7. Hierarchical Emergent Behaviours
A recent paper proposed Hierarchical Emergent Behaviours (HEB), an architecture that builds on established con-

cepts of emergent behaviours and hierarchical decomposition and organisation. HEB’s local rules induce emergent
behaviours, i.e., useful behaviours not explicitly programmed [13] (see Table 4). This certainly is a promising ap-
proach, however it hinges heavily on the availability of an accurate and detailed model of all the resources available to
an orchestrator, including all elements of the underlying infrastructure of available functions, resources, and deploy-
ment locations. Mechanisms to acquire such a model are not yet available in the literature, and is something that we
hope to be closer to by addressing the challenges discussed thus far.

Emergent behaviours eliminate the need of a central orchestrator that would have to deal with a very large number
of “things”. They still require the use of high-level languages and associated tools (including ontologies) to describe
the emergent behaviours [172, 173, 174, 175, 176].

Due to the large number of variables and situations, designing an explicit programmed system that takes into
account all the scenarios in advance is a formidable task. With an HEB IoT approach and if the proper set of rules is
defined, the “things” are able to dynamically adapt to the environment without the need to explicitly program them.
However, they also extend the “attack surface” that can be exploited. An attacker that gains access could modify the
rules, either directly or through modification of the hyper-parameters, for nefarious purposes.

5. Conclusions

Recent technological developments have been too quick for orchestration techniques to catch up. Most current
orchestrators would fit in the 2nd wave orchestration classification above, as they either do not cope with hardware
programmability and disaggregation beyond a data centre.

Moreover, the amalgamation of many virtualised and disaggregated technologies is making end-to-end orchestra-
tion difficult to do at scale. This situation is getting worse with the advent of the IoT, where hyper-heterogeneity can
make it nearly impossible for a single team to master all the knowledge needed across the stack. Scale is not the only
problem, churn and dynamism makes it very hard to discover resources or plan how to synchronise as many of these
devices connect to the network intermittently only and/or belong to different administrative domains.

Pushing current orchestrators to the next wave of maturity calls for further integration across (hardware) and
”along” the technological spectrum these technologies cover. Recent works have made the challenges we identi-
fied less intimidating, offering promising results to tame data aware deployments, resource planning at scale (e.g.
asymptotic plans), coping with churn (HEBs, logical naming, predictive scheduling) or resource searches (dynamic
ontologies).

There is, however, lots of pending work to do if we aim for integrated solutions that can deliver a unified approach
to orchestrate across technologies and administrative domains. Achieving 3rd wave-level orchestrators requires better
automation and complexity abstraction techniques and systems that can make automatic, but adaptive, decisions based
on as few human inputs as possible. To a human developer or administrator, this mix of technologies needs to look as
if it was a simple local deployment using a very declarative form, vs. very prescriptive specifications. Thus, artificial
intelligence, NLP, HEBs, or ”No orchestration” techniques can help smooth the interface between humans and this
massive complexity, which are essential for 4th wave-level orchestrators to become a reality.

Acknowledgements

The authors thank Gordon S Blair for his insightful comments on prior versions of this manuscript.

20



References

[1] L. M. Vaquero, L. Rodero-Merino, Finding your way in the fog: Towards a comprehensive definition of fog computing, SIGCOMM Comput.
Commun. Rev. 44 (5) (2014) 27–32. doi:10.1145/2677046.2677052.
URL http://doi.acm.org/10.1145/2677046.2677052

[2] I. Azimi, A. Anzanpour, A. M. Rahmani, T. Pahikkala, M. Levorato, P. Liljeberg, N. Dutt, Hich: Hierarchical fog-assisted computing
architecture for healthcare iot, ACM Trans. Embed. Comput. Syst. 16 (5s) (2017) 174:1–174:20. doi:10.1145/3126501.
URL http://doi.acm.org/10.1145/3126501

[3] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: A comprehensive
survey, Proceedings of the IEEE 103 (1) (2015) 14–76. doi:10.1109/JPROC.2014.2371999.

[4] J. Gil Herrera, J. F. Botero, Resource allocation in nfv: A comprehensive survey, IEEE Trans. on Netw. and Serv. Manag. 13 (3) (2016)
518–532. doi:10.1109/TNSM.2016.2598420.
URL https://doi.org/10.1109/TNSM.2016.2598420

[5] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, S. Shenker, Network support for resource disaggregation in next-generation datacenters,
in: Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, HotNets-XII, ACM, New York, NY, USA, 2013, pp. 10:1–10:7.
doi:10.1145/2535771.2535778.
URL http://doi.acm.org/10.1145/2535771.2535778

[6] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, S. Kumar, Flash storage disaggregation, in: Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, ACM, New York, NY, USA, 2016, pp. 29:1–29:15. doi:10.1145/2901318.2901337.
URL http://doi.acm.org/10.1145/2901318.2901337

[7] P. S. Rao, G. Porter, Is memory disaggregation feasible?: A case study with spark sql, in: Proceedings of the 2016 Symposium
on Architectures for Networking and Communications Systems, ANCS ’16, ACM, New York, NY, USA, 2016, pp. 75–80. doi:

10.1145/2881025.2881030.
URL http://doi.acm.org/10.1145/2881025.2881030

[8] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Serverless computation with
openlambda, in: Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing, HotCloud’16, USENIX Association,
Berkeley, CA, USA, 2016, pp. 33–39.
URL http://dl.acm.org/citation.cfm?id=3027041.3027047

[9] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, Serverless computing:
Current trends and open problems, CoRR abs/1706.03178. arXiv:1706.03178.
URL http://arxiv.org/abs/1706.03178

[10] K. Liang, L. Zhao, X. Chu, H. H. Chen, An integrated architecture for software defined and virtualized radio access networks with fog
computing, IEEE Network 31 (1) (2017) 80–87. doi:10.1109/MNET.2017.1600027NM.

[11] V. K. Sehgal, A. Patrick, A. Soni, L. Rajput, Smart Human Security Framework Using Internet of Things, Cloud and Fog Computing,
Springer International Publishing, Cham, 2015, pp. 251–263.

[12] G. Suciu, V. Suciu, A. Martian, R. Craciunescu, A. Vulpe, I. Marcu, S. Halunga, O. Fratu, Big data, internet of things and cloud convergence
— an architecture for secure e-health applications, J. Med. Syst. 39 (11) (2015) 1–8. doi:10.1007/s10916-015-0327-y.
URL http://dx.doi.org/10.1007/s10916-015-0327-y

[13] D. Roca, D. Nemirovsky, M. Nemirovsky, R. Milito, M. Valero, Emergent behaviors in the internet of things: The ultimate ultra-large-scale
system, IEEE Micro 36 (6) (2016) 36–44. doi:10.1109/MM.2016.102.

[14] A. Jonathan, A. Chandra, J. Weissman, Locality-aware load sharing in mobile cloud computing., in: In the IEEE/ACM International Con-
ference on Utility and Cloud Computing (UCC), 2017.

[15] R. Abid, G. Salaün, N. D. Palma, Asynchronous synthesis techniques for coordinating autonomic managers in the cloud, Science of Com-
puter Programming 146 (Supplement C) (2017) 87 – 103, special issue with extended selected papers from FACS 2015. doi:https:

//doi.org/10.1016/j.scico.2017.05.005.
URL http://www.sciencedirect.com/science/article/pii/S0167642317301089

[16] S. Cirani, G. Ferrari, N. Iotti, M. Picone, The iot hub: a fog node for seamless management of heterogeneous connected smart objects,
in: International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops), 2015, pp. 1–6. doi:

10.1109/SECONW.2015.7328145.
[17] V. Lopez, O. G. de Dios, L. Miguel, J. Foster, H. Silva, L. Blair, J. Marsella, T. Szyrkowiec, A. Autenrieth, C. Liou, A. Sadasivarao, S. Syed,

J. Sunjun, B. Rao, F. Zhang, Demonstration of sdn orchestration in optical multi-vendor scenarios, in: Optical Fiber Communication
Conference, Optical Society of America, 2015, p. Th2A.41. doi:10.1364/OFC.2015.Th2A.41.
URL http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Th2A.41

[18] M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ranjan, Osmotic computing: A new paradigm for edge/cloud integration, IEEE Cloud
Computing 3 (6) (2016) 76–83. doi:10.1109/MCC.2016.124.

[19] R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Martı́nez, J. Serra, C. Verikoukis, R. Muñoz, End-to-end sdn orchestration of iot services
using an sdn/nfv-enabled edge node, in: Optical Fiber Communications Conference and Exhibition (OFC), 2016, pp. 1–3.

[20] C. Rotsos, A. Farshad, N. Hart, A. Aguado, S. Bidkar, K. Sideris, D. King, L. Fawcett, J. Bird, A. Mauthe, N. Race, D. Hutchison,
Baguette: Towards end-to-end service orchestration in heterogeneous networks, in: 2016 15th International Conference on Ubiquitous
Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS), 2016, pp. 196–203. doi:
10.1109/IUCC-CSS.2016.035.

[21] A. Rostami, P. Öhlén, M. A. S. Santos, A. Vidal, Multi-domain orchestration across RAN and transport for 5G, in: Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, ACM, New York, NY, USA, 2016, pp. 613–614. doi:10.1145/2934872.2959073.
URL http://doi.acm.org/10.1145/2934872.2959073

21

http://doi.acm.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/3126501
http://doi.acm.org/10.1145/3126501
http://dx.doi.org/10.1145/3126501
http://doi.acm.org/10.1145/3126501
http://dx.doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/TNSM.2016.2598420
http://dx.doi.org/10.1109/TNSM.2016.2598420
https://doi.org/10.1109/TNSM.2016.2598420
http://doi.acm.org/10.1145/2535771.2535778
http://dx.doi.org/10.1145/2535771.2535778
http://doi.acm.org/10.1145/2535771.2535778
http://doi.acm.org/10.1145/2901318.2901337
http://dx.doi.org/10.1145/2901318.2901337
http://doi.acm.org/10.1145/2901318.2901337
http://doi.acm.org/10.1145/2881025.2881030
http://dx.doi.org/10.1145/2881025.2881030
http://dx.doi.org/10.1145/2881025.2881030
http://doi.acm.org/10.1145/2881025.2881030
http://dl.acm.org/citation.cfm?id=3027041.3027047
http://dl.acm.org/citation.cfm?id=3027041.3027047
http://dl.acm.org/citation.cfm?id=3027041.3027047
http://arxiv.org/abs/1706.03178
http://arxiv.org/abs/1706.03178
http://arxiv.org/abs/1706.03178
http://arxiv.org/abs/1706.03178
http://dx.doi.org/10.1109/MNET.2017.1600027NM
http://dx.doi.org/10.1007/s10916-015-0327-y
http://dx.doi.org/10.1007/s10916-015-0327-y
http://dx.doi.org/10.1007/s10916-015-0327-y
http://dx.doi.org/10.1007/s10916-015-0327-y
http://dx.doi.org/10.1109/MM.2016.102
http://www.sciencedirect.com/science/article/pii/S0167642317301089
http://dx.doi.org/https://doi.org/10.1016/j.scico.2017.05.005
http://dx.doi.org/https://doi.org/10.1016/j.scico.2017.05.005
http://www.sciencedirect.com/science/article/pii/S0167642317301089
http://dx.doi.org/10.1109/SECONW.2015.7328145
http://dx.doi.org/10.1109/SECONW.2015.7328145
http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Th2A.41
http://dx.doi.org/10.1364/OFC.2015.Th2A.41
http://www.osapublishing.org/abstract.cfm?URI=OFC-2015-Th2A.41
http://dx.doi.org/10.1109/MCC.2016.124
http://dx.doi.org/10.1109/IUCC-CSS.2016.035
http://dx.doi.org/10.1109/IUCC-CSS.2016.035
http://doi.acm.org/10.1145/2934872.2959073
http://dx.doi.org/10.1145/2934872.2959073
http://doi.acm.org/10.1145/2934872.2959073


[22] P. Öhlén, B. Skubic, A. Rostami, M. Fiorani, P. Monti, Z. Ghebretensaé, J. Mårtensson, K. Wang, L. Wosinska, Data plane and control
architectures for 5G transport networks, Journal of Lightwave Technology 34 (6) (2016) 1501–1508. doi:10.1109/JLT.2016.2524209.

[23] E. Yigitoglu, M. Mohamed, L. Liu, H. Ludwig, Foggy: A framework for continuous automated iot application deployment in fog computing,
in: IEEE International Conference on AI Mobile Services (AIMS), 2017, pp. 38–45. doi:10.1109/AIMS.2017.14.

[24] M. Habib ur Rehman, P. P. Jayaraman, S. u. R. Malik, A. u. R. Khan, M. Medhat Gaber, Rededge: A novel architecture for big data
processing in mobile edge computing environments, Journal of Sensor and Actuator Networks 6 (3).
URL http://www.mdpi.com/2224-2708/6/3/17

[25] N. B. Truong, G. M. Lee, Y. Ghamri-Doudane, Software defined networking-based vehicular adhoc network with fog computing, in: 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM), 2015, pp. 1202–1207. doi:10.1109/INM.2015.7140467.

[26] C. Consel, M. Kabác̆, Internet of things: From small- to large-scale orchestration, in: IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 1748–1755. doi:10.1109/ICDCS.2017.314.

[27] W. John, F. Moradi, B. Pechenot, P. Sköldström, Meeting the observability challenges for VNFs in 5G systems, in: 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2017, pp. 1127–1130. doi:10.23919/INM.2017.7987445.

[28] R. Mayer, H. Gupta, E. Saurez, U. Ramachandran, Fogstore: Toward a distributed data store for fog computing, CoRR abs/1709.07558.
arXiv:1709.07558.
URL http://arxiv.org/abs/1709.07558

[29] B. Martini, F. Paganelli, A service-oriented approach for dynamic chaining of virtual network functions over multi-provider software-defined
networks, Future Internet 8 (2) (2016) 24. doi:10.3390/fi8020024.
URL https://doi.org/10.3390/fi8020024

[30] Y. Elkhatib, B. F. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, E. Rivière, On using micro-clouds to deliver the fog, Internet Computing
21 (2) (2017) 8–15. doi:10.1109/MIC.2017.35.

[31] A. G. Dalla-Costa, L. Bondan, J. A. Wickboldt, C. B. Both, L. Z. Granville, Maestro: An nfv orchestrator for wireless environments aware
of vnf internal compositions, in: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA),
2017, pp. 484–491. doi:10.1109/AINA.2017.126.

[32] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, M. Rovatsos, Fog orchestration for internet of things services, IEEE Internet Computing 21 (2)
(2017) 16–24. doi:10.1109/MIC.2017.36.

[33] D. Roca, J. V. Quiroga, M. Valero, M. Nemirovsky, Fog function virtualization: A flexible solution for iot applications, in: 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC), 2017, pp. 74–80. doi:10.1109/FMEC.2017.7946411.

[34] A. Glikson, S. Nastic, S. Dustdar, Deviceless edge computing: Extending serverless computing to the edge of the network, in: Proceedings
of the 10th ACM International Systems and Storage Conference, SYSTOR ’17, ACM, New York, NY, USA, 2017, pp. 28:1–28:1. doi:

10.1145/3078468.3078497.
URL http://doi.acm.org/10.1145/3078468.3078497

[35] T. B. Sousa, F. F. Correia, H. S. Ferreira, Patterns for software orchestration on the cloud, in: Proceedings of the 22nd Conference on Pattern
Languages of Programs, PLoP ’15, The Hillside Group, USA, 2015, pp. 17:1–17:12.
URL http://dl.acm.org/citation.cfm?id=3124497.3124517

[36] Y. Jiang, Z. Huang, D. H. K. Tsang, Challenges and solutions in fog computing orchestration, IEEE Network PP (99) (2017) 1–8. doi:

10.1109/MNET.2017.1700271.
[37] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, X. Shen, Internet of vehicles in big data era, IEEE/CAA Journal of Automatica Sinica

5 (1) (2018) 19–35. doi:10.1109/JAS.2017.7510736.
[38] OpenFog reference architecture for fog computing, last accessed: Dec 2017 (2017).

URL https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.

pdf

[39] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, T. F. Wenisch, Disaggregated memory for expansion and sharing in blade
servers, SIGARCH Comput. Archit. News 37 (3) (2009) 267–278. doi:10.1145/1555815.1555789.
URL http://doi.acm.org/10.1145/1555815.1555789

[40] L. A. Barroso, U. Hoelzle, The Datacenter As a Computer: An Introduction to the Design of Warehouse-Scale Machines, 1st Edition,
Morgan and Claypool Publishers, 2009.

[41] G. Coglitore, A. Michael, J. Williams, M. Corddry, Disaggregation of server components in a data center, uS Patent App. 13/709,004 (Jun. 12
2014).
URL https://www.google.com/patents/US20140164669

[42] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy, S. Shenker, Network requirements for resource
disaggregation, in: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, USENIX
Association, Berkeley, CA, USA, 2016, pp. 249–264.
URL http://dl.acm.org/citation.cfm?id=3026877.3026897

[43] C. Kilcioglu, J. M. Rao, A. Kannan, R. P. McAfee, Usage patterns and the economics of the public cloud, in: Proceedings of the 26th
International Conference on World Wide Web, WWW ’17, International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland, 2017, pp. 83–91. doi:10.1145/3038912.3052707.
URL https://doi.org/10.1145/3038912.3052707

[44] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black, A. Douglas, N. Cheriere, D. Fryer, K. Mast, A. D. Brown, A. Klimovic,
A. Slowey, A. Rowstron, Understanding rack-scale disaggregated storage, in: 9th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 17), USENIX Association, Santa Clara, CA, 2017.
URL https://www.usenix.org/conference/hotstorage17/program/presentation/legtchenko

[45] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, K. G. Shin, Efficient memory disaggregation with infiniswap, in: 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), USENIX Association, Boston, MA, 2017, pp. 649–667.
URL https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu

22

http://dx.doi.org/10.1109/JLT.2016.2524209
http://dx.doi.org/10.1109/AIMS.2017.14
http://www.mdpi.com/2224-2708/6/3/17
http://www.mdpi.com/2224-2708/6/3/17
http://www.mdpi.com/2224-2708/6/3/17
http://dx.doi.org/10.1109/INM.2015.7140467
http://dx.doi.org/10.1109/ICDCS.2017.314
http://dx.doi.org/10.23919/INM.2017.7987445
http://arxiv.org/abs/1709.07558
http://arxiv.org/abs/1709.07558
http://arxiv.org/abs/1709.07558
https://doi.org/10.3390/fi8020024
https://doi.org/10.3390/fi8020024
http://dx.doi.org/10.3390/fi8020024
https://doi.org/10.3390/fi8020024
http://dx.doi.org/10.1109/MIC.2017.35
http://dx.doi.org/10.1109/AINA.2017.126
http://dx.doi.org/10.1109/MIC.2017.36
http://dx.doi.org/10.1109/FMEC.2017.7946411
http://doi.acm.org/10.1145/3078468.3078497
http://dx.doi.org/10.1145/3078468.3078497
http://dx.doi.org/10.1145/3078468.3078497
http://doi.acm.org/10.1145/3078468.3078497
http://dl.acm.org/citation.cfm?id=3124497.3124517
http://dl.acm.org/citation.cfm?id=3124497.3124517
http://dx.doi.org/10.1109/MNET.2017.1700271
http://dx.doi.org/10.1109/MNET.2017.1700271
http://dx.doi.org/10.1109/JAS.2017.7510736
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
http://doi.acm.org/10.1145/1555815.1555789
http://doi.acm.org/10.1145/1555815.1555789
http://dx.doi.org/10.1145/1555815.1555789
http://doi.acm.org/10.1145/1555815.1555789
https://www.google.com/patents/US20140164669
https://www.google.com/patents/US20140164669
http://dl.acm.org/citation.cfm?id=3026877.3026897
http://dl.acm.org/citation.cfm?id=3026877.3026897
http://dl.acm.org/citation.cfm?id=3026877.3026897
https://doi.org/10.1145/3038912.3052707
http://dx.doi.org/10.1145/3038912.3052707
https://doi.org/10.1145/3038912.3052707
https://www.usenix.org/conference/hotstorage17/program/presentation/legtchenko
https://www.usenix.org/conference/hotstorage17/program/presentation/legtchenko
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu


[46] B. Caldwell, Y. Im, S. Ha, R. Han, E. Keller, Fluidmem: Memory as a service for the datacenter, CoRR abs/1707.07780. arXiv:1707.

07780.
URL http://arxiv.org/abs/1707.07780

[47] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, M. Wei, Remote
memory in the age of fast networks, in: Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, ACM, New York, NY, USA,
2017, pp. 121–127. doi:10.1145/3127479.3131612.
URL http://doi.acm.org/10.1145/3127479.3131612

[48] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, T. F. Wenisch, System-level implications of disaggregated memory,
in: Proceedings of the 2012 IEEE 18th International Symposium on High-Performance Computer Architecture, HPCA ’12, IEEE Computer
Society, Washington, DC, USA, 2012, pp. 1–12. doi:10.1109/HPCA.2012.6168955.
URL http://dx.doi.org/10.1109/HPCA.2012.6168955

[49] D. Syrivelis, A. Reale, K. Katrinis, I. Syrigos, M. Bielski, D. Theodoropoulos, D. Pnevmatikatos, G. Zervas, A software-defined architec-
ture and prototype for disaggregated memory rack scale systems, in: Proceedings of the Seventeenth IEEE International Conference on
Embedded Computer Systems: Architectures, Modelling, and Simulation (SAMOS XVII), SAMOS ’17, IEEE, 2017.

[50] CCIX: cache coherent interconnect for accelerators, last accessed: Dec 2017 (Dec. 12 2017).
URL http://www.ccixconsortium.com

[51] Gen-Z draft core specification, last accessed: Dec 2017 (Dec. 12 2016).
URL http://genzconsortium.org/

[52] Opencapi specification, last accessed: Dec 2017 (Dec. 12 2016).
URL http://opencapi.org

[53] Intel omni-path, last accessed: Dec 2017 (Dec. 12 2017).
URL http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.

html

[54] J. Gray, Tape is dead disk is tape flash is disk ram locality is king, last accessed: Dec 2017 (2006).
URL https://jimgray.azurewebsites.net/talks/Flash_is_Good.ppt

[55] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein, J. LeFevre, C. Maltzahn, Malacology: A programmable storage system,
in: Proceedings of the Twelfth European Conference on Computer Systems, EuroSys ’17, ACM, New York, NY, USA, 2017, pp. 175–190.
doi:10.1145/3064176.3064208.
URL http://doi.acm.org/10.1145/3064176.3064208

[56] I. Stefanovici, B. Schroeder, G. O’Shea, E. Thereska, Treating the storage stack like a network, Trans. Storage 13 (1) (2017) 2:1–2:27.
doi:10.1145/3032968.
URL http://doi.acm.org/10.1145/3032968

[57] P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, Beyond processor-centric operating systems, in: Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems, HOTOS’15, USENIX Association, Berkeley, CA, USA, 2015, pp. 17–17.
URL http://dl.acm.org/citation.cfm?id=2831090.2831107

[58] M. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang, M. F. Zhani, Data center network virtualization:
A survey, IEEE Communications Surveys Tutorials 15 (2) (2013) 909–928.

[59] W. Racheg, N. Ghrada, M. F. Zhani, Profit-Driven Resource Provisioning in NFV-based Environments, in: IEEE International Conference
on Communications (ICC), Paris, France, 2017.

[60] N. Huin, B. Jaumard, F. Giroire, Optimization of network service chain provisioning, in: 2017 IEEE International Conference on Commu-
nications (ICC), 2017, pp. 1–7. doi:10.1109/ICC.2017.7997198.

[61] N. Ghrada, M. F. Zhani, Y. Elkhatib, Price and Performance of Cloud-hosted Virtual Network Functions: Analysis and Future Challenges,
in: IEEE Performance Issues in Virtualized Environments and Software Defined Networking (PVE-SDN NetSoft 2018), Montreal, Canada,
2018.

[62] M. F. Zhani, R. Boutaba, Survivability and Fault Tolerance in the Cloud, John Wiley & Sons, Inc, 2015, pp. 295–308. doi:10.1002/

9781119042655.ch12.
URL http://dx.doi.org/10.1002/9781119042655.ch12

[63] M. G. Rabbani, M. F. Zhani, R. Boutaba, On achieving high survivability in virtualized data centers, IEICE Transactions on Communications
E97-B (1).

[64] Q. Zhang, M. F. Zhani, M. Jabri, R. Boutaba, Venice: Reliable virtual data center embedding in clouds, IEEE International Conference on
Computer Communications (INFOCOM).

[65] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, G. Mastorakis, Drop computing: Ad-hoc dynamic collaborative comput-
ing, Future Generation Computer Systems (2017) –doi:https://doi.org/10.1016/j.future.2017.11.044.
URL https://www.sciencedirect.com/science/article/pii/S0167739X17305678

[66] S. S. Lor, L. M. Vaquero, P. Murray, In-NetDC: The cloud in core networks, IEEE Communications Letters 16 (10) (2012) 1703–1706.
doi:10.1109/LCOMM.2012.090312.121543.

[67] Aws greengrass, last accessed: Dec 2017 (2016).
URL https://aws.amazon.com/greengrass/

[68] Microsoft azure IoT edge, last accessed: Dec 2017 (2016).
URL https://azure.microsoft.com/en-in/campaigns/iot-edge/

[69] Apache kura, last accessed: Dec 2017 (2017).
URL https://www.eclipse.org/kura/

[70] VMWare’s apache liota, last accessed: Dec 2017 (2017).
URL https://github.com/vmware/liota

[71] N. Wang, B. Varghese, M. Matthaiou, D. S. Nikolopoulos, Enorm: A framework for edge node resource management, IEEE Transactions

23

http://arxiv.org/abs/1707.07780
http://arxiv.org/abs/1707.07780
http://arxiv.org/abs/1707.07780
http://arxiv.org/abs/1707.07780
http://doi.acm.org/10.1145/3127479.3131612
http://doi.acm.org/10.1145/3127479.3131612
http://dx.doi.org/10.1145/3127479.3131612
http://doi.acm.org/10.1145/3127479.3131612
http://dx.doi.org/10.1109/HPCA.2012.6168955
http://dx.doi.org/10.1109/HPCA.2012.6168955
http://dx.doi.org/10.1109/HPCA.2012.6168955
http://www.ccixconsortium.com
http://www.ccixconsortium.com
http://genzconsortium.org/
http://genzconsortium.org/
http://opencapi.org
http://opencapi.org
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
https://jimgray.azurewebsites.net/talks/Flash_is_Good.ppt
https://jimgray.azurewebsites.net/talks/Flash_is_Good.ppt
http://doi.acm.org/10.1145/3064176.3064208
http://dx.doi.org/10.1145/3064176.3064208
http://doi.acm.org/10.1145/3064176.3064208
http://doi.acm.org/10.1145/3032968
http://dx.doi.org/10.1145/3032968
http://doi.acm.org/10.1145/3032968
http://dl.acm.org/citation.cfm?id=2831090.2831107
http://dl.acm.org/citation.cfm?id=2831090.2831107
http://dx.doi.org/10.1109/ICC.2017.7997198
http://dx.doi.org/10.1002/9781119042655.ch12
http://dx.doi.org/10.1002/9781119042655.ch12
http://dx.doi.org/10.1002/9781119042655.ch12
http://dx.doi.org/10.1002/9781119042655.ch12
https://www.sciencedirect.com/science/article/pii/S0167739X17305678
https://www.sciencedirect.com/science/article/pii/S0167739X17305678
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.11.044
https://www.sciencedirect.com/science/article/pii/S0167739X17305678
http://dx.doi.org/10.1109/LCOMM.2012.090312.121543
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-in/campaigns/iot-edge/
https://azure.microsoft.com/en-in/campaigns/iot-edge/
https://www.eclipse.org/kura/
https://www.eclipse.org/kura/
https://github.com/vmware/liota
https://github.com/vmware/liota


on Services Computing PP (99) (2017) 1–1. doi:10.1109/TSC.2017.2753775.
[72] M. Liyanage, C. Chang, S. N. Srirama, mepaas: Mobile-embedded platform as a service for distributing fog computing to edge nodes,

in: Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2016 17th International Conference on, IEEE, 2016, pp.
73–80.

[73] N. K. Giang, M. Blackstock, R. Lea, V. C. Leung, Developing IoT applications in the fog: A distributed dataflow approach, in: 5th
International Conference on the Internet of Things (IOT), IEEE, 2015, pp. 155–162.

[74] P. Ravindra, A. Khochare, S. Reddy, S. Sharma, P. Varshney, Y. Simmhan, ECHO: An adaptive orchestration platform for hybrid dataflows
across cloud and edge, International Conference on Service-Oriented Computing (ICSOC).
URL http://arxiv.org/abs/1707.00889

[75] O. Skarlat, S. Schulte, M. Borkowski, P. Leitner, Resource provisioning for iot services in the fog, in: 2016 IEEE 9th International Confer-
ence on Service-Oriented Computing and Applications (SOCA), 2016, pp. 32–39. doi:10.1109/SOCA.2016.10.

[76] Y. Elkhatib, Mapping Cross-Cloud Systems: Challenges and Opportunities, in: Proceedings of the 8th USENIX Conference on Hot Topics
in Cloud Computing, USENIX Association, 2016, pp. 77–83.

[77] M. S. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls, O. Keils, F. Schreiner, A service orchestration architecture
for fog-enabled infrastructures, in: Second International Conference on Fog and Mobile Edge Computing (FMEC), 2017, pp. 127–132.
doi:10.1109/FMEC.2017.7946419.

[78] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, B. Koldehofe, Mobile fog: A programming model for large-scale applications
on the internet of things, in: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, MCC ’13, ACM, New
York, NY, USA, 2013, pp. 15–20. doi:10.1145/2491266.2491270.
URL http://doi.acm.org/10.1145/2491266.2491270

[79] Y. Elkhatib, Building cloud applications for challenged networks, in: R. Horne (Ed.), Embracing Global Computing in Emerging Economies,
Vol. 514 of Communications in Computer and Information Science, Springer International Publishing, 2015, pp. 1–10. doi:10.1007/

978-3-319-25043-4_1.
URL http://dx.doi.org/10.1007/978-3-319-25043-4_1

[80] R. Guerzoni, I. Vaishnavi, D. Perez Caparros, A. Galis, F. Tusa, P. Monti, A. Sganbelluri, G. Biczók, B. Sonkoly, L. Toka, A. Ramos,
J. Melián, O. Dugeon, F. Cugini, B. Martini, P. Iovanna, G. Giuliani, R. Figueiredo, L. M. Contreras-Murillo, C. J. Bernardos, C. Santana,
R. Szabo, Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: an archi-
tectural survey, Transactions on Emerging Telecommunications Technologies 28 (4) (2017) e3103. doi:10.1002/ett.3103.
URL http://dx.doi.org/10.1002/ett.3103

[81] M. Satyanarayanan, A brief history of cloud offload: A personal journey from odyssey through cyber foraging to cloudlets, GetMobile:
Mobile Comp. and Comm. 18 (4) (2015) 19–23. doi:10.1145/2721914.2721921.
URL http://doi.acm.org/10.1145/2721914.2721921

[82] R. Roman, J. Zhou, J. Lopez, On the features and challenges of security and privacy in distributed internet of things, Computer Networks
57 (10) (2013) 2266 – 2279, towards a Science of Cyber Security Security and Identity Architecture for the Future Internet. doi:https:
//doi.org/10.1016/j.comnet.2012.12.018.
URL http://www.sciencedirect.com/science/article/pii/S1389128613000054

[83] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security issues, in: Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on, IEEE, 2014, pp. 1–8.

[84] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. K. R. Choo, M. Dlodlo, From cloud to fog computing: A review and a conceptual live VM migration
framework, IEEE Access 5 (2017) 8284–8300. doi:10.1109/ACCESS.2017.2692960.

[85] R. Roman, J. Lopez, M. Mambo, Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges, Future
Generation Computer Systems 78 (Part 2) (2018) 680 – 698. doi:https://doi.org/10.1016/j.future.2016.11.009.
URL http://www.sciencedirect.com/science/article/pii/S0167739X16305635

[86] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, J. Ott, Security and privacy in device-to-device (d2d) communication: A review, IEEE
Communications Surveys Tutorials 19 (2) (2017) 1054–1079. doi:10.1109/COMST.2017.2649687.

[87] J. B. Bernabé, J. L. H. Ramos, A. F. Gómez-Skarmeta, Holistic privacy-preserving identity management system for the internet of things,
Mobile Information Systems 2017 (2017) 6384186:1–6384186:20.

[88] J. Bernal Bernabe, J. L. Hernandez Ramos, A. F. Skarmeta Gomez, Taciot: multidimensional trust-aware access control system for the
internet of things, Soft Computing 20 (5) (2016) 1763–1779. doi:10.1007/s00500-015-1705-6.
URL https://doi.org/10.1007/s00500-015-1705-6

[89] R. Lu, X. Liang, X. Li, X. Lin, X. Shen, Eppa: An efficient and privacy-preserving aggregation scheme for secure smart grid communica-
tions, IEEE Transactions on Parallel and Distributed Systems 23 (9) (2012) 1621–1631.

[90] R. Mijumbi, J. Serrat, J. l. Gorricho, S. Latre, M. Charalambides, D. Lopez, Management and orchestration challenges in network functions
virtualization, IEEE Communications Magazine 54 (1) (2016) 98–105. doi:10.1109/MCOM.2016.7378433.

[91] K. Katsalis, N. Nikaein, A. Edmonds, Multi-domain orchestration for nfv: Challenges and research directions, in: 2016 15th International
Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS),
2016, pp. 189–195. doi:10.1109/IUCC-CSS.2016.034.

[92] R. Mijumbi, J. Serrat, J. L. Gorricho, J. Rubio-Loyola, S. Davy, Server placement and assignment in virtualized radio access networks,
in: 2015 11th International Conference on Network and Service Management (CNSM), 2015, pp. 398–401. doi:10.1109/CNSM.2015.

7367390.
[93] R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, D. Lopez, Integrated sdn/nfv management and

orchestration architecture for dynamic deployment of virtual sdn control instances for virtual tenant networks [invited], IEEE/OSA Journal
of Optical Communications and Networking 7 (11) (2015) B62–B70. doi:10.1364/JOCN.7.000B62.

[94] S. J. Vaughan-Nichols, Virtualization sparks security concerns, Computer 41 (8) (2008) 13–15. doi:10.1109/MC.2008.276.
[95] C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas, M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe, N. Race, D. Hutchison,

24

http://dx.doi.org/10.1109/TSC.2017.2753775
http://arxiv.org/abs/1707.00889
http://arxiv.org/abs/1707.00889
http://arxiv.org/abs/1707.00889
http://dx.doi.org/10.1109/SOCA.2016.10
http://dx.doi.org/10.1109/FMEC.2017.7946419
http://doi.acm.org/10.1145/2491266.2491270
http://doi.acm.org/10.1145/2491266.2491270
http://dx.doi.org/10.1145/2491266.2491270
http://doi.acm.org/10.1145/2491266.2491270
http://dx.doi.org/10.1007/978-3-319-25043-4_1
http://dx.doi.org/10.1007/978-3-319-25043-4_1
http://dx.doi.org/10.1007/978-3-319-25043-4_1
http://dx.doi.org/10.1007/978-3-319-25043-4_1
http://dx.doi.org/10.1002/ett.3103
http://dx.doi.org/10.1002/ett.3103
http://dx.doi.org/10.1002/ett.3103
http://dx.doi.org/10.1002/ett.3103
http://doi.acm.org/10.1145/2721914.2721921
http://dx.doi.org/10.1145/2721914.2721921
http://doi.acm.org/10.1145/2721914.2721921
http://www.sciencedirect.com/science/article/pii/S1389128613000054
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2012.12.018
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2012.12.018
http://www.sciencedirect.com/science/article/pii/S1389128613000054
http://dx.doi.org/10.1109/ACCESS.2017.2692960
http://www.sciencedirect.com/science/article/pii/S0167739X16305635
http://dx.doi.org/https://doi.org/10.1016/j.future.2016.11.009
http://www.sciencedirect.com/science/article/pii/S0167739X16305635
http://dx.doi.org/10.1109/COMST.2017.2649687
https://doi.org/10.1007/s00500-015-1705-6
https://doi.org/10.1007/s00500-015-1705-6
http://dx.doi.org/10.1007/s00500-015-1705-6
https://doi.org/10.1007/s00500-015-1705-6
http://dx.doi.org/10.1109/MCOM.2016.7378433
http://dx.doi.org/10.1109/IUCC-CSS.2016.034
http://dx.doi.org/10.1109/CNSM.2015.7367390
http://dx.doi.org/10.1109/CNSM.2015.7367390
http://dx.doi.org/10.1364/JOCN.7.000B62
http://dx.doi.org/10.1109/MC.2008.276


Network service orchestration standardization, Comput. Stand. Interfaces 54 (P4) (2017) 203–215. doi:10.1016/j.csi.2016.12.006.
URL https://doi.org/10.1016/j.csi.2016.12.006

[96] Network functions virtualisation (nfv);nfv security;problem statement, Technical report, Industry Specification Group (ISG) Network Func-
tions Virtualisation (NFV). (2014).

[97] S. Scott-Hayward, G. O’Callaghan, S. Sezer, Sdn security: A survey, in: 2013 IEEE SDN for Future Networks and Services (SDN4FNS),
2013, pp. 1–7. doi:10.1109/SDN4FNS.2013.6702553.

[98] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, G. Wang, Meridian: an sdn platform for cloud network services, IEEE Communications
Magazine 51 (2) (2013) 120–127. doi:10.1109/MCOM.2013.6461196.

[99] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker, S. Beker, D. Soldani, A novel approach to virtual networks embedding
for SDN management and orchestration, in: 2014 IEEE Network Operations and Management Symposium (NOMS), 2014, pp. 1–7. doi:
10.1109/NOMS.2014.6838244.

[100] e. a. Marie-Paule Odini, Report on sdn usage in nfv architectural framework, Technical report, ETSI Industry Specification Group (ISG)
Network Functions Virtualisation (NFV) (2015).

[101] S. Shin, G. Gu, Attacking software-defined networks: A first feasibility study, in: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, ACM, New York, NY, USA, 2013, pp. 165–166. doi:10.1145/2491185.
2491220.
URL http://doi.acm.org/10.1145/2491185.2491220

[102] S. Pradhan, A. Dubey, S. Khare, S. Nannapaneni, A. Gokhale, S. Mahadevan, D. C. Schmidt, M. Lehofer, Chariot: A holistic, goal driven
orchestration solution for resilient iot applications, ACM Transactions on Cyber-Physical Systems.

[103] A. Amjad, F. Rabby, S. Sadia, M. Patwary, E. Benkhelifa, Cognitive edge computing based resource allocation framework for internet of
things, in: Second International Conference on Fog and Mobile Edge Computing (FMEC), 2017, pp. 194–200. doi:10.1109/FMEC.2017.
7946430.

[104] C. Chang, S. N. Srirama, R. Buyya, Mobile cloud business process management system for the internet of things: a survey, ACM Computing
Surveys (CSUR) 49 (4) (2017) 70.

[105] E. Jonas, S. Venkataraman, I. Stoica, B. Recht, Occupy the cloud: Distributed computing for the 99%, CoRR abs/1702.04024. arXiv:

1702.04024.
URL http://arxiv.org/abs/1702.04024

[106] G. Podjarny, Serverless security implications—from infra to owasp, last accessed: Dec 2017 (2017).
URL https://snyk.io/blog/serverless-security-implications-from-infra-to-owasp/

[107] AWS step functions, last accessed: Dec 2017 (2017).
URL https://aws.amazon.com/step-functions/

[108] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, in: Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, USENIX Association, Berkeley, CA, USA, 2004, pp. 10–10.
URL http://dl.acm.org/citation.cfm?id=1251254.1251264

[109] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark: Cluster computing with working sets, in: Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, USENIX Association, Berkeley, CA, USA, 2010, pp. 10–10.
URL http://dl.acm.org/citation.cfm?id=1863103.1863113

[110] Gs nfv-man 001 - v1.1.1 - network functions virtualisation (nfv); management and orchestration, last accessed: Dec 2017 (2014).
URL http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[111] ETSI mobile edge computing: Framework and reference architecture, last accessed: Dec 2017 (2014).
URL http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf

[112] Sdn architecture, last accessed: Dec 2017 (2016).
URL https://www.opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf

[113] Topology and orchestration specification for cloud applications (TOSCA), last accessed: Dec 2017 (2013).
URL http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

[114] L. Velasco, A. Castro, D. King, O. Gerstel, R. Casellas, V. Lopez, In-operation network planning, IEEE Communications Magazine 52 (1)
(2014) 52–60. doi:10.1109/MCOM.2014.6710064.

[115] S. Nadgowda, S. Suneja, C. Isci, Paracloud: Bringing application insight into cloud operations, in: 9th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 17), USENIX Association, Santa Clara, CA, 2017.
URL https://www.usenix.org/conference/hotcloud17/program/presentation/nadgowda

[116] C. Peltz, Web services orchestration and choreography, Computer 36 (10) (2003) 46–52. doi:10.1109/MC.2003.1236471.
URL http://dx.doi.org/10.1109/MC.2003.1236471

[117] H. Muñoz Frutos, I. Kotsiopoulos, L. M. Vaquero Gonzalez, L. Rodero Merino, Enhancing Service Selection by Semantic QoS, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 565–577.

[118] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based cloudlets in mobile computing, IEEE Pervasive Computing 8 (4)
(2009) 14–23. doi:10.1109/MPRV.2009.82.

[119] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray, P. Toft, Smartfrog: Configuration and automatic ignition of distributed applica-
tions, in: In: HP Openview University Association Conference (HP OVUA, 2003, pp. 1–9.

[120] I. Bokharouss, Gcl viewer: A study in improving the understanding of gcl programs, last accessed: Dec 2017 (2008).
URL http://repository.tue.nl/638953

[121] B. Liskov, Practical uses of synchronized clocks in distributed systems, Distrib. Comput. 6 (4) (1993) 211–219. doi:10.1007/

BF02242709.
URL http://dx.doi.org/10.1007/BF02242709

[122] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al., Spanner:
Google’s globally distributed database, ACM Transactions on Computer Systems (TOCS) 31 (3) (2013) 8.

25

https://doi.org/10.1016/j.csi.2016.12.006
http://dx.doi.org/10.1016/j.csi.2016.12.006
https://doi.org/10.1016/j.csi.2016.12.006
http://dx.doi.org/10.1109/SDN4FNS.2013.6702553
http://dx.doi.org/10.1109/MCOM.2013.6461196
http://dx.doi.org/10.1109/NOMS.2014.6838244
http://dx.doi.org/10.1109/NOMS.2014.6838244
http://doi.acm.org/10.1145/2491185.2491220
http://dx.doi.org/10.1145/2491185.2491220
http://dx.doi.org/10.1145/2491185.2491220
http://doi.acm.org/10.1145/2491185.2491220
http://dx.doi.org/10.1109/FMEC.2017.7946430
http://dx.doi.org/10.1109/FMEC.2017.7946430
http://arxiv.org/abs/1702.04024
http://arxiv.org/abs/1702.04024
http://arxiv.org/abs/1702.04024
http://arxiv.org/abs/1702.04024
https://snyk.io/blog/serverless-security-implications-from-infra-to-owasp/
https://snyk.io/blog/serverless-security-implications-from-infra-to-owasp/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://dx.doi.org/10.1109/MCOM.2014.6710064
https://www.usenix.org/conference/hotcloud17/program/presentation/nadgowda
https://www.usenix.org/conference/hotcloud17/program/presentation/nadgowda
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1109/MPRV.2009.82
http://repository.tue.nl/638953
http://repository.tue.nl/638953
http://dx.doi.org/10.1007/BF02242709
http://dx.doi.org/10.1007/BF02242709
http://dx.doi.org/10.1007/BF02242709
http://dx.doi.org/10.1007/BF02242709


[123] V. Sharma, K. Srinivasan, D. N. K. Jayakody, O. F. Rana, R. Kumar, Managing service-heterogeneity using osmotic computing, CoRR
abs/1704.04213. arXiv:1704.04213.
URL http://arxiv.org/abs/1704.04213

[124] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Martrat, M. S. Siddiqui, S. van Rossem, W. Tavernier, G. Xilouris, Devops
for network function virtualisation: an architectural approach, Transactions on Emerging Telecommunications Technologies 27 (9) (2016)
1206–1215, ett.3084. doi:10.1002/ett.3084.
URL http://dx.doi.org/10.1002/ett.3084

[125] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, M. Nemirovsky, Key ingredients in an iot recipe: Fog computing, cloud computing,
and more fog computing, in: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), 2014, pp. 325–329. doi:10.1109/CAMAD.2014.7033259.

[126] N. Mohan, P. Zhou, K. Govindaraj, J. Kangasharju, Managing data in computational edge clouds, in: Proceedings of the Workshop on
Mobile Edge Communications, MECOMM ’17, ACM, New York, NY, USA, 2017, pp. 19–24. doi:10.1145/3098208.3098212.
URL http://doi.acm.org/10.1145/3098208.3098212

[127] R. Bonafiglia, G. Castellano, I. Cerrato, F. Risso, End-to-end service orchestration across sdn and cloud computing domains, in: 2017 IEEE
Conference on Network Softwarization (NetSoft), 2017, pp. 1–6. doi:10.1109/NETSOFT.2017.8004234.

[128] K. Nahrstedt, J. M. Smith, The qos broker [distributed multimedia computing], IEEE MultiMedia 2 (1) (1995) 53–67. doi:10.1109/93.
368603.

[129] F. Jrad, J. Tao, A. Streit, A broker-based framework for multi-cloud workflows, in: Proceedings of the 2013 International Workshop on
Multi-cloud Applications and Federated Clouds, MultiCloud ’13, ACM, New York, NY, USA, 2013, pp. 61–68. doi:10.1145/2462326.
2462339.
URL http://doi.acm.org/10.1145/2462326.2462339

[130] F. Samreen, Y. Elkhatib, M. Rowe, G. S. Blair, Daleel: Simplifying cloud instance selection using machine learning, in: Proceedings of the
Network Operations and Management Symposium, IEEE, 2016, pp. 557–563. doi:10.1109/NOMS.2016.7502858.

[131] S. Latre, J. Famaey, F. D. Turck, P. Demeester, The fluid internet: service-centric management of a virtualized future internet, IEEE
Communications Magazine 52 (1) (2014) 140–148. doi:10.1109/MCOM.2014.6710076.

[132] J. Spillner, S. Dorodko, Java code analysis and transformation into AWS lambda functions, CoRR abs/1702.05510. arXiv:1702.05510.
URL http://arxiv.org/abs/1702.05510

[133] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security issues, in: 2014 Federated Conference on Computer Science
and Information Systems, 2014, pp. 1–8. doi:10.15439/2014F503.

[134] System architecture specification for execution of sensitive nfv components, Technical report, ETSI Industry Specification Group (ISG)
Network Functions Virtualisation (NFV) (2017).

[135] Y. W. Law, M. Palaniswami, G. Kounga, A. Lo, WAKE: Key management scheme for wide-area measurement systems in smart grid, IEEE
Communications Magazine 51 (1) (2013) 34–41. doi:10.1109/MCOM.2013.6400436.

[136] Y. Sun, S. Nanda, T. Jaeger, Security-as-a-service for microservices-based cloud applications, in: 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom), 2015, pp. 50–57. doi:10.1109/CloudCom.2015.93.

[137] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, A. Rindos, A novel framework for software defined based secure storage
systems, Simulation Modelling Practice and Theory 77 (Supplement C) (2017) 407 – 423. doi:https://doi.org/10.1016/j.simpat.
2016.05.003.
URL http://www.sciencedirect.com/science/article/pii/S1569190X15303014

[138] P. Anderson, G. Beckett, K. Kavoussanakis, G. Mecheneau, P. Toft, Technologies for large-scale configuration management. the gridweaver
project, Technical report, University of Glasgow, Glasgow, UK (2002).
URL http://www.gridweaver.org/WP1/report1.pdf

[139] D. Tuncer, M. Charalambides, S. Clayman, G. Pavlou, Adaptive resource management and control in software defined networks, IEEE
Transactions on Network and Service Management 12 (1) (2015) 18–33. doi:10.1109/TNSM.2015.2402752.

[140] S. Ziegler, A. Skarmeta, J. Bernal, E. Kim, S. Bianchi, Anastacia: Advanced networked agents for security and trust assessment in cps iot
architectures, in: 2017 Global Internet of Things Summit (GIoTS), 2017, pp. 1–6. doi:10.1109/GIOTS.2017.8016285.

[141] J. P. Santos, R. Alheiro, L. Andrade, V. Caraguay, Á. Leonardo, L. I. Barona López, M. A. Sotelo Monge, L. J. Garcia Villalba, W. Jiang,
H. Schotten, et al., Selfnet framework self-healing capabilities for 5g mobile networks, Transactions on Emerging Telecommunications
Technologies 27 (9) (2016) 1225–1232.

[142] T. Xu, D. Gao, P. Dong, H. Zhang, C. H. Foh, H. C. Chao, Defending against new-flow attack in sdn-based internet of things, IEEE Access
5 (2017) 3431–3443. doi:10.1109/ACCESS.2017.2666270.

[143] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, A. Youssef, Leveraging the serverless architecture for securing linux containers, in: 2017 IEEE
37th International Conference on Distributed Computing Systems Workshops (ICDCSW), 2017, pp. 401–404. doi:10.1109/ICDCSW.

2017.66.
[144] S. J. Stolfo, M. B. Salem, A. D. Keromytis, Fog computing: Mitigating insider data theft attacks in the cloud, in: IEEE Symposium on

Security and Privacy Workshops, 2012, pp. 125–128. doi:10.1109/SPW.2012.19.
[145] R. Lu, K. Heung, A. H. Lashkari, A. A. Ghorbani, A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced

iot, IEEE Access 5 (2017) 3302–3312. doi:10.1109/ACCESS.2017.2677520.
[146] Y. Gao, Y. Peng, F. Xie, W. Zhao, D. Wang, X. Han, T. Lu, Z. Li, Analysis of security threats and vulnerability for cyber-physical systems,

in: Proceedings of 2013 3rd International Conference on Computer Science and Network Technology, 2013, pp. 50–55. doi:10.1109/

ICCSNT.2013.6967062.
[147] J. B. Bernabe, G. M. Perez, A. F. Skarmeta Gomez, Intercloud trust and security decision support system: an ontology-based approach,

Journal of Grid Computing 13 (3) (2015) 425–456. doi:10.1007/s10723-015-9346-7.
URL https://doi.org/10.1007/s10723-015-9346-7

[148] A. L. Lemos, F. Daniel, B. Benatallah, Web service composition: A survey of techniques and tools, ACM Comput. Surv. 48 (3) (2015)

26

http://arxiv.org/abs/1704.04213
http://arxiv.org/abs/1704.04213
http://arxiv.org/abs/1704.04213
http://dx.doi.org/10.1002/ett.3084
http://dx.doi.org/10.1002/ett.3084
http://dx.doi.org/10.1002/ett.3084
http://dx.doi.org/10.1002/ett.3084
http://dx.doi.org/10.1109/CAMAD.2014.7033259
http://doi.acm.org/10.1145/3098208.3098212
http://dx.doi.org/10.1145/3098208.3098212
http://doi.acm.org/10.1145/3098208.3098212
http://dx.doi.org/10.1109/NETSOFT.2017.8004234
http://dx.doi.org/10.1109/93.368603
http://dx.doi.org/10.1109/93.368603
http://doi.acm.org/10.1145/2462326.2462339
http://dx.doi.org/10.1145/2462326.2462339
http://dx.doi.org/10.1145/2462326.2462339
http://doi.acm.org/10.1145/2462326.2462339
http://dx.doi.org/10.1109/NOMS.2016.7502858
http://dx.doi.org/10.1109/MCOM.2014.6710076
http://arxiv.org/abs/1702.05510
http://arxiv.org/abs/1702.05510
http://arxiv.org/abs/1702.05510
http://dx.doi.org/10.15439/2014F503
http://dx.doi.org/10.1109/MCOM.2013.6400436
http://dx.doi.org/10.1109/CloudCom.2015.93
http://www.sciencedirect.com/science/article/pii/S1569190X15303014
http://www.sciencedirect.com/science/article/pii/S1569190X15303014
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2016.05.003
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2016.05.003
http://www.sciencedirect.com/science/article/pii/S1569190X15303014
http://www.gridweaver.org/WP1/report1.pdf
http://www.gridweaver.org/WP1/report1.pdf
http://www.gridweaver.org/WP1/report1.pdf
http://dx.doi.org/10.1109/TNSM.2015.2402752
http://dx.doi.org/10.1109/GIOTS.2017.8016285
http://dx.doi.org/10.1109/ACCESS.2017.2666270
http://dx.doi.org/10.1109/ICDCSW.2017.66
http://dx.doi.org/10.1109/ICDCSW.2017.66
http://dx.doi.org/10.1109/SPW.2012.19
http://dx.doi.org/10.1109/ACCESS.2017.2677520
http://dx.doi.org/10.1109/ICCSNT.2013.6967062
http://dx.doi.org/10.1109/ICCSNT.2013.6967062
https://doi.org/10.1007/s10723-015-9346-7
http://dx.doi.org/10.1007/s10723-015-9346-7
https://doi.org/10.1007/s10723-015-9346-7
http://doi.acm.org/10.1145/2831270


33:1–33:41. doi:10.1145/2831270.
URL http://doi.acm.org/10.1145/2831270

[149] M. Kelaskar, V. Matossian, P. Mehra, D. Paul, M. Parashar, A study of discovery mechanisms for peer-to-peer applications, in: Cluster
Computing and the Grid, 2002. 2nd IEEE/ACM International Symposium on, 2002, pp. 444–444. doi:10.1109/CCGRID.2002.1017187.

[150] K. M. Sim, Agent-based cloud computing, IEEE Transactions on Services Computing 5 (4) (2012) 564–577. doi:10.1109/TSC.2011.52.
[151] A. A. Bankole, S. A. Ajila, Predicting cloud resource provisioning using machine learning techniques, in: 26th IEEE Canadian Conference

on Electrical and Computer Engineering (CCECE), 2013, pp. 1–4. doi:10.1109/CCECE.2013.6567848.
[152] B. M. et al., Cloud network architecture description in scalable and adaptable internet solutions, Technical report, EU, Brussls, EU (2001).

URL http://www.sail-project.eu/wp-content/uploads/2011/09/SAIL_DD1_final_public.pdf

[153] H. Arabnejad, C. Pahl, P. Jamshidi, G. Estrada, A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling, in: 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid ’17, IEEE Press, Piscataway, NJ, USA, 2017, pp.
64–73. doi:10.1109/CCGRID.2017.15.
URL https://doi.org/10.1109/CCGRID.2017.15

[154] J. L. Berral, I. n. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, J. Torres, Towards energy-aware scheduling in data centers using machine
learning, in: International Conference on Energy-Efficient Computing and Networking, e-Energy ’10, ACM, New York, NY, USA, 2010,
pp. 215–224. doi:10.1145/1791314.1791349.
URL http://doi.acm.org/10.1145/1791314.1791349

[155] G. Pollock, D. Thompson, J. Sventek, P. Goldsack, The asymptotic configuration of application components in a distributed system, Tech-
nical report, University of Glasgow, Glasgow, UK (1998).
URL http://eprints.gla.ac.uk/79048/

[156] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, M. Weber, A vision of swarmlets, IEEE Internet Computing 19 (2) (2015)
20–28. doi:10.1109/MIC.2015.17.

[157] J. Gao, R. Jamidar, Machine learning applications for data center optimization (2014).
[158] V. S. Marco, B. Taylor, B. Porter, Z. Wang, Improving spark application throughput via memory aware task co-location: A mixture of

experts approach, in: Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, Middleware ’17, ACM, New York, NY, USA,
2017, pp. 95–108. doi:10.1145/3135974.3135984.
URL http://doi.acm.org/10.1145/3135974.3135984

[159] P. Bodı́k, R. Griffith, C. Sutton, A. Fox, M. Jordan, D. Patterson, Statistical machine learning makes automatic control practical for internet
datacenters, in: Conference on Hot Topics in Cloud Computing, HotCloud’09, USENIX Association, Berkeley, CA, USA, 2009.
URL http://dl.acm.org/citation.cfm?id=1855533.1855545

[160] S. Zander, T. Nguyen, G. Armitage, Automated traffic classification and application identification using machine learning, in: IEEE Con-
ference on Local Computer Networks 30th Anniversary, LCN ’05, IEEE Computer Society, Washington, DC, USA, 2005, pp. 250–257.
doi:10.1109/LCN.2005.35.
URL https://doi.org/10.1109/LCN.2005.35

[161] M. Usama, J. Qadir, A. Raza, H. Arif, K. A. Yau, Y. Elkhatib, A. Hussain, A. I. Al-Fuqaha, Unsupervised machine learning for networking:
Techniques, applications and research challenges, CoRR abs/1709.06599. arXiv:1709.06599.
URL http://arxiv.org/abs/1709.06599

[162] R. Stadler, R. Pasquini, V. Fodor, Learning from network device statistics, Journal of Network and Systems Management 25 (4) (2017)
672–698. doi:10.1007/s10922-017-9426-z.
URL https://doi.org/10.1007/s10922-017-9426-z

[163] J. Nam, S. Kim, Clami: Defect prediction on unlabeled datasets (t), in: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 452–463. doi:10.1109/ASE.2015.56.

[164] G. B. Chafle, S. Chandra, V. Mann, M. G. Nanda, Decentralized orchestration of composite web services, in: Proceedings of the 13th
International World Wide Web Conference on Alternate Track Papers &Amp; Posters, WWW Alt. ’04, ACM, New York, NY, USA, 2004,
pp. 134–143. doi:10.1145/1013367.1013390.
URL http://doi.acm.org/10.1145/1013367.1013390

[165] M. Korupolu, R. Rajaraman, Robust and probabilistic failure-aware placement, in: 28th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’16, ACM, New York, NY, USA, 2016, pp. 213–224. doi:10.1145/2935764.2935802.
URL http://doi.acm.org/10.1145/2935764.2935802

[166] M. Sedaghat, E. Wadbro, J. Wilkes, S. D. Luna, O. Seleznjev, E. Elmroth, Diehard: Reliable scheduling to survive correlated failures
in cloud data centers, in: 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 52–59.
doi:10.1109/CCGrid.2016.11.

[167] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-scale cluster management at Google with Borg, in:
European Conference on Computer Systems (EuroSys), Bordeaux, France, 2015.

[168] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek, E. Lee, J. Kubiatowicz, The cloud is not enough: Saving iot from
the cloud, in: 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15), USENIX Association, Santa Clara, CA, 2015.
URL https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/zhang

[169] N. K. Giang, M. Blackstock, R. Lea, V. C. M. Leung, Developing iot applications in the fog: A distributed dataflow approach, in: 2015 5th
International Conference on the Internet of Things (IOT), 2015, pp. 155–162. doi:10.1109/IOT.2015.7356560.

[170] T. L. Foundation, Open security controller, last accessed: Dec 2017 (2017).
URL https://www.opensecuritycontroller.org

[171] B. Jaeger, Security orchestrator: Introducing a security orchestrator in the context of the etsi nfv reference architecture, in: 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1, 2015, pp. 1255–1260. doi:10.1109/Trustcom.2015.514.

[172] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, The gator tech smart house: a programmable pervasive space, Computer
38 (3) (2005) 50–60. doi:10.1109/MC.2005.107.

27

http://dx.doi.org/10.1145/2831270
http://doi.acm.org/10.1145/2831270
http://dx.doi.org/10.1109/CCGRID.2002.1017187
http://dx.doi.org/10.1109/TSC.2011.52
http://dx.doi.org/10.1109/CCECE.2013.6567848
http://www.sail-project.eu/wp-content/uploads/2011/09/SAIL_DD1_final_public.pdf
http://www.sail-project.eu/wp-content/uploads/2011/09/SAIL_DD1_final_public.pdf
https://doi.org/10.1109/CCGRID.2017.15
http://dx.doi.org/10.1109/CCGRID.2017.15
https://doi.org/10.1109/CCGRID.2017.15
http://doi.acm.org/10.1145/1791314.1791349
http://doi.acm.org/10.1145/1791314.1791349
http://dx.doi.org/10.1145/1791314.1791349
http://doi.acm.org/10.1145/1791314.1791349
http://eprints.gla.ac.uk/79048/
http://eprints.gla.ac.uk/79048/
http://dx.doi.org/10.1109/MIC.2015.17
http://doi.acm.org/10.1145/3135974.3135984
http://doi.acm.org/10.1145/3135974.3135984
http://dx.doi.org/10.1145/3135974.3135984
http://doi.acm.org/10.1145/3135974.3135984
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
https://doi.org/10.1109/LCN.2005.35
http://dx.doi.org/10.1109/LCN.2005.35
https://doi.org/10.1109/LCN.2005.35
http://arxiv.org/abs/1709.06599
http://arxiv.org/abs/1709.06599
http://arxiv.org/abs/1709.06599
http://arxiv.org/abs/1709.06599
https://doi.org/10.1007/s10922-017-9426-z
http://dx.doi.org/10.1007/s10922-017-9426-z
https://doi.org/10.1007/s10922-017-9426-z
http://dx.doi.org/10.1109/ASE.2015.56
http://doi.acm.org/10.1145/1013367.1013390
http://dx.doi.org/10.1145/1013367.1013390
http://doi.acm.org/10.1145/1013367.1013390
http://doi.acm.org/10.1145/2935764.2935802
http://dx.doi.org/10.1145/2935764.2935802
http://doi.acm.org/10.1145/2935764.2935802
http://dx.doi.org/10.1109/CCGrid.2016.11
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/zhang
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/zhang
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/zhang
http://dx.doi.org/10.1109/IOT.2015.7356560
https://www.opensecuritycontroller.org
https://www.opensecuritycontroller.org
http://dx.doi.org/10.1109/Trustcom.2015.514
http://dx.doi.org/10.1109/MC.2005.107


[173] G. S. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère, H. B. Ribeiro, E. Rivière, F. Taı̈ani, Holons: Towards a systematic
approach to composing systems of systems, in: Proceedings of the 14th International Workshop on Adaptive and Reflective Middleware,
ARM 2015, ACM, New York, NY, USA, 2015, pp. 5:1–5:6. doi:10.1145/2834965.2834970.
URL http://doi.acm.org/10.1145/2834965.2834970

[174] G. S. Blair, D. Schmidt, C. Taconet, Middleware for internet distribution in the context of cloud computing and the internet of things, Annals
of Telecommunications 71 (3) (2016) 87–92. doi:10.1007/s12243-016-0493-z.
URL https://doi.org/10.1007/s12243-016-0493-z

[175] A. Diaconescu, S. Frey, C. Müller-Schloer, J. Pitt, S. Tomforde, Goal-oriented holonics for complex system (self-)integration: Concepts
and case studies, in: IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2016, pp. 100–109.
doi:10.1109/SASO.2016.16.

[176] F. Oquendo, Architecturally describing the emergent behavior of software-intensive system-of-systems with sosadl, in: 12th System of
Systems Engineering Conference (SoSE), 2017, pp. 1–6. doi:10.1109/SYSOSE.2017.7994941.

28

http://doi.acm.org/10.1145/2834965.2834970
http://doi.acm.org/10.1145/2834965.2834970
http://dx.doi.org/10.1145/2834965.2834970
http://doi.acm.org/10.1145/2834965.2834970
https://doi.org/10.1007/s12243-016-0493-z
http://dx.doi.org/10.1007/s12243-016-0493-z
https://doi.org/10.1007/s12243-016-0493-z
http://dx.doi.org/10.1109/SASO.2016.16
http://dx.doi.org/10.1109/SYSOSE.2017.7994941

	Introduction
	Recent Technological Trends
	A Comprehensive Motivating Use Case on the New Technology Landscape
	Programmable Disaggregated Infrastructures
	Data Centre Hardware Disaggregation
	Programmable Memory and Storage
	Programmable Networks

	Edge and Fog Computing
	Serverless Computing
	Current Standardisation Efforts

	Current Orchestration Challenges
	Churn and Unreliability
	Heterogeneity
	Dynamism
	Large(r)-scale and Fine(r) Grain 
	Speed
	Chaining Heterogeneous Functions and Storage
	Fine-grained Locality
	Multi -organisation/-tenant Orchestration
	Security and Privacy
	Grouping Challenges

	New and Revisited Orchestration Approaches
	Learning to Orchestrate
	P2P/Agent-based Orchestration
	Eventually Consistent/Probabilistic Orchestration
	Hierarchical Delegation
	No Orchestration
	Security Orchestration
	Hierarchical Emergent Behaviours

	Conclusions

